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Abstract  
 
Background  
Overweight, obesity, and diabetes are rising rapidly in low- and middle-income countries 
(LMICs) but there is scant empirical evidence about the relationship between body mass index 
(BMI) and diabetes in these settings.  
 
Methods  
We pooled individual-level data from nationally representative surveys across 57 LMICs, 
totaling 685,616 individuals aged ≥25 years. BMI categories were defined as: normal (18∙5 - 
22∙9 kg/m2), upper-normal (23∙0-24∙9 kg/m2), overweight (25∙0- 29∙9 kg/m2), or obesity (≥30∙0 
kg/m2). We estimated the association between BMI and diabetes risk using multivariable Poisson 
regression and receiver operating curve (ROC) analyses, stratified by sex and geographic region.  
 
Results 
The overall prevalence of overweight was 27∙2% (95% CI: 26∙6, 27∙8), of obesity 21.0% (19∙6, 
22.5), and of diabetes 9.3% (8.4, 10∙2). In the pooled analysis, an increased risk of diabetes was 
observed at a BMI of 23 kg/m2 or above, with a risk increase of 43% for males and 41% for 
females compared to a normal BMI. Diabetes risk also rose steeply in individuals 35-44 years 
old and men aged 25-34 years in Sub-Saharan Africa. In stratified analyses, there was regional 
variability in this relationship. Optimal BMI thresholds for diabetes screening ranged from 23∙8 
kg/m2 among males in East/Southeast Asia to 28∙3 kg/m2 among females in the Middle East and 
North Africa and Latin America and the Caribbean.  
 
Conclusions 
The association between BMI and diabetes risk in LMICs is subject to substantial regional 
variability. Diabetes risk is greater at lower BMI thresholds and younger ages than reflected in 
currently used cut-offs.  
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RESEARCH IN CONTEXT  
 
Evidence before this study  
 
We searched PubMed using the MeSH advanced search engine with no date restrictions using 

the terms “body mass index” OR “anthropometric” AND “diabetes” AND “low- and middle-

income countries” NOT “comment” NOT “case reports.” Two pooled studies were found on the 

association between body mass index (BMI) and diabetes: one study pooled nationally 

representative surveys from six LMICs and evaluated the association between BMI categories 

and non-communicable disease multimorbidity (nine chronic conditions, including diabetes). 

The second study pooled data on 900,000 individuals recruited from 18 cohorts across 7 Asian 

countries and did not include nationally representative data. Several large studies have been 

published across LMICs on the prevalence and projected trends of overweight, obesity, and 

diabetes, but none of these studies have evaluated the association between BMI and diabetes risk 

in these settings and how it varies by geographic region and sex.  

 
Added value of this study  
 
This study leverages the largest harmonized dataset to date of nationally representative, 

individual-level data on body mass index and a biological measure of diabetes across 57 LMICs 

(n=685,616  adults), encompassing six world regions. We conducted robust sex- and-geographic 

region stratified analyses to assess the relationship between BMI (as a continuous and categorical 

exposure) and diabetes (defined biologically by a fasting plasma glucose of 7∙0 mmol/L (126 

mg/dL) or higher; a random plasma glucose of 11∙1 mmol/L (200 mg/dL) or higher; or an 

HbA1c of 6∙5% or higher) or by self-reported use of diabetes medications. We also present 

receiver operating curve (ROC) analyses of optimal BMI cut-offs when assessing diabetes risk. 

The results show substantial variability in the association between BMI and diabetes risk by 
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region and sex and add to our current understanding of the association between BMI and 

diabetes risk in countries previously poorly represented in the literature.  

