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Abstract—Road condition assessment plays an important role in 
maintaining the integrity of mature and fast-expanding road 
networks. Such assessments provide invaluable information for local 
authorities that enable them to deliver timely preventative road 
network maintenance. To enable the best use of scarce maintenance 
resources, it is necessary to assess the condition of the roads 
periodically. In this paper, we present the Point Laser (PL) system as 
an alternative approach for automatic road assessment. Compared to 
current systems, Ground Penetrate Radar (GPR) and Mobile Laser 
Scanning (MLS) system, PL system has the advantages of low 
hardware cost, low computational requirements and less 
environmental restrictions in relation to its use . The paper first 
outlines the principle of the PL system including a low-complexity 
signal processing approach. Afterwards, the feasibility, challenges and 
limitation of the PL system are discussed based on its use in a real 
environment. A visual-based road survey is  used as a ground truth to 
determine the PL’s performance in relation to the requirements of 
road condition assessment at various levels of road management. The 
results of the comparison demonstrate that that PL system is an ideal 
candidate for the automatic assessment of the condition of local road 
networks , especially those that require frequent assessment for road 
asset management. 

Index Terms—Point Laser, Road Survey, Signal Processing, 
Applications 

I. INTRODUCTION 

In most countries, local roads (i.e. urban and rural roads) 

constitute by far the largest proportion of the road network 

(typically more than 80%), provide significant socioeconomic 

benefit and constitute a significant asset value to a country. 

However, due to the combined damaging effects of traffic and 

the environment, local roads continually deteriorate and 

require periodic maintenance. Not only does maintenance 

sustain the value of local roads, but it also helps to minimise 

road use costs which are directly related to road condition, and 

thereby help to ensure socio-economic benefit at minimum 

user cost [1]. However, local road maintenance is often 

overlooked in favour of a country’s high volume, strategic, 

road network. To redress this balance there is a need to 

periodically assess local road condition to provide evidence for 

the need and benefit of their maintenance. Due to their vast 

extent, this should ideally be carried out by automated means. 

However, the automated assessment of local road condition is 

challenging because their predominant modes of 

deterioration, cracking and fretting (i.e. surface deterioration 

which leads to potholes) are problematic to assess 

automatically in all weather conditions at normal traffic 

speeds. This difficulty is further exacerbated because of the 

variety of surface types that can be used to construct local 

roads. Consequently, traditionally the assessment of local road 

cracking and fretting is normally carried out visually by trained 

inspectors walking along the road or by using windshield 

surveys. However, the increasingly faster computing units, 

more advanced digital storage devices and intelligent signal 

processing, has the potential for both the quantitative and 

qualitative analysis of local road conditions at traffic speeds, in 

real-time and at relatively low-cost [2]. 

A variety of vehicle mounted sensors for automated road 

condition assessment have been investigated including 

Ground Penetrating Radar (GPR) [3], Mobile Laser Scanning 

(MLS) [4], accelerometer [5] and vision system [6]. These have 

potential advantages over manual technologies, including 

improved repeatability, reproducibility, greater efficiency and 

fast development cycles. For example, previous research on 

acoustic [7] and ultrasonic [8] systems (which transmits the 

mechanical wave from 50 Hz to 20 MHz) demonstrate the 

potential for non-destructive road condition assessment with 

acceptable resolution. In contrast, MLS is a more mature 

system and has been used for vehicle-based surveys [4], [9]– 

[11]. On the other hand, there are opportunities for the road 

condition assessment industry to learn fromthe rapid 

development of machine/deep learning, vision systems that 

have  become a critical component of the autonomous 

vehicles. Work by [12] developed a convolution neural 

network for road cracking detection which is based on the 

images collected by a low-cost camera. A more advanced 

image system shown in [13] can achieve pixel-level accuracy 

for extracting pavement defect and to an accuracy of 90%. 

Recently, accelerometer-based road monitoring systems have 

received increasing attention due to their low-cost and low 

energy consumption [5], for example, smartphones. Practical 

research [14] presents the use of a 3-axis accelerometer 

together with Support Vector Machine (SVM) for fast road 

condition classification. The limitations and restrictions of 

these systems are varied. Acoustic/ultrasonic systems are 

easily disrupted by air, gas and water that restrict their 

potential application for high-speed surveying. The signal 

processing for MLS is usually highly complex and  requires 

significant computational power.  Further, the research 

reported above [4], [9]–[11] has not demonstrated the ability 
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for real-time processing. In addition, the powerful laser beam 

may be hazardous to passing pedestrians/animals.  

