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Abstract

While the semantics of local variables in programming languages is by
now well-understood, the semantics of pointer-addressed heap variables is
still an outstanding issue. In particular, the commonly assumed relational
reasoning principles for data representations have not been validated in
a semantic model of heap variables. In this paper, we define a para-
metricity semantics for a Pascal-like language with pointers and heap
variables which gives such reasoning principles. It turns out that the
correspondences between data representations cannot simply be relations
between states, but more intricate correspondences that also need to keep
track of visible locations whose pointers can be stored and leaked.

Keywords: Denotational semantics, relational parametricity, separation logic,
imperative programming languages.

1 Introduction

Programming languages with dynamically allocated storage variables (“heap
variables”) date back to Algol W [30] and include the majority of languages
in use today: imperative languages like C, Pascal and Ada, object-oriented
languages ranging from Simula 67 to Java, and functional languages like Scheme,
Standard ML, and variants of Haskell [5]. However, the semantic structure of
these languages is not yet clear. In particular, the oft-used principles for data
representation reasoning, involving invariants or simulation relations, have not
been validated. While remarkable progress has been made in understanding
local variables (cf. the collection [16]), none of this theory is directly applicable
to heap variables because the shape of the heap storage dynamically varies.

A number of attacks have been made on the problem: Stark’s thesis [27, 26],
which deals with dynamic allocation but not pointers, and Ghica’s and Levy’s
theses [4, 6] (see also [7]) which address the general semantic structure but not



data representation reasoning. The recent paper of Banerjee and Naumann [2]
is the first to address data representation correctness with heap variables and
pointers. While their work is remarkably successful in dealing with a Java-
like language with dynamically allocated objects, their treatment falls short of
explicating the semantic structure of the language relying instead on a strong
notion of “confinement” to simplify the problem.

In this paper, we define a parametricity semantics for a Pascal-like language
with dynamically allocated variables, pointers, and call-by-value procedures.
The validity of simulation-based reasoning principles follows from the structure
of the semantics (similar to Tennent’s treatment in [28] for local variables). The
type structure of the semantics makes explicit where information hiding is going
on, while the formal parametricity conditions back up one’s intuitions and allow
one to produce formal proofs. We do not use any confinement conditions in our
definitions. Instead, we treat all programs in the language whether confined or
not. Where there is information leakage, our semantics explicates the breakdown
of the data encapsulation, so that faulty conclusions are avoided.

Our treatment bears a close relationship with the ongoing work on separation
logic for local reasoning about heap storage [24, 11, 31]. In particular, our
relations are “local” in the same sense as the assertions of separation logic. We
use the ideas of partial heaps and heap-splitting developed there to formulate
the relations. We envisage that in future work, these connections with local
reasoning will be further strengthened.

This paper is a revised version of [21] incorporating a more general frame-
work of relation extensions which gives rise to a subsumptive reflexive graph
structure and leads to a simpler presentation because naturality is subsumed
by parametricity. (Cf. Definition 14 and Corollary 18.) It also allows more
instances of program equivalences to be proved than with the original definitions.
(Cf. Example 4 and Example 20.)

2 Motivation

Local variables get hidden in program contexts due to scope restrictions in the
programming language. This gives rise to information hiding which is exploited
in devising data representations. Since dynamically allocated heap variables can
only be accessed through entry points given by local variables, the same scope
restrictions also give rise to information hiding for heap data structures. In this
section, we give an informal introduction to these information hiding aspects
through a series of examples.

Example 1 Consider the following program block adapted from Meyer and
Sieber [8]:

{ local var int x; x := 0;
pO;
if x = 0 then diverge

}



Here, p is an arbitrary non-local procedure with no arguments, and diverge is
a diverging command. The program block should be observationally equivalent
to diverge for the following reason: the local variable x is not visible to the
non-local procedure p. Hence, if x is 0 before the procedure call, it should be 0
after the procedure call too.

Next consider a similar program using pointer-addressed variables:!

{ x := new int; xt := 0;
pO;
if xt = 0 then diverge
}
Here, x is a non-local variable (of type tint) that can store pointers to integer
variables in the heap. The command x := new int allocates a new integer

variable on the heap and sets x to point to this variable. Unlike in the local
variable case, we cannot expect this program block to be equivalent to diverge.
The reason is that the heap variable is accessible to p via the non-local variable
x and p has the ability to modify it. There is no information hiding for the heap
variable.

On the other hand, the following variant does implement information hiding;:

{ local var (tint) x;

X := new int; xT := 0;
pQ);
if xt = 0 then diverge

}

Here, the pointer variable x is local. Since it is the only access point to the
heap variable, the procedure p has no access to the heap variable. If xt is 0
before the procedure call, it should remain 0 after the procedure call. Hence,
this block is equivalent to diverge. |

We give an indication of how this form of selective information hiding can
be modeled in the semantics. Using a possible world form of semantics as
in [23, 17, 14], all program terms are given meanings with reference to a possible
world W denoting the set of locations available in a particular (dynamic) context
of execution. We take worlds to be sets of typed locations (or equivalently record
types) of the form W = {l1:61,...,1;: 0 }. We write X <: W to mean that X is
an extension of W with additional locations (or a “subtype” of W). Now, in a
world W, a procedure p denotes a parametrically polymorphic function of type:

[p]: Vx <ow [St(X) — Fy<.xSt(Y)]

where St(X) means the set of states for the location world X. Here, X refers
to the set of locations available when p may be called, which will include all the
locations of W plus any additional locations allocated before the call. However,

