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Abstract. Under sleeper pads (USPs) has recently been adopted as a component installed 

under the concrete sleepers generally to improve railway track resilience. The initial 

development in Europe, particularly the pilots in Austria, has been benchmarked around the 

world. In practice, the component has commonly been used in certain applications, mainly to 

moderate track stiffness in special locations such as turnouts, crossings, and level crossing. In 

heavy haul operation, the heavier wagons result in sturdier bogie structures, higher unsprung 

mass, and then higher level of wheel-rail interaction forces. With imperfect wheel or rail, the 

impact load imposed is rather of high intensity. Statistically, the impact load could exist over 

25% of annual track load spectra. Accordingly, the application of USPs to mitigate detrimental 

impact load consequence on track structure is presented in this paper. A field trial aimed at 

mitigating rail joint impacts using the USPs with a thickness of 10mm and bedding modulus of 

0.2 N/mm
3
 has been conducted in NSW Australia since October 2011. It was found that the 

track structure and its heavy-duty components were designed to cater heavy load burden of 30t 

axle load with rail pad stiffness of 800 MN/m (HDPE pads). This paper will present a 3D finite 

element model of sleepers with under sleeper pads, using LS-Dyna. The model has been 

validated by experimental results. Although the studies have found that the sleepers with USPs 

tend to have lesser flexures, the field data also confirms that a railway track with USPs could 

experience a large amplitude vibration, especially when excited by a high-frequency impact 

force. These behaviours imply that the use of USPs may have a trade-off impact that could 

aggravate dynamic behaviour of sleepers with under sleeper pads.  

1.  Introduction  

It is not a myth that railway concrete sleepers are a major structural component in ballasted railway 

tracks. Its functions are to transfer train axle loads from the rails onto the underlying ballast and 

supporting system, and to secure rail gauge for safe passages of trains and rolling stocks. A common 

ballasted railway track and its components are shown in Figure 1 [1, 2]. Note that railway sleepers are 

safety-critical components. In general, there are two groups of track components: superstructure and 

substructure. Superstructure components include rail, fastening system, sleeper, under sleeper pad, 

ballast and ballast mat; while substructure counterparts are subballast, formation, geotextiles and 

foundation [3]. Under sleeper pads (USP) are resilient pads installed on the soffit of sleepers as an 
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attachment to provide additional track resiliency between the sleepers and ballast. Figure 2 shows a 

typical cross section of the ballasted railway track with under sleeper pad. In recent years, USP has 

been used widely and heavily in central Europe such as in Austria, Czech Republic and Germany. 

Additionally, several counties have carried out pilot trials such as in Sweden, Australia, and China. 

USP is made of polyurethane elastomer with a foam structure including encapsulated air voids. Three 

common objectives for installing USP are to moderate track stiffness; to reduce ground vibrations; and 

to reduce ballast breakage. USPs could reduce track stiffness in special areas such as turnout systems 

(switches and crossings) or tracks on bridge viaducts. The vibration of sleepers could also be isolated 

by the USP so that the ballast and formation are uncoupled from the wheel/rail interaction, reducing 

the ground vibrations affecting surrounding buildings and structures. The reduced ballast damage is 

accomplished by a reduction of contact pressure, and thus wears, in the sleeper/ballast interface. A 

more uniform load distribution is achieved by the use of USP, resulting in the reduction of the contact 

pressure and the smaller variations of support stiffness along the track. An application of USPs in 

Australia was initially trailed back in 1980s on open plain tracks. The outcome showed little 

improvement at the time whilst the delamination and degradation of the USP material were the key 

negative issues found in the field [4-12]. In recent years, the performance of the USPs has been 

improved through the outcomes from the test results in central Europe and in Austria, which show a 

promising quality and durability of USPs. Note that contradict outcome has been reported by 

Trafikverkets (Swedish Transport Administration). After several years of field tests, Trafikverkets 

reported that there has been no or very little influence of USPs on track quality improvement [13]. 

