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Abstract 47 

Question: To better understand the influence of deep-time diversification on extant plant 48 

communities, we assessed how community dissimilarity increases with spatial and 49 

climatic distances at multiple taxonomic ranks (species, genus, family, and order) in 50 

angiosperm trees. We tested the prediction that the dissimilarity-to-distance relationship 51 

should change across taxonomic ranks depending on the deep-time diversification in 52 

different biogeographic regions reflecting geohistories and geographical settings. 53 

Location: Global 54 

Methods: Using a dataset of plot-based surveys across the globe (861 plots), we compiled 55 

a community composition matrix comprising 21,455 species, 2,741 genera, 240 families, 56 

and 57 orders. We then calculated Sørensen’s pairwise dissimilarity (βsor), and its turnover 57 

(βsim) and nestedness (βsne) components, among plots within seven biogeographical 58 

regions. Finally, we modelled the relationships between the biotic dissimilarities and the 59 

spatial/climatic distances at each taxonomic rank, and compared them among regions. 60 

Results: βsor and βsim increased with increasing spatial and climatic distance in all 61 

biogeographical regions: βsim was dominant in all biogeographical regions in general, 62 

while βsne showed relatively high contributions to total dissimilarity in the temperate 63 

regions with historically unstable climatic conditions. The βsim-distance curve was more 64 

saturated at smaller spatial scales in the tropics than in the temperate regions. In general, 65 

the curves became flatter at higher taxonomic ranks (order or family), with exception of 66 

Africa, North America, and Australia pointing to region-specific geographical constraints. 67 

Conclusions: Compositional dissimilarity was generally shaped through the abrupt 68 

turnover of species along spatial/climatic gradients. The relatively high importance of the 69 

nestedness component in the temperate regions suggests that historical dispersal filters 70 



related to extinction/colonization may play important roles. Region-specific changes in 71 

the turnover and nestedness components across taxonomic ranks suggest differential 72 

imprints of historical diversification over deep evolutionary time in shaping extant 73 

diversity patterns in each biogeographical region.  74 

 75 

Keywords: angiosperm trees; biogeographical regions; beta diversity; dissimilarity 76 

decomposition; dispersal limitation; distance decay; environmental filtering; taxonomic 77 

diversity  78 

 79 

Introduction 80 

The similarity in species composition between local biological communities decreases 81 

with spatial/environmental distance. This pattern, known as distance decay of similarity 82 

or simply distance-decay, is ubiquitous across organisms and biological systems (Nekola 83 

& White 1999; Soininen et al. 2007). The decrease of similarity with distance is 84 

mechanistically driven by dispersal limitation (Hubbell 2001) and niche constraints 85 

(Gilbert & Lechowicz 2004), mediated through contemporary environmental gradients 86 

and evolutionary diversification. Indeed, there are a number of empirical studies that have 87 

applied a distance-decay approach to answer different questions related to community 88 

assembly processes: niche partitioning along current environmental gradients (Bellier et 89 

al. 2014; Trujillo et al. 2019; Cacciatori et al. 2020), historical species sorting through 90 

dispersal of organisms (Qian 2009; Saito et al. 2015), dispersal barriers related to 91 

geographical constraints (Stuart et al. 2012), differences in dispersal ability among taxa 92 

(Gómez-Rodríguez & Baselga 2018; Gómez-Rodríguez et al. 2020) and historical habitat 93 

stability (Fitzpatrick et al. 2013). A common theme linking these studies is their use of 94 



the shape of distance decay curves as a measure to infer the role of historical and 95 

contemporary factors in generating diversity patterns under study (Morlon et al. 2008; 96 

Réjou-Méchain & Hardy 2011; Gómez-Rodríguez & Baselga 2018). Rooted in this 97 

approach, we here propose that assessing distance decay patterns at multiple taxonomic 98 

ranks (species, genus, family, and order) will allow inferring the influence of deep-time 99 

diversification on extant plant communities, and its contrasting relevance in tropical and 100 

temperate biogeographic regions. 101 

 102 

Angiosperm tree floras in tropical and temperate regions are regarded as evolutionary 103 

source and sink, respectively. Many clades that now comprise the tropical flora have been 104 

hypothesized to have originated in western Gondwana, which was part of the 105 

supercontinent that contained South America and Africa (Fine & Ree 2006; Christenhusz 106 

& Chase 2012), and subsequently diversified, after crossing long-standing geographic 107 

barriers, among the continents through the Eocene, Oligocene, and Miocene (Hardy et al. 108 