IThe notation for pointers is borrowed from Pascal. For any data type 8, 14 is the type of
pointers to -typed heap variables. If p is a pointer, p1 denotes the variable that p points to.
(In the syntax of C, 1§ would be written as d* and pt as *p.)



since p has been defined before these new locations are allocated, it should have
no direct access to these new locations. The parametric interpretation of Vx <.y
captures information hiding for all parts of X that are not accessible from W.
This is defined via relation-preservation for appropriate kinds of relations. The
definition of these relations is the main technical contribution of this paper.
Corresponding to the subtyping X <: W, there is a relation-subtyping
S <: R that says that a relation S between potential instantiations of X is
an extension of a relation R between potential instantiations of W. Intuitively
the relation-subtyping S <: R says that the S relation expects the contents
of all W-accessible locations to be related by R and imposes new constraints
for the other new locations that are inaccessible from W. The parametric
interpretation of Vx<.iw implies that [p] must preserve all relations S that
extend the identity relation Iy, i.e., preserve all additional conditions that can
be stated for W-inaccessible locations. Using this intuition, we can explain how
the three program blocks in Example 1 are treated. In each case, we choose W
to be the set of all locations allocated before the entry of the program block:

o In the first program block with a local variable x, the extended relation S
can impose the condition that the new location for x contains a specific
value such as 0. Since the binding of p preserves all such relations, it
follows that p cannot affect x.

e In the second program block, where the heap location is accessible via
a non-local pointer variable x, recall that the extended relation S can
impose additional conditions only for W-inaccessible locations. Since the
new location is accessible from W before the procedure call to p, there is
no requirement that p should preserve its value.

o In the third program block where the heap location is accessible via a local
pointer variable x, both x and the heap location are inaccessible from W.
Hence the extended relation S can impose the additional condition xt =
0 and p must preserve it.

The second example, due to Peter O’Hearn, illustrates information leakage:

Example 2 Consider the program block that calls a non-local procedure h of
type fint — com:

{ local var (tint) x; x := new int;
h(x);
xt := 0;

pO;
if xt = 0 then diverge

}

As in the previous example, x and xt are not directly visible to the non-local
procedures. However, h is given as argument the pointer value of x. It has
the ability to dereference x and modify xt. It can also store the pointer x in a



non-local variable. In other words, the access to the local data structure x* has
been leaked and encapsulation is lost. It is not guaranteed that the later call
to p will not affect xt because p can receive access to xt from h via a shared
variable. This block is not equivalent to diverge in general.

If, however, h were to be passed x* as an argument, instead of the pointer
value x, it would not have the ability to store x and information leakage would
be avoided.? |

To model information leakage, we split the relations mentioned previously
into two parts: one part that relates wvisible heap locations, given by a partial
bijection p between the location sets, and a second part that relates the contents
of hidden locations, given by a relation R between partial states. A pair
consisting of the two parts (p, R) : W < W' will be referred to as a “relational
correspondence.” Such a correspondence determines a relation between state
sets expressed as EQ, * R, where F(Q, means that the p-related locations
have equal values (modulo p) and the * connective, adapted from separation
logic [24, 11, 31], means that the two parts of the relation access disjoint sets
of locations. Now, a state transformation that preserves EQ, x R is allowed
to look up and update p-related locations. It is also allowed to store pointers
to p-related locations in other locations. However, it cannot store pointers to
locations not related by p. The parametricity constraints imply that only the
p-related locations can be leaked.

The information leakage in Example 2 is then explained as follows: The
procedure call to h must preserve all relational correspondences (o, S) <: Iy
that allow its argument x to be interpreted. Since the argument is a pointer to a
heap location, the extended partial bijection o must contain a pair (I,1), where
[ is the heap location that x points to. Hence h(x) can store pointers to [ in
W -accessible locations with the result that [ itself becomes W-accessible. This
has an effect for the later procedure call p (), which can modify any W-accessible
location including /.

Both of our previous examples have to do with data abstraction, albeit in
a veiled form. (The program blocks create local data structures which they
attempt to hide from the client procedures in varying ways.) Our programming
language also contains a class construct, previously studied in [19, 20], providing
a more direct form of data abstraction. The next example uses this to illustrate
relational reasoning:

Example 3 Consider a list class implemented using linked lists in heap:

type listsig = { insert : int — com,
delete : int — com,
lookup : int X var bool — com}

2Because of the subtle distinction between pointer values x and the pointed variables xt,
we prefer to work with an explicit pointer language like Pascal. Languages like Java, where
pointers are treated implicitly, do not make this distinction and consequently lack the facility
to control access. Surreptitious leakage is pervasive in the programs of such languages.



List = class : listsig
local var (tnode) head;

init head := nil;
meth { insert = Ax. { head := new node(x,head) }
delete = ...
lookup = ... }
end

Here, listsig is the interface type of the List class and node is a recursively-
defined storable data type: node = int x tnode. We omit the details of the
methods for deletion and look-up.

To verify the correctness of such a class, one can prove its equivalence with
another class that uses mathematical sequences as the internal representation:

List’ = class : listsig
local var (int*) s;

init s := ();
meth { insert = Ax. { s := (z)s }
delete = ...
lookup = ... }
end

Here int* represents the set of integer sequences regarded as a data type, and the
methods update the variable s to achieve the same effect as the methods in the
concrete class. Intuitively, one reasons about the equivalence of the two classes
by considering a relation between their states to the effect that the variable s in
List’ holds exactly the sequence of elements stored in the linked list starting at
head, and showing that all the methods preserve this relation. Such a relation
is formalized in our setting as follows.

