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ABSTRACT
We consider supervised dimension reduction problems, namely to identify a low di-
mensional projection of the predictors x which can retain the statistical relationship
between x and the response variable y. We follow the idea of the sliced inverse re-
gression (SIR) and the sliced average variance estimation (SAVE) type of methods,
which is to use the statistical information of the conditional distribution π(x|y) to
identify the dimension reduction (DR) space. In particular we focus on the task
of computing this conditional distribution without slicing the data. We propose a
Bayesian framework to compute the conditional distribution where the likelihood
function is constructed using the Gaussian process regression model. The condi-
tional distribution π(x|y) can then be computed directly via Monte Carlo sampling.
We then can perform DR by considering certain moment functions (e.g. the first or
the second moment) of the samples of the posterior distribution. With numerical
examples, we demonstrate that the proposed method is especially effective for small
data problems.

KEYWORDS
Dimension reduction; Gaussian process; Monte Carlo simulation; sliced inverse
regression; supervised learning

1. Introduction

In many statistical regression problems, one has to deal with problems where the
available data are insufficient to provide a robust regression. If conducting regression
directly in such problems, one often risks of overfitting or being incorrectly regularized.
In either case, the resulting regression model may lose its prediction accuracy. Extract-
ing and selecting the important features or eliminating the redundant ones is a key step
to avoid overfitting and improve the robustness of the regression task [11]. The feature
extraction and selection thus constitutes of identifying a low dimensional subspace of
the predictors x which retains the statistical relationship between x and the response
y, i.e. a supervised dimension reduction problem. Mathematically such problems are
often posed as to estimate the central dimension reduction (DR) subspace [5]. A very
popular class of methods estimate this central subspace by considering the statistics
of the predictors x conditional on the response y, and such methods include the sliced
inverse regression (SIR) proposed in the seminal work [18], the sliced average vari-
ance estimation [6,8], and many of their variants, e.g. [5,16,17,19–21,29,33,36]. Some
of the extensions and variants have been developed specifically for machine learning
problems, e.g., [12,13,32]. The literature in this topic is vast and we refer to [15,22]
for a more comprehensive overview of the subject. It should be noted that most of
the aforementioned methods adopt nonparametric formulation without assuming any
specific relation between x and y. As will be shown in the examples, the nonparamet-



ric approaches may not work well for the problems with very small number of data,
which is considered in the present work. To this end, an alternative type of methods
is to assume a parametric model of the likelihood function p(y|x), and then compute
the reduced dimensions with maximum likelihood estimation [3,4], or in a Bayesian
formulation [23,27]. A main disadvantage of the parametric models is that they may be
lack of the flexibility to accurately characterize of the relation between the predictors
x and the response y.

In this work we present a method incorporating the SIR/SAVE type of methods
with the model base ones, to make them more effective for small data problems. In
particular we remain in the SIR/SAVE framework to identify the DR space. As one
can see, many works in this class focus on the question: what statistical information of
the conditional distribution π(x|y) should one use to compute the DR subspace? For
example, SIR makes use of the expectation of π(x|y) to identify the DR directions,
SAVE utilizes the variance of it, and the method in [34] is based on the third moments.
In this work we consider a different aspect of the problem: how to obtain the conditional
distribution π(x|y) when the data set is small? In SIR and SAVE, the conditional
moments are approximately estimated by slicing the data [18]. As will be demonstrated
with numerical examples, the slicing strategy does not perform well if we have a
very small data set. Specifically one must keep the number of slices small so that
each slice may contain a sufficient number of data points, and the small slice number
may limit the accuracy of dimension reduction. The main purpose of the work is to
address the problem of computing the conditional distribution π(x|y). In particular we
present a Bayesian formulation which can provide not only the first or second moments,
but the full conditional distribution π(x|y), and once the conditional distribution is
available one can use any desired methods to estimate the DR subspace based on
the conditional distribution. Just like [3,4], our method also involves constructing the
likelihood function π(y|x) from data, but a main difference here is that we characterize
the likelihood function with a nonparametric Gaussian Process (GP) model [31], which
may provide more flexibility than a parametric model. Once the likelihood function
is available, we can compute the posterior distribution π(x|y) from the likelihood
function and a desired distribution of x. In this work we choose to mainly use the
first order moment of the conditional distribution (following SIR) to demonstrate the
method, while noting that the method can be easily extended to other conditional
moments. It is important to note here that, while the conditional distribution π(x|y)
is computed in a Bayesian fashion, the core of the method (i.e. the estimation of
the DR subspace) remains frequentist, and so it is fundamentally different from the
methods [23,27,30] that do estimate the DR subspace with a Bayesian formulation
(e.g., imposing a prior on the DR subspace).