This could be a reason why the utilisation of USPs is not significant globally. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Typical ballasted railway track and its components [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Under sleeper pads [4] 
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There are several theoretical studies and some field trials in Austria and France, which suggest that 

the added resiliency by USPs will attenuate impact and excessive vibration [13-20]. Consequently, it is 

worthwhile to trial such technology in problematic areas, for example at locations with rail surface 

defects, dipped joints, spark erosions, or other discontinuities in rail running surface [21]. In fact, there 

has never been a field trail to evaluate USP performance on short-wavelength track defects. 

Accordingly, a test plan for USPs has been introduced in New South Wales, Australia in order to 

attenuate impact vibrations at dipped rails/welds and at a glue insulated joint (GIJ) with spark erosion. 

Similar to other resilient mats, the USP stiffness has been designed to accommodate the differences in 

track properties and operational parameters. The trial in Australia is the world first to investigate the 

behaviour of USPs under impact loading in the field [4]. However, the numerical studies into such the 

behaviour is rather limited. 

This paper presents the dynamic responses of railway concrete sleepers with under sleeper pads to 

high-intensity impact loading conditions. The study has established a 3D finite element model that can 

simulate and predict the responses of reinforced and prestressed concrete members. A three-

dimensional nonlinear finite element model of a full-scale railway prestressed concrete sleeper for 

static analysis was initially developed using the general-purpose finite element analysis package, 

ANSYS [22-24]. The concrete section was modelled using SOLID65 solid element where the 

compressive crushing of concrete and the concrete cracking in tension zone can be accommodated. In 

the current practice, the rail-way concrete sleeper is designed to resist prestressing force fully 

throughout the whole cross section as the force/moment redistribution [23]. This makes the smeared 

crack analogy unsuitable for the replacement of prestressing tendons in the fully prestressed concrete 

sleeper. The use of a truss element, LINK8, for discrete reinforcement modelling, is then more 

practicable. An initial strain real-constant feature in ANSYS appropriately substi-tuted the pre-

tensioning forces in the tendon elements. However, it was assumed that perfect bonding between 

concrete and pre-stressing wires since bond slip is rarely observed under failure modes [25-27]. The 

static full-scale experiment was conducted to validate this FE model [24]. The experimental details 

were based on the European Standard [28]. The calibrated finite element model has been extended to 

include ballast support and in situ boundary conditions [23]. The extended model was linked to LS-

Dyna for impact analysis and validation against the drop impact tests [29-31]. This study will focus on 

the effect of under sleeper pads on the dynamic responses of prestressed concrete sleepers. 

2.  Finite Element Modelling  

Three-dimensional solid elements are used to model concrete material. This element is defined with 

eight nodes – each with three degrees of freedom: translations in nodal x, y, and z directions. To 

simulate the behaviour of prestressing wires, a truss element, were used to withstand the initial strain 

attributed to prestressing forces, by assuming perfect bond between these elements and concrete. Note 

that this truss element cannot resist neither bending moments nor shear forces. Non-linear elastic 

behaviour of concrete can alternatively be defined by the multi-linear stress-strain relationships. The 

modulus of elasticity of concrete  (f’c) is estimated based on AS3600 [32] using the compressive 

strengths (80 MPa). For prestressing wires, the bi-linear elasto-plastic material models can be used as 

well as the multi-linear isotropic model from the manufacturer’s data.  The 0.2% proof stress is 1,700 

MPa and the ultimate stress is 1,930 MPa. The static and dynamic elasticity of moduli of pre-stressing 

wire are 190,000 MPa. The multi-linear isotropic dynamic stress-strain curve for the concrete and 

prestressing wires can be calculated based on the consideration of the effect of strain rate. Based on 

the assumption of perfect bond between prestressing wires and concrete, the dynamic material 

properties of concrete and prestressing wires can be determined [30, 31]. 