The two representation worlds contain one location each, for the local vari-
ables of the classes: W = {l:tnode} and W' = {I":int*}. The partial bijection
part of the correspondence is the empty relation §: W <+ W' because only visible
locations need be included in the partial bijection but [ and I’ are not visible
to the clients of the classes. The state relation part of the correspondence is a
relation R defined as follows:

s [R] s' <= rep(s, s(1),s'(I"))
rep(s,p,a) <= (p=nilAa=()) Vv
Hnaqaﬂ'(s(p) = (naq) Na = <n)18 /\rep(saqaﬂ))

The relation requires that the linked list starting at location [ in the state s
stores the same sequence of values as in the (sequence-typed) location I’ in the
state s'. O

The important point to notice is that R is not simply a relation between St(W)
and St(W'). In fact, the world W does not contain any locations that can be
used for the nodes of the linked list. Rather R should be viewed as a relation
that applies not only to the states for W and W' but also to all their future
extensions with additional locations. This is one of the key technical issues that
is addressed in the definitions to follow.



A common method of ensuring correctness of data representations is by
maintaining representation invariants. The preservation of invariants consti-
tutes unary relational parametricity, whose theory can be presented along the
same lines as that of binary relational parametricity. (In fact, relational para-
metricity works for relations of all arities.) However, unary relations can be
reduced to binary relations as relations between a representation and itself. We
use this reduction in the following example.

Example 4 Consider a class for ordered lists with dummy headers similar to
that of lists above.

type listsig = { insert : int — com,
delete : int — com,
lookup : int X var bool — com}

The reader can easily envisage a class that implements the signature using linked
lists. The fact that it maintains the “ordered” invariant can be represented as
the following correspondence between a world W = {l : Tnode} and itself. The
partial bijection part of the correspondence is empty. The state relation part of
the correspondence is a relation:

s[R]s' <= s=s"ATa. (rep(s,s(s(l)).2,a) A ordered(c))
ordered(a) <= Vai,as,1,Z2.- @ = a1-{(T1,T2)as => 71 < T

Note that R relates a state to itself provided it contains an ordered list starting
from the node following the one at s(I), thus capturing the orderedness invariant.

Suppose we modify the lookup operation so that, instead of returning a
boolean, it returns a pointer to the node where the element is stored. The
modification is as follows.

lookup : int X var (Tnode) — com
lookup = A(x,p). { p := head;
while (p # nil and pt.1 < x) do
p := pt.2;
if pt.1 > x then p := nil

}

It is easy to fall into the trap of asserting that this modified implementation
preserves the representation invariant. Clearly, there is nothing in the lookup
procedure itself that destroys the orderedness invariant. However, since 1ookup
returns a pointer to an internal node of the list, a client of the class would be
able to modify the contents of the list cells, thereby breaking the invariant. This
is the same problem of information leakage as in Example 2.

Our semantics blocks the conclusion that this implementation maintains the
representation invariant. As mentioned in connection with Example 2, when
representations are related by a correspondence (p, R), only p-related locations
can be leaked. However, p-related locations cannot form part of the heap related
by R (since the relation to be preserved is EQ ,* I and the x connective requires
the two portions of the heap to be disjoint). As all the list cells are involved in



satisfying the relation R, the p part of the correspondence is empty and, so, no
pointers can be leaked.

As a minor twist on this example, consider modifying the delete operation
to return a pointer to the deleted node:

delete : int X var (tnode) — com
delete = A(x,p). { local var (ftnode) pred := head;
p := headt.2;
while (p # nil and pt.1 < x) do
{ pred :=p; p := pt.2 }
if pt.1 > x then p := nil
else { predt.2 := pt.2; pt.2 := nil }

}

If care is taken to reset the next pointer of the deleted node to be nil, it is per-
missible to return a pointer to the deleted node via the second argument. Even
though the partial bijection part of the correspondence is initially empty (as
explained in connection with lookup), the relational correspondence expected
for the output state is some extension of the correspondence given for the input
state, as indicated by the type of command meanings:

Vx<w St(X) — dy<.x St(Y)

Such an extension can add new locations to the partial bijection part of the
correspondence as long as they are not used in the binary relation part. O

3 Definitions

Let 6 range over a collection of data types. In particular, we assume that 19 is
a data type for any data type 6.

Let Loc = WsLocs be a countable set, countable for each §, whose elements
are regarded as names of “typed locations.” A location name in Loc is often
annotated with its type, as in 1%, to indicate which Locs it comes from. A
location world is a finite subset W Cg, Loc. It is also intuitive to think of
a location world as a record type {l1:01,...,lp:0,}. A subtype X <: W is a
superset X D W of locations. In terms of records, X is a longer record type
than W.

Fix a set of values Val(d) for each data type § such that Val(1§) = Locs &
{nil}.

We use the following technical notion of a “heap” (or a partial state with
pointers) from the work on separation logic [11]. A heap is a pair (L, s) where
L Chin Loc and s:[];5;, Val(d) is a mapping of locations to values. We simply
denote a heap (L,s) by s, and denote L by dom(s). If s(l) is a data value
involving another location I’, I’ may or may not be in dom(s). If I’ ¢ dom(s)
then its occurrence in s(I) is called a “dangling pointer.” A heap with no
dangling pointers is said to be total.

Whenever s; and s; are heaps with disjoint domains, s; * so denotes their
join with dom(s; *s3) = dom(s; )Wdom(sy). Much use is made of this operation



in the separation logic [11] and the Banerjee-Naumann work [2]. It will play a
central role in our work as well.

A state for a world W is a heap s such that dom(s) = W and there are no
dangling pointers in s. The set of states for a world W is denoted St(W).