To summarize, the main contribution of the work is to propose a GP based Bayesian
formulation to compute the conditional distribution π(x|y) for any value of y in the
SIR/SAVE framework, and by doing so it avoids slicing the samples, which makes it
particularly effective for problems with very small numbers of data.

The rest of this paper is organized as follows. In section 2 we set up a formulation of
dimension reduction and go through the basic idea of the classic dimension reduction
approaches SIR and SAVE. The Bayesian inverse regression and the Bayesian average
variance estimation are introduced explicitly in Section 3, including a Bayesian for-
mulation for computing π(x|y), the GP model used, and complete algorithms to draw
samples from π(x|y). In section 4 we provide several numerical examples. Section 5
offers concluding remarks.
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2. Dimension reduction and the sliced methods

2.1. Problem setup

We consider a generic supervised dimension reduction problem. Let x be a p-
dimensional random variable defined on Rp following a distribution π0(x), and suppose
that we are interested in a scalar function of x, which ideally can be written as,

y = f(bT
1 x,b

T
2 x, ...,b

T
Kx, ε), (1)

where bk for k = 1...K are some p-dimensional vectors, and ε is small noise independent
of x. It should be clear that, when this model holds, the projection of the p-dimension
variable x onto the k dimensional subspace of Rp spanned by {b1, ...,bK}, captures
all the information of x with respect to y, and if K < p, we can achieve the goal of
data reduction by estimating the coefficients {bk}Kk=1. In practice, both the explicit
expression of f and the coefficients {bk}Kk=1 are unknown, and instead we have a set
of data pairs {(xj , yj)}nj=1 drawn from the joint distribution π(x, y) defined by π0 and

Eq. (1). Finding a set of {bk}Kk=1 that satisfy the Eq. (1) from the given data set
{(xj , yj)}nj=1 is the task of supervised dimension reduction. In what follows we shall

refer to the coefficients {bk}Kk=1 as dimension-reduction (DR) directions, and the linear
space B spanned by the {bk}Kk=1 as the DR subspace. For a more formal and generic
description of the DR problem (in the Central DR Subspace and Sufficient Dimension
Reduction framework) we refer to [5].

2.2. Sliced inverse regression

The SIR approach [18] estimates the DR directions based on the idea of inverse regres-
sion (IR). In contrast to the forward regression E(y |x), IR regresses each coordinate
of x against y. Thus as y varies, E(x | y) draws a curve in Rp along the y coordinate,
whose center is located at E(E(x | y)) = E(x). For simplicity we shall assume that
throughout this section x is a standardized random variable: namely E(x) = 0 and
Cov(x) = I. Under the following condition the IR curve E(x | y) is contained in the
DR subspace B [18]:

Condition 2.1. For any β ∈ Rp, the conditional expectation E(βTx |bT
1 x, ...,b

T
Kx)

is linear in bT
1 x, ...,b

T
Kx.

This condition is satisfied when the distribution of x is elliptically symmetric [18].
An important implication of this property is that the covariance matrix Cov[E(x | y)]
is degenerated in any direction orthogonal to the DR subspace B. We see, therefore,
that the eigenvectors associated with the largest K eigenvalues of Cov[E(x | y)] are the
DR directions. So the key of estimating the DR direction is to compute the covariance
of the conditional expectation of the data, Cov[E(x | y)].

One of the most popular approaches to estimate the covariance Cov[E(x|yj)] is
SIR. Simply put, SIR produces a crude estimate of E(x|y), by slicing the data
(x1, y1), ..., (xn, yn) into H partitions according to the value of yj and then estimating
E(x | y ∈ Ih), h = 1, ...,H using the data inside the interval Ih for each h = 1, ...,H.
Finally one use the H samples to compute an estimate of the covariance matrix
Cov[E(x|y)]. A complete SIR scheme is described as follows:

(1) Divide range of y into H slices, I1, ..., IH . Let the proportion of the yj that falls
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in slice Ih be p̂h, i.e.,

p̂h =
1

n

n∑
j=1

δh(yj),

where δh(yj) takes the values 0 or 1 depending on whether yj falls into the hth
slice Ih or not.