 
Implications of all the available evidence  
 
Given the rapidly growing burden of overweight, obesity, and diabetes in LMICs, urgent 

population-level strategies are needed to reverse current and projected trends. Moreover, our 

findings highlight that the BMI thresholds at which clinicians and policymakers consider 

elevated metabolic risk and interventions may vary across LMICs. Finally, in certain regions, 

screening may also need to include younger adults than currently recommended in most 

guidelines.  
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INTRODUCTION  

 
The global prevalence of overweight and obesity has doubled over the past four decades, with 

1∙9 billion (39%) adults living with overweight and an additional 650 million (13%) with 

obesity.1 While recent studies suggest that the rate of increase in overweight and obesity in high-

income countries may be slowing,2,3 there is growing evidence that this epidemic has accelerated 

in low- and middle-income countries (LMICs), where 2 out of 3 people with obesity now 

reside.4–6 The unprecedented increase in overweight and obesity in LMICs has paralleled the 

alarming rise in diabetes mellitus and other cardiovascular risk factors in these regions of the 

world, such that 79% of the estimated 463 million people with diabetes reside in LMICs.7 Yet, 

there is limited data on how overweight and obesity, measured through standard metrics, relate to 

diabetes risk across LMICs and whether the variation seen in country-level studies is observed at 

larger geographic scales.     

Although the association between high body mass index (BMI) and metabolic risk is well 

established,8,9 the understanding of BMI and its relationship to key clinical outcomes has been 

shaped by a vast literature that to date has almost exclusively been conducted in high-income 

countries.8,10,11 The exception has been a growing literature from Asian and South Asian 

countries,12–14 which directly informed clinical guidelines recommending lowering of BMI 

thresholds that define overweight to better characterize metabolic risk in these populations.14 

Single-country studies in LMICs have also suggested important variability in the association 

between BMI and diabetes risk when using standard thresholds,15,16 but differences in this 

association across LMICs, which are highly heterogeneous, remain largely unexplored. 
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In this study, we aim to characterize the association between BMI and diabetes risk in LMICs at 

the country level and stratified by geographic region and sex. To do this, we leverage the largest 

compiled and harmonized dataset to date of individual-level survey data with biologically 

measured diabetes status to characterize the risk of diabetes across the full range of BMI in 57 

LMICs.  

 
METHODS 
 
Data sources  

We performed a pooled analysis of individual-level data from 58 nationally representative 

population-based surveys across 57 LMICs. The requirements for inclusion of a national survey 

as well as the search methods have been previously described.17,18 Further details specific to this 

analysis are provided in Appendix 1. Briefly, the requirements for inclusion of a country survey 

in this study were as follows: the survey (1) was conducted during or after 2008, (2) had data 

available at the individual level, (3) was conducted in a low-income, lower-middle-income or 

upper-middle-income country according to the World Bank Income Group (WBIG) in the year 

that the survey was conducted,19 (4) was nationally representative, (5) had a response rate ≥50%, 

(6) contained a diabetes biomarker (either a blood glucose measurement or hemoglobin A1c 

[HbA1c]), and (7) contained anthropometric data on height and weight. 

Search methodology  

We first identified all countries in which a World Health Organization (WHO) Stepwise 

Approach to Surveillance (STEPS) survey had been conducted during a year in which the 

country fell into an eligible World Bank income category. The STEPS survey is a standardized 

instrument for collecting and disseminating data about non-communicable disease (NCD) risk 

factors in adults living in WHO member countries.20 Prior to the STEPS surveys being made 
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available in the WHO STEPS survey Central Data Catalog in 2019,21 we systematically 

requested each eligible STEPS data set from a list of these surveys that the WHO maintains on 

their website.21 In 2019, additional eligible surveys were downloaded from the Central Data 

Catalog (final screening date February 26th, 2021). The details of the STEPS survey search are 

provided in Appendix 1. Ultimately, we included 49 eligible STEPS surveys. For LMICs that did 

not have a STEPS survey that met our inclusion criteria, lacked valid contact information, or 

declined our request for data (86 countries total), we performed a systematic Google search and 

an additional search on the Demographic and Health Survey (DHS) website. We ultimately 

identified 19 eligible non-STEPS surveys and included data from nine non-STEPS surveys that 

met the above inclusion criteria (Appendix 2). Of note, surveys were conducted separately for 

Zanzibar and Tanzania but are considered to be from one country (United Republic of Tanzania). 