In our semantic model, we use a single form of state which we generally
refer to as a “heap.” It would have been possible to partition the state into a
separate stack-state and a heap-state, but it would not have made any technical
difference to the model. Using a single state (and thereby thinking of the stack
storage as a subpart of the heap) does not seem to lose any accuracy.

Definition 5 A renaming relation is a triple p = (W, W', p) where
e W and W' are location worlds, and
e p C WxW'is atype-respecting relation that is single-valued and injective.

(That is, p is a type-respecting bijection between some subsets L C W and
L' C W') We refer to W as dom(p), W' as cod(p) and the relation as the
“graph” of p.

If X <: W and X' <: W' are extended worlds and ¢ = (X, X', o) and
p = (W, W' p) are renaming relations, we say that o is an ezxtension of p and
write o <: p if 0 D p. O

As mentioned in the context of Example 2, the purpose of renaming relations
is to identify the visible locations. An extension of a renaming relation can make
previously hidden locations to become visible, as well as making new locations
visible.?

Since the pointers to visible locations can be stored in other visible locations,
we define the following notation. For d,d’ € Val(§), we say that d and d' are
equivalent modulo p, and write d =, d', if d and d' denote the same data value
assuming that all p-related locations are deemed to be equal.

In the following definitions, we make crucial use of relations between partial
heaps. Even though we are, in the end, interested in relations between total
states, these relations will be defined using those on heaps.

e If p is a renaming relation, FQ, relates heaps that have equal values in
p-related locations:

s [EQ,] ' <:>d0m(s): 1A dom(s") =p[2
AY(LT) € p.s(l) =, s'(T')

(where p | 7 denotes projection of i’th components).

o If H is a set of heaps, Ay denotes its diagonal relation:

s[Ap]ls’ <= s=s'As€H

3In the predecessor of this paper [21], relation extension did not allow previously hidden
locations to become visible. The present generalization allows more program equivalences.
Cf. Examples 4 and 20.



e The relation emp relates empty heaps:
s [emp] s’ <= dom(s) = @ = dom(s')
e The relation R xS puts together two relations R and S side by side:
s [RxS] s <= Js1,89,8],85. 8 = s1%82 A s' = s\ *sh A s1 [R] s| A sa[S] sh
Note that R *emp = R for all heap relations R.

This * connective above is the binary version of the * connective in separation
logic [11] and is extremely powerful. Its power owes to the fact that we do not
have to specify in advance which parts of the heaps R and S run between. In
a manner of speaking, R and S are “untyped” relations even if R xS may be a
“typed” relation.

Definition 6 A relational correspondence between location worlds is a pair
(p,R) : W < W' (often written as pR : W + W' to avoid notational clutter)
where

e p is a renaming relation between W and W' and

e R is a function mapping all extensions 1 <: p to relations between heaps,
such that, whenever 1y <: ¥; <: p, R(12) D R(11).

The extension relation for correspondences is defined by ¢S5 <: pR if and
only if (i) o <: p, and (ii) for any ¢ <: o, there is a heap relation P such that

S() = R(®) * P. 0

This is the key definition of this paper. We explain it in detail. The intuition
is that the state consists of

e visible locations, identified by p, which must allow look-up, update and
storage, and

e hidden locations, related by R(v), which contain representations for ab-
stract data and, so, can only be modified by invariant-preserving opera-
tions.

The visible locations and the hidden locations are disjoint. The visible locations
must have equal values in related states. The hidden locations, on the other
hand, are related by some relation R(1)) that captures the data representation
invariants. The relation R(t) is parameterized by renamings ¢ so that the
information about visible locations mentioned in % can be incorporated in its
formulation. The condition R(¢1) C R(1)2) means that related states continue
to be related if the states are extended with additional visible locations. The
intuition for the definition of ¢S <: pR is that S extends R by imposing
additional conditions for new locations but does not alter R for the part of
the heap that R deals with. This is the same intuition as that in [17, 15] for
local variables.

10



Definition 7 The identity correspondence for a world W is Iy = (iw,emp) :
W « W, where i is the diagonal relation for W and emp maps all extensions
9 of iy to emp.

Fact 8 Whenever X <: W, Ix <: Iw.

Proof: If X <: W, ie., X D W, then ix D iy which is the same thing as ix <:
iw. Secondly, for any ¢ <:ix, emp(¢¥) = emp = emp * emp = emp(y)) * emp.
Thus, (ix,emp) <: (iw,emp). O

Whenever X <: W, there is an embedding correspondence
JX,W = (jx,W,emp) XeW

where jx,w = {(l,I) | ] € W} and emp maps all extensions of jx w to emp.
Note that Jw,w is the same as Iyy.

Having defined relational correspondences, we must specify how these are
used to relate states. Note that the relation EQ , * R(p) relates heaps (or partial
states with arbitrary domains). The corresponding relation for states is obtained
by restricting the heap relation to states:

St(pR) : St(W) ¢ St(W")
St(pR) = (EQ, * R(p)) N (St(W) x St(W"))

The idea is that in order to define a typed relation between states, we transit
to the untyped world of partial heaps where we have the powerful x connective
available and coerce the results back to the typed world. Defining the required
relations without the * connective would be extremely awkward.

Fact 9 St(Iw) is the identity relation on St(W).
Proof: Let s, s' € St(W). By definition, dom(s) = dom(s') = W.

s [St(Iw)] s' <= s[EQ;, *emp]s'
— VieW.s(l) =5'(l)
= s=¢

To make these definitions concrete, we give a few examples:

Example 10 Consider the first program block from Example 1. Let W be
some set of locations (the storage context for the block). The storage context
for the body of the block is X = W w{l, } where [, is the location allocated for
X.