(2) Within each slice, compute the sample mean of the xj ’s, denoted by x̂h(h =
1, ...,H):

x̂h =
1

(np̂h)

∑
yj∈Ih

xj .

(3) Compute the weighted covariance matrix

Ĉ =

H∑
h=1

p̂hx̂hx̂
T
h .

(4) Perform eigenvalue decomposition of Ĉ, and return the eigenvectors associated

with the k largest eigenvectors as the estimated DR directions b̂1, ..., b̂K .

As is mentioned in Section 1, the slicing treatment is often not sufficiently accurate
when the data set is small, and in what follows we shall provide an alternative to
compute the covariance matrix.

2.3. Sliced average variance estimation

The SAVE method extract the DR directions from the variance of π(x|y), and by
doing so it is able to recover the information that could be overlooked by SIR because
of symmetries in the forward regression function [8]. Let the columns of b form a basis
for the DR space. To use SAVE, we need to assume the following two conditions [8]:

(1) E(x|BTx)] is linear in BTx,
(2) Var(x|BTx) is a constant,

where B is any basis matrix of Rp. The conditions hold when x is normally distributed
although normality is not necessary. Under these two conditions, one can derive that

span{Ip − E(Cov[x|y])}

is a DR space [8], which is the basis for SAVE. A complete SAVE scheme is as follows:

(1) Divide range of y into H slices, I1, ..., IH . Let the proportion of the yj that falls
in slice Ih be p̂h, i.e.,

p̂h =
1

n

n∑
j=1

δh(yj),

where δh(yj) takes the values 0 or 1 depending on whether yj falls into the hth
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slice Ih or not.
(2) Within each slice, compute the sample covariance matrix of the xj ’s, denoted by

M̂h(h = 1, ...,H):

M̂h =
∑

yj∈Ih

xjx
′
j . (2)

(3) The j-th sample SAVE DR direction can now be constructed by perform eigen-
value decomposition on the following matrix , and return the eigenvectiors asso-
ciated with the k largest eigenvectors:

Ĉ =

H∑
h=1

p̂h(I − M̂h)2 (3)

3. Bayesian inverse regression

3.1. Bayesian formulation for π(x|y)

Recall that in the SIR framework, a key step is to compute the covariance Cov[E(x|y)].
A natural choice to estimate the covariance Cov[E(x | y)] is to use the sample covari-
ance of the data points,

Ĉ =
1

n− 1

n∑
j=1

(x̂j − x̄)(x̂j − x̄)T , x̄ =
1

n

n∑
j=1

x̂j , (4)

where x̂j is an estimate of E(x|yj) for all j = 1...n, and (y1, ..., yn) are the data points.
Next we need to compute x̂j , the estimate of E(x|yj), and we propose to do so in a
Bayesian framework. Namely we formulate the problem as to compute the posterior
distribution:

π(x|y) ∝ π(y|x)π(x), (5)

where π(y|x) is the likelihood function and π(x) is the prior of x.
We consider the prior distribution π(x) first. To start we note that in principle the

choice of prior does not affect the DR subspace as this subspace structure lies in the
function f(x, ε) in Eq. (1) rather than the distribution of x. As such, theoretically one
may use any prior distribution that satisfies the conditions required by SIR/SAVE.
However, the choice of π(x) does affect the performance of the Bayesian inverse re-
gression method from a computational perspective. More specifically, the choice of the
prior distribution may affect the variance of the posterior, and, since the proposed
method relies on Monte Carlo sampling of the posterior distribution, a large vari-
ance of the posterior may lead to poor estimate of E[x|y] unless an exceedingly large
amount of samples are used. To this end, one should choose the prior to be π0 or close
to it. We consider the following three cases. First in certain problems, especially those
where the data are generated from computer models, the distribution π0(x) may be
known in advance. Secondly for most problems where π0 is not available in advance, a
natural choice is to perform a crude density estimation for the data {xj}nj=1 and use
the estimated density as the prior. For example, one may use Gaussian mixtures [25]
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or a simple Gaussian to estimate the prior distribution from the data {xj}nj=1. Finally,
for problems where estimating the density of x are particularly challenging, we can
just use the original data points {xj}nj=1 with weight Aπ(y|xj) as the samples from
π(x|y) where A is the normalization constant, and in this case the prior is simply π0.