2012). In temperate areas, many extant lineages are thought to have originated from the 109 

Asian tropical flora (Wen 1999; Donoghue 2008) and afterward have regionally 110 

diversified in East Asia, Northern America, and Europe in response to the Plio-111 

Pleistocene global cooling (Fine & Ree 2006). Macroscale diversity patterns of 112 

angiosperm trees are characterized by evolutionary radiations within disjunct 113 

families/genera in tropical and temperate forests (Gentry 1988; Donoghue & Smith 2004) 114 

and taxon-specific selective dispersal/extinction related to paleoclimate changes in 115 

temperate regions (Svenning 2003; Eiserhardt et al. 2015).  116 

 117 

The aforementioned studies suggest that the study of taxonomic diversity across lower 118 



(species) to higher taxonomic ranks (genus, family, and order) could provide a 119 

fundamental basis for better understanding deep-time diversification related to geohistory 120 

including paleoclimates. Indeed, correlations of species richness within a higher 121 

taxonomic group (family or order) among continents have been shown to represent a 122 

consistent biogeographical pattern resulting from diversification at different evolutionary 123 

time scales and related to family-specific niche conservatism and global-scale dispersal 124 

(Ricklefs & Renner 2012; Munoz et al. 2012; Chen et al. 2012). Therefore, we propose 125 

that assessing the distance decay curves of tree angiosperm communities at a range of 126 

taxonomic ranks, which provide a surrogate for a macroevolutionary hierarchy (Graham 127 

et al. 2016), should reveal any historical imprint on current spatial diversity patterns 128 

(Munoz et al. 2014; Yeh et al. 2019). Specifically, regional differences in deep-time 129 

diversification should be reflected in the geographical distribution of higher-rank taxa, 130 

such as genera, families or orders, through processes such as niche conservatism and 131 

dispersal limitation (Kerkhoff et al. 2014; Weiser et al. 2018). 132 

 133 

While similarity indices are commonly used in distance decay studies (Nekola & White 134 

1999), compositional dissimilarity (i.e. 1 - similarity) metrics can describe the equivalent 135 

patterns and some of these metrics can be partitioned into turnover and nestedness-136 

resultant components (Baselga 2010; Legendre 2014; Soininen et al. 2017). The turnover 137 

component represents taxonomic replacement that may be caused by species sorting 138 

associated with niche differentiation, evolutionary processes such as radiation and 139 

allopatric speciation, and/or dispersal limitation (Leibold et al. 2004; Leprieur et al. 2011). 140 

The nestedness component reflects changes in species richness caused by selective 141 

species loss or gain that may be associated with recent vicariant events, e.g. insular 142 



changes by sea-level rise (Rijsdijk et al. 2014), or a colonization lag after drastic 143 

environmental changes such as ice age disturbances (Hortal et al. 2011). Therefore, each 144 

component is expected to have an independent relationship with geographical and 145 

environmental distance (Antão et al. 2019; Bevilacqua & Terlizzi 2020), and their relative 146 

importance may change depending on historical habitat stability (Baselga et al. 2012). 147 

The turnover component can be expected to have a steep slope and an asymptotic 148 

relationship with spatial distance under strong dispersal limitation, while a flatter 149 

relationship would be observed when dispersal limitation is weak or absent (Gómez-150 

Rodríguez et al. 2020). The nestedness component is expected to linearly decrease with 151 

increasing spatial/environmental distance under strong dispersal limitation, but to be 152 

independent of distance under no dispersal limitation (Gianuca et al. 2016; Antão et al. 153 

2019). 154 

 155 

Using a global dataset of forest plots (861 plots), we quantified pairwise compositional 156 

dissimilarity of angiosperm tree communities at different taxonomic ranks (species, genus, 157 

family, and order) in seven biogeographical regions (South American, African, Indo-158 

Pacific, Australian, North American, West Eurasian, and East Eurasian). We compared 159 

the relationship between compositional dissimilarity and spatial/climatic distance (i.e. 160 

dissimilarity-to-distance relationship) between the biogeographical regions and between 161 

the taxonomic ranks in order to explore the effect of deep-time diversification on the 162 

spatial patterns of extant tree communities. Based on the aforementioned reasoning, we 163 

tested the following predictions: i) taxonomic turnover will be the dominant component 164 

of dissimilarity in historically stable regions (Baselga et al. 2012), such as regions that 165 

contain tropical areas; ii) in contrast, the nestedness component will be predominant in 166 



historically unstable regions (e.g. temperate areas in higher latitudes) that have 167 

