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GENERALISED CARTAN INVARIANTS OF SYMMETRIC
GROUPS

ANTON EVSEEV

ABSTRACT. Kiilshammer, Olsson, and Robinson developed an f-analogue of
modular representation theory of symmetric groups where ¢ is not necessarily a
prime. They gave a conjectural combinatorial description for invariant factors
of the Cartan matrix in this context. We confirm their conjecture by proving
a more precise blockwise version of the conjecture due to Bessenrodt and Hill.

1. INTRODUCTION

Fundamental theory of representations of a finite group G over an algebraically
closed field of characteristic £ > 0 was developed by Brauer. An essential feature
of /-modular representation theory is the construction of two sets of class functions
defined on the elements of G of order prime to ¢, namely, the irreducible Brauer
characters and the projective indecomposable characters (see e.g. [16], Chapter 2]).
These sets are dual to each other with respect to the usual scalar product. Further,
there is a natural partition of each of these sets (as well as the set of ordinary irre-
ducible characters of G) into disjoint subsets that correspond to the £-blocks of G.
For the symmetric group S,,, Kiilshammer, Olsson, and Robinson [14] generalised
character-theoretic aspects of Brauer’s theory to the case when £ is not necessar-
ily a prime and developed an analogue of block theory in this case. We begin by
reviewing some of their definitions.

For any finite group G, denote by Irr(G) the set of ordinary irreducible characters
of G and by C(G) the abelian group Z[Irr(G)] of virtual characters of G. Let
£,n € N. An element g € S, is called ¢-singular if the decomposition of g into
disjoint cycles includes at least one cycle of length divisible by ¢. Define

P(S,) ={£ €C(G) | &(g) = 0 for all ¢-singular g € S, }.

Let {¢¢}ier be a Z-basis of £(S,,), indexed by a finite set T. The ¢-modular
Cartan matriz of Sy, is the T x T-matrix Carty(n) = ((¢r, ¢v'))t.rer, where (-, -) is
the usual scalar product of class functions. In this paper we are only concerned with
the invariant factors of Carts(n). They do not depend on the choice of the basis.
(If ¢ is prime, then projective indecomposable characters defined with respect to £
form a basis of £(S,,).)

The set Irr(S,,) is parameterised by the partitions of n in a standard way, and
we write sy for the irreducible character corresponding to a partition A. If A =
(A1,...,A¢) is a partition (so that Ay > --- > Ay > 0), we write |[A| = >, A\; and
IA) =t.
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Let p be a partition which is an ¢-core (see [12] §2.7]) and e = |p|. We denote
by Irr(Sy, p) the set of sy € Irr(Sy,) such that p is the ¢-core of A. Then Irr(Sy, p)
is the (combinatorial) £-block, as defined in [14]. Write C(Sy, p) = Z[Irr(Sy, p)] and
P(Sn,p) = P(Sn) NC(Sn, p). Tt follows from [14, Corollary 4.3] that L2(S,) =
@, (5, p), where p runs over all {-cores.

Define the Cartan matrix Carte(Sy,p) to be the Gram matrix of a Z-basis of
P(Sn, p) (that is, replace Z(S,) by P (Sy, p) in the definition of Cart,(n)). Sup-
pose that n = e + fw for some w € Z>( (otherwise, C(S,,p) = 0). The integer w
is called the weight of the block in question. By [I4, Theorem 6.1], the invariant
factors of Carty(n, p) depend only on ¢ and w.

Let Par be the set of all partitions and Par(w) be the set of partitions of w. Let
A= (A,..., ) € Par. If j € N, denote by m;()\) the number of indices i such
that A; = j. If p is a prime, write v, (k) for the p-adic valuation of k € N and

|k
(1.1) dy(k) = vp(k!) = {_J :

=1 p
For r € Z>o, define

(1.2) eV = 3 ((r — v, (5))my (M) + dp(mj()\))).
jeN
0<vp(j)<r

If e Nand ¢ =[], p;* is the prime factorisation of ¢, set
Cp,r; (A
(1.3) UNOES |

(see [3, Definition 3.5]).

Let a,b € Z>(o. Write a*® for the sequence a,...,a with b entries. Define k(b,a)
to be the number of tuples (A1), ... A®)) of partitions such that Zl;:l IAND| = a.
If R C R’ are rings and A and B are R’-valued a x b-matrices, then A and B are
said to be equivalent over R if there exist U € GL,(R) and V' € GLy(R) such that
B = UAV. (If the ring R is not specified, it is assumed to be Z.) The main aim
of this paper is to prove the following result, conjectured by Bessenrodt and Hill
(see [3, Conjecture 5.3]).

Theorem 1.1. Let ¢ > 2 and w be integers. Let p be an {-core and n = |p| +
lw. Then the matriz Carte(n, p) is equivalent to the diagonal matriz with diagonal
entries

19€()\)*k(€—2,w—|)\\)7

where X runs over all partitions such that |\ < w.
We note that the size of the diagonal matrix in Theorem [[Tlis k(¢ — 1, w).

Remark 1.2. For prime numbers ¢, the elementary divisors of Carty(n,p) were
determined by Olsson [I7]. Further, under the assumption that r; < p; for each
i in the above factorisation, Theorem [[I] was proved in [3] using results of [I0].
Formulae for determinants of Cart,(n, p) were given in [4, [5].

If £ € N and 7 is a set of primes, let k, be the greatest a € N such that a | k and
all prime divisors of a belong to w. Write (¢, k) for the greatest common divisor of
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¢ and k, and let w(¢, k) be the set of primes that divide ¢/(¢, k). For each A € Par,

set o ﬁ l((Tgk)ymk(A)/fJ . {ka()\)J !ﬁ(&k)l |

k=1
The following corollary describes the invariant factors of Carty(n). It was conjec-
tured by Kiilshammer, Olsson, and Robinson (see [I4, Conjecture 6.4]) and follows
from Theorem [T by [3] Theorem 5.2].

Corollary 1.3. Let ¢,n € N. The Cartan matriz Carte(n) is equivalent to the di-

agonal matriz with diagonal entries ro(\) where A runs through the set of partitions
A=(M1,...,\t) of n such that £+ \; for all i.

Remark 1.4. By a result of Donkin (see [7, Section 2, Remark 2]), the invariant
factors of Carty(n) are the same as those of the Cartan matrix of an Iwahori-Hecke
algebra H,,(q) defined over any field where ¢ is a primitive ¢-th root of unity. In
fact, Donkin’s argument shows that Cart,(n, p) is equivalent to the Cartan matrix of
any block of weight w in H,,(¢). Thus, Theorem [[LT] gives a description of invariant
factors of blocks of H,(q).

The main step in the proof of Theorem [[1]is to establish Theorem [3.I5] conjec-
tured by Hill [10] (as well as Corollary BT which follows from it). These results
describe the invariant factors of a certain Par(w) x Par(w)-matrix, which is defined

in Section 3] and denoted by X = Xésj).

Remark 1.5. In [10, Theorem 1.1], Hill describes the invariant factors of the Shapo-
valov form on the basic representation of any simply-laced affine Kac—-Moody al-
gebra in terms of the invariant factors of X. Thus, the proof of Theorem
completes a combinatorial description of the invariants of these Shapovalov forms.

Using results of Hill [10], Bessenrodt and Hill [3] proved that Theorem [l is
implied by Theorem Their reduction relies on the translation of the problem
to Hecke algebras H,,(q) where ¢ is an ¢-th root of unity (see Remark [[.4) and on
results that relate the Grothendieck groups of finitely generated projective H,,(q)-
modules to the basic representation of the affine Kac—-Moody algebra of type Afzi)l
(see [2], [9, Theorem 14.2] and [13, Chapter 9]). In Section Bl we give a more
direct and elementary proof of the reduction of Theorem [[.T] to Theorem that
uses only character theory of symmetric groups and wreath products. Our proof
relies on an isometry constructed by Rouquier [I8] between the block C(Sy,p) of
Theorem [[1] and the “principal ¢-block” of the wreath product Sy .S, and on a
result concerning class functions on wreath products proved in [g].

Intermediate results proved in Section [3] show that certain matrices studied by
Hill in [I0] may be interpreted naturally in terms of scalar products of class functions
on G5y, where G is a finite group. These matrices are related to the inner product
(-, )¢ defined by Macdonald on the space of symmetric functions (see Remark B16).
The results of this paper determine the invariant factors of these matrices (see
Corollary B.18).

Theorem is proved in Sections [ and Bl In Section ] we use Brauer’s char-
acterisation of characters to reduce Theorem to the problem of finding the
invariant factors of a certain matrix ¥ with rows and columns indexed only by the
partitions A such that all parts \; are powers of a fixed prime p (cf. the definitions
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before Theorem [£.9). Finally, in Section B, we establish the invariant factors of Y
by a direct combinatorial argument and thereby complete the proof of Theorem [Tl

Remark 1.6. An important Z-grading on the Iwahori-Hecke algebras #,,(¢) (and,
more generally, on cyclotomic Hecke algebras of type A) was discovered by Brundan
and Kleshchev [6]. Recently, Ando, Suzuki, and Yamada [I] and Tsuchioka [20]
have obtained formulae for determinants of graded Cartan matrices and proposed
conjectures concerning their invariant factors. In particular, [20, Conjecture 7.17]
generalises the statement of Theorem [[1] (in the case when ¢ is a prime power).

2. NOTATION AND PRELIMINARIES

In this section we introduce some general notation and review standard results
that are used in the paper, in particular, those related to class functions on sym-
metric groups. Throughout, Z>o and N denote the sets of nonnegative and positive
integers respectively. If a,b € Z, we write [a,b] = {i € Z | a < i < b}.

