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Abstract

In this paper we obtain new lower bounds for the upper box dimension of «f
sets. As a corollary of our main result, we show that if « is not a Liouville num-
ber and f is a Liouville number, then the upper box dimension of any af set is 1. We
also use our dimension bounds to obtain new results on affine embeddings of self-similar sets.
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1 Introduction

Let T := R/Z denote the unit circle. Given o, € R\ Q, a non-empty closed set £ C T is
called an af set if for all x € E either x +a mod1l € For x + 5 mod1 € E. A sequence
(xn)n>0 of points in T is called an af orbit if for all n > 0, either x,,11 — z, = @ mod 1 or
Tpy1 — Tn = B mod 1. Clearly any af set contains an af orbit. If @ and § are rationally
dependent modulo one, i.e. there exists ni,ne € Z such that nja 4+ nof = 0 mod 1, then
using the well known fact that orbits of irrational circle rotations are dense in T together with
the Baire category theorem, it can be shown that every af set has non-empty interior (see 9,
Theorem 1.5(i)]). This observation naturally leads to the following question that was posed by
Engelking in [6]: Suppose that o and ( are rationally independent modulo one, do there exist
nowhere dense aff sets? This question was answered by Katznelson in [11]. He proved that if «
and [ are rationally independent, then there do exist nowhere dense af sets. Katznelson also
proved that af sets exist with arbitrarily small Hausdorff dimension. Interest in af sets was
renewed in a recent paper of Feng and Xiong [9]. In this paper they connected a3 sets and their
higher dimensional analogues' to the existence of affine embeddings of self-similar sets. They
proved that if @ and § are rationally independent then any «f set E satisfies E — FE = T or
E has non-empty interior. This result implies that if o and § are rationally independent then
any af set E satisfies dimpF > 1/2. Further results on the dimension of af sets and their
higher dimensional analogues were obtained by Yu in [14]. In this paper Yu conjectured that for
rationally independent a and 3, any af set E satisfies dimp E = 12. In this paper we obtain

nstead of just considering two elements «, 8 € R \ Q, one can consider a,...,a, € R\ Q and then define
appropriate analogues of a8 sets and af orbits.

2This conjecture was formulated in [14] in terms of the lower box dimension. Our formulation is easily seen to
be equivalent.



new lower bounds for the upper box dimension of af sets. These bounds depend upon the
Diophantine properties of o and 5. As a corollary of our main result, we give the first examples
of a and S satisfying the conclusion of Yu’s conjecture where box dimension is replaced with
upper box dimension. We conclude this introductory section by mentioning a paper of Chen,
Wang, and Wen [5] who considered random analogues of af orbits. They proved that such
sequences were almost surely uniformly distributed modulo one, and that the exponential sums
along the orbit have square root cancellation.

1.1 Statement of results

A well known theorem due to Dirichlet states that for any € R and ) > 1, there exists integers
p and g such that 1 < ¢ < @ and

has infinitely many solutions in integers p and ¢. Given 7 > 2 we say that z € R\ Q is 7-well
approximable if there exists infinitely many (p,q) € Z x N satisfying

1
E.

We denote the set of 7-well approximable numbers by W (7). For z € R\ Q we define the exact
order of = to be
7(z) ;= sup{7r : z € W(7)}.

If 7(z) = oo then we say that z is a Liouville number. For 7 € [2,00) U {oco} we denote the set
of real numbers with exact order 7 by E(7). Equipped with these definitions we are now able
to state the main result of this paper.

Theorem 1.1. Let 11,79 > 2 satisfy 211 < 72 + 2 and suppose that o € E(11) and B € W(12).

Then any af3 orbit (x,)n>0 satisfies dimp({z,}) > 1 — 2(272_1)

Theorem 1.1 immediately implies the following result.

Corollary 1.2. Assume that afis not a Liouville number and B is a Liouville number. Then
any af orbit (z,)n>0 satisfies dimp({z,}) = 1.

Since every «f set contains an «f orbit, we immediately see that suitable analogues of
Theorem 1.1 and Corollary 1.2 also hold for a8 sets. We emphasise that the o and § appearing
in the statements of Theorem 1.1 and Corollary 1.2 are rationally independent. This is because
any rationally dependent o and 8 must have the same exact order.

The rest of this paper is structured as follows. In Section 2 the relevant definitions from
Fractal Geometry are given and we gather some useful results from the theory of continued
fractions. In Section 3 we prove Theorem 1.1. In Section 4 we apply Theorem 1.1 to obtain a
result on affine embeddings of self-similar sets.