Visual systems require suitable levels of road surface 

illumination, therefore their used is constrained during 

inclement weather, and they often need large amounts of 

training data, increasing the costs of road surveys. These 

drawbacks significantly impinge on their use for extensive local 

road surveys were the weather can change rapidly, 

illumination levels vary, the types of defects vary and the road 

surfaces types vary during the survey.  

 

 

Fig. 1: An overview of point laser for road condition 

assessment 

Accelerometer-based approaches are affected by vehicle 

speed, mass, type, the suspension system and tire pressure [5].  

Furthermore, the use of accelerometer-based approaches for 

the assessment of road surface cracking and fretting, the 

predominant modes of deterioration of local roads, is untried 

and would seem extremely challenging, and therefore 

research to date in their use has focused on assessing road 

roughness [5]. Current and future developments of on-board 

technologies for private vehicles include the inclusion of both 

video cameras and inertial (accelerometer) based equipment. 

Whilst such equipment could be usefully used together with 

appropriate processing algorithms to assess road defects, such 

as roughness, rutting and large areas of cracking, for the 

reasons outlined above video and inertial based systems are 

unsuitable for local roads where the assessment of fretting and 

areas of small cracks is of primary importance.  Furthermore, 

the use of data from private vehicles to assess road condition 

relies on data being recorded on the same section of road by 

passes of multiple vehicles. However, rural roads in particular 

are often very lightly trafficked and therefore such an 

approach would not be feasible.  

In this paper, we present an alternative approach for local 

road condition assessment which deploys a PL system that 

addresses many of the drawbacks of other systems described 

above. Further, the PL system has the advantage of a relatively 

low-density of scanning data compared to the MLS system, 

thereby reducing computational power requirements, thus 

facilitating real-time processing. Furthermore it costs 

considerably less  than the MLS system and allows for rapid 

data update. The PL system has an excellent resolution in the 

longitudinal direction (0.8 mm in this work) and is less 

hazardous to the surrounding environment. There has been 

little published work on the PL system, for example, work [15] 

measures the road texture on the local roads, work [16] 

assesses the road condition at the network-level and [17] uses 

the Root-Mean-Square (RMS) value to estimate the change in 

road surface texture. In this work, a robust and low complexity 

signal PL based processing methodology has been presented 

that deals with noise and estimates road condition to a 

resolution suitable for  network level analysis. The output is 

compared with manually inspected data to quantify the 

similarity. Afterwards, the performance of PL system is 

compared to another on-board MLS system to demonstrate 

the advantages and disadvantages of the proposed PL system 

for road condition surveys. 

The paper is organized as follows: Section II overviews the 

principle and design of the PL system, Section III presents the 

signal processing including pre-processing and histogram 

analysis, observations and discussions regarding the feasibility, 

challenges and limitations are in Section IV, and Section V gives 

the conclusions. 

II. OVERVIEW OF POINT LASER SYSTEM 

A. Principle of Point Laser 

A laser sensor continuously emits a pulse at a near-infrared 

wavelength, part of the scattered reflected signal is captured 

by the sensor and digitized. Based on the travel time of the 

light, the relative distances between the laser and scanned 

objects can be calculated from the time delays between the 

pulse transmission and return. In practice, the laser sensor 

utilises optical 2D triangulation as shown in Fig 1, whereas the 

angle of the reflected pulse depends on the distance. Unlike 

most 

 

Fig. 2: The point laser system mounted on the HARRIS2 

Point Laser 

Commented [MB(oCE1]: Wang et al.  
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commercial MLS systems, the PL system does not scan the 

entire road surface but only the longitudinal direction (i.e. in 

the direction of travel). As a result, each PL sensor outputs a 

2D profile of the road surface instead of the 3D point cloud 

data, which means the down-conversion process is not 

required. This enables much lower computational complexity 

when compared to the 3D MLS point clouds technique or the 

2D Geo-Referenced Feature (GRF) images [18]. 

A road is typically constructed of several layers of materials. 