Matrices. Let T and @ be sets. If A is a T'x Q-matrix, that is, a matrix with rows
indexed by T and columns indexed by @, we write A, for the (¢, ¢)-entry of A.
In Section 3] A7, denotes the n-th power of A;, (on the other hand, (A");, is the
(t,q)-entry of A™). All matrices considered will have only finitely many non-zero
entries in each row and each column, so matrix multiplication is unambiguously
defined even for infinite matrices. By diag{(a:):er} we denote the diagonal T x T-
matrix with (¢,¢)-entry equal to a; for each t. We write A* for the transpose of a
matrix A. The identity 7" x T-matrix is denoted by Ir.

Let R C R be rings. As usual, GL7(R) denotes the group of invertible R-valued
T x T-matrices A such that A~' is R-valued. Two R’-valued T x Q-matrices A
and B are said to be row equivalent over R if there exists U € GLp(R) such that
B =UA. The row space of A over R is the R-span of the rows of A as elements of
(R")%, the free R’-module of vectors indexed by Q.

Tuples and partitions. Let T be a set and w € Z>o. We define I(T') to be the
set of maps j: T — Z> such that j(¢) = 0 for all but finitely many ¢ € T. Further,
I,,(T) is the set of j € I(T') such that >, j(t) = w.

Suppose that T is a finite set. Denote by PMap(T') the set of all maps from T
to Par. If A € PMap(T'), define [A| = 3,1 |A()]. Set

PMap, (T) = {A € PMap(T) | || = w}.

Note that k(b,a) = | PMap,([1,0])| for all a,b € Z>.

The sum of two partitions A and p is defined as the partition obtained by re-
ordering the sequence (A1, ..., \jx), 1, ., ty(uy)- In particular, if A € PMap(T),
then m;(3-,cr A(t) = >, m;(A(t)) for all j € N. The sum of n copies of A is
denoted by A*™.

Class functions on symmetric groups. Let A = @®,,>0C(S,). For any finite
group G write CF(G) for the set of Q-valued class functions on G. Then Ag = Q®z
A may be identified with @, >0 CF(Sy). The scalar product (-,-) on Ag is defined
via the standard scalar product on CF(S,,) in such a way that the components
CF(Sy) are orthogonal.

By a graded basis of Ag we mean a Q-basis u = (ux)epar such that (ux)xepar(w)
is a basis of CF(S,,) for every w. If u = (uy) and v = (vy) are graded bases of Ag,
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we say that (u,v) is a dual pair if (ux,v,) =y, for all A\, u € Par, where ¢y, is the
Kronecker delta.

If G, H are finite groups and ¢ € CF(G), ¢ € CF(H), then the outer tensor
product ¢ ® ¥p € CF(G x H) is defined by (¢ ® ¥)(g,h) = ¢(g)¢(h). If w =
w1+ - -Fwy, (w; > 0), then the direct product of the symmetric groups Su, , - - - , Suw,,
is viewed as a subgroup of S,, (known as a Young subgroup) in the usual way.
An element f € Ag is graded if f € CF(S,) for some w. In this case we write
deg(f) = w. If f and f’ are graded elements of Ag of degrees d and w respectively,
then their product is defined by

ff =Tndg's fof.
With this product, Ag becomes a (graded) Q-algebra. The symbol II, applied to
elements of Ag, means this product. When applied to sets or groups, II represents
the usual direct product.
By A*" we mean the direct product of w copies of a set or a group A. If ¢ is
a class function on a group G, we write ¢®% = ¢p®---® ¢ € CF(G*¥). fU <V
are abelian groups, then V®% is the tensor product (over Z) of w copies of V, and

U®v is viewed as a subgroup of V®¥ in the obvious way.
We will denote by gx an element of S|y of cycle type A € Par. We set

(2.1) o= [Tim om0 = s, (9]
i€N

We will use graded bases p = (px), p = (D), s = (sa), b = (hy) of Ag defined as
follows:

e pr(gu) = 20, for all p € Par(|A]);

® Pr(gu) = Oxp, so that py = z/\_lpA;

e sy is the usual irreducible character of S}y labelled by the partition A

(see [12, Eq. 2.3.8]), as in Section [I}

® hy =5 and hy = hy, -+ hy,, where A = (A1,..., ).
Note that (p,p) and (s, s) are dual pairs.

While we find it convenient to use notation usually reserved for symmetric func-
tions, the elements just defined are to be viewed as class functions on symmetric
groups, and our arguments are essentially character-theoretic. One may identify
A with the ring of symmetric functions via the isomorphism of [I5, §1.7]. With
this identification, the elements py, sy and hy are the same as those defined in [15]
§1.2-3].

3. SCALAR PRODUCTS OF CLASS FUNCTIONS ON WREATH PRODUCTS

We begin this section by summarising some notation and results concerning
class functions on wreath products; for more detail, see [8, §2.3 and §4.1]. Let G
be a finite group and w € Z>p. The wreath product G ¢ S,, consists of the tuples
(1,...,2Zy;0) with 2; € G and o € S,. The group operation is defined by

(1, Tw; O) Y1y Yy T) = (l‘lyaflu), e Jwyrl(w);m’),
where we use the standard left action of Sy, on [1,w]. If w = 0, then G ¢ S* is the
trivial group.
By a cycle in S, we understand either a non-identity cyclic permutation in S,
or a l-cycle (i) for some i € [1,w]. Whenever (i) is to be viewed as an element of
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Sw, it is interpreted as the identity element. The support of (7) is defined as {i},
while the support of a non-identity cycle o is the set of points in [1,w] moved by
o. By o(o) we mean the order of a cycle o, with the order of (¢) defined to be 1.
A tuple o1,...,0, is called a complete system of cycles in S,, if these cycles have
disjoint supports and ), o(0;) = w.

Whenever ¢ is a cycle in S, and x € G, we set

yo(x)=(1,...,1,2,1,...,1;0) € G Sy,

where x appears in an entry belonging to the support of o (say, the first such
entry). There is a unique equivalence relation on G S, satisfying the follow-
ing rule: if oq,...,0, is a complete system of cycles, two elements of the form
(U1, ..y Uy;T) and Yo, (1) - - - Yo, () are equivalent if and only if 7 = o1+ 0,
and x; = Ul gy = U ~(or)=1) for all j € [1,n], where ¢ is the smallest element
of the support of o; (cf. [i2, Eq. 4.2.1]). Each equivalence class contains exactly one
element of the form y,, (z1) - Yo, (€n) With o1,...,0, being a complete system,
and the equivalence class of such an element has size |G|“~". By [12 Theorem
4.2.8], any two equivalent elements of G 1 S,, are G S,-conjugate (even G**-
conjugate). By the same theorem, if o1, ..., 0, is a complete system, two elements
Yoo (1) Yo, (Tn) and Yo, (U1) - - Yo, (un) are G 1 Sy,-conjugate if and only if there
is a permutation 7 of [1,n] such that o(c;) = o(0-;) and x; is G-conjugate to u,;
for all j € [1,n].
If ¢ € CF(G), we define ¢®* € CF(G1S,,) by setting

¢®w(ya1 (1) Yoo (Tn)) = @(z1) - - B(20).
In the case when ¢ is a character afforded by a QG-module, q@w is afforded by a
corresponding Q(G Sy, )-module: see [I2, Lemma 4.3.9]. Consider a tuple
(31) E:((¢lufl)7u(¢nufn))

where ¢; € CF(G) and each f; is a graded element of Ag. Let w; = deg(f;) and
suppose that w = ", w;. Then we define

GlSw - Rw; GUSw,
(3.2) G = Indf{ s, , @ (67" - fS™ 1)

Here, Infﬁf”i fi is the inflation of f;, sending every g € G1.Sy, to f;(¢gG**7), and
- is the inner tensor product: (f - f')(g) = f(g9)f'(g) for all g. In the important
special case when ZE = ((¢, f)) with f € CF(S,,), we have

G = Cpupy = 67 Il .

Let T be a finite set and ¢: T'— CF(G). For every A € PMap,,(T) define C§\¢)
to be equal to (= where B
(3.3) E=((o(t),saew) |t €T).

If T is a subset of CF(G) and ¢ is the identity map, we will write ¢, instead of C;“b).
These definitions are motivated, in part, by the fact that -
(3.4) Irr(G 1 Sy) = {¢\ | A € PMap,,(Irr(G)) }

and the characters () are distinct for different A € PMap,, (Irr(G)) (see [12, Theorem
4.3.34]).
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For every A € Par(w) and x € CF(G1S,,) define wy(x) € CF(G*'V) by

wx() (@1, -5 2n) = XWor (1) - Yo, ()
where n = [()\) and o1, ..., 0, form a complete system of cycles in Sy, with o(c;) =
\; for each i. We will view wy(x) as an element of CF(G)®N).

Let X be a finitely generated subgroup of the abelian group CF(G). The sub-
group X 1S, of CF(G 1 S,,) is defined to be the Z-span of the class functions (g
over all tuples = as in 1)) such that ¢; € X and f; € A for all . A subgroup U of
a free abelian group V is said to be pure in V if for every v € V such that nv € U
for some n € Z — {0} we have v € U.

Theorem 3.1 ([8, Theorem 4.8 and Lemma 4.6]). Let X be a pure subgroup of
C(G). Then XS, is precisely the set of all € € C(G1S,,) such that wy(€) € XS
for all A € Par(w).

If T is a finite set, let I,,(T) denote the set of all maps j: T — Z>( such that
ZteTj(t) = w.

Lemma 3.2. Let X be a finitely generated subgroup of the abelian group CF(G).
Let B be a Z-basis of X. Then the class functions {x, A € PMap,,(B), form a
Z-basis of X 1Sy,.