experienced extinction and colonization events in response to the expansion/retreat of ice 168 

sheets due to paleo-climate changes (Baselga et al. 2012; Soininen et al. 2017); iii) the 169 

relationship between the turnover component and spatial/climatic distance will be very 170 

steep at short distances, quickly saturating at maximum dissimilarity at the species level 171 

due to strong dispersal limitation, while the relationship will become flatter at higher 172 

taxonomic ranks. This flattening should be more marked in the regions containing tropical 173 

areas because of the older evolutionary age of tropical areas, which should have allowed 174 

higher-level taxa to spread across wider areas (i.e. lower dispersal limitation); iv) however, 175 

the steep relationship between the turnover component and spatial/climatic distances 176 

should remain asymptotic even at higher taxonomic ranks (Cowling et al. 2015) if 177 

climatic gradients and/or vicariance have been maintained over large time periods; and v) 178 

the nestedness component should show a negative linear relationship with spatial/climatic 179 

distance at the species level in historically unstable regions, but be independent from the 180 

distances at higher taxonomic ranks due to less dispersal limitation. 181 

 182 

Materials and Methods 183 

Angiosperm tree community data 184 

Community composition data of angiosperm tree species were collated from a series of 185 

plot-based surveys across the globe (Ulrich et al. 2016; Kubota et al. 2018). The data were 186 

compiled from a literature census using various search engines, including Web-Of-187 

Science (Thomson-Reuters, New York, NY, USA) and Google Scholar 188 

(http://scholar.google.com/), and web-based forest plot databases (e.g. Gentry’s data; 189 

www.wlbcenter.org/gentry_data.htm). Our dataset only includes plots where the absolute 190 

http://www.wlbcenter.org/gentry_data.htm


number of individuals was recorded for all tree species at a given census threshold in 191 

individual size (i.e. diameter at breast height). The taxonomic classification (species, 192 

genus, family, and order) was standardized following The Plant List 193 

(http://www.theplantlist.org/). Unnamed species and morphospecies identified only to 194 

genus were treated as individual species (we confirmed that excluding these species did 195 

not meaningfully affect the results of the dissimilarity-to-distance analyses). We excluded 196 

naturally/artificially disturbed plots and plots with less than two angiosperm tree species. 197 

We also excluded gymnosperms (163 species) from the data. The final dataset comprised 198 

861 plots (range = 100–520,000 m2; Fig. 1). Using all plots, we created community 199 

composition matrices for four taxonomic ranks: species (21,455 species), genus (2741 200 

genera), family (240 families), and order (57 orders). We then subdivided each matrix 201 

into seven biogeographical regions. We defined the biogeographical regions using a 202 

modified version of Cox et al.’s floral Kingdoms (South American, African, Indo-Pacific, 203 

Australian, and Holarctic; Cox et al. 2001): we subdivided the Holarctic Kingdom into 204 

North American, West Eurasian and East Eurasian (Fig. 1) because of their differences in 205 

geohistory and paleoclimatic conditions. South American, African, Indo-Pacific, 206 

Australian regions include tropical areas, while North American, West Eurasian and East 207 

Eurasian are temperate areas. In this study, we avoided a more detailed regionalization 208 

(e.g. ecoregions) because of the limited number of plots and their spatially 209 

inhomogeneous distribution (Fig. 1). More details of the data compilation process are 210 

provided in Ulrich et al. (2016) and Kubota et al. (2018). 211 

 212 

Community under-sampling is a potential problem in dissimilarity analyses (Beck et al. 213 

2013), especially in cases such as ours where data are taken from multiple sources that 214 

http://www.theplantlist.org/


have used different census schemes (e.g. plot area and the size criterion for measuring 215 

individuals). Therefore, the plots were screened based on sampling completeness: we 216 

estimated sample coverage (SC) based on relative species abundance, which is an 217 

unbiased estimate represented by the proportion of all detected individuals (Chao et al. 218 

2020): SC values are in the range 0 to 1. We filtered the plots at SC ≥ 0.9 (n = 661; Fig. 219 

2) and also examined other criteria (≥ 0.7, 0.8, and 0.85) to test the potential influence of 220 

arbitrary choices of SC thresholds. SCs filtered out the incompletely sampled plots which 221 

cannot be distinguished by plot-areas or census thresholds, allowing us to include the 222 

local communities which were equivalently well sampled (Fig. S1 in Appendix S1). 223 