Over time due to the damaging effects of traffic and the 

environment, the road surface loses aggregate particles as the 

binder ages, causing a consequential loss of adhesion (this is 

known as fretting). A PL sensor can detect this loss of the 

aggregate due to its high resolution. An idealised scanning 

simulation for a PL sensor is shown in Fig 1. For a sound road 

surface, the amplitude and frequency of the reflected laser 

signal are relatively constant, whereas for a damaged road 

surface, the reflected signal is of much greater variation in 

terms of amplitude and frequency. Thus it is possible to assess 

the quality of the road surface by using information regarding 

the reflected amplitude and frequency of the signal. However, 

in reality, noise from multiple sources, for example the 

acceleration from vehicle and the change in the surface 

texture of the road, induce significant interference. For 

accurate road condition assess such noise needs to be 

removed before processing. Details of how this has been 

achieved in the proposed system are described in Section III-A. 

B. System Design 

The PL system is mounted on an in-service road condition 

survey vehicle (a Ford TDCi model) namely, Highways 

England’s Road Research Information System 2 (HARRIS2) [16]. 

The system consists of three main components, sensors for 

road condition assessment, a system for providing location 

information and a central control unit. 

1) Scanning Sensors: HARRIS2 contains five ProfiCura 2D 

point lasers [19] designed for operating in the harsh road 

environment. Each laser is aligned at 90 degrees to the road 

surface and the lasers are distributed horizontally across the 

vehicle. A close view of TABLE I: Comparison Table of Laser 

Systems 

System Point Laser On-board MLS 
360 Degree 
MLS [21] 

Longitudinal 

Resolution 
0.803mm 4mm 8mm 

Transverse 
Resolution 

NaN 1mm 8mm 

Vertical 
Resolution 

0.01mm 1mm 8mm 

Categories 
2D Profile 
Data 

2D Geo- 
referenced 
Image 

3D Point Cloud 
Data 

Signal 
Processing 
Method 

Histogram 

Analysis 
Hough 
Transformation 

Deep Learning 
Neural 
Network 

Measurement 

Rate (max) 
2k/sec 28k/sec 550k/sec 

Information 
Network 
Level 
Information 

Road Markings, 

Road Crackings 

Multiple 
Transportation 
Information 

Real-time Ability 
On-board 
Processing 

Offline 
Processing 

No 
Demonstration 

the PL system is shown in Fig 2. HARRIS2 is also equipped with 

a Laser Crack Measurement System (LCMS) [20] with high 

resolution in the transverse direction that is capable of taking 

1000 transverse profile measurements per second across a 

width of approximately 4.2m. The LCMS collects the 3D laser 

data from the road surface and converts it into 2D 

georeferenced images, and it is operated simultaneously with 

the PL system for comparison purposes. 

Table I compares 2D profile data, 2D image-driven and 3D 

MLS point-drive extraction road condition monitoring systems. 

The PL sensor used in this work outputs a 2D profile data with 

the lowest data dimension compared to the other laser 

techniques [3], [20]–[22]. Also, a low-complexity histogram 

analysis [23] has been used to process the profile data. In 

comparison, converting the 3D MLS point clouds into 2D 

images is an effective solution to overcome inconsistency and 

variance issues in intensity which can occur due to the shape 

of road objects. This approach also reduces the dimensions of 

the data and the need to use very robust deep learning 

algorithms to analyse the data. In comparison, the 3D point 

cloud [21] based systems can improve the accuracy of 

assessing complex types of road defects. However, it is a 

challenging task to extract from the large-volume MLS point 

clouds especially for unevenly distributed point clouds and 

complex concavo-convex features [18]. 

2) Navigation & Orientation System: An important 

component of automated systems used to assess road 

condition is location referencing. HARRIS2 uses a Global 

Navigation Satellite System (GNSS) which uses a GPS signal to 

provide the location information in the form of an Ordnance 

Survey Grid Reference (OSGR) (OSGR is a grid references 

system used in the UK). The positioning accuracy of this system 

is affected by multipath propagation issues (for example 

tunnels, buildings, and trees). To eliminate such effects and 

bypass the limitation of GPS signal, an Inertial Measurement 

Unit (IMU) is used to provide the instant velocity, position and 

attitude measurements. The IMU provides continuous 

positioning information in the case of GNSS malfunction. In 
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Fig. 3: Block Diagram of Signal Processing for Point Laser 

addition, the IMU contains three accelerometers and three 

gyroscopes, which can also be used for acceleration and 

angular measurements. The resulting overall localization 

accuracy is approximately 1 cm horizontally and 2 cm vertically 

with respect to local GNSS-reference stations [18]. 

