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Exact solution to the random sequential dynamics of a message passing algorithm
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We analyze the random sequential dynamics of a message passing algorithm for Ising models with
random interactions in the large system limit. We derive exact results for the two-time correlation
functions and the speed of convergence. The de Almedia-Thouless stability criterion of the static
problem is found to be necessary and sufficient for the global convergence of the random sequential
dynamics.

Probabilistic inference is a key problem in statistics,
signal processing and machine learning. To make predic-
tions on unobserved random quantities given observed
data, averages over conditional distributions have to be
computed. For high-dimensional inference problems, the
resulting sums or integrals can usually not be performed
exactly. To overcome this problem, efficient approxi-
mate inference algorithms, known as message passing,
have been developed [1]. Prominent examples are belief
propagation and expectation propagation [2–5]. More re-
cently, the so-called approximate message passing (AMP)
algorithms designed for probabilistic models on densely
connected networks, have been applied to various infer-
ence problems, e.g. Refs. [6–15]. Methods of statisti-
cal physics have played an important role in the design
and the theoretical analysis of such algorithms, e.g., fixed
points of AMP–style algorithms were shown to coincide
with the solutions of the advanced Thouless-Anderson-
Palmer (TAP) mean-field equations developed in the sta-
tistical physics of disordered systems [16]. This shows
that under certain statistical assumptions on network
couplings, message passing algorithms can achieve ex-
act predictions in the thermodynamic limit of large sys-
tems. Using techniques of information theory and sta-
tistical physics, exact solutions for the dynamics of the
AMP-style message passing iterations have also become
possible [17–23]. So far, the theoretical analysis has con-
centrated on the simplest type of dynamics, the parallel
update of all dynamical variables or nodes in the algo-
rithm.

In practical applications, however, a sequential up-
date of individual or groups of variables may often be
preferable to obtain a more stable behavior. In fact,
Tom Minka’s expectation propagation (EP) algorithm
[4], which is one of the motivations behind the vector-
AMP (VAMP) approach [21, 22, 24], is formulated in
terms of sequential iterations. Parallel versions of EP
often require extra damping procedures (see, e.g., Ref.
[25]) to achieve convergence. The second advantage of se-
quential algorithms over parallel ones might be a reduced
computational complexity. In the case of the Ising model,
for example, sequential updating of individual variables
reduces the need for matrix-vector multiplication in the
parallel updates to vector-vector multiplication at each
iteration step.

In this paper, we obtain an exact large-system analysis
of the dynamics for an AMP-style message passing algo-
rithm with random sequential updates. We show that
the effective dynamics of a single node is described by a
simple stochastic equation driven by a Gaussian process.
We derive explicit analytical conditions for global con-
vergence and compute the convergence time. This result
is nontrivial, because previous studies of other random
sequential learning algorithms, e.g., Refs. [26, 27] have
shown that the effective single node dynamics can be
more complex due to the occurrence of memory terms.

For simplicity, we will focus on a class of toy prob-
lems for inference which is given by the prediction of
magnetizations m = E[s] for Ising models with pairwise
interactions between spin variables s = (s1, . . . , sN )> ∈
{−1, 1}N . Generalizations to teacher-student scenarios
for other inference problems such as generalized linear
models will be discussed in a future publication. For
applications of Ising models to real data, see, e.g., Ref.
[28]. The Ising model is defined by the Boltzmann dis-
tribution:

p(s|J , h)
.
=

1

Z
exp

 ∑
i,j≤N

Jijsisj + h
∑
i≤N

si

 . (1)

To discuss a typical inference task, we assume that the
coupling matrix J = J> is drawn from an arbitrary
rotation-invariant random matrix ensemble. This means
that J and OJO> have the same probability distribu-
tion for any orthogonal matrix O independent of J . This
leaves the freedom to specify the spectrum of the ma-
trix J . A special case of this ensemble is given by in-
dependent zero-mean Gaussian couplings, known as the
Sherrington-Kirkpatrick (SK) model [29]. In general,
however, matrix elements are statistically dependent for
a rotation invariant ensemble.