3.2. The GP regression

The next step is to construct the likelihood function π(y|x) from data, which, as
mentioned earlier, is done by using the GP regression model.

Simply speaking the GP regression performs a nonparametric regression in a
Bayesian framework [31]. The main idea of the GP method is to assumes that the
function of interest f(x, ε) is a realization from a Gaussian random field, whose mean
is µ(x) and covariance is specified by a kernel function k(x,x′), namely,

Cov[f(x), f(x′)] = k(x,x′).

The kernel k(x,x′) is positive semidefinite and bounded.
Now given the data points {(xj , yj)}nj=1, we want to predict the value of y at a

new point x. Now we let X := [x1, . . . ,xn], and Y = [y1, . . . , yn]. Under the GP
assumption, it is easy to see that the joint distribution of (Y, y) is Gaussian,[

Y
y

]
∼ N

(
µ(X)
µ(x)

,

[
K(X,X) + σ2

nI K(X,x)
K(x,X) K(x,x)

])
, (6)

where σ2
n is the variance of observation noise, I is an identity matrix, and the notation

K(A,B) denotes the matrix of the covariance evaluated at all pairs of points in set A
and in set B using the kernel function k(·, ·).

It follows immediately from Eq. (6) that the conditional distribution πGP (y|x,X,Y)
is also Gaussian:

πGP (y|x,X,Y) = N (µpos, σ
2
pos), (7a)

where the posterior mean and variance are,

µpos(x) = µ(x) + k(x,X)(k(X,X) + σ2
nI)−1(Y − µ(x)), (7b)

σ2
pos = k(x,x)− k(x,X)(k(X,X) + σ2

nI)−1k(X,x). (7c)

There are also a number of technical issues in the GP model, such as choosing the
kernel function and determining the hyperparameters. For detailed discussion of these
matters, we refer the readers to [31]. In what follows we shall use the GP posterior
as the likelihood function, i.e., letting π(y|x) = πGP (y|x,X,Y). We want to empha-
size that, as will be seen later, the GP model π(y|x) is used as an intermediate step
for identify the low dimensional structure, rather than a regression model itself. The
reason is that, when applying to high dimensional variables, the posterior distribution
computed by GP can be non-negligibly inaccurate, and thus can not be used for re-
gression directly. That said, the GP model, which may not be quantitatively accurate,
still provide useful information for the dimensional reduction.
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Algorithm 1 The Bayesian inverse regression algorithm with MCMC

Require: {(xj , yj)}nj=1, nMC , π(x)

Ensure: The estimated DR directions: b̂1, ..., b̂K

1: Construct the GP model from data {(xj , yj)}nj=1: πGP (y|x,X,Y);
2: for j = 1 to n do
3: Draw nMC samples from πGP (yj |x,X,Y)π(x): {xi}nMC

i=1 ;
4: Compute x̂j = 1

nMC

∑nMC

i=1 xi;
5: end for
6: Compute Ĉ using Eq. (4) and {x̂j}nj=1;

7: Perform eigenvalue decomposition of Ĉ;
8: Return the eigenvectors associated with the K largest eigenvalues as b̂1, ..., b̂K .

3.3. Computing the posterior mean

Once we obtain the likelihood function and the prior, a straightforward idea is to
draw samples from the posterior distribution (5) with the Markov chain Monte Carlo
(MCMC) simulation. An alternative strategy is to sample from π(x) in an importance
sampling (IS) formulation. Namely suppose that we draw a set of samples {xi}nMC

i=1
from the prior distribution π(x), and for each xi we can compute the weight

wi = π(y|xi).

