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UV-Vis spectra of the AuNCs used in this work 

 

Figure S1. UV-Vis spectrum of the AuNCs used in this work. Characteristic peaks are indicated with asterisks. 

 

Figure S1 shows the UV-Vis spectra of both nanoclusters used in this work. The spectra show some distinctive 

absorption peaks of the Au144(SR)60 and  Au25(SR)18 nanoclusters. [1-2]  For Au144(SR)60 spectrum, typical bands are 

observed at ~ 525 nm, ~ 565 nm, and ~ 700 nm,  while for Au25(SR)18, bands at 397 nm, 446 nm, and 685 nm are 

observed. Importantly, for Au25(RS)18 nanoclusters, three charged states have been identified previously:  -1, 0, and 

+1.[2] This charge state can be easily identified from the AuNCs UV-Vis spectroscopic features, namely, the relative 

intensities of the 400 and 450 nm peaks and the presence or absence of the 800 nm shoulder peak. The spectrum of 

Au25 anion shows a shoulder at ca. 800 nm, and the absorption peak at ca. 400 nm is less prominent than the one at 

ca. 450 nm. For the cationic and neutral forms, the shoulder is not present. In the cationic form, the intensity of peaks 

at ca, 400, and 450 nm are sizeable, while for the neutral form, the intensity peak at 400 n is more prominent than the 

one at ca. 450 nm.[2] 

 

All the spectral features agree with the expected nanoclusters in their uncharged state.[1-2]  

 

Scanning Tunneling Microscopy (STM). Additional images and imagining acquisition parameters

 

Table S1. STM imaging conditions. 

Figure isp [nA] Ebias V] Scan rate [lines·s-1] 

1a 0.10 0.20 4.039 

1d 0.30 -0.10 12.12 

1e 0.10 0.20 12.12 

3a 0.30 0.20 12.12 

3b 0.10 0.10 12.12 

S2a 0.01 -0.08 6.06 

S2a-inset 0.50 -0.03 12.12 
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The Au(111) substrate were measured before immersing in the AuNC dispersion to assure that the observed features 

resulting only from the AuNC/Au(111) interaction. A typical STM image of the substrate is shown in Figure S2. The 

quality of the surface and the cleaning process is evidenced by the presence of large and flat terraces, that are 

monoatomic in height and present the typical herringbone structure ascribed to the Au(111) reconstruction. 

 

Figure S2. STM images of Au(111) before immersion in AuNC dispersions. (a) Image of the substrate after flame 

annealing with H2, showing the large and atomically flat terrace. The slightly pattern observed on the surface 

corresponds to the herringbone structure, typical for clean Au(111). Inset: Zoom of images a, showing the herringbone 

reconstruction. (b) Height profiles along lines 1 and 2. Orange dotted lines are included to highlight that the distance 

between Au steps agrees with the one between monoatomic layers of Au(111) -i. e. 0.24 nm.  Scale bars correspond to 

60 nm (image a) and 20 nm (image in the inset).  

 

Determination of Au island coverage (θAu_island) 

The Au island coverage was determined as the area of STM images covered by the Au islands. STM imaging analysis 

was performed by employing The “flooding” tool provided the WSxM software[3], on images where Au islands are in the 

top large terraces and far apart to the step edges. The height-threshold was adjusted in order to only account the Au 

islands and remove the rest of the surface. Then, the software tool automatically calculates the area of the remaining 

islands relative to the total area of the image, which is indeed the coverage of Au islands (θAu_islands). 

 

Determination of the SR coverage from electroreduction curves (θSR) 

The SR coverage, θSR, is obtained from by the SR reduction charge (qSR) by using the following relation: 

 

θSR=
q

SR

e
nAu(111) [S1] 

 

where  nAu(111) is the number of Au atoms per cm2 at the (111) surface and, e is the elemental charge.   

The thiolate reduction charge, qSR, was determined according to  

q
SR

= B 
ASR

νSR

νAu

AAu

 [S2] 

where ASR is the area of the thiolate electroreduction peak, AAu is area of the electroreduction peak of Au oxide layer, 

νSR and νAu are the scan rates at which the CVs were recorded and, B is a proportional constant that accounts for the 

charge provided by the oxidation of 1 cm2 of Au(111) surface i.e. B= 444μC cm-2.[4] 

The areas ASR and AAu were determined from the cyclic voltammograms recorded as stated below. 
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 ASR was obtained by integration of the a sharp peak observed at -0.97 ± 0.02 V, ascribed to the electroreduction 

of thiolate-Au bonds accordingly to Au-SR + e- → SR- + Au0.[5] The electroreduction of thiolate-Au bond was 

performed by scanning the potential between -0.2 to -1.3 V at 0.1 V s-1,  starting at -0.2V and in the cathodic 

direction.  