2 Preliminaries

2.1 Dimension theory

Let ' C R™ and s > 0. Given § > 0 we define
H3(F) := inf {Z Diam(U;)® : {U;} is a d-cover of F} :
i=1

We define the s-dimensional Hausdorfl measure of F' to be

H(F) = lim 13 (F).

The Hausdorff dimension of F' is given by
dimg(F) :=inf{s > 0: H’(F) =0} = sup{s > 0: H*(F) = oo}.
Given a bounded set F' C R", we let N(F,r) denote the minimum number of closed balls of
radius r required to cover F'. The upper box dimension of a bounded set F' is defined to be
-—_ log N(F.
dimp(F) := limsup M.
r—0 - IOg r

The lower box dimension is defined similarly using liminf instead of limsup. When the lower and
upper box dimensions coincide we refer to the common value as the box dimension and denote
it by dimp(F'). For more on dimension theory and fractal sets we refer the reader to [7].

2.2 Continued fractions

Proofs of the properties stated below can be found in the books [3] and [4].
For any x € [0,1] \ Q, there exists a unique sequence (a,),>1 € NV such that

az +

We call the sequence (a,) the continued fraction expansion of x. Suppose x has continued
fraction expansion (a,,), then for each n > 1 we let

Pn . _ 1

qn 1
ay +

as +
2 1

Qn

The fraction py /gy is called the n-th partial quotient of z. For any z € [0,1] \ Q, its sequence
of partial quotients satisfies the following properties:

o Ifweset p_1=1,9_1=0,pg=0,qo =1, then for any n > 1 we have

Pn = GnPp—1 + Pn—2 (2.1)
Qn = GnQn—1 + gn—2-



e For any n > 1 we have

1 1
S IS ) < . (2.2)
Qn(CIn-H + qn) qn gngn+1
o If ¢ < ¢py1 then
lgz — p| > |gnz — pal (2.3)

for any p € Z.

For z € R we will on occasion use [|z|| to denote the distance from x to the nearest integer.
We will use the following lemma in our proof of Theorem 1.1.

Lemma 2.1. Let x € E(7) for some T > 2. Then for any € > 0, for all ¢ € R sufficiently large
the interval [q,q" 1] contains the denominator of some partial quotient of x.

Proof. Let (¢,)52, denote the sequence of denominators of partial quotients of = written in
increasing order. Suppose ¢ > ¢ is such that the interval [g,q"""!] does not contain the
denominator of a partial quotient of . Then let n* > 1 be the unique integer satisfying

G < q and  @ueyq > ¢ L (2.4)

Equation (2.1) implies that
dn+1 < 2an+1Qn (25)
for all n > 1. Combining (2.4) and (2.5) we have

2an*+1 > Qn*+1 > q7—+e—2 > q;jef? (2.6)
n*
Equations (2.1) and (2.2) imply that
1
‘x _Pn < 5 (2.7)
dn an+14y
for all n > 1. It now follows from (2.6) and (2.7) that
Pnx 2
T — < . 2.8
‘ Gn q;je ( )

Since z € E(7) inequality (2.8) can have only finitely many solutions. It follows that for all
q € R sufficiently large the interval [g, ¢""¢~!] must contain the denominator of a partial quotient
of x.

O

3 Proof of Theorem 1.1

Let o, 8 € R\ Q. To any af orbit (z,)n>0 We can associate a unique sequence w = (wy)p>1 €
{a, B3N such that
Ty — Tp—1 = w, mod 1

for all n > 1. Given w € {a, 3} and N € N we let
|Wlan =#{1 <n <N :w, =a}

and
lwign i=#{1 <n < N:w, =B}

The following proposition shows that if an af orbit (z,),>0 is such that the quantities |w|q N
and |w|g n are not uniformly comparable then {z,},>¢ is dense in T.

4



Proposition 3.1. Let a, 5 € R\ Q and (zy)n>0 be an af orbit. Suppose that for any C > 1
there exists infinitely many N € N such that either

|w

aN > C-|w|g N

or
lwlgny > C - |wla,N-

Then {zy} is dense in T.

Proof. 1t follows from our hypothesis that the sequence w must either contain arbitrarily long
strings of consecutive a terms or consecutive 8 terms. Since both « and § are irrational, and
any orbit of an irrational rotation is dense in T, it follows that {z,} must also be dense in T. [

Proposition 3.2. Let 71,70 > 2 satisfy 211 < 72+2 and suppose that o € E(11) and € W (12).
Let (zn)n>0 be an aff orbit for which there exists C > 1 such that for all N € N sufficiently
large we have

|wls

N
— <|wlany <C-|wlgN-

Then dimp({z,}) > 1 — 220

T2

Proof. Without loss of generality we may assume that «, 5 € [0, 1]. For the rest of the proof we
fix (x5 )n>0 an af orbit satisfying our hypothesis and let w be the associated unique element of
{a, B}N. Without loss of generality we may further assume that zo = 0. This means that for
any N > 1 we have

N =a- |WloN+ 6 |w|gy mod 1.