Countries were categorized into six geographic regions, according to the NCD Risk Factor 

Collaboration geographic classification,22 namely: East/Southeast Asia, Europe and Central Asia, 

Latin America and the Caribbean, Middle East and North Africa, Oceania, and Sub-Saharan 

Africa (full definitions provided in Appendix 4). Country-specific sampling methods for these 

surveys are provided in Appendix 5.  

Study population 

Our study population included participants aged 25 years and older. We chose this age threshold 

given that 25 years was the minimum age for inclusion for many of the surveys used in this 

analysis. Survey-specific age ranges are included in Appendix 5. Our analysis was restricted to 

the 685,616 individuals with complete data on the outcome (diabetes), exposure (BMI), and 

covariates (sex and age). A participant flow diagram is shown in Appendix 3. Overall, 12.6% of 

participants were missing a glucose measurement, an additional 0.8% were missing BMI, and 
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another 0.1% were missing age or sex (total missingness of 13.5%). We provide a table in 

Appendix 12 that shows there were no differences in sociodemographic characteristics or BMI 

distribution among those with and without a glucose measurement. While we conducted a 

complete-case analysis, we also provide a sensitivity analysis in which we impute BMI, sex, and 

age. We find that multiple imputation of these covariates does not alter the main results 

(Appendix 20). 

Diabetes biomarkers  

A diabetes biomarker was available for all the surveys included in this study. The diabetes 

biomarker used in 47 of the 58 included surveys was a point-of-care fasting capillary glucose 

(Appendix 6). Plasma equivalents were provided by all but eight of these surveys. For these 

eight, we multiplied capillary glucose values by 1∙11 so that all values were reported in plasma 

equivalents. This adjustment was based on published guidelines and evidence that has shown that 

capillary glucose often underestimates plasma glucose levels.23 No differences were observed in 

sensitivity analyses that assumed that all point-of-care glucose measuring devices had a built-in 

plasma equivalent (Appendices 29 and 39). For the 12 surveys that did not provide details 

regarding which glucose measuring device was used, we assumed point-of-care fasting capillary 

glucose since this was the most frequently used device across surveys (no plasma equivalent was 

computed given lack of information). For four of the 58 study surveys (Bangladesh, Costa Rica, 

Iraq, and Lebanon) a laboratory-based measurement of fasting plasma glucose was the only 

diabetes biomarker used. For four surveys, only HbA1c was available (Fiji, Indonesia, Mexico, 

and South Africa), and five surveys used both HbA1c and fasting plasma glucose (China, 

Guyana, Iran, Romania, and Seychelles). Where fasting status of participants was unreported, 

fasting was assumed because all but one survey protocol (India National Family and Health 
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Survey) requested fasting status. No differences were observed in sensitivity analyses in which 

we assumed that participants missing fasting status were not fasting. All surveys except India 

required a minimum of 8 hours of fasting, which was defined as nothing to eat or drink, other 

than water. Details on fasting instructions for each survey are provided in Appendix 7.  

Definitions of diabetes and body mass index  

The presence of diabetes was determined based on the current WHO diagnostic thresholds as any 

of the following: a fasting plasma glucose of 7∙0 mmol/L (126 mg/dL) or higher; a random 

plasma glucose of 11∙1 mmol/L (200 mg/dL) or higher; or an HbA1c of 6∙5% or higher.24 For 

individuals in surveys that had both fasting plasma glucose and HbA1c available (China, 

Guyana, Iran, Romania, and Seychelles), the presence of diabetes was determined by HbA1c 

levels. No differences were observed in a sensitivity analysis that defined diabetes as a fasting 

blood glucose of 7∙0 mmol/L or higher in the presence of an HbA1c <6.5% (Appendices 31 and 

41).  Respondents who self-reported use of diabetes medication were classified as having 

diabetes irrespective of biomarker values. Individuals who self-reported a diagnosis of diabetes 

but were not on diabetes medications and did not meet the biomarker diagnostic criteria were not 

classified as having diabetes.  No differences were observed when restricting the study sample to 

individuals with diabetes not on pharmacologic treatment (Appendices 30 and 40). For the 