Differences in plot areas and census thresholds are particularly likely to influence 224 

absolute abundance differences among the plots (Baselga 2013). Therefore, we used 225 

presence/absence information in the dissimilarity analyses. 226 

 227 

Dissimilarity calculation 228 

Using the subset of equivalently well-sampled plots (SC ≥ 0.7, 0.8, 0.85, or 0.9), we 229 

calculated pairwise dissimilarity between plots within the same biogeographic region (Fig. 230 

1) for each taxonomic rank (species, genus, family, and order). We followed Baselga’s 231 

(2010) beta diversity partitioning framework based on Sørensen dissimilarity (βsor), which 232 

was decomposed into turnover (βsim) and nestedness-resultant dissimilarity (βsne) 233 

components. The compositional dissimilarity of lower taxonomic ranks is inevitably 234 

influenced by the dissimilarity of higher taxonomic ranks due to the ranks being 235 

hierarchically structured: βsne should be higher at higher taxonomic rank, although βsim is 236 

predominant at lower (e.g. species) taxonomic rank. Before analyzing dissimilarity-to-237 

distance relationships, we assessed whether the influence of deep-time diversification on 238 



beta diversity is region-specific or not by evaluating correlations between the 239 

dissimilarity matrices at different taxonomic ranks for each dissimilarity component (βsor, 240 

βsim, and βsne) in each biogeographical region. 241 

 242 

Spatial and climatic distances 243 

The spatial distance was defined by the great-circular distance between each pair of plots. 244 

We downloaded climatic (Bio-1–19) and elevation data at 30-arc second resolution from 245 

the WorldClim ver. 2.1 database (Fick and Hijmans 2017; http://www.worldclim.org), 246 

overlapped them with the plot coordinates, and assigned the information to each plot. To 247 

analyze the effect of climatic distance, we calculated the Euclidean distance in the 20-248 

dimensional space between plots using the variables after standardization (i.e. mean = 0 249 

and variance =1). 250 

 251 

Statistical analysis 252 

We modeled the relationship between pairwise compositional dissimilarity (βsor, βsim, and 253 

βsne) and spatial/climatic distance (i.e. the dissimilarity-distance curve) in each region and 254 

for each taxonomic rank using both negative exponential and power-law functions 255 

(Nekola & McGill 2014); these functions were fitted using a generalized linear modelling 256 

approach with a Gaussian distribution and a log-link function (Millar et al. 2011). Model 257 

fit was evaluated using pseudo-r2 defined as 1 – (model deviance/null deviance) 258 

(McFadden 1973). The two functions provided similar fits to the data according to 259 

Akaike’s Information Criterion (Table S1 in Appendix S1), and thus we only present 260 

results for the negative exponential model in the main text (see Fig. S2 in Appendix S1 261 

for the results using the power-law model). In the negative exponential model, the 262 

http://www.worldclim.org/


intercept and slope can be interpreted as the initial dissimilarity (inherent compositional 263 

variation among the closest local communities) and the speed of compositional change 264 

(or rate of decay), respectively. We tested for differences in the intercepts and slopes of 265 

the negative exponential model between biogeographical regions by bootstrapping 266 

(multiple comparisons among each pair of regions): we computed 1,000 bootstrap 267 

samples for each parameter, calculated the difference in parameter values between two 268 

regions, calculated the proportion of positive and negative differences respectively, and 269 

used the smaller of these (i.e. upper or lower tails) proportions as a p-value. We also 270 

assessed the influence of SC thresholds (SC = 0.7~0.9) on the parameter estimation by 271 

evaluating the inter-regional rank correlations for the effect size of parameters between 272 

the different SC thresholds. In addition, we fitted a locally estimated scatterplot 273 

smoothing curve to visualize changes in the relative importance of the turnover 274 

component to overall dissimilarity (βsim/βsor) along the spatial/climatic distance gradients.  275 

 276 

All statistical analyses and graphical works were undertaken using R ver. 3.6.1 (R Core 277 

Team 2019) and the following packages: ‘betapart’ (Baselga & Orme 2012) to calculate 278 

and decompose pairwise compositional dissimilarity, ‘geosphere’ (Hijmans 2019) to 279 

calculate spatial distance, ‘iNEXT’ (Hsieh et al. 2016) for calculating the sampling 280 

completeness of each plot, and ‘multcompView’ (Graves et al. 2019) for multiple 281 

comparisons. 282 

 283 

Results 284 

The parameters (especially slopes) of the negative exponential models at lower SC 285 

thresholds (0.7–0.85) differed from those estimated using SC ≥ 0.9, particularly for the 286 



climatic distance model (Fig. S3 in Appendix S1). The inter-regional ranking of effect 287 

size was consistent for the spatial distance models (i.e. Spearman’s rank correlation ρ = 288 