Define S : X + X by 0 = iw and S(¢) = Ag where H = { s | dom(s) =
{lz} N s(ly) = 0}. Clearly oS <: Iw. The preservation of this correspondence
by the call p() implies that x continues to remain 0 after the call.

Similarly, for the third program block of Example 1, use X = W W {l,,lo},
o =1iw, S(¢) = Ag where H = { s | dom(s) = {l5,lo} As(ly) =l As(ly) =0}.
O

11



Example 11 Consider the list data structure from Example 3 but adapted
now to contain pointers to integer cells instead of just integers. The type of
nodes is given by node = fint x fnode. For the worlds W = {l:tnode} and
W' = {I': (tint)*}, we define a correspondence ((}, R) where the relation function
R() is defined by:

s [R(1)] 8" <= repy (s, s(1),s'(I"))
repzp(s:pa Oé) — (p=n11 Na= )) Vv 3n,n',q,p. (s(p):(n7k) A a=<nl)'ﬁ
A (n7nl) € ¢ A rep¢(57q7ﬂ))

Notice the use of ¥ argument in relating the contents of the list cells. The
corresponding definition for Example 3 would use a constant function R(v)
because no pointers need to be related. O

Categorical matters

We use the setting of reflexive graphs of categories [15, 25, 3] to explicate the cat-
egorical structure that we use. The key definitions are recalled in Appendix A.

Proposition 12 There is a subsumptive reflexive graph World with the follow-
ing data: worlds as vertices, extensions X <: W as verter morphisms, corre-
spondences pR : W < W' as edges and extensions oS <: pR as edge morphisms.
The identity edges are the identity correspondences. The subsumption map sends
each vertex morphism X <: W to the embedding correspondence Jx w .

Let Set denote the subsumptive reflexive graph with sets and functions
forming the vertex category and binary relations and relation-preserving squares
forming the edge category. The subsumption map sends each function f: A - B
to its graph (f) : A & B.

We will be working with the functor category Set o™ whose objects are
subsumptive reflexive graph-functors F : World®°® — Set, and morphisms are
parametric transformations [3]. (To deal with divergence and recursion, we
must really use Cpo in place of Set. We omit the treatment of recursion in this
version of the paper, but it can be treated the same way as in [15].)

Definitions of parametric limits Vx F/(X) and parametric colimits 3x F(X)
for arbitrary reflexive graph-functors F' may be found in [3]. In our case, we
will be using these with nonvariant functors F' : World® — Set (where World®
is the discrete reflexive graph corresponding to World with only identity mor-
phisms).

The notation Vx<.w F(X) is used to denote the parametric limit of the
functor FoJ° : (World..)° — Set where World..jy is the reflexive subgraph
of World with vertices X <: W and edges ¢S <: Iy, and J is its inclusion
in World. It is to be noted that the type expression Vx.w F(X) forms a
contravariant functor T'(W) from World to Set. The notation Ix.wF(X)
similarly refers to the parametric colimit of F' o J° (covariantly in W).

The functor category SetWorld™ g cartesian closed with products given
pointwise and exponents F = G given by (F = G)(W) = Vx«wF(X) —
G(X) [15, 3].
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Explicit constructions

For the benefit of the reader unfamiliar with parametric limits, we give direct
definitions of these constructions (which may be seen to be special cases of the
definitions in [3]).

Let F be a type operator that associates, to every world W, a set F/(W) and,
to every correspondence pR : W « W', a relation F(pR) : F(W) + F(W')
such that F(Iw) = Apw). Then,

o [ F(X) is the set of families of the form {px € F(X)}x indexed by all
worlds X. ]y ., F(X) is similar except that the families are indexed
only by subtypes of W.

o VxF(X) is a subset of [[, F(X) consisting of families satisfying the
parametricity condition: for all correspondences pR : X + X' between
different worlds, the components px and px: are related by F(pR).

o Vx<.wF(X) is a subset of [y ., F(X) with a parametricity condition
that applies only to correspondences pR <: Iyy. We say that the families
are parametric with respect to W.

e > F(X) is the set of pairs of the form (X, a) where X is a world and
a € F(X). Such pairs should be viewed as “implementations” of abstract
data types, where X denotes the representation type and a is the collection
of operations. The set ) x .,y F/(X) is similar except that the worlds X
are restricted to subtypes of W.

e dx F(X) is the quotient of )" F'(X) under a behavioral equivalence re-
lation. First, if (X, a) and (X', a') are pairs in )y F(X), a simulation
relation between them is a correspondence pR : X <> X' such that a and
a' are related by F(pR). Two pairs (X, a) and (X', a') are behaviorally
equivalent, written (X, a) ~ (X',a’), if there is a sequence of pairs (X, a),
(X1,a1), -y {(Xn—1,0n-1), (X', a’) with simulation relations between suc-
cessive pairs. The equivalence class of a pair (X,a) under the behavioral
equivalence relation is denoted {X,al). These equivalence classes denote
true “abstract data types” [9, 20].

e dx.wF(X) is a quotient of )y _.;;, F(X) where the allowed simulations
between pairs are restricted to correspondences pR <: Iyy. The induced
behavioral equivalence relation with respect to W is denoted ~yw and the
equivalence class of a pair (X, a) is denoted {X,a)w. These equivalence
classes should be viewed as “partially abstract” types whose representa-
tions X are hidden except for the knowledge that they form subtypes of
w.

The intuitive reading of Ix ., St(X) is that all the locations in X that are not
accessible from W are hidden. This intuition can be clearly seen in the following
“garbage collection” lemma:
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Lemma 13 Let GCy : Ax<.w St(X) — Ix<.w St(X) be defined by
GCw({X, s)) = (reachx (W, s), s [ reachx (W, s))

where reachx (W, s) is the subset of X consisting of all locations reachable from
W in the heap s. Then GCyy is the identity function on Ix<.w St(X).