Finally the weights w1, ..., wnMC
are normalized so that

∑nMC

i=1 wi = 1 (if these samples
are drawn with MCMC, then wi = 1/nMC for all i = 1...nMC). We thus obtain
a set of weighted samples {(xi, wi)}nMC

i=1 drawn from the posterior π(x|y). Now let
{(xi, wi)}nMC

i=1 be a set samples draw from the posterior, and we can estimate E(x|y)
as

x̂ =

nMC∑
i=1

wixi. (8)

We repeat this procedure for each yj for j = 1...n, and then use Eq. (4) to compute
Cov[E(x|y)]. Since we use a Bayesian method to estimate E(x|y), we refer to proposed
method as Bayesian inverse regression (BIR). Similarly the samples can also be used
to estimate the conditional covariance Cov[x|y] in SAVE, and the resulting method is
termed as Bayesian average variance estimation (BAVE). As is discussed earlier, the
key of BIR/BAVE is essentially provides a means to draw samples from the conditional
distribution π(x|y) without slicing the data, and its application is not limited to esti-
mate E(x|y) or Cov[x|y], and it is possible to make use of the conditional distribution
in a different manner. Finally we present the BIR algorithm in Alg. 1 and BAVE in
Alg. 2.

Remark 1. It is important to reinstate here that, the BIR/BAVE methods only
use the Bayes’ formula to compute the conditional distribution π(x|y), and the DR
methods themselves are frequentist.

Remark 2. We want to emphasize that the reason we chose to use GP to construct
the likelihood function is two fold: first GP is a probabilistic regression approach,
which means that it directly yields the conditional probability p(y|x); second as a
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Algorithm 2 The Bayesian average variance estimation algorithm with MCMC

Require: {(xj , yj)}nj=1,nMC ,π(x)

Ensure: The estimated DR directions: b̂1, ..., b̂K

1: Construct the GP model from data {(xj , yj)}nj=1: πGP (y|x,X,Y);
2: for j = 1 to n do
3: Draw nMC samples from πGP (yj |x,X,Y)π(x): {xi}nMC

i=1 ;
4: Compute x̂ = 1

nMC

∑nMC

i=1 xi;

5: Compute M̂j = 1
nMC−1

∑n
i=1(xi − x̂)(xi − x̂)T ;

6: end for
7: Compute Ĉ = 1

n

∑n
j=1(Ip − M̂j)

2;

8: Perform eigenvalue decomposition of Ĉ;
9: Return the eigenvectors associated with the k largest eigenvalues as b̂1, ..., b̂K .

non-parametric approach it is typically more flexible than other parametric regression
models that are frequently used.

Remark 3. A key step in the proposed method is to construct the likelihood π(y|x)
with GP. It is well known that GP may not perform well as a regression model for
high dimensional problems. Nevertheless, as demonstrate by the examples, while it
is unable to provide accurate regression results, the resulting GP model are often
adequate for the dimension reduction purposes. Moreover, as is stated earlier, in this
work we focus on problems with modestly high dimensionality (less than 100) and a
very limited number of data (hundreds or less).

Remark 4. Another issue that should be mentioned here is how to select the num-
ber of the reduced dimensions; since BIR is also a method based on the eigenvalue
decomposition of Cov[E(x|y)], the methods used in [18] and related works, e.g., [10],
can be used directly here. We provide a brief description of the dimension selection
procedure in the Appendix.

4. Numerical examples

In this section we compare the performance of the proposed BIR/BAVE method with
a number of common methods: SIR, SAVE, likelihood-based DR (LDR) [4], the Local-
ized SIR (LSIR), in three mathematical and two real-data examples. The first example
uses data simulated from a mathematical function, with which we want to exam the
scalability of the methods with respect to the dimensionality of the problem. The
second one is also a mathematical example, and with this example we compare the
performance of different methods affected by the non-ellipticity of the distribution of
x. The third example is used specifically to compare the two second moment methods:
SAVE and BAVE. Our last two examples are based on real data, in which we compare
the performance of different methods in the small data situation. In the GP model
used in all the examples, we set the prior mean µ(x) = 0, and choose the Automatic
Relevance Determination (ARD) squared exponential kernel [31]:

k(x,x′) = σ2
0 exp(−1

2

p∑
i=1

(xi − x′i)2

λ2
i

), (9)
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Figure 1. The R2 accuracy of the DR subspace (left), the first DR direction b1 (center) and the second

DR direction b2 (right), all plotted against the dimensionality. (a) results for function (10a); (b) results for
function (10b).

where the hyperparameters σ0, λ1 ..., λp, and the σn in (6) are determined by maximum
likelihood estimation [31]. In all the examples except the one in Section 4.2, the prior
is obtained by fitting a Gaussian distribution to the data, while for the example in
Section 4.2, we assume that the distribution π0 is known, which is used as the prior.
In addition, in all the examples, 10000 MCMC samples are used to represent the
conditional distribution π(x|y) in the BIR and BAVE methods.