3) Central Control Unit: HARRIS2 also contains a central 

control unit (a computer server), a highly integrated control 

system, designed to control all on-board sensors (e.g. laser 

system, MLS), synchronize the data from each system with a 

time stamp and store the location information from the GNSS 

system.  Further information about the HARRIS2 central 

control unit may be found in []. 

III. SIGNAL PROCESSING OF POINT LASER 

This section presents the signal processing for the proposed 

PL system that is used to (i) remove noise, and (ii) analyse the 

processed signal to estimate road condition. The structure of 

the developed signal processing is shown in Fig 3. 

A. Pre-Processing 

It was observed that several sources of noise can affect 

significantly the PL data, and such noise therefore needed to 

be filtered at the pre-processing stage. To illustrate this, an 

example of 50 metre raw data points is provided in Fig 4(a). 

1) Sensor Noise: Sensor noise is a result of the PL sensor 

recording an erroneous data point due to the internal clock 

issues (signal source inside PL sensor) providing an incorrectly 

measured time of flight (ToF) between the outward and 

reflected laser pulses. By analysing the entire dataset from a 

survey, the erroneous data point typically accounts for 

approximately 0.5% of the data. Since the longitudinal 

resolution of the PL sensor is 0.803 mm, this means around 6 

erroneous data points per metre. These erroneous data points 

are of much higher amplitude (as shown in Fig 4(a)) and can 

cause significant interference for the later histogram analysis. 

In this work, a two-step algorithm was applied to remove 

the erroneous data points whilst not affecting the other 

authentic data points. Firstly, an adaptive threshold T(t) based 

on a Moving Average of Minima (MAM) method [24] was used 

Raw Data  
from Laser  

Sensor 

Adaptive  
Threshold 

Replace  
Erroneous  

Data  
Points 

Remove  
Vehicle  

Dynamic  
Pixel RTI  

Calculation 

Baseline  
Estimation 

Local Area  
( Monitoring ) 

Histogram  
Feature 

Global Area  
( Road  

Texture ) 
Pre - Processing Histogram  

Analysis 

Parameter  
Calculation 

Commented [MB(oCE2]: Suggest using references 16, 17 
or one of our previous papers . 
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Fig. 4: A demonstration of the signal processing for PL system: (a) raw data points (red line is adaptive threshold), (b) after sensor 

noise removal, (c) after baseline correction (red part is road surface containing fretting, green part is a sound road surfac e), 

(d),(e) measurements of two types of road texture, (f) histogram analysis of fretting road surface, and (g) histogram 

analysis of smooth road surface 

to identify the erroneous data points. T(t) is calculated as 

follows: 

  (1) 

where y(t) represents the collected data points, ln is the 

window length, ci = 1/(ln +1) is the weighting factor, and w is 

a constant. Data points above the threshold are considered to 

be erroneous (e.g. the red line in Fig 4(a)). The second step 

replaces erroneous data points with the mean value of 

authentic adjacent data points. In the example given in Fig 

4(a), the resulting data points are shown in Fig 4(b). 

2) Vehicle Dynamic: Another major source of interference is 

from vehicle vibrations which are particularly prevalent during 

acceleration and deceleration. Since the laser sensor measures 

the relative distance to the road surface, a change in vehicle 

height may affect the measurement of road defects. In this 

work, the vehicle dynamic issue was regarded as a baseline 

correction problem since the motion introduces components 

which have significantly greater fluctuations in both 

magnitude and wavelength when compared to those resulting 

from both the road texture and the defects. The MAM 

algorithm described in Equation 1 was used again for the 

baseline estimation (albeit with a different window length). 

Accordingly, the resulting corrected data points yˆ(t) are 

calculated as: 

yˆ(t) = y(t) − yV (t) (2) where, yV (t) is the 

estimated baseline. The result of baseline correction is shown 

in Fig 4(c) from which it can be seen that the major component 

due to the vehicle dynamic has been successfully corrected. 