Notice that |w|a n+|w|gny = N forall N > 1. It follows from this observation and our hypothesis
that there exists C' > 1, not necessarily the same C as in the statement of our proposition, such
that

N
& <l (3.1)

for all NV sufficiently large.
Let € > 0 be arbitrary. Since f € W (1) there exists a sequence of reduced fractions (p;/q;)i>1

such that )

_ b b
]5 A (3.2)

for all [ > 1. Without loss of generality we may assume that the sequence (g;)7°, is strictly
increasing. By Lemma 2.1, for all [ sufficiently large, there exists ¢ the denominator of some
partial quotient of o which satisfies

2(7—277261) Tg —2€
/ T1+e— — 2
q € |:ql ! » 4 ? :| .

For any j € N we let k; denote the minimum of those k € N satisfying
aj+ pk mod 1l e {z,}.

Equivalently k; is the smallest integer such that |wl|q jir, = j. Notice that for any N € N, if
1 <j < |w|a,n then we must have k; < N. For all [ sufficiently large so that ¢] is well defined,
we let

W(l,p)={1<j5< \w|a7q{ :kj=p mod q}



for each 0 < p < ¢; — 1. By the pigeonhole principle and (3.1), for all [ sufficiently large there
exists 0 < p’ < q; — 1 such that

/
q
#W(l,p
(.r) = 7 o
We now set out to prove that the elements of {z,,} corresponding to the elements of W (l,p’) are
well separated. Observe now that for any distinct 7, ;' € W(l,p’) we have

(g + Bkj) — (e + Bkj)|| = [la(G — )| = 18(k; — &l - (3.4)

~~

(1) 2)

(3.3)

We now show how (1) can be bounded from below and (2) can be bounded from above. Notice
that j — j’ is a non-zero integer satisfying |j — j'| < ¢;. Combining (2.2) and (2.3) it follows that

1

2 (3.5)

(G =3Il =
Now focusing on (2), let d;,d;» € N be such that k; = djq + p" and kj = djyq + p’. Then we

haV(f
QI

%(dqu —djyq)

Hmk—%rH<H<B—)Gr—k) (ks — ky)

q
ig
q
= —& + lpe(dj — djp) |
q°

q
q

1

qlT2/2

F

< (3.6)

In the second line in the above we have used (3.2) and the inequality |k; — k| < qy. This
inequality follows from the fact that k; and kj; are integers satisfying 0 < kj, ks < qy. In the

To —2€
final line we used that ¢; < ¢, * . Substituting (3.5) and (3.6) into (3.4) we have
) . 1 1
(g + Bkj) — (ag’ + Bkj)|| > 2 2 (3.7)
q, ql2

T9 —2¢

Since ¢; < ¢, * , for [ sufficiently large we have

1 1 1 2 1 2 1
57 " 2\l T e | 2\ =) 2
2 ¢ 2 q! 2q) q 4q)

Using this lower bound in (3.7), it follows that for [ sufficiently large, for any distinct j, ;' €
W (l,p") we have

(e + Bkj) — (af’ + Bky)

1
> —.
Therefore for any [ sufficiently large we require at least #W (I, p’) closed balls of radius (10q]) !
to cover {z,}. Using the lower bound for #W (l,p’) provided by (3.3) and the inequality ¢, >

T9 —2€

qf“ﬁe_l) , we have

—— . log N({zn}, 1) _ .. log q/Cq
dim T =limsup ——————= > limsup ———
5({en)) 0T —logr e’ log 10g]
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log g

> 1 — liminf
l—oo logqp
> 2(7’14—6—1).
- Ty — 2€
Since € was arbitrary we may conclude
__ 2(m — 1
Dimp({an}) > 1— 20 =1
T2

O]

Since any dense subset of T has upper box dimension 1, Propositions 3.1 and 3.2 together
imply Theorem 1.1.