STEPS and DHS surveys, which make up most of the surveys in our study, height was measured 

once in a standing position using a portable height measuring board such as from SECA or Shorr 

Productions.25,26 Weight was measured using a portable weighting scale, such as a SECA scale or 

the Tanita HS301 Solar Scale.25,26  We defined BMI as weight (measured in kg) divided by 

height (measured in meters) squared, and classified BMI into the following clinical categories 

proposed by the WHO: underweight (<18∙5 kg/m2), normal (18∙5 - 22∙9 kg/m2), upper normal 
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(23∙0-24∙9 kg/m2), overweight (25∙0- 29∙9 kg/m2), and obesity (≥30∙0 kg/m2).27 Given that the 

WHO BMI threshold recommendation for defining overweight among Asian populations is ≥23 

kg/m2 14 and since there is no standard nomenclature for the >23.0 kg/m2-24.9kg/m2 range, we 

termed this category “upper normal” in order to understand the relationship between BMI and 

diabetes risk across the full range of BMI in all geographic regions. More granular obesity 

categories were considered in a supplementary analysis (Appendix 38).  

Covariates  

We included age (continuous) as a covariate and stratified all analyses by sex. In supplementary 

analyses, we also considered educational attainment (57/58surveys; N=681,932) and household 

wealth quintiles (49/58 surveys; N=629,066) as covariates for the respective subsamples of 

countries with data on these variables.  Further details on the construction and harmonization of 

household wealth quintiles are provided in Appendix 8.   

Statistical analysis  

Our analysis proceeded in four steps.  First, we calculated generalized additive models (GAMs) 

of BMI as a continuous variable and the proportion of people with diabetes, stratified by sex and 

world region. We also stratified the GAMs by ten-year age groups in order to account for 

different age structures of the observed world regions (Appendix 17). GAMs allow for a non-

linear association between exposure and outcome and generate smoothened plots. Second, we 

conducted multivariable Poisson regression analyses to examine the relationship between BMI as 

a continuous variable and diabetes, adjusted for age and stratified by sex. Univariate and logistic 

regression models were also estimated and presented in the Appendix.  Third, we used the same 

modeling approach as above but included BMI as a categorical variable in order to allow for a 

more granular assessment of the adjusted relationship between BMI and diabetes. We conducted 
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all regression analyses in the pooled sample overall, and separately, stratified by geographic 

region, and by country. All regression analyses included country fixed effects to account for 

unmeasured differences between countries, including data source (STEPS vs. non-STEPS 

survey). Our data were modelled with a robust error structure, and standard errors adjusted for 

clustering at the primary sampling unit and country level. As a fourth and final step, we created 

receiver operating characteristics (ROC) curves for BMI as a classifier for diabetes status by sex 

and world region. This allowed us to compare the performance of BMI as a predictor of diabetes 

risk across regions, and to determine ‘optimal’ binary cut-offs for diabetes risk. Optimal cut-offs 

were defined as the BMI level which maximizes the Youden Index (which equals the sum of 

sensitivity and specificity minus 1). We show sensitivity and specificity at optimal and additional 

binary BMI cut-offs (23, 25, and 30 kg/m2). In all regression and ROC analyses, we scaled 

sample weights such that countries were weighted equally.  The rationale behind this was to 

prevent surveys with a large sample size (particularly the India National Family and Health 

survey) from ‘overshadowing’ results for all world regions and the pooled sample. As such, the 

India survey contributes equally to the analysis despite its large sample size. Descriptive 

statistics were calculated using sampling weights that we re-scaled inversely to sample size. 

Supplementary analyses were conducted using continuous biomarkers (blood glucose or HbA1c) 

as the outcome of interest (Appendix). 