The extended finite element model was calibrated using vibration data [24, 26]. The updated finite 

element model was then transferred to LS-Dyna [30, 31], as shown in Figure 3. The simulation results 

were achieved by assigning the initial velocity to the drop mass to generate an impact event, similarly 
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to the actual drop tests. Comparison between numerical and experimental results can be found in 

Figure 4. It is found that the finite element model is fairly sufficient for use in predicting impact 

responses of the prestressed concrete sleepers. The trends of peak acceleration responses are quite 

close to each other, although there is certain phase difference. 

 

 Figure 3: Nonlinear FE modelling of under sleeper pad (full-scale)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4: Contact forces between impactor and rail for model verification (no USP)  

3.  Results and discussions 

The comparison of von-misses stresses in concrete sleepers with and without USP under an impact 

loading is shown in Figure 5. It is clear that the dynamic stress concentration on the concrete sleeper is 

much less with USP. This implies that USP can redistribute the impact load actions better along the 

concrete sleeper. The elastic moduli of USP are generally varied from 250MPa (soft) to 500 MPa 

(stiff), depending on the type of usage. In this analysis, the moduli of 250 MPa, 350 MPa, 450 MPa 

and 550 MPa are considered for benchmarking analysis.  

Under sleeper pad (10mm thick) 

 

Numerical – tuned 
concrete strength 



 

 

 

 

 

 

WMC_5 

 

 

 

 Figure 5: Impact von-misses stress distribution envelop (maximum) in concrete sleeper  

Figure 6 illustrates the effects of USP stiffness or modulus of elasticity on the impact responses of 

the concrete sleepers. The results represent the percentage ratio of the particular response with USP 

over its counterpart without USP. It is quite clear that USP has positive effect on the stress distribution 

along the sleepers. The von-misses stress of the sleeper at railseats is alleviated under impact loading 

when using USP. However, the USP slightly increases the stress at mid-span. In terms of maximum 

dynamic displacements, the USP can reduce the sleeper displacement (vertical) as it reduces the 

contact force and action. Importantly, the displacements at the mid-span are significantly decreased by 

the use of USP. In contrast, it is very clear that the dynamic accelerance of the concrete sleepers with 

USP will be significantly higher. This can imply that the sleepers with USP could induce ballast 

dilation and possibly weaken track lateral resistance. 

b) with under sleeper pad  

a) without under sleeper 
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 Figure 6: Effects of USP on the impact responses of railway concrete sleeper  

4.  Conclusions 

Under sleeper pads (USPs) is relatively a new component installed under the concrete sleepers in 

railway tracks. They are generally used to improve railway track resilience in special locations such as 

switches and crossings, bridge and viaducts, rail joint, and so on. In practice, the USP has commonly 

been used in certain applications, mainly to moderate track stiffness. It is well known that,  

statistically, the impact load could exist over 25% of annual track load spectra and therefore the use of 

USP to suppress the impact conditions is imperative. In this study, the application of USPs to mitigate 

detrimental impact load consequence on track structure is presented. A field trial aimed at mitigating 

rail joint impacts using the USPs, which is the world first of its kind, has inspired this numerical study. 

The study is based on the experimental and numerical simulations of prestressed concrete sleepers 

subjected to impact loading. The three-dimensional finite element model have been established for 

investigate both static and dynamic behaviors of the railway sleepers. A commercial finite element 

package, LS-Dyna, has been employed to extend the model for impact analysis and it has been 

validated against experimental drop impact tests. The emphasis of this study is placed on the effects of 

under sleeper pads on the dynamic responses of railway sleeper. The results reveal that the USP will 

decrease stiffness of sleepers, then reduce contact forces and dynamic displacements of the sleepers. 

Although the studies have found that the sleepers with USPs tend to have lesser flexures, the field data 

also confirms with the numerical study that a railway track with USPs could experience a large 

amplitude vibration, especially when excited by a high-frequency impact force. These behaviours 

imply that the use of USPs may have a trade-off impact that could aggravate dynamic behaviour of 

sleepers with under sleeper pads. 
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