Proof. First, we show that XS, is equal to the Z-span V of the class functions (},
A € PMap,,(B). We argue by induction on w. Consider a generator (g of X 1.5,
where = is as in BJ) (with ¢; € X and f; € A for all i). We are to show that
(= € V. By [B2) and the inductive hypothesis, we immediately obtain (z € X'1.S,,
unless deg(f;) = 0 for all but one i. So we may assume that = = (¢, f) for some
¢ € X and f € A. Write ¢ = 3 pnytp, where ny € Z. By [8| Lemma 2.5], we

have
Suw _ J() G1Sw ®3(v)
¢ - Z H le Indnw GU1S;(y) ® w
Jj€Lw(B) \YeB YEB
By the inductive hypothesis, the summand corresponding to j lies in V' provided
j() < w for all ¢ € B. However, if j(¢)) = w for some 1, then the corresponding

summand n®* belongs to V' by definition. Hence, ¢®* € V, and it follows that

oy = 050 - InfG5w f e V.

Let X' = Q[X] NC(G), where Q[X] is the Q-span of X in CF(G). Then X’ is
a pure subgroup of C(G) and has dimension |B|. Let B’ be a Z-basis of X’. Let
A= (A,...,A) € Par(w) and 91, ..., ¢, € B. Write ¥ for the tuple (¢1,...,%n).
Due to the above description of conjugacy classes of G ¢Sy, there exists a unique
& € CF(GUSy) such that wx(§x,4) = V1®- - @y, and wy,(§r,p) = 0 forall p # A
Clearly, the class functions £y 4 constructed in this way are linearly independent
over Q. The number of such pairs (A, ) is k(| B|, w). Indeed, a bijection from the set
of these pairs onto PMap,,(B’) is constructed as follows: (A, 4) — v € PMap,,(B’)
where v(1)) is the partition obtained by ordering the tuple (A; | ¢; = 1) (for each
¢ € B'). Let (\,9) be one of these pairs. Then w,(£y4) € (X)®UH) for all
w € Par(w). Further, t{) o € C(G1S,,) for some ¢ € N. Hence, by Theorem B.]
téx,p € X'1S,,. Therefore,

dimg(Q ®z (X1 Sy)) = dimg(Q ®z (X' 1 Sw)) > k(|B|,w) = [PMap,,(B)].
The result follows. O
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Remark 3.3. Theorem [BI] is not really needed to prove linear independence in
Lemma for example, one can generalise the proofs of [8] Proposition 7.3 and

Corollary 7.4].

Fix ¢ € N. As in Section[I] let p be an ¢-core partition, with |p| = e. Let

Il"I'pri(Sé) = {S(é—i,li) i€ [Ouﬂ - 1]}
(We write 1 instead of 1*%.) Write CFp,i(Se) for the Q-span of Irrp,i(Se). As in [8]
Definition 3.3], let

II‘I‘pri(Sg i Sw) = {CA | A€ PMapw(II‘I‘pri(Sg))}

and Cpyi(Se 1 Sw) = Z[Irrpyi (Se 1Sw)]. (If £ is a prime, then Irrp,,i(SeSy,) is the set
of irreducible characters belonging to the principal ¢-block of Sy S.,.)

Let x € S; be an {-cycle. Define &p,i(S¢1Sw) to be the set of all £ € Cpyi(SelSw)
such that

(3.5) §(Yor (¥)Yos (22) Yo, (27)) =0

whenever o1,...,0, is a complete system in S, and z3,...,2, € S;. By [18
Théoréme 2.11], there exists an isomorphism F': C(Spyte; p) — Cpri(Se U Sw) of
abelian groups such that F' is an isometry. Moreover, we have F(Z(Spyte,p)) =
Pori(Se 1 Syw) due to the commutative diagram in the statement of [I8, Théoreme
2.11], if one interprets the vertical arrows of that diagram using Théoréme 2.6 and
Corollaire 2.10 of [18]. (See also the proof of [8, Theorem 3.7].)

Let £ € Ppri(Se ! Sw) and p € Par(w). Write n = I(x). By 3], the class
function w,(§) belongs to the Q-vector space V of all « € CF(S,") such that
a(z1,...,2n) = 0 whenever at least one z; is an f-cycle. We have dimg V' = j"
where j is one less than the number of conjugacy classes in Sy. Since j is the Z-rank
of P(Sy), the Z-rank of Z(S,)®" is j. Clearly, 2(S,)®™ C V. Hence, V is the Q-
span of Z(S;)®". Since Z(S;) is pure in C(Sy), we have Z(S¢)®" =V NC(S,)®".
By [8, Lemma 4.11], w,(£) € C(S¢)®". Hence, w,(§) € P(S;)*".

Further, by Theorem Bl w,,(£) € Cpri(Se)®™ for all p. Let X = Cpyi(Se) NP (Sy).
Since both Cpyi(S¢) and Z2(S;) are pure in C(S¢), one easily sees that

X®n — Cpri(Sé)@m N '@(Sé)(@n > wu(ﬁ)'

Therefore, by Theorem Bl 25,1 (Se ! Syw) = X' USw.

For each i € [0,£ — 2] let B; = s(y—;1i) + S@—i—1,1:+1). (When £ is prime, 3;
are the projective indecomposable characters of the principal block of Sy.) By [12]
Eq. 2.3.17], s¢—iqi)(v) = (—1)¢ for each i. Therefore, the set B = {3; é;g is a
Z-basis of X. By Lemma[3.2} it follows that the set {()}xePmap, (8) is a Z-basis of
XVSw = Ppri(Se 1 Sw). Since F preserves scalar products and maps & (Sew+e, p)
onto X' 1.5y, we have proved the following result.

Proposition 3.4. The matriz Carty(fw + e, p) is equivalent to the PMap,,(B) x
PMap,, (B)-matriz with (A, p)-entry equal to (Cx, Cu)-
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Observe that the Gram matrix ((8;, 5;))o<i,j<e—2 is

21 0 -+ 0 0
12 1 - 0 0
01 2 . 0
(3.6)
00 --- . 2 1
00 0 -~ 1 2

After conjugation by the diagonal matrix with the (i,)-entry equal to (—1)¢, this
becomes the classical Cartan matrix of type Ay_1. As is well known, the invariant
factors of this matrix are ¢,1,1,...,1 (with 1 appearing ¢ — 2 times).

This observation and Proposition B.4] suggest the following general problem:
given a finite set T and a map ¢: T — C(G) for a finite group G, describe the
invariant factors of the PMap, (T') x PMap,, (T)-matrix (<C§¢),Cﬁ¢)>)A,H in terms
of the invariant factors of the T' x T-matrix ((¢(t), #(q)))s.qer- In the case when
|T'| = 1, the answer is given by Theorem [B.I5] which is proved in Sections [ and [5]
and by Corollary B.I7l The rest of this section is devoted to an unsurprising reduc-
tion of the general problem to the case |T| = 1 (see Corollary BIS]).

Definition 3.5. Letu = (uy) and v = (vy) be graded bases of Ag. Let A be a T xQ-
matriz, where T and Q are finite sets. Then Al(u,v) is the PMap(T) x PMap(Q)-
matriz defined by

(Af(u, v))ap =

(37) =2 <H (a1, P ) - TT (ot TPt - T1 Aié”“””) ,
v ¢ q t,q

where v runs through PMap(T x Q) and t,q run through T, Q respectively.

Note that the summand indexed by v in the above formula is zero unless |\ =
lv| = |u|. Write A (u,v) for the PMap, (R) x PMap,,(T)-submatrix of A!(u,v).
Then A'(u, v) is block-diagonal, with blocks equal to A" (u,v), w > 0. The preced-
ing definition is motivated by the following result.

Lemma 3.6. Let ¢: T — CF(G) and : Q — CF(G) be arbitrary maps, where
T,Q are finite sets and G is a finite group. Let A = ((¢(t),¥(¢)))ter, qeq- Then
for every w >0 and X\ € PMap,,(T), u € PMap,,(Q), we have

{ y’) (111)> _ A?w(s,s)éﬁ'

o
First, we prove a simpler lemma.

Lemma 3.7. Let G be a finite group and ¢, € CF(G). If A\, u € Par(w), then

(Comn) i) = Oau{, )! .

Proof. The proof is similar to that of [8, Lemma 7.2]. Observe that (4 ,,) vanishes
outside the preimage in G5, of the conjugacy class of 5, consisting of the elements
of cycle type A. A similar statement holds for ((y 3,), so the lemma holds if A # p.
Assume that A\ = p and fix a complete system of cycles o1,...,0, with orders
ALy .-y Ap in Sy, where n = [(\). With respect to the equivalence relation on GU.S,,
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described above, the equivalence class of an element of the form y,, (1) -+ - Yo, (zn)
contains exactly |G|~ elements, which are all conjugate to ys, (1) Yo, (n).
Also, 0 = 01 - - - 0, has w!/z) conjugates in S,,. Therefore,

Ciomn) Cwpn)) = (BAIGIM) ' pa(@)Bal) Y Hfbxz = (¢, )", O

T1,.. 7$nEGZ 1

Proof of Lemmal3.6. One may parameterise the double ], Sjx)- H S\u )|-cosets
in Sy, by the maps j € I,(T x @) such that

thq (t)] forallt € T and thq q)| for all ¢ € Q.