Proof: Denote reachx (W, s) by L. Define a renaming relation p: X < L as
{(,1) |l € L}. Let R(y) relate any heap to the empty heap. Then it is easy
to see that s [St(pR)] (s | L). Consequently, (X, s) ~w (L, s [ L). O

This result signifies that reachability of locations has been properly captured
by the relational correspondences.

A type operator F' is a contravariant subsumptive functor if, whenever V <:
W is an extension of worlds, for every d € F (W) there is a unique value d' €
F(V) such that d' [F(Jyv,w)] d satisfying certain conditions. (See below.) We
denote this unique value d’ as dfy;. All the types of the imperative programming
language are interpreted as contravariant functors of this form.

Definition 14 A type operator F' is a contravariant subsumptive functor if
it has an associated action on world extensions V <: W, i.e., for every d €
F(W), there is a unique dfy;; € F(V) such that dfy [F(Jv.w)] d, satisfying the
following conditions:

e composition is preserved, i.e., whenever U <: V <: W, (dT%)Tg = dT[V]V,
and

e the relation action is preserved, i.e., whenever 7P : V + V' is an extension
of pR: W & W',

d [F(pR)] d' = dt}y [F(xP)] d't}y

Similarly, there is a notion of covariant subsumptive functors, which have an
associated covariant action df}y for world extensions V <: W.

If F and G are contravariant subsumptive functors then any parametric
family of functions {px : F(X) — G(X)}x of type VxF(X) — G(X) is
automatically a natural transformation, i.e., for all world extensions V' <: W
and d € F(W),

(pw ()t = pv (dty)
We call such a uniform family a parametric transformation.

Similarly, every family {px € F(X) - G(X)}x<w in Vx<w F(X) —
G(X) satisfies the naturality condition with respect to W:

(px(d))tx = py(dtY) for all extensions Y <: X such that X <: .

These results follow from [18, 3], where it is shown that naturality is subsumed
under parametricity if we are only considering subsumptive reflexive graphs and
subsumptive reflexive graph-functors.

We note two general cases of subsumptive functors arising in our setting:
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e The type expression T (W) = Vx<.wF(X) has an associated relation
action T'(pR) : T(W) + T'(W') defined by

{px}x<w [T(pR)] {Px }x <
for all 0S : X + X' such that oS <: pR, px [F(cS)] p'x:

We write this relation as V,s<.,rF(05).

The type operator T (W) forms a contravariant subsumptive functor in W,
independent of whether F' is functorial. The action for world extensions

V <: W is given by ({px}x<w) My = {px}x<v-

e The type expression T (W) = Ix.wF(X) has an associated relation
action T'(pR) : T(W) « T(W') defined by

(X, ahw [T(pR)] (X', a'hw: =
there exist (Y, b) ~w (X, a), (Y, V') =y (X', d')
and 0S : Y < Y’ such that ¢S <: pR and b [F(65)] b

We write this relation as 3,5<.,r F(0S).

This type operator is a covariant subsumptive functor in W. If V. <: W, we
have the covariant action ({X,a)v )TV = (X,a)w. Since any simulation
relation with respect to V' is also a simulation relation with respect to W,
this action is well-defined.

Lemma 15 The above subsumptive functors are well-defined.

Proof: Consider the type operator T(W) = Vx<.wF(X). We first need to show
that, whenever V <: W, {px}x<.v [T(Jv,w)] {px}x<:w. This is is equivalent
to showing px [F(cS)] px: for all 0S : X + X' such that ¢S <: Jy,w. Since
Jv,w <: Iw, we have ¢S <: Iy. By definition of parametric families (with
respect to W), we have that px [F'(0S)] px-.

Secondly, we show that {px}x<.v is the unique such family. Suppose ¢ is
another family satisfying {¢x}x<.v [T(Jv,w)] {px}x<.w- Then, gx [F(cS)]
px for all 0S : X < X' extending Jy,w. For any X <: V, it is easy to see
that Ix <: Jy,w. Hence, qx [F(Ix)] px. Since F(Ix) = Ap(x), we have that
adx = PpPXx-

It is clear that composition is preserved. As for the preservation of relation
action, suppose {px}x<w and {py,}x <.w' are related by V,.r<.,r F(7T).
Then their restrictions {px } x<.v and {p’x/ } x'<.v+ arerelated by V,r<.,s F(7T')
for any oS <: pR.

For the type operator T (W) = Ax<.wF(X), we first need to show that,
whenever V- <: W, (X, a)v [T(Jv,w)] (X, a)w. But, this is immediate since
Ix <: Jyw and a [F(Ix)] a. Next, we show that {X,a)w is the unique
abstract type satisfying (X, a)y [T'(Jv,w)] {(X,a)w. Suppose (Y, b)w satisfies
(X,aby [T (Jv,w)] {Y,b)w, i.e., there exist (X', a') =y (X,a) and Y, V') =w
(Y, b) and a correspondence ¢S : X' <+ Y’ such that ¢S <: Jy,w and o' [F(05)]
b'. Since Jy,w <: Iw, we have 05 <: Iy, which implies (X', a’) ~w (Y, V).
Hence, (X, a)w = (Y, b)w. It is straightforward to show that composition and
the relation action are preserved. |
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Notation We use a convenient notation for polymorphic families borrowed
from the polymorphic lambda calculus [22]. A family {P(X)}x<.w is written
as AX<:W.P(X) and, if ¢ is such a family, then component selection ¢x is
written as ¢[X].