4 Applications to embeddings of self-similar sets

We call a map ¢ : R — R? a similarity if there exists r € (0,1),t € R?, and a d x d orthogonal
matrix O such that ¢ = r-O+t. For our purposes, we call a finite set of similarities ® = {; }ics
an iterated function system or IFS for short. A well known result due to Hutchinson [10] states
that for any IFS ®, there exists a unique non-empty compact set F C R? satisfying

F=Jai(P).
i€l
We call F' the self-similar set of ®. Many well known fractal sets, such as the middle third
Cantor set and the von-Koch curve, can be realised as self-similar sets for appropriate choices
of IFS. If ¢;(F) N ¢;(F) = O for all i # j then we say that ® satisfies the strong separation
condition. We say that ® satisfies the open set condition if there exists a non-empty bounded
open O C R? such that ¢;(O) C O for all i € I and ¢;(O) N ¢;(0) =  for all i # j.

Let A,B ¢ R% We say that A can be affinely embedded into B if there exists a map
f: RT — R? of the form f(x) = Mx + a for some invertible matrix M and a € R? which
satisfies f(A) C B. It is an interesting problem to determine when one self-similar set can be
affinely embedded inside of another. This problem was first studied in [8]. It is reasonable to
expect that if a self-similar set can be affinely embedded inside of another self-similar set which
is totally disconnected, then the underlying contraction ratios should exhibit some arithmetic
dependence. With this in mind the authors of [8] formulated the following conjecture.

Conjecture 4.1. Suppose that E, F' are two totally disconnected non-trivial self-similar sets
in RY, generated by IFSs ® = {p;}ic; and ¥ = {1 }jes respectively. Let ri,r;- denote the
contraction ratios of ¢; and 1; respectively. Suppose that I’ can be affinely embedded into E.
Then for each j € J there exists non-negative rational numbers ¢; ; such that r; = [;; rfi’j . In
particular, if r; = r for all 4 € I, then log rg/ logr € Q for all j € J.

Conjecture 4.1 was studied in [1, 2, 8, 9, 12, 13]. In [8] it was shown that Conjecture 4.1 is
true if we also assume that ® satisfies the strong separation condition, r; = r for all 7 € I, and
dimg(E) < 1/2. Similar results were obtained in [9] without the assumption r; = r for all i € I.
These results come at the cost that dimy(FE) is required to satisfy a stricter upper bound. In
particular, the results of [9] imply that when ® consists of two similarities then Conjecture 4.1
is true if we also assume that ® satisfies the strong separation condition and dimgy(E) < 1/4.
Shmerkin and Wu obtained much stronger results when d = 1. Shmerkin in [12] showed that
Conjecture 4.1 is true under the additional assumptions that d = 1, ® satisfies the open set
condition, r; = r for all i« € I, and dimg(E) < 1. Wu in [13] obtained the same result as
Shmerkin but required the stronger assumption that ® satisfies the strong separation condition.

Our main result in this direction is the following theorem.



Theorem 4.2. Let & = {p;}icr and ¥ = {9 }jcs be two IFSs satisfying the following properties:

1. ® satisfies the strong separation condition.

2. There exists 11,72 € (0,1) and Iy, Iy C I such that ® = {@;1 =r10;1 + ti1}tier, U{pi2 =
120; 2 + ti2}icr,-

3. There exists j* € J such that:
(a) ¢j* = ’I”;-*Id + tjx.
(b) There exists 71,72 > 2 satisfying 211 < 12 + 2 and

log log ro

€ E(nn) and — € W(m).

o / /
log T log T

Then if dimg(E) < % (1 — 2(272_1)) then F' cannot be affinely embedded into E.
Theorem 4.2 has the following corollary.

Corollary 4.3. Let ® = {¢;}icr and ¥ = {1;}je be two IFSs satisfying the following proper-
ties:

1. ® satisfies the strong separation condition.

2. There exists r1,r2 € (0,1) and I1,Is C I such that ® = {p;1 =110;1 + ti1}tier, U{pi2 =
120;2 + ti2}icr,-

3. There exists j* € J such that:

(a) ﬂ)j* = "'j*Id + tj*.

(b) —llooé% is not a Liouville number and —
j*

Then if dimg(E) < % then F cannot be affinely embedded into E.

log o
log r;*

is a Liouville number.

We emphasise that property 2. in the statement of Theorem 4.2 and Corollary 4.3 means
that the IFS @ consists of similarities whose contraction ratios are either r; or r2. Property 3a.
means that the similarity 1);+ has the identity matrix as its rotation component. One of the
strengths of Theorem 4.2 and Corollary 4.3 is that they provide information when the elements
of ® have different contraction ratios. Most results in this area have the additional assumption
that the elements of ® have the same contraction ratio (see [1, 2, 8, 12, 13]). Moreover, at the
cost of an additional Diophantine condition and rotation assumption, these statements allows
us to weaken the dimension assumption dimpy(E) < 1/4 that was needed in the work of Feng
and Xiong [9].