1), whereas change in the order was observed in the climatic distance model (ρ = 0.75 ~ 289 

1.00). Therefore, we only show the results using the most strict criteria (SC ≥ 0.9) for all 290 

subsequent analyses.  291 

 292 

Total dissimilarity (βsor), the turnover component (βsim), and the nestedness component 293 

(βsne) showed strong correlations between the taxonomic ranks, but with substantial 294 

variation in its degree between the regions (Table S2 in Appendix S1), indicating the 295 

influence of region-specific deep-time diversification on shaping turnover/nestedness-296 

resultant beta diversity. 297 

 298 

Total dissimilarity and spatial distance 299 

βsor increased with increasing spatial distance between sites, and this finding was 300 

consistent within all biogeographical regions (Fig. 3). The negative exponential model 301 

provided a relatively good fit to the dissimilarity-distance pattern at the species level (r2 302 

= 0.34–0.74), but the amount of explained variance generally decreased along taxonomic 303 

ranks from genus to order (Fig. 4; r2 = 0.08–0.66 for genera; r2 = 0.01–0.55 for families; 304 

r2 = <0.01–0.43 for orders). The intercept and slope of the negative exponential model 305 

became smaller at higher taxonomic ranks (Fig. S4 and S5 in Appendix S1). 306 

 307 

Relationships between turnover and nestedness-resultant components and spatial 308 

distance 309 

The spatial patterns of βsim were well characterized by the negative exponential model, 310 



especially at the species level (Fig. 3a), and exhibited an asymptotic increase with spatial 311 

distance (Fig. 4). βsim was the predominant component of βsor in all geographical regions 312 

except for sites near to each other in the West Eurasian region (Fig. 5), but the relative 313 

importance of βsim decreased along the taxonomic ranks from genus to order. The intercept 314 

and slope of the βsim-distance curve were smaller in the temperate regions (North 315 

American, West Eurasian, and East Eurasian) where the βsim at species level slowly 316 

saturated over the entire geographical extent at the species level (Fig. S4 and S5). In 317 

contrast, the intercept and/or slope of the βsim-distance curve was larger in the regions 318 

containing tropical areas (South American, African, and Indo-Pacific) where the βsim at 319 

species level saturated at a smaller geographical extent (Fig. 4). The βsim values became 320 

lower, and the shape of the curve became flatter, at higher taxonomic ranks in the South 321 

American and Indo-Pacific regions (Fig. 4). In contrast, the slope of the curve was 322 

relatively steep even at the family and order levels in the African, Australian, and North 323 

American regions (Fig. 4 and S5). 324 

 325 

βsne was poorly explained by the negative exponential model (Fig. 3a); the relationship 326 

between βsne and spatial distance was mostly flat, while a negative linear relationship was 327 

found at the species level in the Holarctic regions, especially in West Eurasian (Fig. 4 and 328 

S5). At the species level, βsne accounted for a major proportion of βsor only within sites 329 

near to each other in the Holarctic regions (Fig. 5). However, the relative importance of 330 

βsne increased at higher taxonomic ranks even in the regions containing tropical areas, 331 

especially in South American (Fig. S4). 332 

 333 

Relationships between taxonomic dissimilarity and climatic distance 334 



In general, the increase in pairwise taxonomic dissimilarity (βsor, βsim, and βsne) with 335 

climatic distance was similar to that observed with spatial distance (Fig. S6-S8 in 336 

Appendix S1). The negative exponential models fitted using climatic distance had slightly 337 

better explanatory power than the models fitted using spatial distance for most regions 338 

and ranks, but provided worse fits at the species and genus levels in the Indo-Pacific, 339 

African, West Eurasian , and Australian regions (Fig. 3). βsor and βsim exhibited steep 340 

slopes and quick asymptotic saturation in all regions at the species level, while the 341 

saturation was relatively slower in Australian and the temperate regions compared to the 342 

South American, African and Indo-Pacific regions (all containing tropical areas) (Fig. S6). 343 

The slope of the βsim–distance curve was smaller at higher taxonomic ranks, but it 344 

remained relatively high even at the family and order levels in the African and North 345 