Here, as usual, the double coset containing g € S,, corresponds to the map j
deﬁned by Six@ N Slu(q)l =~ Sj(t,q), where S|y and S\u )| are the appropriate
direct factors of the two Young subgroups being considered. Using the definition of
C§\¢) and Q(Lw (see (B:2)) and applying the Mackey formula, we see that ( (¢), ,qu)) =

>_ja;j where the sum is over all j € 1,(T x Q) satisfying (3.8) and the ‘summands
are

[T, L2S)ace I, LS| u(o)|
(39) aj = <R L?g((i‘q) ®< t)vsx\(t) R th LZSMj(qt,q) ®C(w(Q)75u(q))> :
q

Note that, whenever D is a finite set, i € I,,(D), o € CF(G), and f € Ag, we have
LSy _
(3.10) RestED LS, a) C(a,f) = C(

Sw :
a, Rsl'lds(d) f)

Fix amap j € I,(T x Q) satisfying (3.8). For every ¢ € Q,

S1uta)l -
(3.11) Res(“s  su@) = (<Sg(Q)7Hth(t)>'®th(t))’
where the sum is over all v € PMap),(, )|(T) such that v(t) = j(t,q) for all ¢.
Indeed, (s, 1(q) 3> 11¢ Py(e)) is the value of the character Su(q) ON an element of cycle
type Y, v(t). Similarly, for every t € T,

(3.12) Res H‘:“Z‘(t ) SAD) = > (<3A(t)u I1, Pnia)) - Q, Pg(q)) ;

n

where the sum is over all n € PMap,,,)(T) such that [n(q)| = j(t, ) for all g. After

using (310) and substituting GII) and B12), Eq. 339) becomes
;=3 <H<Sx<t>, [, Poea) - [T T pucea) - TTC00. paen <<w<q>,ﬁy<t,q)>>>

nv t t t,q
= Z <H<S>\(t)a Hq ﬁg(t,q)> : H<Sg(q)a Ht pz(t,q)> : H<¢)(t>, 7/’(Q)>l(z(t7q))> .
v t q t,q

Here n and v run through the set of elements of PMap,, (T x Q) such that |5(, q)| =
J(t,q) = |v(t,q)| for all t, ¢, and the second equality holds by Lemma[B.7l Summing



GENERALISED CARTAN INVARIANTS OF SYMMETRIC GROUPS 11

over all j satisfying B3), we obtain

<(¢)’ C g G/J
D, (v(t,
(I |<SA(t)= I1, Puct.a)) - H<S&(t)7 [T, Puita) - I I Atg_(t q))) 7
v t

q t,q
where v now runs through the elements of PMap,, (T x Q) such that 3°_|v(t,q)| =
IA(t)| for all t and )", [v(t,q)| = |p(q)| for all g. Moreover, this formula remains
true if we sum over all v € Pl\/Iaup@1 X @), as the extra summands are all equal to
0. Comparing with Definition [3:5] we deduce the result. O

Remark 3.8. Let (u,v) be any dual pair of graded bases of Ag. Lemma [0l remains
true if one replaces Al(s,s) by A'(u,v) and replaces sy in the definitions of C§\¢)
and Q(Lw) (cf. B3]) by uy and vy respectively.

In the remainder of this section, T', ), Z denote arbitrary finite sets. Let M be a
Par x Par-matrix. The PMap(T') x PMap(T')-matrix M®7 is defined by (M®7),, =
[Ticr Ma@),ut)- Thus, M®T may be identified with the tensor product of |T’| copies

of M. If u = (uy) and v = (u}) are graded bases of A, the transition matriz
M (u,u’) is the Par x Par-matrix defined by the identity

(3.13) uy = Z M (u,u')yyu;, for all A € Par.
pePar

Let M (u,u’;w) be the Par(w) x Par(w)-submatrix of M (u,u’). Then M (u,u’) is
block-diagonal with blocks M (u,u’; w), w > 0.

Lemma 3.9. Let A be a T x Q-matriz. Suppose that (u,v) and (v',v") are dual
pairs. Let M = M (u,u’). Then

Al(u,v) = MET AW v/ (M~1)®9.
Proof. Due to the duality conditions, we have M (v,v') = (M*)~!. That is,

(3.14) vy = Z (M~")uav),  for all X € Par.

pePar
Substituting BI3)) and BI4]) into (B7), one obtains the result after a straightfor-
ward calculation. g

Remark 3.10. The remaining proofs of this section (except for those of LemmasB.12]
and [BT3)) use essentially the same arguments as those presented in [10, Sections
3,4,6] and [3], Section 3], applied to a slightly more general situation.

Let A be a T x Q-matrix, where T, Q are finite, and let n € Z>¢. Denote by (T')
a Q-vector space with basis T. The n-th symmetric power Sym” ((T')) has a basis
that consists of the monomials [, t'® where i runs through I,,(T). Tt is easy
to see that, with respect to this basis and the analogous basis of Sym"((Q)), the
matrix Sym™(A) of the n-th symmetric power of the operator A: (T) — (Q) may
be described as follows:
> H Af(t q)

(3.15) Sym™"(A)i; =Y ] (

f teT ))aeq
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where the sum is over all f € I,(T' x @) such that > f(t,q) = i(t) for all ¢ and
> f(t,q) = j(q) for all q. Here, i € I,,(T), j € I,,(Q) are arbitrary, and

i(t) i(t)!
Qfmq»ﬁQ)::HﬁQfaqﬂ
is the binomial coefficient. Due to functoriality of symmetric powers, we have
(3.16) Sym"(AB) = Sym"(A)Sym"(B)
whenever the product AB of matrices is defined.

Proposition 3.11. Suppose that (u,v) is a dual pair. Let A be a T X Q-matriz
and B a Q x Z-matriz. Then

(AB)!(u,v) = Al(u,v)B(u,v).
Proof. We begin with the case when u = p and v = p. Note that, if (\?); is a tuple
of partitions and o = >_; A, then p, = [[,pxi (cf. [I5, §1.2]). Also, recall that

Dy = z/{lpA for all A and that (p,p) is a dual pair. Using these facts and applying
Definition 3.5 we obtain

(3.17) Ap,P)ap = Z <H ZA(1) H (a4 l(u ’q))>

for all A € PMap,,(T'), u € PMap,,(Q), where the sum is over all v € PMap(T x Q)
such that }° v(t,q) = A(?) for all ¢ and >, v(t, q) = pu(q) for all q.

In particular, A'(p,p) = 0 unless >3, A(t) = >, p(g). So we have a block-
diagonal decomposition of A!(p,p), with blocks indexed by maps j € I(N): the
block of j is the intersection of the rows indexed by the maps A € PMap(T) such
that >, ma(A(t)) = j(d) for all d € N and the columns indexed by the maps
p € PMap(Q) such that > ma(p(q)) = j(d) for all d.

If E is any finite set and a € PMap(E), define @ = (@%)4en € [Tien I(E) by
a%(e) = ma(afe)) for all d € N, e € E (cf. [10, Notation 3. 2]) Fix j € I(N), and
let CU) be the corresponding block of A!(p,$). The map A )\ is a bijection from
the set of rows of C) onto [Taen Liay(T). Similarly, p — i is a bijection from the
set of columns of C) onto [ ;e Lia) (Q)-

Consider a row A and a column g of the block j. Let » € PMap(T x @), and
write i(D(t,q) = D%(t,q) for all d € N, t € T, g € Q. Observe that v satisﬁes the
condltlons stated after Eq. (8.17) if and only if for each d € N we have } i D(t,q) =

A ( ) for all t and Y, i (t,q) = i (q) for all q. If these conditions are satisfied,
then by ([2I)) we have

MaenmaQA(0)! X (1) or a
ZWJIt@ H%MLWM@QM‘H(MN > forallt €.

deN ))qEQ

Substituting this into (B17), we obtain

=TT (ST (o, ) T4,

deN \j(@) ¢
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where i(9) runs through the elements of I Ji(a) (T x Q) satisfying the above conditions
(for each d € N). Comparing this with [BI5]), we see that after the identifications

A= A and [ E the block CY) becomes equal to

Q) Sym’ @ (4).

deN

Due to ([B.16]), we deduce that

(3.18) (AB)'(p,p) = A'(p.p)B'(p. D)-

Now consider the general case and let M = M(u,p). Using Lemma and
Eq. (318), we obtain

Al(u,v)B'(u,v) = (MEFA (p, p)(M~H)®T) (M T B! (p, p)(M ~)®?)
= M®F(AB)(p,p)(M~1)®? = (AB)'(w,v). O

Lemma 3.12. Suppose that A is an integer T X Q-matriz. Then the entries of
Al(s, s) are integers.

Proof. Let G be the cyclic group of order |T'|, and let ¢p: T' — Irr(G) be an arbitrary
bijection. For each q € @ set 1(q) = >, Aiqp(q), so that A = ((¢(t),%(q)))q,c- By
Lemmal[3.6] the entries of A™(s, s) are of the form ( f\¢), (ff”} where A € PMap,,(T)

and p € PMap,,(Q). By [8 Lemma 2.6], y),cy) € C(G1Sy), so all entries of
A™(s,s) are integers. Since A!(s,s) is block-diagonal with blocks A™(s,s), the
result follows. ]

Lemma 3.13. We have HZT(S, s) = IpMap(T) -

Proof. Let G be the cyclic group of order |T'| and ¢: T — Irr(G) a bijection. Let
w € Z>o. As we observed above (see ([B.4))), the functions C§\¢), A € PMap,,(T),

are distinct irreducible characters of G1.S,,. Hence, by Lemma 3.6, A" (s,s) Vi
(7, ¢f7) = 8y, for all A, € PMap,, (T). O
Proposition 3.14. If A and B are equivalent T x Q-matrices, then A™ (s,s) and
B"™(s,s) are equivalent.