We consider approximations of the magnetizations m
which are given by the so-called TAP mean-field equa-
tions. For invariant random coupling matrices, these are
given by [30, 31]

m = Th(γ), (2a)

γ = Jm− R(χ)m. (2b)

Here, for short, we have defined the non-linear function
Th(x) = tanh(h + x) and χ

.
= E[Th′(σγu)], where u
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is a zero-mean normal Gaussian random variable and
σ2
γ
.
= (1 − χ)R′(χ). The function R stands for the R-

transform [32] of the limiting spectral distribution of
J defined as R(ω)

.
= G−1(ω) − 1/ω, where G−1 is

the functional inverse of the Green’s function G(z)
.
=

limN→∞ E[(zI−J)−1ii ]. To ensure that the Green’s func-
tion has a unique inverse, we assume χ < limz→λ+

G(z),
where λ+ stands for the supremum of the support of the
limiting spectral distribution of J . To define an AMP-
style algorithm for solving the TAP equations, we first
transform (2) into an equivalent, canonical form

Af(γ) = γ. (3)

The function f is applied component wise to the vector
γ and A is a N × N matrix. The two conditions on
this transformation which are essential for the further
analysis are that

E[f ′(σγu)] = 0, lim
N→∞

E[(A)ii] = 0 (4)

together with the fact that A is a random matrix with
rotationally invariant distribution. For the Ising prob-
lem, this is achieved by setting m = χ(γ + f(γ)) and by
using the definitions

f(x) =
1

χ
Th(x)− x (5a)

A =
1

χ
(G−1(χ)I− J)−1 − I. (5b)

While (5) are specific to the Ising problem, similar trans-
formations are possible for other inference problems. We
define an AMP-style iterative algorithm for solving (3)
in discrete time k = 1, 2, . . . by

φ(k) = Af(γ(k−1)) (6a)

γ(k) = γ(k−1) + P (k)[φ(k) − γ(k−1)]. (6b)

The initialization is given by γ(0) = σγu where u is a
vector with independent zero-mean normal random vari-
ables; (6b) is a generalization of the parallel iterative
algorithm given in Ref. [13] which was motivated by the
VAMP algorithms of Refs. [21, 22, 24]. The parallel dy-
namics of Ref. [13] is obtained when the diagonal matrix

P (k) is equal to the unit matrix. By introducing binary

diagonal entries p
(k)
i

.
= P

(k)
ii ∈ {0, 1}, we obtain random

sequential updates of nodes. The random decision vari-

ables decide if node i is updated (p
(k)
i = 1) at time k or

not (p
(k)
i = 0). We assume that the p

(k)
i are indepen-

dent for all i, k and that Pr(p
(k)
i = 1) = η. The case

η = 1/N corresponds to an update of only a single node
on average.

We will next derive the statistical properties of the
dynamics (6) in the thermodynamic limit of largeN while
keeping η fixed. We will later also discuss the limit η → 0
to simulate the behavior for η = 1/N .

Our goal is to show that for N → ∞, the sequence

{φ(k)i }Kk=1 over K time steps for an arbitrary component
i converges to a zero mean Gaussian process. We will
build on results of Ref. [19] which are based on the dy-
namical functional theory of statistical physics. This path
integral method allows for an explicit averaging over the
randomness of the matrix A and leads to a decoupling of
the degrees of freedom. Using the second condition (4)
for the random matrix A it was shown in Ref. [19] that
{φ(k)}Kk=1 (suppressing the component index i for con-
venience) can be transformed into a Gaussian random
sequence by appropriate subtractions. The subtractions
define an auxiliary dynamical system which is obtained

by replacing the variable φ(k) in (6a) by

φ(k)
aux = Af(γ(k−1))−

∑
l<k

Ĝ(k,l)f(γ(l−1)) (7)

for k = 1, 2, . . .K. Under the new dynamics, {φ(k)aux}Kk=1
can be shown to be a Gaussian process. The memory
terms in (7) are defined as follows: Ĝ(k,l) denotes the

(k, l)th indexed entries of the K ×K matrix Ĝ which is
defined in terms of the R-transform and its power series
expansion as

Ĝ = RA(G) =

∞∑
n=1

cA,nGn−1. (8)

Finally, the entries of the response matrix G are given by

G(k,k
′) .= lim

N→∞
E

[
∂f(γ(k−1))

∂φ
(k′)
aux

]
(9)

again suppressing the component index i for convenience,

i.e., γ(k) = γ
(k)
i of γ(k) and φ

(k)
aux = φ

(k)
aux,i of φ(k)

aux. We
will show next, that G = 0. From this we also obtain

Ĝ = 0. This will prove that φ(k) = φ(k)
aux and (7) reduces

to (6a). By construction we have

∂γ(k−1)

∂φ
(k′)
aux

= p(k
′)

k−1∏
l=k′+1

(1− p(l))︸ ︷︷ ︸
.
=p(k,k′)

k′ < k. (10)

Hence, the response terms read

G(k,k
′) = lim

N→∞
E
[
f ′(γ(k−1))p(k,k

′)
]

= Pr(p(k,k
′) = 1) lim

N→∞
E
[
f ′(γ(k−1))p(k,k

′)|p(k,k
′) = 1

]
= η(1− η)k−1−k

′
lim
N→∞

E
[
f ′(φ(k

′)
aux )

]
. (11)

We will only sketch the the final step of the proof. It
is based on a careful analysis of the two-time covariance

function of the Gaussian process φ(k)
aux (see Ref. [19]),

Cφaux
=

∞∑
n=2

cA,n

n−2∑
k=0

GkCf (G>)n−2−k, (12)
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where

C(k,k
′)

f = lim
N→∞

E[f(γ(k−1))f(γ(k
′−1))]. (13)

One can show by induction (starting with the initializa-

tion C(0,0)γ = σ2
γ) that the variances of φ(k)

aux are constant
in time, i.e.