For example, the troughs (e.g. near 10 and 40 metres) can be 

easily observed following the baseline correction. 

B. Road Condition Estimation 

Another issue that needs to be considered is the change in 

road surface texture which are likely to be encountered by a 

survey vehicle during a survey. Different road textures can 

have different sizes of surface aggregate and as a result, this 

can cause issues in the measurement of fretting at the point 

when the vehicle traverses two roads with different surface 

textures. An example of two different road textures are shown 

in Fig 4(d) and (e). 

1) Road Texture Index Calculation: The Root Texture 

Index (RTI) was adopted as a measure of road texture as 

discussed in our previous work [23], [25]. RTI evaluates the 

changes in road surface measurement for a given 

segmentation with respect to the Root-Mean-Square (RMS) 

value. The ith RTi value is calculated as: 

  (3) 

where ns is the number of data points per segmentation. 

2) Global and Local Area: In this work, the concept of the 

global area (i.e. an estimate the type of road texture over a 

relatively long distance as a reference) and the local area (i.e. 

the scanning area) is used [23]. The concept assumes that the 

road texture remains unchanged over the long distance (global 

50 30 20 10 0 40 
distance (m) 

0 

100 

200 

300 
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measurement (mm) 
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50 40 20 10 0 30 
distance (m) 
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50 
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b ) ( 
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-20 
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0 

10 

20 

30 

measurement (mm) 

) c ( 
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area) when compared to the part of road being assessed (i.e. 

the local area). By doing so, the system can analyse the types 

of road texture without prior knowledge of the texture 

features. The relationship between the number of data points 

in global area ng, the local area nl and the segmentation length 

ns follows . 

TABLE II: Details of the Road Survey 

Road Description Length Class 
Fretting 

Level 
One Byron Dr 0.421 Secondary Road L 
Two Duke’s ride 0.480 B Road L/M 
Three Wokingham Rd 0.711 A Road M 
Four Hanworth Rd 1.337 Secondary Road H 

As a result, the number of RTI values in a global area is 

greater than that in a local area and consequently, frequency 

histograms of local and global RTI values are compared in 

order to assess the condition of the local area compared to the 

global area. Here, two examples of histogram analysis are 

provided based on the data points in Fig 4(c). The section from 

5m-10m shows an area of road surface that has significant 

fretting (red part) whereas the section from 20m-25m is a 

sound road surface (green part). The output histograms are 

provided in Fig 4(f) and (g) respectively. As can be seen, the 

histogram of the sound road surface has a similar distribution 

to that of the global area, whereas the fretted road surface 

shows more variance. 

3) Parameter Calculation: The final stage is to generate 

meaningful parameters that can present the difference 

between histograms of a fretted and sound road surface 

meaningfully. Histogram features can be considered to be 

vectors, thus the problem can be considered to be one of 

understanding the difference/similarity of the vectors. Two 

parameters were chosen to this end: 

• Mean-Square-Error (MSE). MSE represents the difference 

between the RTI distribution of the local and surrounding 

global lengths. A low MSE value occurs if the distributions 

of local and global RTI values are similar and thus there is 

a low amount of fretting in the local length. MSE is 

calculated as MSE = 

. 

• Correlation-coefficient (R). R is a measure of the similarity 

between the frequency distribution of the RTI values of 

the local length and that of the global length. Low R 

values indicate that the local RTI distribution is 

significantly different to the global RTI distribution and 

therefore the local length of road contains large amounts 

of fretting. R is calculated as , where σ 

represents the standard deviation. 

The efficacy of the above processes is discussed in the next 

section. 

IV. OBSERVATIONS AND DISCUSSIONS 

In this section, we discuss the detection performance of the 

system outlined above using data collected from a number of 

road surveys. Three challenges are outlined together 

with their possible solutions. Limitations are also discussed to 

present the boundaries of using the PL system for road 

condition surveys. 