Our proof of Theorem 4.2 is essentially the same argument as one that is used in the proof
of Theorem 1.2 from [9], apart from a few minor changes. We include the details of this proof
for completion.

Proof of Theorem 4.2. Let ® and ¥ be two IFSs satisfying the hypothesis of Theorem 4.2.
Suppose that F can be affinely embedded into E. Let M be an invertible matrix and a € R¢ be
such that

M(F)+a€E. (4.1)

We will now set out to prove that

dimp(B) > (1 _ 2(71—1))

T2
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and thus conclude our theorem.
Let z;« € F' denote the unique point satisfying ¢;«(z;+) = z;+. Clearly z;+ € 7. (F) for all
n € N. Let y;‘ be given by
Y = Mz + a.

By (4.1) we know that y; € E. Therefore there exists a sequence (ip,) € I N'such that yj =
limy, 00 @iy i, (0). Here and throughout we use ¢;, _;,, to denote the concatenation p;, 0---oy;, .
and 7;,._;,, to denote the product []; 7,. Our point y;- satisfies y;+ € @i, i, (E) for all m € N.
It therefore follows from the above that

(M (7 (F)) + a) N @iy i, (E) # 0 (4.2)
for all n,m > 0. Because ® satisfies the strong separation condition we have
¢ := inf d(pi(E), v (E)) > 0.
It is also the case that for each m € N we have
d(@il...im (E)7 E \ Pir..im (E)) 2 CTiy iy (4'3)
It therefore follows from (4.2) and (4.3) that
M7 (F)) +a C i .., (E) whenever  Diam(M (V5 (F))) < criy iy, ;- (4.4)

For m > 1 define
Sm :=min {n € N: M7 (F)) +a C Piy.im (E) } - (4.5)

It follows from (4.4) that s,, < oco.
We introduce the notation:

M : = max{[Mv] : [v] = 1}
|M]": = min{|Mo] : |v] = 1}.

By (4.5) we have

M| (v’ )™ Diam(F) < Diam(M(sz»l”(F))) < Diam(pi,. i, (E)) < Diam(E) - 14, i,

j*
Therefore s '
(rj*) < Dwm(E) (4.6)
Tiyim | M| Diam(F)
for all m > 1. Similarly we have
rt)sm c-rhy
(rj) J (4.7)

>
Tiri || M| Diam(F) max{ry,r2}
when s, > 1. Equation (4.7) follows because if it were to fail then we would have

Diam(M(¢ji"71(F))) < HMH(T;-*)S’”ADMm(F) <max{ry,ro} e iy . < Ty

Which by (4.4) would imply M(z/zjl"_l(F)) +a C ¢i,,.. i (E). This would contradict the defini-
tion of s,,.
It follows from the definition of s,,, that

eil i (M5 (F)) +a) C E.

j*



Letting Qp, = (O;, 0-++-00;, )~ o M we have

i 0507 QuiF) +an C B
for some a,, € R? Here we used the fact that the rotation component for 1« is the identity
matrix. Therefore
ril () Qm(F-F)CE—-E (4.8)
for m > 1. Let v € ' — F be a non-zero vector. Such a vector must exists because F' is
non-trivial. Then by (4.8) we have
rt i () Quu CE—E (4.9)

1. dm

for all m > 1. Using the fact that @Q,, is the composition of some orthogonal matrices with M,
we see that by taking norms of both sides in (4.9) we have

rl (r;*)s’" Mv| €{|lz—y|:xz,y € E} (4.10)

11...0m

for all m > 1. Let
U::{’l'_y|:$7y€E}
and
Vo= {rt, () m | Mo im > 1}

Consider the map

. ¢ i - [Mu] Diam(E) - |Mv|
" | |IM||Diam(F) max{ry,r2} " ||M|/'Diam(F)

log

mod 1.

f — T given by f(x) =

- /
log T

The map f is Lipschitz. It now follows from (4.6), (4.7), and the well known fact that Lipschitz
maps cannot increase the upper box dimension (see [7]) that

dimpf(V) < dimp(V) < dimp(U) < dimp(E — E) < dimp(E x E) = 2dimg(E).
Therefore
< dimy(E). (4.11)
Notice that for any m > 1

_ log 741

/
log T

mod 1.

-1 s -1
f (Til...im+1rj:‘n+1|M’U|> —f (Til...imrj'ln MU|) =

By property 2. the IFS & consists of similarities with contraction ratios equal to ry or 9.
Therefore f(V) is an a8 orbit for v = — 128" and g = — %872 Applying Theorem 1.1 and (4.11)

log T log T

dimy (E) > % (1 - 2(71_1)> |

72

we have

This completes our proof.
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