4 Semantics

We consider a Pascal-like language with types given by the following syntax:

(data types) 0 u= int|1d]|d X - Xdy,
(value types) v u= d|vard|wvy x---xv, |v—>6]|clsv
(phrase types) 6 := expv|com

Data types identify storable values, and value types identify bindable values
(or values that can be passed to procedures). Phrase types are the types of
terms. We use two phrase types: “expressions” read the state to produce values
whereas “commands” carry out state changes. A term has a typing of the
form zy : vy,...,2, vy, B M : 8, with value types on the left and phrase
type on the right. This asymmetry between value and phrase types is typical
of call-by-value programming languages [6]. Unlike in call-by-name Algol-like
languages [23], expressions in our language can yield values of all value types,
not only those of data types. This represents additional expressive power.

The term syntax for our language is given in Figure 1. We use a sample of
command forms. Other forms can be accommodated in a similar fashion. The
notation for classes is borrowed from [19, 20]. Objects instantiated from classes
are bound to local identifiers via the local K x declaration. We do not consider
pointer-addressed class instances in this paper.

The types are interpreted as contravariant subsumptive functors from World
to Set. The interpretation comes in two parts: The set part [7] maps worlds to
sets and the relation part (7)) maps correspondences pR : W < W' to relations
[FI(W) « [7](W'). The interpretation uniquely determines a contravariant
action on world extensions V' <: W as functions mapping values d € [r](W) to

dty € [7](V).

DATA AND VALUE TYPES:
[int[(W) = Int

[te](W) = (Locs N W) + {nil}
[00 x - - x 6, ]J(W) = [6](W) x - -- x [6,](W)
[var 6J(W) = [6 — com](W) x [exp 6](W)
[or x - xwa](W) = [ ](W) x - x [un](W)
[v = 6l(W) = VYvaw []I(V) = [61(V)
[els v[(W) = Vvew Iz<.v[expv](Z) x

[St(V) = Ay <.z St(Y)) + {e}]
PHRASE TYPES:
[exp v](W) = Vx<w St(X) = [V[(X) + {e}
[com](W) = Vx<wSt(X) = Fr<.x St(Y)) + {e}
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lz:vkz:expv
I'FCi:com TFCy:com
I'F skip : com Tk Cy;Cs : com
Iz:varéd - C : com
I'F {local var ¢ z;C} : com
'~V :exp(vard) TV :exp(vard) T'FE:expd

I'Fread V :expé 'V :=F:com
PHE :expyv,i=1,...,n Tk E:exp(vs X -+ Xvy)
Tk (Ey,...,E,) exp (v1 X -+« X V) 'k E.i:expy;

'V :exp(var(é; x---x4d,)) 'k E:expd;
'FVi:=FE:com

' E: exp(19) 'k V : exp(var(19))

T nil : exp(10) [+ E1: exp(var 9) 'V :=newJ:com

Lz:vk-M:0 'FM:exp(v—6) THN:expv
F'FAx. M :exp (v —6) '-M(N):6

Ix:vardFA:com T z:vardt M :expv

T+ class : v local var ¢ z init A meth M end : exp (cls v)
F''K:exp(clsv) T,z:vFC:com
'k {local K z; C} : com

Figure 1: Type Syntax of Terms

(We use the convention that the scope of a quantifier extends as far to the
right as possible.) The position of the type quantifications V and 3 in the
type interpretations has been recognized in earlier work [27, 4, 7]. Intuitively,
a command defined for a world W should be prepared to accept additional
locations (represented by X) in its input state, and it might itself allocate new
locations during the execution (represented by Y). The world W represents
the static context of the command (similar to the “static chain” locations
in a typical implementation), X represents the initial dynamic context (the
“dynamic chain” locations as well as heap locations) and Y represents the final
dynamic context. The parametricity interpretation of the type quantifiers means
that the command does not have direct access to the extra locations in its
dynamic context and the successor commands will not have direct access to the
locations allocated by the present command. (However, access may be available
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via the pointers stored in the static context.) The symbol € is used to denote a
special error value that results from dereferencing a nil pointer.

Variables are interpreted in the object-oriented style as pairs of “put” and
“get” methods [23]. Indeed, if I € W is a §-typed location, we can map it to a

pair of methods vardy, (1) = (put$; (1), getd, (1)) defined as follows:

putdy (1) [Y]k[Z]) s = (Z,s[l = K]}z, and get, (1) [Y] s = s(1).

Classes for a signature type v specify an abstract type with a hidden repre-
sentation Z for the objects of the class, a method suite of type exp v and an
initialization operation that initializes the local representation Z as well as any
heap variables created during the initialization.

The relation part of the interpretation is given with respect to a relational
correspondence pR : W < W', as follows:

DaTA AND VALUE TYPES:

Gni)pR) = Amm
(oD (pR) = p+ Apiy
(6% xB)(0R) = (BNpR) x - x (BN (R)
(var 6)(pR) = (0 — com)(pR) x ((exp 6))(pR)
(1 - xw)(pR) = (p)(pR) X --- X (vn))(pR)
(v = 0)(pR) = Vap<yr (V)(7P) = (O)(7P)
{clsv)(pR) = Vap<ipr IoS<inpP

{exp v))(a5) x
[St(ﬂ'P) — (EITT<:0'S St(TT)) + A{E}]
PHRASE TYPES:
(expv)(pR) = Vos<:prSt(0S) = (V)(0S) + Ay
{com)(pR) = Vo5<prSt(0S) = (Frr<i0s St(TT)) + Aoy

Note that d [(d))pR] d' is equivalent to d =, d'.