Sensitivity analyses 

We subjected our results to several robustness checks. First, given the large effect of age on 

diabetes status, we added quadratic and cubic terms in age to our main model to account for 

possible nonlinearities in the relationship of age and diabetes (Appendices 25 and 36).  Second, 

as socioeconomic status might influence diabetes risk independent of BMI,17 we added 



14 
 

educational attainment and wealth quintiles to our main model (Appendix). Third, as an 

alternative to weighing countries equally, we ran our analysis weighing countries proportional to 

their respective population size (Appendices 27 and 37). Lastly, we modified the specifications 

of our outcome variable by classifying individuals with self-reported diabetes diagnosis but 

normal biomarker values (0∙6% of the sample) as having diabetes (Appendices 24 and 35).   

 
Role of the funding source  
 
The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the manuscript. The corresponding author had full access to the data 

and had final responsibility for the decision to submit for publication.  

 
RESULTS  
 
Survey and sample characteristics  

The survey characteristics are summarized in Table 1. The final study sample included 685,616 

individual participants in 57 LMICs. The mean age of the overall sample was 42∙6 years (SD 

12∙7); 52∙8% were female (weighted sample). The average response rate across surveys was 

86∙2%. Characteristics of the sample population (overall) and country-level demographic 

characteristics of all the surveys in the study sample are included in Appendices 9 and 11. The 

rural composition in the study sample was 53.9% (rural-urban variable only available for 38/58 

surveys). Overall, the prevalence of overweight was 27∙2% (95% CI: 26∙6, 27∙8), of obesity 

21∙0% (95% CI: 19∙6, 22∙5), and of diabetes 9∙3% (95% CI: 8∙4, 10∙2). Compared to individuals 

without diabetes, a higher proportion of individuals with diabetes had overweight (31∙6% vs 

26∙8%, p<0.001) and obesity (41∙4% vs 19∙0%, p<0.001).  

Generalized additive models of BMI and diabetes by sex and geographic region  
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Figure 1 illustrates the GAMs of the association between BMI and diabetes, stratified by sex, and 

geographic region. The proportion of people with diabetes at any given BMI was generally 

greater for men than women, particularly at higher BMI levels. The proportion of people with 

diabetes was generally highest at any given BMI in Latin America and the Caribbean and 

Oceania for both men and women. When stratified by ten-year age categories, the proportion of 

people with diabetes was generally greater with each increasing age category and greatest for the 

age 54 and over category among both sexes (Appendix 17). However, the proportion of people 

with diabetes with BMI levels of 30 and greater rose steeply in the 25-34 age group for men in 

Sub-Saharan Africa and across almost all regions in the 35 year and older groups.  

Multivariable regression models of categorical BMI and diabetes risk by sex, geographic 

region, and country  

In the pooled sample across all 58 surveys, the risk of diabetes was higher for men than for 

women (RR 1∙05 [1∙04-1∙06] vs. 1∙04 [95% CI: 1∙03-1∙04]) (Appendix 18). When stratified by 

BMI category and geographic region, the highest risk of diabetes among individuals in the upper 

normal BMI category compared with normal BMI was seen in the East/Southeast Asia (1∙90 

[1∙62-2∙23] for males, 1∙53 [1∙33-1∙76] for females) and in the Middle East and North Africa 

regions (1∙77 [1∙43-2∙20] for males; 1∙44 [1∙10-1∙88] for females) (Figure 2). The highest risk of 

diabetes among individuals in the overweight BMI category compared with normal BMI was 

seen in East/Southeast Asia (2∙84 [2∙44-3∙30] for males; 2∙18 [1∙94-2∙45] for females). The 

highest risk of diabetes among individuals with obesity was seen in East/Southeast Asia (3∙93 

[3∙18-4∙86] for males; 3∙18 [2∙77-3∙64] for females) and in Sub-Saharan Africa (3∙46 [2∙98-4∙02] 

for males; 2∙49 [2∙17-2∙64] for females). When BMI categories were further stratified into a BMI 

≥ 35 kg/m2, the highest risk of diabetes was seen in East/Southeast Asia for females and in Sub-
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Saharan Africa for males (Appendix 38). Sensitivity analyses including age polynomials as well 

as adjustment for education and wealth did not appreciably change the results (Appendix). In 

country-level sex-stratified multivariable Poisson regression models with BMI as a continuous 

variable, the highest risk of diabetes per every kg/m2 gain in BMI was seen in Bhutan (RR 1∙16 

[95% CI: 1∙10-1.24]) for females and in Cambodia for males (RR 1∙19 [95% CI: 1∙11-1∙29]) 

(Appendix 15).  