4.1. Mathematical examples with increasing dimensions

First we consider a d-dimensional problem where x follows a standard normal distri-
bution. The data are simulated from the following functions:

f(x, ε) = x1(x2 + x3) + 0.5ε, (10a)

f(x, ε) =
x1 + x2 + x3

0.5 + (x4 + x5)2
+ 0.1ε, (10b)

where ε ∼ N(0, 1). Both problems have two DR directions. In the regression content, a
well known limitation of the GP method is that it can not handle high dimension, and
so here we want to test the scalability of the BIR method with respect to dimension-
ality. To do so we perform experiments for various dimensions: d = 10, 20, 30, 40, 50,
where we set the number of data points to be n = 5d, i.e., growing linear with respect
to dimensionality. To evaluate the performance of the methods, we use the R2 metric
of accuracy used in [18] to measure the accuracy of the DR subspace and the DR
directions.

We repeat all the tests for 100 times and report the average. Specifically, we show
the R2-accuracy of the DR subspace B and the two DR directions in Figs. 1. We
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Figure 2. The scatter plots of (x1, x2) for different values of b.

can see that the BIR method has the best performance in all the tests in the two
examples, except one situation: d = 10 for function (10b). The R2 accuracy for each
DR direction provide more information on the results. Namely, for Function 10a, BIR
performs better than all the other methods in both of the directions. For function 10b,
the accuracy of BIR is slightly lower than than SIR and LSIR for the first direction,
but it achieves significantly higher accuracy on the second dimension than all the
other ones. Finally we want to note here that as the dimensionality increases, the
performance of BIR does not decay evidently, suggesting that the method can handle
rather high dimensional problems.

4.2. Mathematical examples with non Gaussian distributions

In our second example, we want to test the performance of the methods when the
distribution of x is strongly non-Gaussian. We assume x is a 10-dimensional variable
and the data are generated as follows. First let u = (u1, u2) follow a two-dimensional
standard normal distribution. We then perform the following transform:

x1 = u1, x2 = u1 − bu2
1, (11)

where b ≥ 0. Here by varying parameter b one can control how different the distribution
of x is from Gaussian. Data of y are generated from u, and so the transformation used
to generating x does not affect the data of y. In this example we use the following two
functions to generate y:

y =
u1

0.5 + (u2 + 1.5)2
+ 0.5ε, (12a)

y = sin(5πu1) + u2
2 + 0.1ε, (12b)

where ε ∼ N(0, 1). In this test, we choose five different values of b: b = 0, 5, 10, 15, 20
with sample size n = 100, and we show the scatter plots of the data points for all
these cases in Fig. 2, where we can see that the resulting data points move apart from
Gaussian as b increases. We plot the R2 accuracy against the value of b in Figs. 3
for both functions. From the figures we can see that for function 12a, BIR clearly
outperforms all the other methods for all the values of b, and for function 12b, the
BIR also has the best performance in all the cases, with LDR being about the same
at b = 10 and 20.
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Figure 3. The R2-accuracy of the DR subspace plotted as a function of b, for function (12a) (left) and

function (12b) (right) respectively.

4.3. Mathematical example for BAVE

We now consider a mathematical example which requires to consider the 2nd moments.
Let x be a 20 dimensional random variable following standard normal distribution,
and let

y = x2
1 + 0.1ε,

where noise ε ∼ N (0, 1). It is easy to verify that E(x|y) = 0, which implies that the
first moment based approach, i.e., SIR, does not apply to this problem.