A. Feasibility 

The feasibility of the PL system is demonstrated by 

comparing data collected from four roads, near Crowthorne, 

United Kingdom, surveyed by HARRIS2 with the Detailed Visual 

 

Fig. 5: MSE and R plot for each road survey, (a) road one, (b) 

road two, (c) road three and (d) road four 

Inspection (DVI) [26] of the roads carried out by trained 

surveyors. The DVI survey classifies road surface fretting in 

terms of High (H), Moderate (M) and Low (L) levels. A brief 

description of the dataset is provided in Table II. 

The MSE value against the R value for each road is plotted in 

Fig 5 to visualize the algorithms output. Each point represents 

the PL measurement over a 5m distance. Sound road surfaces 

should have small MSE value (i.e., close to 0) and a high R value 

(i.e. close to 1), whereas damaged road surface will have a high 

MSE and a low R value. In other words, in Fig 5, data points in 

top left corner represent road sections with low amounts of 

fretting area and those in bottom right corner represent road 

sections with a high amount of fretting. Fig 5 presents the 

average condition of each road. For example, the majority of 

sections of road one are in generally good condition with most 

data points concentrated in the top left corner. On the other 

hand, the measured sections in road four are scattered across 

the bottom right corner suggesting the road is in poor 

condition. In contrast, roads two and three have more points 

distributed among the middle area indicating the road sections 

are in moderate condition. By inspection, these results match 

the DVI data shown in Table II. There are also some anomalies. 

For example the point (MSE=0.06 and R=0) in the right bottom 

of Fig 5(c). However, the number of anomalies is very small and 
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they do not affect significantly the assessment of the average 

condition of the entire road. The different fretting level has 

varied ratio of good surface. Even in roads three and four, 

there are a number of sections with low MSE and high R values. 

The MSE and R values shown in Figs 5 are presented in Figs 

6 and 7 in the form of histograms of the normalised frequency 

of occurrence. These histograms show clearly trends in 

condition for each road. The majority of MSE values for roads 

one and two lie in the range between 0.01 and 0.02 with R 

values between 0.99 and 0.97. This suggests both roads are on 

the whole in good condition and correspond to their 

 

Fig. 6: Histogram on MSE values from four road surveys 

 

Fig. 7: Histogram on R values from four road surveys 

 (a) (b) 

 
 one two three four one two three four 
 Road Road 

Fig. 8: Comparison of category result for the 

management function of Planning (500m) (a) DVI and (b) point 

laser system, Programming (60m) (c) DVI and (d) point laser 

system, Preparation (20m) (e) DVI and (f) point laser system 

actual road condition. In comparison, the majority of MSE 

values from road four are between 0.03 and 0.04, and most R 

values are less than 0.90, indicating a damaged road section. 

This finding is verified by the actual condition of the road given 

in Table II. 

Road surveys can be considered to support three levels 

 

Fig. 9: Different types of abnormal measurements from point 

laser sensor 

of road asset management decision making, namely strategic 

planning, tactical programming, and operations [27]. The data 

requirements to support each level of decision making are 

different and can be defined according to the World Bank’s 

information quality level (IQL) approach [28]. A paired 

difference test [29] was used to further compare statistically 

the results of the PL system and the DVI methodology for each 

of the three levels of management. Fig 8 provides the results 

of strategic planning (500m), tactical programming (60m) and 

operations (20m). The PL system and DVI show similar results 

for all three levels of road management. Especially, the 

similarity is highest when the data is considered over a 500m 

length of road. Data to this level of detail are at IQL 3/4 and 

are suitable for strategic road asset management decision 

making [23]. This means the current approach is sufficient for 

strategic, or network level, road condition analysis. 

Accordingly, this data would be useful to support inspection 

required to determine periodical maintenance and 

infrastructure construction planning. 
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B. Challenges 

1) Unexpected Measurements: Apart from the interference 

described in Section III A, there are a number of issues that 

may potentially affect the system’s performance. Four 

different types of interference are shown in Fig 9 (the sensor 

noise has been removed) varying from a few millimetres to 

more than hundred metres in extent and with a variety of 

magnitudes. For example, data points in Fig 9(a) show a 

saturated and a constant gap spanning over one metre, 

whereas in (b) a deep trough of more 50 mm in depth and 0.1m 

in width is apparent at a distance of 0.4m. In comparison, the 

apparent anomalies in Fig 9(c) and (d) are similar to the road 

measurements in terms of the magnitude and variation, but 

with a unique periodicity. The cause for these anomalies 

varies. Sensor error can explain the measurements in Fig 9(a) 

and (b) as they are of constant amplitude for a period of time, 

which should not be 
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Fig. 10: Data comparison between (a) laser image from onboard 