American regions (Fig. S6 and S8). The relative importance of βsim to βsor increased with 346 

the climatic distance, especially in the West Eurasian at the species level, while the pattern 347 

was less clear at the family and order levels (Fig. 5). 348 

 349 

Discussion 350 

Our results reveal substantial differences in patterns of variation in local angiosperm tree 351 

communities across different biogeographic regions, with contrasting effects of deep time 352 

processes of diversification between the biogeographical regions with and without 353 

tropical areas. The overall dissimilarity of angiosperm communities between forest plots 354 

was found to increase with spatial and climatic distance (a distance decay pattern) in all 355 

biogeographical regions, and was mainly driven by the turnover component at lower 356 

taxonomic ranks (species and genus), although its relative contribution decreased at 357 

higher taxonomic ranks (family and order). However, these patterns showed region-358 



specific variations. The regions containing tropical areas (South American, African, and 359 

Indo-Pacific) showed steeper increases in total dissimilarity and the turnover component 360 

with spatial/climatic distances compared with the temperate regions (North American, 361 

West Eurasian, and East Eurasian), while Australian region showed intermediate trends  362 

Fig. 4, S5, S6, and S8).  363 

 364 

The fast increase in dissimilarity in regions with tropical areas was mostly associated with 365 

the turnover component, indicating a fast compositional replacement along spatial and 366 

climatic distance gradients, especially at the species level. This is in line with previous 367 

studies of tropical forests (Condit et al. 2002; Tuomisto et al. 2003; Pennington et al. 368 

2009; Trujillo et al. 2019) that found an important role of environmental filtering and 369 

dispersal limitation in generating species turnover. The decreasing compositional 370 

dissimilarity with increasing taxonomic rank (from species, genus, family to order) and 371 

the flattening of the dissimilarity-distance curves may reflect the deeper evolutionary 372 

history of tropical forests (Munoz et al. 2014). Specifically, orders and families of 373 

angiosperm trees probably radiated globally across phylogenetic niche space (Hubbell 374 

2001) under warmer climates through the Cretaceous to the Paleogene, and then 375 

subsequently species and genera within those regions diversified in response to different 376 

drivers, including geographical isolation and tropical-specific historical habitat stability 377 

through the Cenozoic (Fine & Ree 2006). Indeed, our results showed the highest species 378 

turnover rates in South American region (Fig. 4), providing a support for the view of the 379 

region as an evolutionary “engine” of plant diversity (Antonelli et al. 2015). Moreover, 380 

the turnover–distance relationships were flatter at the higher taxonomic ranks, suggesting 381 

that the persistence or accumulation (dispersal) of old lineages (Coronado et al. 2015) 382 



plays a role in generating the high degrees of overall dissimilarity across the taxonomic 383 

ranks (Pennington et al. 2009). This interpretation is also supported by the higher 384 

contribution of the nestedness component at the family and order levels in South 385 

American region than in the other regions (Fig. 4 and 5). Meanwhile, some regions (e.g. 386 

African, Australian, and North American regions), regardless of whether they include 387 

tropical areas, exhibited a persistent steep dissimilarity-distance curve in regard to the 388 

turnover component (Fig. S5), at both the family and order levels. This suggests 389 

taxonomic diversification at deeper time scales (Prinzing et al. 2001) and/or the 390 

persistence of different and older lineages in isolated sites (Tiffney & Manchester 2001; 391 

Tolley et al. 2011) as a result of geohistorically related biogeographical constraints, e.g. 392 

elevational gradients in the tropics (Qian & Ricklefs 2016) or climatic refugia (Tiffney & 393 

Manchester 2001; Byrne 2008; Tolley et al. 2011). 394 

 395 

In contrast, North American and both West and East Eurasian regions, comprising 396 

temperate floras, showed a slower saturation in total dissimilarity and the turnover 397 

component with spatial and climatic distances, and a relatively higher contribution of the 398 

nestedness component in shaping the dissimilarity patterns of angiosperm tree 399 

communities than in the remaining regions, all of them containing tropical areas (Figs. 3, 400 

S4 and S5). In addition, the nestedness component was less dependent on either spatial 401 

or climatic distance in these regions. These findings are consistent with the findings of 402 

previous studies of the temperate biota (Keil et al. 2012; Lenoir et al. 2012; Fitzpatrick et 403 

al. 2013; Soininen et al. 2017; Antão et al. 2019), which suggest that the nestedness 404 

component reflects the signal of historical processes that become more evident under 405 

unstable and harsh environmental conditions in higher latitudes (Baselga et al. 2012). 406 