We conduct numerical experiments with six different sample sizes: 30, 40, 60, 80,
100 and 120, and for each sample size, we randomly generate 100 sets of data. With
each set of data, we estimate the DR direction with SIR, LDR, SAVE and BAVE.
The R2 accuracy of the DR direction obtained by each method, averaged over the
100 trials, is shown in Fig. 4. As expected, SIR fails completely for this example – its
resulting R2 accuracy is near zero, regardless of the sample size. The results of LDR
are better than SIR but the overall accuracy remains quite low (less than 0.4) even
when the sample size reaches 120. On the other hand, the performance of SAVE and
BAVE increases notably as the sample size increases, while for each sample size, the
results of BAVE are considerably better than those of SAVE, suggesting that BAVE
performs considerably better than SAVE for this small dataset problem.

4.4. Death rate prediction

The example considered in this section is to use pollution and related factors to predict
the death rate [1,24]. This is a regression problem with 15 predictors and 60 data
points and we choose this example to test how the methods perform with very small
number of data. The sequential testing scheme described above suggests that only
one feature is needed. We first apply the DR methods to select one feature (we have
conducted tests with 2 and 3 features which reduces the regression accuracy, and so
we omit those results here) and then construct a standard linear regression model of
the data in the reduced dimension. As a comparison, we also perform the regression
directly without DR. To test the methods with different numbers of data, we perform
the experiments with 15, 20, 25, 30, 35, 40 data points randomly selected from the
data set and another randomly selected 20 data points used as the test set. In each
experiment we can compute the mean relative regression error (MRRE) using the data
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Figure 4. The R2 accuracy of the DR direction computed with different same sizes.

Methods n = 15 n = 20 n = 25 n = 30 n = 35 n = 40
w/o DR .1832 .0855 .0551 .0460 .0425 .0380

(.2013) (.0502) (.0216) (.0171) (.0161) (.0089)
LDR - .0823 .0569 .0490 .0444 .0383

(-) (.0518) (.0207) (.0184) (.0173) (.0089)
SIR .4403 .0982 .0653 .0548 .0525 .0430

(1.2417) (.0769) (.0310) (.0216) (.0217) (.0108)
LSIR - .0876 .0648 .0557 .0485 .0429

(-) (.0461) (.0252) (.0224) (.0174) (.0100)
BIR .0484 .0451 .0465 .0481 .0466 .0468

(.0110) (.0104) (.0111) (.0105) (.0114) (.0126)

Table 1. The mean and the standard deviation (in parenthesis) of MRRE for Example 3. The best results

are marked in bold.

in the test set. Specifically, suppose {(xi, yi)}nt

i=1 is the training set and fr(·) is the
regression model, the MRRE is computed as,

MRRE =
1

nt

nt∑
i=1

|yi − fr(xi)|
yi

.

We repeat all the experiments 100 times, and compute the mean and the standard
deviation of the resulting MRRE, which is shown in Table 1. First we observe that for
n = 40 all the methods can achieve rather good accuracy; as n decrease, the results of
all the other methods become evidently worse, while that of BIR remains quite stable,
suggesting that the BIR is especially effective in the small data case. It should be noted
that for n = 15 LDR and LSIR fail to produce reasonable results due to numerical
instability, and so we omit the results here. More importantly it can be seen from
the table that starting from n = 30, the regression without DR actually has the best
performance, suggesting that implementing DR is only necessary when the number of
data points is below 30. In all the cases DR is genuinely needed, i.e., n < 25, the BIR
method performs significantly better than all other methods. To further analyze the
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Methods min max
w/o DR .0289 .3374
LDR .0281 .7913
SIR .0362 .2534
LSIR .0380 .2350
BIR .0247 .1183

Table 2. The minimal and maximal relative regression error (RRE) in the 100 trials with 20 data points for

the death rate example. The best results are marked in bold.

performance, we also compute the minimal and the maximal relative regression errors
(RRE) for the 20 data-point case, and present the results in Table 2. Once again, we
can see that the BIR method has the best results in both the minimal and the maximal
cases. It is worth noting that in this example and the next one, the data points failed
to pass a multivariate normality test; nevertheless, BIR/BAVE based on the Gaussian
fitting still produces rather good performance, indicating that the performance of the
proposed method is not very sensitive to the fitting of the input data points.

sample size 20 30 40 50 60 70 80 90 100
w/o DR .377 .254 .210 .203 .181 .173 .173 .169 .170