C(k,k)φaux
= σ2

γ . (14)

Hence, using the condition (4), we obtain

lim
N→∞

E
[
f ′(φ(k)aux)

]
= 0 (15)

which establishes the vanishing of memory terms and
Gaussianity of {φ(k)}Kk=1.

Hence, as the main result of our paper, we have shown
that the effective dynamics of a single node of the algo-
rithm is given by the stochastic dynamical equation

γ(k+1) = γ(k) + p(k+1)[φ(k+1) − γ(k)] (16)

where the temporal sequence {φ(k)}k is a Gaussian ran-
dom process. The vanishing of the response terms G also
leads to a simplification of the two-time covariances

C(k,k
′)

φ = cA,2C(k,k
′)

f = C(k,k
′)

f lim
N→∞

E[(A2)ii] , (17)

where the latter equality follows from properties of the
R–transform. This result together with the fact that
the binary decision variables p(k) are independent for dif-
ferent times and also independent of the Gaussian pro-
cess, specifies the statistics of the single node trajectories
{γ(k)}Kk=1 completely. Although the joint distribution of

the random variables γ(k) and γ(k
′) (for any k 6= k′) is

non–Gaussian, the linearity of the dynamics (16) allows
for a simple recursive computation of moments at differ-
ent times in terms of the moments of the driving Gaussian
variables. For k 6= k′, one obtains the recursions

C(k,k
′)

φ = (1− η)2C(k−1,k
′−1)

φ + η2
[
C(k,k

′)

φ̃

+

k′−1∑
l′=1

(1− η)k
′−l′C(k,l

′)

φ̃
+

k−1∑
l=1

(1− η)k−lC(k
′,l)

φ̃

 , (18)

where we have introduced the two-time expectations

C(k,k
′)

φ̃
= cA,2E[f(φ(k−1))f(φ(k

′−1))] k, k′ > 1, (19)

C(k,1)
φ̃

=
cA,2(E[f(σγu)])2

η
, k 6= 1. (20)

We obtain similar recursions for the two-time covariances

C(k,k
′)

γ = (1− η)2C(k−1,k
′−1)

γ + η2
[
C(k,k

′)
φ

+

k′−1∑
l′=1

(1− η)k
′−l′C(k,l

′)
φ +

k−1∑
l=1

(1− η)k−lC(k
′,l)

φ

 , (21)

with C(k,0 )
γ = (1− η)kσ2

γ . Moreover, the variances read

C(k,k)γ = ηC(k,k)φ + (1− η)C(k−1,k−1)γ = σ2
γ , (22)

where the latter equality follows from (14) by induction.
To analyze the convergence properties of the dynamics

(6) we consider the limit of the two-time covariances,

when one time index approaches infinity. Setting C(k)γ,φ
.
=

limk′→∞ C(k,k
′)

γ,φ , one can show from the recursions (18)

and (21) that

C(k)γ = ηC(k)φ + (1− η)C(k−1)γ , (23a)

C(k)φ = ηg(C(k−1)φ ) + (1− η)C(k−1)φ , (23b)

with the necessary initial values C(0)γ = 0 and C(1)φ = g(0).
Here, we have introduced the function

g(x)
.
= cA,2E[f(φ1)f(φ2)] (24)

for φ1 and φ2 being jointly Gaussian random variables
with covariance x and equal variances σ2

γ . This enables
us to study the deviation between variables at time k and
their long-time limits:

∆(k)
γ

.
= lim
k′→∞

lim
N→∞

1

N
E[‖γ(k) − γ(k′)‖2] = 2σ2

γ − 2C(k)γ .