 AAu was obtained by integration of the reduction peak centred at ca. 0.05V, assigned to the reduction of Au 

oxide monolayer generated during the anodic scan.  The voltammogram was recorded by cycling the potential 

between to -1.35 V and 0.6 V at 0.1 V s-1, starting at the open circuit potential (OCP) and in the anodic direction.  

 

Estimation of the expected Au island coverage θAu_island  

Table 2 Au island coverage for different decomposition degree of a single AuNC, yielding to LD phases that contain (1) 
RS-Au-SR staples or (2) SR thiyl radicals. 

Decomposition 

Mechanism 
Reaction n

Au
 θAu_island 

1 Au114(RS-Au-SR)30

Au(111)
→     30(RS-Au-SR)

Au(111)
+ 114 AuAu(111) 114 0.25 

2 Au114(RS-Au-SR)30

Au(111)
→     60(SR)

Au(111)
+ 144 AuAu(111) 144 0.31 

 

As discussed in the main manuscript, due to the stoichiometry of the AuNC, nSR is equal to 60, independently of the 

decomposition mechanism. Contrarily, the number of Au atoms available to form Au islands (nAu) depends on the degree 

of decomposition of the capping layer (RS-Au-SR). 

A single AuNC is formed by nSR = 60 hexanothiolates and 144 Au atoms. After the AuNC disintegration the SR and Au 

island coverages can be expressed through the AuNC surface density, nAuNC as: 

θSR= 60 nAuNC [S3] 

θAu_island
NC

= nAuNC nAu [S4] 

SR can be obtained from electrochemistry data as already shown in equation S1. Hence, combining [S3] and [S9], 

θAu_island
NC

 can be determined from experimental data as 

θAu_island
NC

= 
θSR nAu

60
  [S5] 

Finally, as stated in the main text, to obtain the total Au coverage (θAu_island) the Au atoms provided by the lifting of the 

herringbone reconstruction (θ
Au_island

h
 ≈ 0.043) must be added to the θAuisland

 resulting  

θAu_island= θAu_island
NC

+ θAu_island
h

 =
θSR nAu

60
 + 0.043 [S6] 

Table 2 shows the Au island coverage obtained by using equation S6 depends on nAu  considering the different 

decomposition mechanism: single AuNC yielding to LD phases that contain (1) staples or (2) thiyl radicals.  

Determination of the number of particles that have been reached the surface 

The number of nanoclusters that have been reached the surface (xAuNC ) is given by: 

xAuNC= 
θSR

nSR

nAu(111) [S7] 
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where θSR and nSR and nAu(111) are the thiolate coverage, the number of thiolates per AuNC and number of Au atoms 

per cm2 on the (111) surface, respectively.  As nAu(111) is the same for both systems, the ratio of AuNCs that have been 

reached the surface for both systems is  

xAu25(SR)18

xAu144(SR)60

= (
θSR

nSR

)
Au25(SR)18

(
nSR

θSR

 )
Au144(SR)60

=  (
0.25

18
) (

60

0.11
)  = 8 

 

[S8] 

  

Influence of AuNC size-dependent factors in the AuNC adsorption and disintegration 

If AuNC size determines the adsorption and further decomposition, the process can be limited by the diffusion of the 

AuNC to the surface or by the steric effect that they impart to other upon adsorption. 

If diffusion is limiting the process, the ratio of AuNCs that reach the surface can be determined by using the Fick’s law, 

that is 

xAu25(SR)18

xAu144(SR)60

 = √
DAu25(SR)18

DAu144(SR)60

e

DAu144(SR)60
DAu25(SR)18  [S9] 

where D is the AuNC diffusion coefficient. D was estimated by using the Stock Einstein equation and considering that: 

(1) viscosity of DCM and mesitylene are 0.000406 Kg m-1 s-1 [6] and 0.00066 Kg m-1 s-1 [7], respectively; (2) the AuNC 

diameter is the one obtained from the DFT optimized structure, i.e. is 3.2 nm and 2.6 nm for Au144(SR)60 and 

Au25(SR)18, respectively.  

By applying equation S9, it was found that the ratio of AuNCs that reach the surface, if the process is diffusion-limited 

would be 2.4. 

 

On the other hand, if steric effect regulates the AuNC adsorption, the ratio of AuNCs that reach the surface, should be 

xAu25(SR)18

xAu144(SR)60

= (
AAu144(SR)60

AAu25(SR)18

)  =  1.5   [S10] 

 

None of the two factors mentioned above can explain the experimental value found for 
xAu25(SR)18

xAu144(SR)60

= 8. 
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