Proof. The hypothesis means that there are matrices M € GLp(Z) and N €
GLg(Z) such that MAN = B. The matrices M (s,s), (M 1) (s,s), N'¥(s,s)
and (N~1)%(s,s) are integer-valued by Lemma By Proposition B.11] and
Lemma B.13]

M (s,5)(M ™) (s,5) = (Ir)™ (s, 5) = Ipnap,, (7)-

Thus, M"(s,s) € GLpwmap,, (1)(Z). Similarly, N*(s,s) € GLpwmap, (@)(Z). By
Proposition B.11]

M™(s,8)A™ (s,s)N"(s,s) = B"(s,s),

and the result follows. (]
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Let ¢ € Z. Applying Definition BB to the 1 x 1-matrix (£), set th,u;) = ()" (u,v)
for any graded bases u and v of Ag. That is, Xé};’}v) is the Par(w) x Par(w)-matrix
given by
(3.19) (XM= D> (un, B (v, pu )00

vePar(w)

In particular,

(3.20) X(EF = diag{('D)reparun )
By Lemma [3.9]
(3.21) lesj) = M(s,p;w)Xéﬁf)M(s,p;w)fl.

Therefore, the determinant of X( *) is a power of ¢ (cf. [I0, Section 6]).
In Sections [ and B we will prove the following key result.

Theorem 3.15. Let p be a prime and v > 0. Then the elementary divisors of
X(i)s)
prw

are

pr X e Par(w).
Here, ¢, (\) are the integers defined by (L.2).

Remark 3.16. In [I5] §VI.10] Macdonald defined a bilinear form (-,-), on CF(S,,)
(for each ¢ € N) by setting (px,p,) = 0rul!M 2y for all A, u € Par(w). By (B.20)
and (B.2I)), the invariant factors of this bilinear form restricted to C(S,,) are the
same as the invariant factors of Xﬁf) (as {sx}repar(w) 18 a Z-basis of C(Sy)).
Theorem [B.T5] stated in terms of the form (-, -),, was proved by Hill for r < p and
conjectured to hold in general: see [I0, Theorem 1.3]. Our proof uses a different
approach to that of Hill. In fact, the arguments of Section [f] become much simpler
if r is large (more precisely, if p” > w): see Remark 5.2

Recall that, for A € Par, the integer ¥ (¢) is defined by (L3)) for £ > 0, and set
92(0) =0

Corollary 3.17. Let £ € Z>o. Then Xésj) is equivalent to diag{(¥¢()\))repar(w)}-

Proof. The result is clear for £ = 0, so assume that £ > 0. Let £ =[], p;" be the
prime factorisation of ¢. Due to (B20) and FZI]), we have Xésws) = HiX(f.s)

pilv'“ﬂ
where the product may be taken in any order. The result now follows from Theo-

rem [3.15 and the Chinese Remainder Theorem: see [10, Section 6] for details. O

Corollary 3.18. Suppose that a T x T-matriz A is equivalent to diag{(ay)iecr} for
some ay € Z>o. Then A% (s,s) is equivalent to the diagonal matriz with diagonal
entries

I ?x0(a), A€ PMap, (7).
teT

Proof. Due to Proposition [3.14] we may assume that A = diag{(a¢)ier}. As Ayq =
0 whenever t # ¢, Eq. (8.1) becomes

(3.22) (s,8)au= Y. H( SA(t)s Pu(t) ) (S pu(t) s Pu(t))@ (Z(t)))

vePar t
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In particular, Al(s, s) is block-diagonal with blocks indexed by the maps j € I,(T),
where a row or column indexed by ) intersects the block of j if and only if |A(t)| =
j(t) for all t. Comparing ([B:22)) with (BI9), we see that the block indexed by j is

exactly
(s;8)
® Xat ()
teT
The result now follows from Corollary B.I7 as invariant factors are well-behaved
with respect to tensor products of matrices. O

Theorem [T may be deduced as follows. Consider A = ({8, 8;))o<i.j<t—2, &
Cartan matrix of the principal ¢-block of Sy (see ([B4)), so that A has invariant
factors ¢,1,...,1. By Proposition 34 and Lemma B8, the matrix Carty(Spyte, p)
is equivalent to A™(s,s). Note that J,(1) = 1 for all A € Par. Hence, by Corol-
lary 318 the matrix A™(s, s) is equivalent to

diag{(x(0) (£)) xePMap,, ([0,¢-21) }-
Now for each A € Par with |A] < w, the number of maps A € PMap,, ([0, ¢ —2]) such
that A(0) = A is equal to [PMap,,_ |y ([1, £ = 2])| = k(¢ — 2,w — |A]). So A¥(s,s) is
equivalent to the diagonal matrix described in Theorem [[LTl Thus, it remains only
to prove Theorem

4. REDUCTION TO p-POWER PARTITIONS

From now on, we fix a prime p and r € Z>(. Also, we adopt the convention that
diagonal matrices are denoted by lower-case letters. If o = (z44)¢,q is a diagonal
matrix, we will write z; for zy. Let w > 0. Define the diagonal Par(w) x Par(w)-

matrix a = a(*) by ay = p"'™, so that a = XISE:IB by (3:20).

Let M = M®) be the transition matrix M(h,p;w) and X’ = MaM~'. Due

to 3.2,

X' = M(h,s; w)XZ()f’jﬁM(h, s;w)h
It is well known that M (h, s;w) € GLpar(w)(Z) (see [12, Eq. 2.3.7]), so X' is equiv-
alent to Xéf’jﬂ). (In fact, it is the matrix X’ rather than XZ(;’ZZ that is considered
in [10].)

Let A\, p € Par(w). Define #), to be the set of all maps f: [1,1(x)] — [1,1())]
such that } ;.1 pu; = A; for all i € [1,{(\)]. Since hy is the permutation
character corresponding to the Young subgroup []; S»,, we obtain
(4.1) M), = | Ay, for all X\, € Par(w)
after applying the definition of induced character (alternatively, see [I5, Statement
1.6.9)]).

Ai])usual, let Z,y = {a/b | a,b € Z, p { b}, a subring of Q. Let Q be the
algebraic closure of Q and Z,) be the integral closure of Z,) in Q. For any

finite group G, let CF(G;Q) be the abelian group of Q-valued class functions on
G, and define the following subgroups of CF(G;Q): C(;,)(G) = Zy [Irr(G)] and
Cip)(G) = Ly [lrr(G)].

Remark 4.1. We may work over Z,) rather than Z when proving Theorem [3.15]
Indeed, since det(X’) is a power of p, any diagonal matrix with p-power diagonal
entries which is equivalent to X’ over Z,) must be equivalent to X’ (and hence
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to X) over Z. Thus, we may replace M in the formula X’ = MaM~! by any
matrix L which is row equivalent to M over Z(,), that is, such that the rows of
L span C;)(Sy) (in the sense that is made precise below). In this section we will
use Brauer’s characterisation of characters to find an especially nice matrix L that
satisfies this property; in particular, L is block-diagonal with respect to a certain
partition of the set Par(w). This will considerably simplify the problem.

Let G be a finite group and h € G be a p’-element (that is, an element of order
prime to p). Define a class function xg., = xn € CF(G;Q) as follows:

1 if g, is G-conjugate to h,
xn(g) =

0 otherwise.

Here, as usual, g, denotes the p’-part of ¢ (that is, g, is a p’-element and g =
9p9p’ = Gp gp for some p-element g, € G). Further, if P is a subgroup of Cg(h),
define a map Resg’h: CF(G;Q) — CF(P;Q) by

Res®"(€)(z) = £(ha)  for all £ € CF(G,Q), z € P.

The following standard lemma, which is a consequence of Brauer’s characterisa-
tion of characters, is key to the arguments of this section. (It will be used only in
the case G = S,,.)

Lemma 4.2. (i) x € C()(G);
(ii) Let ¢ € CF(G;Q). Suppose that for each p'-element h € G we have Resg’hﬁ €
C(p)(P) where P is a Sylow p-subgroup of C(h). Then & € C(,y(G).

Proof. Part (i) follows immediately from [11, Lemma 8.19].

We note that the hypothesis of part (ii) for a given p’-element h does not depend
of the choice of P because all Sylow p-subgroups of Cg(h) are conjugate. By
Brauer’s characterisation of characters (see [11, Theorem 8.4]), the conclusion of ()
will follow once we show that Res%(€) € C(p)(E) for all elementary subgroups E of
G. For every such E we have E = Q x P where P is a p-group and @ is a p’-group.
Let Q be a set of representatives of the conjugacy classes of Q. Then

Resf(&) = > (xq.q ® Res?(€)).
qeQ

By the hypothesis, Res??(€) € Cy,) (P) for all ¢ € Q. Also, xq,q € C()(Q) by (@).
The result follows. (I

Definition 4.3. Let T be a finite set. Let R be an integral domain with field of
fractions K. Denote by K™ the vector space of row vectors v = (vg)ier with v, € K.
If Q is a subset of T, define mg: KT — KT by

WQ(U)tZ{St Z:Zg’ (forteT)

Let T = L;T; be a set partition of T and A be a finite T x T-matriz with entries in
K. Let V C KT be the row space of A over R. We say that A splits over R with
respect to the given set partition of T if wp, (V) CV for all i.

We use this definition in the case T = Par(w) as follows. Let N, be the set
of all natural numbers that are prime to p. Denote by Par’(w) the set of all
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partitions v € Par(w) such that v; € Ny for all ¢ (such v are called p-class reqular
n [14]). Let v € Par’(w). Recall that g, € S, is a fixed element of cycle type v.
For each v € Par’(w) define Par(w,v) to be the set of all A € Par(w) such that
Y onso Mjpr (A)p™ = mj(v) for all j € Ny, This leads to the set partition

(4.2) Par(w) = |_| Par(w, v).
vePar’ (w)

Note that an element g € S, has cycle type belonging to Par(w,v) if and only if
gp has cycle type v. We will identify QP>(») with CF(S,,) via

(4.3) V= Z ’U>\]5>\.
AePar(w)

With this identification, C(S,,) is the row space of the character table M(s,p). The
row space of M = M (h, p;w) also equals C(Sy,) since M (h,s;w) € GLpar(w)(Z).