MLS system and (b) texture data from point laser system 

a case when scanning a road section. For Fig 9(c) and (d), small 

objects on the road surface may be the reason for those 

measurements, for example when the scan is over a manhole 

cover or a road marking. Undoubtedly, these abnormal 

measurements will affect the RTI calculation and affect the 

histogram analysis. In Section IV-A, we have demonstrated that 

with the current setup, the system output can achieve the 

requirement of IQL 3/4 for network-level analysis. But to achieve 

a higher level in IQL 1/2, these irregular measurements need to 

be removed. 

Anomalies such as those in Fig 9(a) and (b) are easy to detect, 

as they have very different magnitudes when compared to the 

regular road surface. Algorithms such as those proposed by [30] 

could be suitable to identify such anomalies. The challenge is 

more complicated for the data points in Fig 9(c) and (d), as they 

may appear more frequently. Their detection and removal 

require training a classifier with a dataset labelled as normal and 

abnormal so that the system can separate the normal and 

abnormal measurements. 

2) Road Surface Texture: Another challenge is the effect of the 

change of road texture which can occur during a road condition 

survey. An example of measurements on two road textures using 

a MLS and PL sensors is shown in Fig 10. As can be seen, the two 

types of road texture are clearly distinguishable in the 2D image 

from the MLS with different intensity. In comparison, the 

difference between two textures is not as apparent in the PL 

measurement, but it still can be observed that the data points 

from road texture A contain more fluctuations than for texture B. 

Despite the use of the local and global concept described above 

to negate the need to determine prior to the survey the type of 

road texture, a larger window than that used for the above 

analysis is required to show the 
Scanning Path of Point Laser 

 
Cracking in Transverse Direction Cracking in Transverse Direction 

Fig. 11: Demonstration of Point Laser Scanning Path 

changes in texture. This potentially reduces the accuracy of 

the output as road defects vary in size depending on the 

road texture, while the inaccurate texture estimation 

reduces the number of road defects detected. 

The low dimension of data points in a PL survey restricts 

the estimation of road texture. A sliding window could help 

to improve the sensitivity by generating more estimations 

over a given area. However, the global area remains a 

network level method as it contains a large amount of data 

points that are insensitive to a sudden change and enables 

changes in road texture to be considered automatically. On 

the other hand, the analysis of very small sections of the 

road surface can significantly increase the accuracy of 

texture measurement by examining the characteristics of 

each data point. Such an approach will require significant 

additional computational power due to the larger number 

of data points that need to be assessed. Thus, the trade-off 

between the computational power and accuracy required 

to measure texture needs to be carefully considered and 

assessed according to the IQL required. 

3) Imperfect Vehicle Dynamic Cancellation: As described 

in Section III-A, a MAM filter was used for simple and low 

complexity baseline correction. However, the varied 

dynamic motions of the vehicle mean a single MAM filter 

cannot accurately remove all of the dynamic components, 

and as a result, those components which are not removed 

can strongly affect the histogram analysis. 

Improvements can be made to both the software and 

hardware to better account for the effects of vehicle 

dynamics. From the software side, filters with high-

resolution spectra that are able to process multivariate can 

provide better performance in baseline correction [31]. But 

Texture A Texture B 

Change  
Point 

Texture A 

Texture B 

Change  
Point 

direction 
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the application of such filters can significantly increase the 

processing time and the choice of appropriate filter 

parameters is critical. On the hardware side, the on-board 

IMU provides the inertial information about the vehicle 

movement. Real-time vehicle dynamics can be calculated 

by using this information, allowing their effect to be 

removed from the PL measurement with a high degree of 

confidence. 

C. Limitations 

Since the PL sensor scans only in the longitudinal direction, it 

has a number of limitations when compared to a MLS system. 

Based on the analysis of the data obtained from the field trial, it 

was observed that several road defects are hard to identify by the 

PL system, due to their shape or location are not within the 

scanning area. Also, low-level  road surface associated features 

(when compared to 3D point cloud data) are apparent in PL 

measured data that are problematic for defect classification. 