(25)
One can show that global convergence of the algorithm
is achieved under the condition

lim
k→∞

∆(k)
γ = 0 ⇐⇒ g′(σ2

γ) < 1 , (26)

independent of the probability η for an update. Following

Ref. [13], where parallel updates (P (k) = I) were ana-
lyzed, we can show that the condition for convergence
(26) coincides with the well-known de Almedia-Thouless
(AT) stability criterion [33] of the replica-symmetric so-
lution of Ising models with rotation invariant coupling
matrices [34, Eq. (46)]. It is interesting to note that for
g′(σ2

γ) ≥ 1 the algorithm fails to converge although the

variance of γ(k) remains constant in time.
We will now specialize to the case where only a small

number of nodes is updated. This limit is interesting
for practical applications of algorithms. For simplicity,
we consider η = 1/N where a single node is updated on
average. To model such a process within our approach,
we take the limit η → 0 and introduce a re–scaling of time
t = ηk which becomes a continuous variable in the limit.
We write (with a slight abuse of notation) γ(t) and φ(t)
instead of γ(k) and φ(k), etc. The discrete recursions (23)
are then replaced by the ordinary differential equations

Ċγ(t) = Cφ(t)− Cγ(t) , (27a)

Ċφ(t) = g(Cφ(t))− Cφ(t) , (27b)

where the dots denote derivatives with respect to time t.
Linearizing the function g(x) around the fixed point, we
obtain the asymptotic solution

∆γ(t) ' e−(1−g
′(σ2

γ))t (28)
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FIG. 1. Comparison of theory and simulations for η = 1/N=10−4 and γ(t)
.
= γ

( t
η
)

for t
η

= 0, 1, 2, . . .: Fig. (a) and (b) are

for the SK model with h = 1. β = 1.91 gives the AT line of instability (g′(σ2
γ) = 1). Fig. (c) and (d) are for the random-

orthogonal-model with h = 2. β = 6.70 gives the AT line of instability. In the region of stability, γ∗
.
= γ(t∗) denote stationary

vectors for sufficiently large times t?. Otherwise, we chose γ∗ = γ(100). The empirical averages 〈·〉 are computed over ten
realizations of the dynamics. Flat lines around 10−30 are due to the machine precision of the computer which was used.

for t → ∞ if g′(σ2
γ) < 1. This again manifests the

AT line of stability (26) as the sufficient and necessary
condition for the global convergence. In Fig. 1, we il-
lustrate the theoretical predictions of the results (27)
and (28). We consider two random coupling matrix
models: the SK-model where the couplings are indepen-
dent Gaussian entries with zero mean and the variances
E[J2

ij ] = β(1 + δij)/N ; a random-orthogonal-model [30]
for which the eigenvalues of the coupling matrix are bi-
nary ∓β with the trace-free property tr(J) = 0 whenever
N is an even number. The simulation results are (mainly)
based on single realizations of the dynamics but different
realizations are considered for each value of the inverse
temperature β. As the model parameters approach (are)
to (in) the region of dynamical instability, the discrep-
ancy between the theory and simulations may increase
due to the fluctuation of the realizations, e.g., for the SK

model, we illustrate the theoretical predication of (27)
through an empirical average over a number of realiza-
tions of the dynamics, as well. On the other hand, for the
second model the theoretical results already give excel-
lent agreement with a single realization of the dynamics.
This might stem from the fact that the system shows
smaller fluctuations as the random matrix has a nonran-
dom spectral distribution for finite N .

We analyzed the dynamics of a message passing algo-
rithm for approximate inference with random sequential
updates in the thermodynamic limit. By deriving an ef-
fective stochastic dynamics for a single node, we were
able to obtain explicit results for the asymptotic conver-
gence. For simplicity, to demonstrate our main ideas, we
have restricted our analysis in two ways: We considered
an Ising model as a toy inference problem. We also spe-
cialized to a simplified AMP-style algorithm which starts
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with the proper initialization to keep the variance of vari-
ables constant in time. With a bit more technical effort,
both restrictions can be easily lifted. Our analysis can
e.g. be extended to the common teacher-student scenario
for generalized linear data models [35]. The inclusion of
more adaptive updates used e.g. in VAMP algorithms
[21, 22, 24] is also possible and will be given in a forth-
coming publication.

From a theoretical point of view, we expect that most
of our analysis can be made mathematically rigorous us-
ing, e.g., the recent approach [23] to justify the subtrac-
tion rule (7). There is, however, a subtle point related
to the limit η = 1/N of single node updates which might
need further investigation. The dynamical functional ap-

proach used to derive our results is restricted to the limit
N → ∞, but with the number of time steps K kept fi-
nite. For η ∝ 1/N , we also need to increase the number
of iterations K ∝ N in order to have nonzero changes in
the dynamics. Although our results are supported very
well by simulations, we may try an alternative approach,
where the continuous time limit η → 0 in the dynamical
functional theory is performed before the limit N → ∞.
The discrete time decision variables would then be re-
placed by Poisson events. We leave this calculation to
subsequent publication but conjecture that the resulting
ordinary differential equations would agree with (27).

This work was supported by the German Research
Foundation, Deutsche Forschungsgemeinschaft (DFG),
under Grant “RAMABIM” with No. OP 45/9-1.
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