Let £ € C(Sy) be the character corresponding to a row of M. Then, for every
v € Par'(w), the class function xg, - £ corresponds to Tpar(w,)(§). However, by
Lemma E2[), we have x4, - £ € C()(Sw). This means that M splits over Z,)
with respect to the set partition (£Z). Since M is rational-valued, we deduce the
following more precise result using standard ring theory.

Proposition 4.4. The matriz M splits over Z,) with respect to the set partition
Par(w) = |, cpar (w) Par(w, v).
We will use the following general result on split matrices.

Lemma 4.5. Let R be an integral domain with field of fractions K. Suppose that
T = U;T;, where T is a finite set. Let A be a T x T-matriz with entries in K that
splits over R with respect to this set partition. Suppose that A is lower-triangular
with respect to some total order on T and that Ay # 0 for allt € T. Define the
T x T-matriz A by

~ {Atq if t,q € T; for some 1,

Atq = (ta qc T)

0 otherwise.

Then A is row equivalent to A over R.

Proof. Let < be the given total order on T, and write A; for row ¢ of A. It is
enough to prove the following: if ¢t € T; and j # 4, then

(4.4) 77, (At) = Z a,A, for some coefficients oy, € R.

ueT

u<t
Indeed, applying (4] repeatedly, one easily obtains A from A by elementary row
operations defined over R. To prove ([@.4]), note that, as A splits, we have w7, (4;) =
ZueT ay Ay for some o, € R. Since A is lower-triangular with non-zero diagonal
entries, it follows that a,, = 0 for all u > t, so (£4) holds. O

Let M be the block-diagonal “truncation” of M defined as in the statement of
Lemma with respect to the set partition Par(w) = ||, epay (i, Par(w,v). It is
well known (and easy to see from the definition) that M is lower-triangular with
respect to the lexicographic order on Par(w) and that the diagonal entries of M are
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non-zero. Hence, applying Proposition [£.4] and Lemma 4.5 we obtain the following
result.

Lemma 4.6. The matrices M and M are row equivalent over Z).

Define Pow to be the set of all partitions A = (A1, ..., Aq) such that all parts \;
are integer powers of p. (This includes 1 = p°.) Write Pow(w) = Pow NPar(w).
Define N = N() to be the Pow(w) x Pow(w)-submatrix of M ()

Let M = M) be the Par(w) x Pow(w)-submatrix of M (). The following result
is an immediate consequence of Lemma [4.6] due to the block-diagonal structure of

M (note that Pow(w) = Par(w, (1))).
Lemma 4.7. The row spaces of M) and N™) over Zpy are the same.

Define a map ¢: Par — [[;cy , Pow, A+ ()\j)jeNp,, by the identity m,n(\) =
mpn(A) for all j € Ny, n > 0. Let w > 0 and v € Par’(w). Then ¢ restricts to a

bijection from Par(w,v) onto [[;.y , Pow(m;(v)), also denoted by ¢. Let

L) = R N,
jENp/
so that L(v) is a square matrix with rows and columns indexed by [[; Pow(m;(v)).
Define a Par(w) x Par(w)-matrix L by

(45) Ly = d L@ 1A p € Par(w,v) for some v € Par'(w),
0 otherwise,

so that L is block-diagonal with respect to the set partition (£2)).

Lemma 4.8. The matrices M and L are row equivalent over Z,).

Proof. Let v € Par(w) and consider the class function &, € CF(S,,) corresponding
to row v of L (via the identification ([3)). For each n € Par'(w) let P, be a

Sylow p-subgroup of Cg, (¢9,). We will verify that &, satisfies the hypothesis of
Lemma 2|{), i.e. that

(4.6) Resp " &, € Cpy(P)  for all .

First, it follows from (X)) that Reslsj;”’g" & =0if v ¢ Par'(w, n).
Let v € Par’'(w) be such that v € Par(w,v). Consider an arbitrary partition
p € Par(w,v). Write «(y) = (v/)jen,, and ¢() = (#’)jen,,. We have

(4.7) Cs, (gv) = H (C5 USm;v))-

JEN,,
For each j, let G; denote the usual complement to the base subgroup in the wreath
product C; Sy (1), S0 that G =~ S, (,); we view G as a subgroup of Sy,. Let P;
be a Sylow p-subgroup of GG;. Since the index of Hj G; in Cg, (g.) is prime to p,
we may assume that P, =[], P;. Consider an element z € P defined by z = [[; z;
where z; € P;, viewed as an element of S, (., has cycle type w. Let g, = HJ— Gu.j

i
be the decomposition of g, with respect to the direct product (£7), so that g, ;
has cycle type (j*(*)) as an element of S,. Since p { j and x; is a p-element,

it is easy to see that the cycle type of g, ;x; € C;j 1Sy, (w) as an element of S, is
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obtained from g7 by multiplying each part by j. It follows that [] i(9v,525) € Sw
has cycle type u. Therefore, by ({3,

g'y(g,u) = H h'yf (Ij)a
jGNp/
where h.; is viewed as a character of GG; thanks to the identification of that group
with Sy ). It follows that

Resp 9 &, = ® Resgj h.; € C(P,).
JEN,,

Thus, @6) holds in all cases. By Lemma E2([), we have &, € C,(Sy). That
is, row 7 of L belongs to the row space of M over Z(p). Since both L and M
are rational-valued, the same holds over Z,). So the row space of L over Z, is
contained in that of M.

However, it is easy to see that det(M) = det(L). Indeed, one obtains explicit
expressions for det(M) and det(L) using the definition of L and the fact that the
matrices M and N are lower-triangular. The lemma follows. O

Set b = b(*) to be the Pow(w) x Pow(w)-submatrix of a = a(*), so that b&w) =
' for all A € Pow(w). Define Y = Y(®) = NbN~! (where N = N®). In
Section [5] we will prove the following result.

Theorem 4.9. The elementary divisors of Y are p»rM) | X € Pow(w).

Assuming this, we can deduce Theorem as follows. By Lemma 4.8 X' =
MaM ! is equivalent to X" = LaL™~" over Z,). Recall that L is block-diagonal
with respect to the set partition Par(w) = Uuepar,(w) Par(w, v). Since a is diagonal,
the matrix LaL~! is block-diagonal with respect to the same set partition.

Consider the block X”(v) of LaL™' corresponding to v € Par'(w). If X\ €

Par(w,v) and 1(A) = (M)jen,,, then [(A) = Y, 1(N), s0 ax = [[;b77". That

J
is, after we apply the identification ¢ to convert Par(w,v) x Par(w,v)-matrices

into (I, Pow(m;(v))) x (I; Pow(m;(v)))-matrices, the v-block of a becomes equal
to ®; b0 (); and, by (@3), the v-block of L becomes L(v) = ®; N™i(). So
X"(v) becomes ®;Y (™) Therefore, by Theorem I, X" (v) is equivalent over
Z(p) to the diagonal matrix with entries []; perr ) where (M); runs through
HjeNp/ Pow(m;(v)). But if A € Par(w,v) is such that ¢(X) = (N), then mj,:(\) =
mpt(N) for all j € Ny and ¢ > 0, and so

e = 3 (0= vp()ma(X) +dp(ma(N))

neN
0<vp(n)<r

D% (0 = e (V) + dy mye (V) )

jEN,, t=0

= Z cpr(N).

jGNp/

(The second equality is obtained by substituting n = jp'.) Hence, X" (v) is
equivalent to diag{(pcwo‘))Aepar(wﬂ,)} over Zy). Therefore, X" is equivalent to
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diag{(p°»~ ™) xepar(w)} Over Z,), and hence over Z (see Remark FZI)). Since X is
equivalent to X", we have shown that Theorem is implied by Theorem

5. PROOF OF THEOREM [4.90]

Recall that Theorem is concerned with the Pow(w) x Pow(w)-matrix ¥ =
NbN~! where Ny, = |.#,| (cf. the definition before Eq. (@1I])) and by = p"® for

all A\, u € Pow(w). Let z = diag{(2x)xepow(w)} (see 2.I)).

Lemma 5.1. The matriz N is row equivalent to (N**)~'z over Z,).

Proof. Let m = (my) be the graded basis of CF(S,,) such that (h,m) is a dual pair
(cf. [I5) Chapter I, Eq. (4.5)]). Since h is a Z-basis of C(S,,), the same is true
for m. Hence, the transition matrix M (m, p;w) is row equivalent to M (recall that
M = M(h,p;w)). Since (h,m) and (p,p) are dual pairs, M (m,p;w) = (M™)~L.
Hence, M (m, p; w) = (M) ™12, where £ = diag{(2x)xePar(w)}-

So (M'r)~12 is row equivalent to M (over Z). On the other hand, by Lemma .6,
there exists U € GLpar(w)(Z(p)) such that M = UM. We have

(Mtr)_lf; _ ((Uﬂ)tr)—lé _ (Utr)—l ((Mtr)—lé) )

Therefore, (]T/[/“)*lé is row equivalent over Z,) to M, and hence to M. But M

and (1\7 tr)=12 are both block-diagonal with respect to the decomposition Par(w) =
Uyepar,(w) Par(w, v); and the blocks of these two matrices corresponding to v =

(1w) are N and (N%)~1z respectively. The result follows. O
Due to Lemma 5.1, Y = NbN ! is equivalent over Z,) to
(5.1) Y’ = Nb((N")"12)~! = Nbz~I N,

Let A € Pow. In the sequel, we will write n;(A) = m,: () for all i > 0. We define
partitions A<", \Z", A € Pow as follows: for all i > 0,

(52) ni()\<T) — nz()\) ifi < ’l"?
0 otherwise,
(33) m(A) = nrsi (W)
ni(A) ifi<r,
(5.4) (%) = Sooy Py (V) i =,
0 if i > 7.