ROC curves of BMI as a classifier for diabetes risk  

Figure 3 illustrates the ROC curves for BMI and diabetes risk, according to sex and geographic 

region. East/Southeast Asia, Eastern Europe and Central Asia, and Sub-Saharan Africa had the 

largest area under the curve. The ROC-derived cut-offs are shown in Table 2, according to sex 

and geographic region. Optimal cut-offs as estimated by maximizing the Youden index were 

lowest in East/Southeast Asia for females (23∙9 kg/m2) and males (23∙8 kg/m2) as well as in the 

Middle East and North Africa for males (24∙2 kg/m2). BMI cut-offs were highest in Latin 

America and the Caribbean and Middle East and North Africa for females (28∙3 kg/m2) and in 

Europe and Central Asia for men (27∙6 kg/m2).  

 

DISCUSSION 

In this study of 685,616 individuals across 57 LMICs, we found that an increased risk of diabetes 

was observed at a BMI of 23 kg/m2 or above, with a corresponding diabetes risk increase of 43% 

for males and 41% for females when compared to a normal BMI (18∙5-22∙9 kg/m2). ROC 

analyses showed variability across sex and geographic regions in the BMI cut-offs at which 

sensitivity and specificity are optimized for diabetes screening, ranging from a BMI cut-off of 

23∙8 kg/m2 among males in East/Southeast Asia to a BMI of 28∙3 kg/m2 among females in the 
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Middle East and North Africa and in Latin America and the Caribbean. Given that diabetes 

remains a major challenge for LMICs to reduce premature mortality from NCDs (Sustainable 

Development Goal 3∙4),27 our findings offer critical insight to inform context-specific diabetes 

screening guidelines. 

 

We also found differences in the risk of diabetes across BMI categories in several regions, 

particularly among men. For instance, men and women in Sub-Saharan Africa and 

East/Southeast Asia had more than a 100% increase in the risk of diabetes between the 

overweight and the obesity category. Additionally, while diabetes increased with older age, the 

proportion of individuals with diabetes rose steeply across all regions in the 35-44 age group and 

among men aged 25-34 years in Sub-Saharan Africa. This is consistent with accumulating 

evidence suggesting that the prevalence of metabolic syndrome is rising rapidly among younger 

adults in LMICs.28 Although current WHO guidelines29 recommend diabetes screening of 

asymptomatic adults at age >40 years and whom have a BMI of 25 kg/m2 or greater, our findings 

suggest that diabetes testing at younger ages in certain LMIC contexts may be considered in 

order to implement targeted and timely efforts aimed at reducing long-term complications 

associated with diabetes.  

 

Prior research has shown that the largest loss in the diabetes care continuum in LMICs is at the 

stage of diagnosis.18 However, efforts to increase diagnosis remain a substantial challenge in 

resource-limited settings due in part to a lack of clear evidence about who to screen and the need 

to balance efforts to increase screening and diagnosis with investments that are needed to 

strengthen diabetes care delivery. This analysis provides the first empiric evidence-base 
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regarding the trade-off between sensitivity and specificity when choosing a BMI-based threshold 

for diabetes screening across a large sample of LMICs. While lower BMI cut-offs for the 

detection of metabolic risk have been recommended for Asian populations,14 which is consistent 

with our findings, we found comparable results in other world regions, such as the Middle East 

and North Africa. Secondly, the finding that the proportion of people with diabetes with a BMI 

of 30 kg/m2 or greater increased in certain regions in populations under the age of 40 suggests 

that any development of screening strategies for diabetes may require not only revisiting existing 

BMI cut-offs but also the inclusion of younger populations. Lastly, we found that BMI 

performed modestly overall as a single criterion for determining who to screen for diabetes. 