Indeed, temperate angiosperm tree assemblages have been shown to have experienced 407 

genus-level local extinction in response to Quaternary glaciations and/or global cooling 408 

in the Holarctic regions (Svenning 2003; Eiserhardt et al. 2015; Shiono et al. 2018), 409 

supporting the role of historical dispersal filters in shaping the nestedness-resultant 410 

dissimilarity of angiosperm tree communities in temperate forests.  411 

 412 

In general, the negative exponential models fitted using spatial- and climatic-distance had 413 

comparable explanatory power and were similar in terms of the shape of the dissimilarity-414 

distance curves (Fig. 3, 4, and S6), suggesting that environmental filtering and/or 415 

dispersal limitation have important roles in driving compositional turnover (Trujillo et al. 416 

2019). However, a relatively lower explanatory power for the climatic distance model (i.e. 417 

it explained 11% less variance than the spatial distance model) was observed in the Indo-418 

Pacific at the species level (Fig. 3). This suggests that taxonomic turnover in this region 419 

is likely to be driven by dispersal limitation and/or other geographical factors, such as the 420 

spatial separation between islands and continental landmasses, and variation in island 421 

sizes (Ibanez et al. 2018). Moreover, the Indo-Pacific tropical forests are phylogenetically 422 

similar to the East Eurasian temperate forests (Kubota et al. 2018), suggesting the regional 423 

divergence of the temperate flora originating from the Asian tropics (out-of-Asia 424 

hypothesis; Donoghue 2008). Therefore, in the East Eurasian region, the highest 425 

contribution of the turnover component compared with the other Holarctic regions (Fig. 426 

4-5, S4-S5) may also be promoted by in situ diversification of angiosperm trees through 427 

geographical vicariance related to high insularity and highly dissected topography (Xiang 428 

et al. 2004; Kubota et al. 2014). 429 

 430 



One potential caveat of analyzing assemblage dissimilarity between local plots is that 431 

species occurrence data obtained in vegetation plots might potentially suffer from 432 

sampling incompleteness (Beck et al. 2013). To deal with sampling bias, we computed 433 

sampling completeness using species relative abundance in individual plots (Chao et al. 434 

2020) and assessed the spatial patterns of taxonomic dissimilarity by only analyzing 435 

nearly completely sampled plots (sampling completeness ≥ 90%). Loosening of the SC 436 

threshold down to 70% did not alter the general dissimilarity trends (Fig. S3), but it did 437 

cause a slight reduction in the slope of the dissimilarity-spatial distance curve in some 438 

regions. This suggests that including incomplete plots in which common species are likely 439 

to be well sampled but rare species are likely to be missed may overestimate similarity 440 

among local communities. Another potential bias is related to the shortfall of taxonomic 441 

knowledge, especially at higher taxonomic levels (family or order). Indeed, the taxonomic 442 

resolution of lineages differs among clades and regions, and in particular, is poorly 443 

resolved for the tropics (Laffan 2018). For example, in Malesia, it is estimated that only 444 

29% (of approximately 45,000) vascular plant species have been comprehensively treated 445 

taxonomically in the Flora Malesiana, and while there are additional taxonomic 446 

publications and treatments for this region, these are fragmented and overall the flora very 447 

much remains incompletely known and described (Middleton et al 2019). From the 448 

viewpoint of filling gaps in our knowledge of plant biodiversity, further taxonomic and 449 

systematic studies are needed to better understand the relative role of evolutionary events 450 

at different time scales in shaping the taxonomic dissimilarity of woody angiosperms 451 

globally. 452 

 453 

Concluding remarks 454 



As with many macroecological patterns, the increase in dissimilarity with distance can be 455 

studied at multiple spatial scales (Nekola & White 1999; Wang et al. 2011; Fitzpatrick et 456 

al. 2013; Olivier & van Aarde 2014; Kasel et al. 2017; Chun & Lee 2017; Trujillo et al. 457 

2019). There have been many studies focused on the dissimilarity-distance pattern of 458 

vegetation that measure beta diversity at different spatial extents, from local scales 459 

(Morlon et al. 2008; Wang et al. 2011; Wang et al. 2018) through to regional (Condit et 460 

al. 2002; Tuomisto et al. 2003) and global-scales (Fitzpatrick et al. 2013; König et al. 461 