(Thus, |A| = |A| and X is obtained from A by splitting all parts of size at least p”
into parts of size exactly p".) Note that [A| = [A<"| 4+ p"|AZ"|.

Let K denote the set of all kK € Pow(w) such that k = & (i.e. n;(x) = 0 for all
1> r). For each k € K define

Pow, = {\ € Pow(w) | A = k}.
We have Pow(w) = | |,.cx Pow,(w). In the sequel, “blocks” of a Pow(w) x Pow(w)-
matrix are understood to be ones corresponding to this partition of Pow(w). In
particular, a Pow(w) x Pow(w)-matrix Z is said to be block-diagonal if Zy, = 0

whenever A # . Further, Z is block-scalar if Zy,, = a50x, for all A, u € Pow(w),
where (o )weic is a tuple of rational numbers.
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Remark 5.2. In the case when p” > w, we have Pow,(w) = {k} for all k € K,
and the proof below becomes much simpler (in particular, see Remark (£.5). The
reader may find it helpful to consider the case p” > w in the first instance. Roughly
speaking, the proof in the general case is obtained by applying the (trivial) proof
for the case r = 0 “within blocks” and the proof for the case p” > w “between
blocks”.

For each \ € Pow define

Ty = Hni(/\)! and

i>0
=TT
i>0

Note that zx = zayx. Define x = diag{(2x)repow(w)} and y = diag{(yx) xePow(w)}-
Define diagonal Pow(w) x Pow(w)-matrices <", =", y<" y=", ¢ as follows: for
all A € Pow(w),

0<i<r
e Hni()\)' =Zy>r,
i>r
v = [T ™™ = e,
0<i<r
>r _ Hp(ifr)nl()\) = yyor,
i>r
U = HP””(’\)
i>r
It is easy to verify that
(5.5) r=z<Tz" and
(5.6) y=y<"y="g.
Define a Pow(w) x Pow(w)-matrix C' as follows:
(N7 ey
(5.7) Cop = { Mrzr iz A=A,
0 otherwise,

so that C is block-diagonal. For each k € K let C(k) be the Pow, (w) x Pow, (w)-
submatrix of C. Let A = NC~!, so that

(5.8) N = AC.
Let
(5.9) <" =by L,

so that b5 = p A=) for all \. Note that b<", z<" and y<" are block-scalar, and
hence these matrices commute with C.

Let € K. We have a bijection from Pow,(w) onto Pow(n,(x)) given by
A = AZT. After relabelling of rows and columns via this bijection, C'(k) becomes
N+(%) " Hence, by Lemma [5.1} C(x) is row equivalent over Zp) to the matrix
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(C(r))™) 22" (k)y="(k), where 227 (k) and y=" (k) are the Pow, (w) x Pow, (w)-
submatrices of =" and y=" respectively. So there is S(x) € GLpay, (w)(Z(p)) such

that
(C(r)") a(r)y(r) = S(K)C(k).

Let S be the block-diagonal Pow(w) x Pow(w)-matrix with the s-block equal to
S(k) for each k. Then

(5.10) (C*™)la=ry2T = SC.

Define

(5.11) B=S"1A"gS.

We have

Y’ = Nbz~ty IN' by (1)

= ACby~H(z=") " (y=") T (@) T () TICT AT by @), B8), B3)
= ACH<"(z<7)"L(y<T)"L((Ctr)~1gZryZr)~l At by (53)
— ACH<T (z<") "L (y<r)~lomlgl Al by (5:10)
= Ab<"(x<") "L (y=")71STAT  since C' commutes with b<", <", y<"

(5.12) = Ab<"(x~") "1 (y=")"'BS! by EI0).

Let U = (z<")7'A, so that

(5.13) A=z<U.

Then

B=S"1A"S = 87U z<"S = STIUT ST

because S commutes with <" (as S is block-diagonal and z<" is block-scalar).
Therefore, defining
(5.14) VvV =S8"lUts,
we have B = Va<". Substituting this and (E13) into (EI2), we obtain

Y = 2" Ub<" (<) "L (y<r) "V a<TS.
Since S € GLpow(w)(Zp)), the matrix
(5.15) Y = 2<TUb<T (2<7) " (y<") V<
is equivalent to Y’, and hence to Y, over Z,).

Remark 5.3. If we remove U and V from the product on the right-hand side of (5I5)
and simplify the resulting expression, we are left with b<"2z<"(y<")~!. An easy
calculation shows that v, (b3 25" (yx") ™) = ¢pr(A) for all A € Pow(w) (see (£.29)
below). Hence, to prove Theorem [4.9] it is enough to show that removing U and
V from the product (BI5]) does not change the invariant factors. Lemma gives
general sufficient conditions for this to be true for products of this kind. The fact
that these conditions hold in our case is established at the end of the paper using
Lemma [54] which gives detailed information on the entries of U.
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For each A € Pow, define

ex =3 dy(ni(V),
1=0

r—1
(5.16) fa=Y_(r—imi(}), and
=0
kx = fx —en.
Note that
(5.17) ex = vp(z7),
(5.18) fr = wp(057) — up(u5"). and
(5.19) epr(N) = (r = )mi(N) + dp(m (V) = fr+ e,
0<i<r

Lemma 5.4. For all A, u € Pow(w):
(1) Uy € Lpy; B
(“) U)\u = 6)\u if A= [i; B
(111) vp(Uny) > kx — ky if X # [
Proof. We begin with (). Consider the block Pow,, for a fixed xk € K. Write N (k),
A(k), U(k) for the Pow,, x Pow,-submatrices of N, A, U respectively. We have

(5.20) N(k) = 2,C(k),

>r
that is to say, Ny, = anSz/\r_Hzl)r for all A\, € Pow,. Indeed, every f € )\,
satisfies Ay(;y = p; for all ¢ € [1,1(u)] such that p; < p". Hence, such a map f
is determined by an element of .#)>. ,>- together with a permutation of the set

{i | pi = p'} for each ¢ € [0,7 — 1] (and the correspondence is bijective).
Using (5.20) and the definition of U (cf. (5.8]) and (5.13])), we obtain

Uk) = a:;UV(n)C(n)fl = Ipow, ,

so () holds.
In order to prove (il) and (i), we first need to establish a decomposition of N as
a product, which may be informally described as follows. If A, u € Pow(w), then an
element of .#,, may be viewed as a way to aggregate the parts y; into “lumps” and
to associate bijectively some i € [1,1(A)] with each lump in such a way that A; is the
sum of the parts p; in the lump. This process may be split into two stages: first,
aggregate the parts p; > p” that are supposed to go to the same lump, without
touching the parts u; < p”; then, aggregate the parts p1; < p” with each other and
with the lumps obtained in the first stage to obtain the desired element of .#),,.
This leads to a decomposition of N as a product of two matrices. The following
construction makes this argument precise.
Define Pow., to be the set of A € Pow such that Ay < p" (or, equivalently,
A<" = )). Let
P ={(n,0) € Powc, x Pow | |n| + p"|0] = w} and
Q = {(n,0) € Powe, x Par | |n] + 16| = w}.

Note that A — (A<",A\2") is a bijection from Pow(w) onto P. For every Pow(w) x
Pow(w)-matrix Z, we write Z* for the Pow(w) x P-matrix obtained from Z by
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relabelling the set of columns via this bijection; and Z** denotes the P x P-matrix
obtained by relabelling both rows and columns. Let ¢: P — Pow(w) be the inverse
of our bijection.

Let D be the @ x P-matrix defined by

D ovy, (n2.02) = Onin M(ﬂeel?')'
For every A € Pow(w) and (n,0) € Q let &) (,,9) be the set of all pairs (f,g) of
maps f: [1,1(n)] — [1,I(N)] and g: [1,1(X)] = Z>¢ such that
(@) PTg(t) + 2 icp1ymi = A for all t € [1,1(N)];
(b) my(0) = |g~(u)| for all u € N.
(We remark that for every f there is at most one g such that (f,g) € &3 (;,0), due
to @).) Set Ex (y,0) = |&x,(n,0)], s0 that E is a Pow(w) x Q-matrix. We claim that

(5.21) N*=ED.
Indeed, for every A, u € Pow(w), a bijection
(5.22) %A,u — |_| gA,(H<T79) X %9#27‘

fePar(|u=r))

is constructed by the following rule. Let ((f,g),h) belong to the right-hand side
of (5:22)), so that for some § € Par(|ux,|) we have (f, g) € ) (u<r 0y and h € Mp,>.
If g € M, we set ¢ < ((f, g), h) if the following five conditions are satisfied:

(1) f(i) = q(i + 1(p=")) for all i € [1,1(u=")];

2) gty = pforallte1,IN)];
jeu(,z_gfn
(3) On(j) = 9(a(y)) for all j € [1,1(u=")].

(4) h(j )—h( ') i and only if ) = 4(7") for j,J' € [1,1(s=")];
(5) if 4,5" € [1,1(1=")] and Op,(jy = Op(jry, then h(j) < h(j’) if and only if ¢(j) <
q(j")-
(With regard to (@) and (@), note that, for ¢ € [1,1(u)], one has u; < p" if and only
if i > [(u="). Condition (3] follows from the other ones and is included for clarity.)
It is routine to verify that this rule does yield a bijection (5.22]), proving (G.21]).
We are now able to prove (). Let n € Pow., be such that w — || = p"u
for some u € Zs>q. Let P(n) (respectively, Q(n)) be the set of elements of P
(respectively, Q) with first coordinate . Then P(n) and Q(n) may be identified
with Pow(u) and Par(u) respectively via projection onto the second coordinate.
Under this identification, the Q(1) x P(n)-submatrix of D becomes equal to M ™),
By LemmaB7, M has the same row space over Ly as N, Hence, D = D'C**
for some Q x P-matrix D" with entries in Z,) (cf. (5.1)). Due to (5.2I)), we obtain
N* = ED'C**. Using (6.8), we deduce that A* = ED’, and hence, by (5.13),

(5.23) U*=(z<")"'ED".