Given this, other low-cost anthropometric measures such as waist circumference30 might be 

explored to further optimize assessment of metabolic risk in these settings.31  

 

Our study has several limitations. First, defining ‘optimal’ binary BMI cut-offs allows 

comparisons between world regions of the general suitability of BMI as a single predictor of 

diabetes status (e.g. in the context of diabetes screening). However, while BMI levels that 

maximize the Youden Index equally weigh in sensitivity and specificity, policymakers searching 

for optimal BMI levels for diabetes screening might attribute higher priority to either sensitivity 

or specificity and need to take further context-specific factors into account. Second, the 

definition of biochemical diabetes was limited to a single glucose measurement in some 

countries and was based on capillary measurement in the majority of surveys. These measures 

can either over- or underestimate the true prevalence of diabetes.32 Although we applied the 

International Federation of Clinical Chemistry’s (IFFC) recommendation on the conversion of 

capillary glucose to plasma equivalents,23 this conversion does not eliminate the possibility of 
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inaccuracy due to the underlying hematocrit abnormalities, which may be particularly relevant in 

contexts where anemia or other hematologic disorders are highly prevalent. Third, the definition 

of diabetes was heterogenous given the lack of standardized biochemical measurement of 

diabetes across all surveys. Fourth, although we provide BMI cut-offs for diabetes risk, it is 

important to note that the BMI at the time of the survey among people with diabetes may have 

been influenced by weight gain or loss associated with diabetes itself or with medications to treat 

diabetes. However, studies in other contexts suggest that weight change over the first two years 

following a type 2 diabetes diagnosis is relatively modest.33 Moreover, given that less than 3.3% 

of people in this study were on pharmacologic treatment, weight fluctuations attributable to 

diabetes medications seem to be a less important cause for concern in this study population. This 

is further supported by a sensitivity analysis that limited the outcome of interest to those with 

untreated diabetes (Appendices 30 and 40). Fifth, guidelines about optimal body weight should 

be informed by risk of metabolic diseases but also by cardiovascular and other obesity-associated 

conditions as well as mortality, which were not included in this analysis. Finally, given the 

observational and cross-sectional design of our study, we report correlation and not causation, 

though there is very strong biological evidence for the relationship of interest here.  

The alarming rise in overweight, obesity, and diabetes in LMICs is a looming health crisis that 

requires urgent population-level strategies to reverse current and projected trends. In this study of 

57 LMICs, we show substantial regional variability in the relationship between BMI and diabetes 

risk and provide suggested sex- and region- stratified cut-offs for BMI when used as a sole 

anthropometric measurement to determine who to screen for diabetes.  Our findings underscore 

the critical importance of context-dependent studies in LMICs to inform clinical practice and 

patient-centered decision making.  
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Figure 1 legend  
Notes: Figure shows generalized additive models of body mass index and proportion with 
diabetes for women (left panel) and men (right panel). All analyses were stratified by world 
regions. Grey areas represent 95% confidence intervals. 
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Figure 2 legend  
Notes: Figure shows adjusted risk ratios from multivariable Poisson regression models in the 
pooled sample and by world region, separately for women (left panel) and men (right panel). The 
outcome was diabetes based on measured biomarkers and the exposure measured body-mass 
index (BMI) grouped into five categories: underweight (<18∙5 kg/m2; not displayed), normal 
(18∙5 to <23 kg/m2; reference category), upper-normal (23 to <25 kg/m2), overweight (25 to <30 
kg/m2), and obese (>30 kg/m2). All models controlled for age (years) and included country-level 
fixed effects. Error bars represent 95% confidence intervals. 
 
Figure 3 legend  
Notes: Figure shows receiver operating characteristic (ROC) curves of BMI as a classifier for 
diabetes. Analysis stratified by sex and world region. Each country was weighed equally. 
Geographic region abbreviations: Latin America and the Caribbean (LA & CA), Europe and 
Central Asia (E & CA), East/Southeast Asia (ESA), Sub-Saharan Africa (SSA), Middle East and 
North Africa (ME & NA), and Oceania (OCN).  
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