(.153) (.072) (.035) (.0393) (.025) (.026) (.022) (.022) (.022)
LDR .394 .262 .209 .198 .178 .173 .175 .172 .171

(.175) (.097) (.035) (.033) (.028) (.031) (.024) (.027) (.024)
SIR .497 .284 .2358 .217 .199 .192 .193 .189 .187

(.224) (.093) (.049) (.044) (.035) (.034) (.032) (.030) (.029)
LSIR .489 .284 .225 .216 .194 .189 .190 .183 .178

(.210) (.079) (.043) (.040) (.032) (.034) (.029) (.033) (.027)
BIR .188 .184 .178 .178 .167 .164 .167 .165 .162

(.034) (.034) (.031) (.029) (.025) (.027) (.021) (.024) (.023)

Table 3. The mean and the standard deviation (in parenthesis) of MRRE for Example 4. The best results

are marked in bold.

Methods min max
w/o DR .1555 1.273
LDR .170 1.134
SIR .169 1.874
LSIR .217 1.146
BIR .113 0.287

Table 4. The minimal and maximal relative regression error (RRE) in the 100 trials with 20 data points for

the automobile price example. The best results are marked in bold.

4.5. Automobile data set

Our last example is the automobile data set in the UCI Machine Learning Reposi-
tory [9]. The original data set contains 205 instances described by 26 attributes in-
cluding 16 continuous and 10 categorical. We preprocess the data set in the following
way: we neglect the 10 categorical attributes, and remove the instances with missing
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values, yielding a data set with 159 instances and 16 attributes. We select one of the
16 attributes as the response and the others as the predictors: specifically we want
to predict the price of an automobile based the other 15 attributes of it. Similar to
the previous example the sequential test suggests that the dimension is one. Thus we
first select one feature using the DR methods, and then perform a linear regression
with the selected feature. Just like the previous example, we want to examine the
performance of the DR methods in the small-data setting, i.e., a setting where direct
regression can not provide accurate results. To do so, we conduct the experiments with
n = 10, 20, ..., 90, 100 randomly selected samples and another 50 random samples used
as the test set for all the cases. We repeat each experiment 100 times, and compute
the MRRE each time. The mean and the standard deviation of the MRRE results are
reported in Table 3. From the data given in Table 3, we obtain rather similar conclu-
sions as those of Example 3. Namely, the BIR method has the best MRRE of all the
four methods used. In Table 4, we show the minimal and the maximal RRE for the 20
data-point case, and just like the results in Example 3, we find that the BIR method
has the smallest RRE in both the minimal and the maximal cases.

5. Conclusions

We consider dimension reduction problems for regression and we propose a Bayesian
approach for computing the conditional distribution π(x|y) and perform the dimension
reduction. The method construct the likelihood function from the data with a GP
regression model and MCMC to generate samples from the conditional distribution
π(x|y). Numerical examples demonstrate that the proposed method is particularly
effective for problems with very small data set. We reinstate here that, due to the use
of GP model, BIR does not apply to problems with very high dimensions. Rather, we
expect BIR can be useful for problems with moderately high dimensions, and a very
limited amount of data.

We believe the method can be useful in many real world applications. For example,
in many high dimensional inverse problems and data assimilation problems, one the
data can only be informative on a small number of dimensions [7,28,35]. A method
that utilizes the DR methods to identify such data informed dimensions is currently
under investigation. On the other hand, in certain problems gradient information is
available, and DR methods which takes advantages of the gradient information have
also been developed, e.g. [2,12,14]. In this case, we expect that the gradient information
can also be used to enhance the performance of the BIR method, via, for example,
Gradient-Enhanced Kriging [26], and we plan to investigate this problem in the future.

Appendix A. Dimension selection procedure

We describe the dimension selection procedure following [18]. First we need to con-
struct a test statistic. Let λ̄(p−K) denote the average of the smallest p −K eigenval-

ues. If x is normally distributed, then n(p −K)λ̄(p−K) follows a χ2 distribution with
(p −K)(n −K − 1) df asymptotically. For other elliptically symmetric distributions,
the result is more complicated, but usually suffices to use the normal case result as
guideline to keep our procedure simple. The scaled n(p− k)λ̄(p−k) can be used as the
statistic in a sequential testing scheme to choose K: use a common test level (say the
95th percentile) for χ2 with (p− k)(n− k− 1) df and, starting with K = 0, choose the
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smallest value of K that is not rejected.
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