2017). Despite these previous studies of beta diversity at local, regional and global scales, 462 

there are few examples of studies that use local community data to analyze large-scale 463 

dissimilarity patterns (but see Myers et al. 2013; Kubota et al. 2018). In addition, beta 464 

diversity patterns at multiple taxonomic scales were unexplored though it is potentially 465 

informative to understand the imprints of deep-time diversification in extant diversity 466 

patterns. The present study contributes to filling this knowledge gap by showing how 467 

pairwise taxonomic dissimilarity and its components (calculated within biogeographical 468 

regions) at different taxonomic ranks change across biogeographical regions through the 469 

analysis of local tree communities across the globe. Our findings of taxonomic 470 

dissimilarity among angiosperm tree communities, which showed region-specific 471 

variations in the dissimilarity-to-distance relationships across taxonomic ranks, reveal the 472 

geographical pattern of diversification that is mechanistically driven by niche assembly 473 

at higher taxonomic ranks (Ricklefs & Renner 2012), and global/regional-scale dispersal 474 

limitation (Hubbell 2001). 475 

 476 

To conclude, our results generally supported our five predictions. First, taxonomic 477 

turnover increased faster with spatial/climatic distance in those biogeographical regions 478 



encompassing the tropics, i.e., in those areas where climatic conditions have been more 479 

stable historically, compared to the temperate regions. Second, in general, the turnover 480 

component decreased and its relationship with spatial/climatic distance became flatter at 481 

higher taxonomic ranks (order or family); this may reflect the evolutionary histories of 482 

angiosperm trees associated with region-specific geohistories in the tropics and 483 

extratropics. However, and third, we also found relatively steep turnover patterns with 484 

spatial/climatic distances in African, North American, and Australian regions at family 485 

and/or order levels, which may be related to region-specific geographical constraints. 486 

Fourth, the nestedness component was generally smaller than the turnover component 487 

and almost independent from spatial/climatic distance in the regions containing tropical 488 

areas at the species level. However, and fifth, the nestedness component comprised a 489 

relatively larger proportion of overall dissimilarity in the Holarctic regions, which are 490 

often more historically unstable regions. In sum, the relationship between pairwise 491 

dissimilarity and distance for angiosperm tree communities at species, genus, family, and 492 

order levels illustrates the importance of geographical filters associated with historical 493 

and contemporary factors, in shaping regional beta diversity patterns of angiosperm trees. 494 
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Figure legends 775 

Fig. 1 The global distribution of forest plots across seven biogeographical regions: South 776 

American, African, Indo-Pacific, Australian, North American, West Eurasian, and East 777 

Eurasian. Plots were colored by sampling completeness (SC).  778 

 779 

Fig. 2 Histograms for sampling completeness evaluated as sampling coverage (SC) per 780 

community in seven biogeographical regions (South American, African, Indo-Pacific, 781 

Australian, North American, West Eurasian, and East Eurasian). The equivalently well-782 

sampled plots (SC ≥ 0.9) were used in the dissimilarity-distance analyses. 783 

 784 

Fig. 3 Pseudo r2 of negative exponential models for the relationships between taxonomic 785 

dissimilarity and (a) geographical and (b) climatic distance per taxonomic rank [species 786 

(SP), genus (GN), family (FM) and order (OR)] in each biogeographical region: South 787 

American (SA), African (AF), Indo-Pacific (IP), Australian (AU), North American (NA), 788 

West Eurasian (WE) and East Eurasian (EE). Total dissimilarity matrices (βsor) were 789 

decomposed into turnover (βsim) and nestedness (βsne) components. Dashed line represents 790 

5% for a visual guide. 791 

 792 

Fig. 4 The relationship between pairwise dissimilarity and spatial distance (dissimilarity 793 

-to-distance relationship) as fitted by a negative exponential model from presence-794 

absence composition data at the species, genus, family and order levels, in each 795 

biogeographical region: South American (SA), African (AF), Indo-Pacific (IP), 796 

Australian (AU), North American (NA), West Eurasian (WE) and East Eurasian (EE). 797 



Total dissimilarity matrices (βsor) were decomposed into the turnover (βsim) and 798 

nestedness-resultant (βsne) components. 799 

 800 

Fig. 5 Changes in the relative importance of the turnover component to total dissimilarity 801 

(βsim/βsor) along geographical (left) and climatic (right) distance per taxonomic rank 802 

[species (SP), genus (GN), family (FM) and order (OR)] in each biogeographical region: 803 

South American (SA), African (AF), Indo-Pacific (IP), Australian (AU), North American 804 

(NA), West Eurasian (WE) and East Eurasian (EE). Climatic distance is calculated as the 805 

Euclidian distance between sites based on 19 bioclim variables and elevation. Locally 806 

estimated scatterplot smoothing curves (LOESS) are shown. 807 
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