Let A € Pow(w). For each j € [0,7 — 1], consider the group S, () of all permu-
tations of the set {i | \i = p’}. For any (n,0) € Q, the group [[o<,.,. Sn,(x) acts
on & n.0) by o - (f,g) = (o0 f,g). This action is free because whenever 0 < j < r
and \; = p/ one has f~1(j ) 75 @ for any (f,g) € &\ n,0) (due to condition (@)).

The order of the group is ;C ", and therefore ;vfr divides E) (,,9). Due to (5.23),
this implies that the entries of U™ lie in Z,), proving @.
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Finally, we prove (). Suppose that A, u € Pow(w) and X # [i, i.e. \<7 # u<".
Fix 6 € Pow(|u="]). We partition the set &) (,<r g) as follows. Let G be the set of
all pairs (g,v) of maps g: [1,I(\)] = Z>o and ~v: [1,1()\)] = Pow., such that
(A) my(0) =g~ (u)| for all u € N;

(B) pg(t) + [v(t)] = A¢ for all € [1,1(A)];
r 1
(©) w7 =2 (0).
For each such pair (g,7) let &97 be the set of maps f: [1,{(x<")] — [1,1(\)] such

that for every ¢ € [1,1())] the partition y(¢) is obtained by rearranging the multiset
{57 [ j € f71(t)} in the non-decreasing order. It follows from the definitions that

Cgok,(u<T,0) = |_| {(fa g) | f € Cgogﬁ}a

(9,7)€9

(5.24) 5o Experg = Y |677].
(9,7)€9

Moreover, it is clear from the definition of &9 that

g :Pl n; ()
o jr_[o<nj<w<1>>,nj<w<2>>,...,nmum)))’

whence

&)
(5.25) v, (|E97)) = e, — ZG’Y@) for all (g,v) € G.
t=1

We will estimate each e, ;) from above using the general inequality
(5.26) dy(s) <s forallseN,

which is an easy consequence of ([I)). Consider any ¢ € [1,1(\)] such that (t) # @,
and set ig = io(t) = min{i | n;(y(¢)) # 0}. We have

r—1 r—1
Fo=exm = 3 (r=imG) =dy(ni(r(1)) > Y (r=i=Dm((8) = r—io—1,
i=0 =0

where the strict inequality is due to (5.26]). Hence,

(5.27) f'y(t) —eyp) =T — 0(t).

Since v(t) € Pow<,, we have io(t) < r. Moreover, if \; < p", then by (B]) we have
[v(t)| = A, whence ig(t) < log, \;. Hence, summing (5.27) over all ¢ € [1,1())]
such that v(¢) # @, we obtain

(N 1(N) I(N)
(528) f»y(t) - Z €x(t) > Z ma'X{Oa r—= ].ng )\t} = f)w
t=1 t=1

t=1

where the equality is an obvious consequence of (B.14]).

We claim that the inequality (B.28) is strict. If not, then by analysing the
argument leading up to it, we see that for every ¢ € [1,1(\)] such that \; < p", we
must have io(t) = A¢, whence v(t) = (A¢). (For such ¢, we have |y(t)| = A, so the
condition that v(t) # @ holds automatically.) But due to (), this implies that

1<" = A<", a contradiction.
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Combining the (strict) inequality (5:28) with Eq. (525, we obtain
1N
vp([E9T]) > ep + fr — ny(t) =eu+ = fu
t=1
where the equality holds by (C)) and (5.I6). By (5:24), it follows that

v(Ex (usr0) > eu + fr— fu  (for all 6 € Par(|u="])).
Due to (5.23]), we deduce that

vp(Unpe) > Up((xfT)_l) tepth—fu=—exten+—fu=kx—k,o O

Remark 5.5. In the special case when p” > w, the proof of Lemma [£.4] is much
simpler and may be sketched as follows. First, parts (i) and (i) are obvious. (Note
that in the given case C' = Ipoy(w), and so U = 27 'N: see (E3) and (EI3).)
Secondly, part (i) follows from part ({l) together with the facts that Uy, = 0 if
My, = @ and ky <k, if M\, # @ and X # [i. The latter inequality can easily be
proved by reducing to the case when u is obtained from A by replacing one part p’
(for some j > 0) with p parts of size p/ 1.

Lemma 5.6. Let R be a discrete valuation ring with field of fractions K and
valuation v: K — ZU{oc}. Let I be a finite set. Suppose that s,t,u, P,Q € GL;(K)
and s,t,u are diagonal. Set p; = v(s;) + v(t;) + v(u;) for all i € I. Suppose that
there exist tuples (c;)icr and (B;)icr of rational numbers such that for all i,5 € 1
the following hold:

(1) v(ti) = i — Bi;

(lZ) ’U(,Pij — 61']‘) > o — oy
(i) v(Qij — di5) > Bi — Bjs

() if p; > p;, then a; —a; > v(s;) —v(s;);

(v) if pi > pj;, then B; — Bi > v(u;) — v(w;).
Then sPtQu is equivalent to stu over R.

Proof. Let m be a uniformising element of R. For d € N, consider the simple
extension K’ of K generated by a d-th root of 7, and let R’ be the integral closure
of Rin K'. Then R’ is a discrete valuation ring (see e.g. [I9] Chapter 1, Proposition
17]). If we view all the matrices in the lemma as ones with entries in K’ rather
than K, then all valuations are multiplied by d. Thus, choosing an appropriate d,
we may assume that «; and f; are integers for all 4.

Let Z = sPtQu. By (), we can represent ¢ as a product of two diagonal matrices
tM) and t® such that v(tz(-l)) = «; and v(tgz)) = —f; foralli € I. Let P =
(N =1PtM) and Q' = tP Q)1 so that Z = st P'Q'tPu. Consider the
following subgroup I" of GL(R):

I' = {J S GL[(K) | ’U(Jij — 51]) > 0 for all 1,J € I}
We have P’ € T'. Indeed, for all 4,5 € I,
’U(P-I-—éij) = —’U(tgl))'i"l)(Pij—5ij)+’l)(t(1)) = —Oéi—l—’U(,Pij—éij)-i-Oéj >0 by (EID

1] J
Similarly, @’ € T by (). So P'Q’ €T.

Fix a total order < on I such that ¢ < j implies p; < p; for all i,5 € I.
Using standard Gaussian elimination, one can decompose any element of I' as a

product of a lower-triangular and an upper-triangular matrix (with respect to this
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order) such that both matrices belong to I'. In particular, P'Q’ = JH for some
lower-triangular J € T' and upper-triangular H € T'. Let J' = st().J(st(M))~1 and
H' = (t@u)~'Ht@u. Then

7 = stW JHtDy = JstWt@yHqH = J'stuH'.

Now J' is lower-triangular and v(J}; — 1) > 0 for all ¢ € I because J has the same
properties. Further, if ¢ > j are elements of I, then p; > p;, and hence

v( ) = vlsi) +v(t) + 0(Jig) = v(s;) — ()

=v(Jij) + o — o +v(s;) —v(s;) > v(Ji;) >0 by ().
Hence, J' € T < GL;(R). By a similar argument, it follows from (@) that H' €
GL;(R). Therefore, Z is equivalent to stu over R. d

We are now in a position to complete the proof of Theorem We will apply
Lemma [5.6] to the product Y = z<"Ub<"(z<")"1(y<")"Vz=<" (see (5.I7)), with
ay = kx/2 and By = —ky/2 for all A € Pow(w). We check the conditions of the
lemma one by one.

First, by (0.I7) and (EI8),
vp (037 (@37 YR T = fr—ean =k = ax = By,
so condition () holds.

To prove condition (), consider any A, u € Pow(w). If ky < k,, then ay < o,
and, by Lemma BA{), v,(Uxy) > 0 > ax — «p. On the other hand, if ky > k,,

then by Lemma B.4Y{), (),
Up(Unp — Oap) > kx —ky > (kx —ku)/2 = an — .
So condition (i) holds.
By the inequality just proved,
0p (U = 6r) > (ki — kn)/2 = Bx — B for all A, € Powf(uw).

Now V = S71U"S by (EI4). The matrix S is block-diagonal, and both S and

S~ are Zpy-valued. Further, ky depends only on A (i.e. only on the block of \).

Therefore, v(Va, — dxu) > B — By for all A, p € Pow(w), so condition (i) holds.
If py is defined as in Lemma [5.6] then

(5.29) pa = vp(aX") +p(05") — vp(UX") = ex + fr = cpr (V)
by GI7)-(EI9). Suppose that A, i € Pow(w) and py > p,,. We have

(0 — ) — (i) — vy = Do X Tz o oy
_ f>\+€>\_fu_eu _Px" Pu >0,
2 2 -

whence oy —ay, > v, (25") = vp(25"). So condition () holds. Moreover, the same
inequality means that condition (@) holds, as 5, — Bx = ax — ay.

By Lemmal[5.6] Y (and hence Y') is equivalent to 2<"b<"(y<")~* over Z,). The
p-adic valuation of the (A, A)-entry of the latter matrix is ¢p () by (£.29)), for each
A € Pow(w). This completes the proof of Theorem [£.9] and hence of Theorem LT}

Acknowledgement. The author is grateful to the referee for many helpful com-
ments that led to considerable simplification of the proofs.
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