1) Limited Road Information: Road cracking is a common 

type of defect that occurs on local roads with asphalt surfacings. 

Therefore for a comprehensive condition survey cracking needs 

to be detected since unchecked cracking can lead to the 

formation of potholes and eventual road failure. Road surface 

cracking can span both the transverse and longitudinal directions 

[32]. As shown in Fig 11, cracking in the transverse direction can 

be relatively easily detected by the advocated PL system. 

However, cracking in the longitudinal direction is less likely to be 

detected by the narrow laser beam. 

Another significant defect that occurs on local roads is edge 

deterioration which results from a lack of support and poorly 

draining shoulder material. This issue can soon worsen if the road 

edge is not repaired in a timely fashion. Since edge deterioration 

is wider than road cracking, it should be easily captured by a PL 

sensor, provided that the sensor aligns with the edge of the road. 

However, for the system proposed herein the PL is only capable 

of measuring the surface of the road underneath the vehicle. A 

potential  solution to the measurement of both longitudinal 

cracking and edge wear is to employ sensors at an angle to the 

road surface so that the coverage can extend outside the vehicle. 

Also, PL sensors could be mounted away from the vehicle, on a 

retractable arm for example,  allowing a greater area to be 

covered. These additional PL sensors however, will increase the 

cost of system hardware, and more data points need to be 

processed. 

2) Low-Level features for Classification: In comparison to 

the features determined by a MLS system (3D point cloud data), 

the 2D PL system provides less (lower-level) features. Although 

the PL system can detect road defects based on the variation in 

their depth, however, a single PL cannot assess on its own  the 

width or shape of a road defect. For example, in Fig 11, cracking 

in transverse direction has only been scanned a few times which 

makes more different to be detected. This restricts the use of the 

PL system and reduces its ability to detect certain types of defects 

and reduces the accuracy of defect classification compared to an 

MLS based system. A potential solution to this could be to fuse 

data from more than one PL allied to the use of intelligent 

algorithms which can infer and extrapolate features from data 

provided. 

In addition, the local-global principle requires fine-tuning if it is 

to be used to identify individual small defects, such as potholes. 

The longitudinal resolution of the PL sensor is 0.803 mm (see 

Table I). Therefore a pothole with a diameter of 30 cm would 

result in approximately 374 data points. This is a comparably 

small number when compared with a local length of 10 m (12,453 

data points) and the global length is 100 m (124,533 data points). 

Accordingly, whilst the presence of the pothole would influence 

the histogram analysis described above and would probably 

result in local area of road surface being shown (correctly) to 

contain fretting, the analysis would not be able to identify the 

individual pothole causing the high degree of fretting. One 

possible solution is to use a moving window with a variable size. 

For example, in our previous work [33], a peak detection 

approach was used but it was of much greater computational 

complexity and required greater computational effort due to the 

wavelet transform process. Additionally, fusing data from 

multiple PL sensors will improve the feature diversity 

detectability of the suggest system by using the data from 

different scanning paths. 

V. CONCLUSIONS 

This paper discussed the use of a PL system for the 

automated analysis of local road condition at moving traffic 

speeds. A histogram analysis has been used to process the 

scanning data from a PL system with the local-global 

concept. The experimental results indicate that the PL 

system has the capability of satisfactorily assessing local 

road condition to IQL 3/4 that is required for strategic road 

asset management. However, several challenges were 

observed from the analysis of the field data, including the 

presence of unexpected measurements, issues associated 

with the change in road texture during a road survey, and 

the effects of vehicle dynamics. A number of corresponding 

solutions were proposed with respect to efficiency to 

identify noise and the use of the IMU to counteract the 

effects of vehicle dynamics on the recorded PL data. It is 

recognised that the proposed PL system is unable to detect 

a number of features that could be provided by a MLS 

system, thus limiting its application to the types of defects 

which can be detected and the IQL of those defects it is able 

to detect. It is recognised therefore that whilst the 

proposed PL system is able to assess road surface condition 

to a sufficient level to support strategic level road asset 

management, further enhancements are required to 

improve its detection performance in terms of accuracy and 

coverage and thereby enable road condition to be assessed 

to higher IQLs.  These enhancements include fusing data 

from a number PLs allied to more intelligent data 

processing algorithms.  
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