Theorem 16 All the type interpretations are contravariant subsumptive func-
tors.

Proof: First we need to verify that the interpretation preserves identity relations,
ie., (T)(Iw) = Aprw)- This is easily done by induction on the structure of
7. We show a few sample cases.

o For 16, (1o)(Iw) = iw + Afnity = Appapw)-

e Forv = 6§, (v = ON(Iw) = Vepr<rw (V) (@P) — (8)(7P). Suppose p
and p' are two families related by this relation. Then, since Iy <: Iyy (for
every V <: W), we must have py [{(v)(Iv) — () (Iv)] py,. Appealing
to the inductive hypothesis for v and 6, we infer that py = pj,. Thus,
(v = OIw) C Apeyw)- In the reverse direction, let p € [v —
O](W), which is related to itself by the diagonal relation. The definition
of parametric families means that it is related to itself by the relation

Vap<:tw (P)(TP) = () (7 P).
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unityy : [v](W) — [exp v]|(W)
unity d = AX<:W. As. d 13
bindy! - [exp v](W) x [v = 6](W) — [6](W)
bindw (e, f) = AX<:W.As.letd=¢e[X]s

inif d =e then e else f [X]d[X]s
bind¥">? : [exp i ](W) x [exp va] (W) x [v1 x va — 0](W) = [6](W)
bindw (e1,e2, f) = AX<W.As.let dy =1 [X]s, dz =e2[X]s

inifdy =eVdy =¢ethene
else f [X](di,d2) [X] s
seqyy : [eom](W) x [com](W) — [com](WW)
n_ . € ifc[X]s=e¢

seqw (¢,¢') = AX<W. As, { hidey<.x (¢ [Y]s') if c[X]s=(Y,s')x
hidey <:x : [(3z<:y S8(Z)) + {e}] = [(Fz<:x 5t(2)) + {e}]
hidey«.x r = caser of {Z,s)y = (Z,shx |e => ¢

Figure 2: Semantic Combinators

Secondly we need to verify that there is a proper contravariant action on
world extensions which is included in {(7))(Jy,w). This proceeds by induction
on the structure of 7.

e For int, the action is clearly the identity: dﬂ,’v =d.

e For 14, the action is injection: dfy; = d, which is the only function
included in {(16) (Jv,w) = jv,w + Afnir}-

e For §; X --Xxd,, vard and vy X - - - X v,, we note that X preserves subsump-
tiveness. The associated action is (di, - - .,dn) Ty = (dify, - - > dntly)-

e For all other type constructors, the relation interpretation has V,s5<:,r at
the outermost level, and such type operators are subsumptive by Lemma, 15.
O

The semantics of a term with typing z1: v1,...,Zy: vy F M : 6 is a parametric
transformation of type Vi [v1 (W) x - - - X [Up](W) — [6](W). (As usual values
of the type [v1 (W) x - - - x [wp](W) will be regarded as “environments” ranged
over by the symbol 7.)

We use the semantic combinators from Figure 2. The combinators unit and
bind are similar to monad combinators [10, 29]: wnitw d is an expression that
simply returns the value d in every state; bindw (e, f) evaluates the expression e,
feeds the resulting value to the function f and evaluates the result of application.
The function f may either yield an expression, in which case bindw (e, f) is an
expression, or it may yield a command, in which case bindw (e, f) is a command.
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[=lwn = unitw (n(=))
[skiplwn = AX<:W.Xs. (X, s)x

[C1; Colwn = seqw ([C1]wn, [C2lwn)
[{local var § z;C}]wn =
AX <W. As. hidex+<.x ([Clx+ (M [wovarde, (1)]) [X+] s7)
where | = newlocs(X), XT = X & {l} and
st = s x [I>initg)
[read V]wn = bindw ([V]wn, AX<:W.X(p, 9).9)
[V := Elwn = bindw ([VIwn, [Elwn, AX<:W.X(p, 9), k)- plX]F)

[E1Twn = bindw ([E]wn, derefyy)
[V := new &]wn = bindw ([V]wn, allocd,)

[Ae. M]wn = unitw (AV <:W. . [M]v (11} [z—d]))
[M(N)Jwn = bindw ([M]wn, [NJwn, AV<W.A(f,d). f[V](d))
[class : v local var § z init A meth M end]wn =
unity (AV<W AV, [M]y+nt, As. [A]v+(nT)(s * [-inits]) v )
where | = newlocs(V), VT =V ¢ {l}, and
n* =nty [zvard. (1)
[{local K z; C}|wn =
bindw ([K]wn, AX<W.AE.AY <:X. Xs.
let (Z,m,i)y = k[Y]
inif (Z',s')z =i(s) Am[Z']s' #¢
then hidez <.v ([C]z (nTﬁ; [x—-m[Z']s]) s")
else €)

Figure 3: Semantics of Terms

We also use a similar combinator for binary functions f. The seq combinator
represents the sequential composition of commands.

We also assume that there is a family of functions newlocs(X) that give, for
each world X, a d-typed location that is not in X. A constant inity specifies
the initial value for each §-typed location.

The interpretation of the various term forms is given in Fig. 3. These
definitions are expressed using the operations:

alloc$y, : [var(16) — com] (W)
allocyy [V] (p,9) [X] s = hide x+ <.x (p [X ] 1 [XF] (s  [[-inits]))
where | = newloc’(X) and X+ = X & {1}

derefy : [16 — exp (var 8)](W)
deref$y, [V]1[X] s = if I # nil then var (1) else

We explain the general form of the semantic definition by looking at the local
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variable declaration (local var ¢ z; C) and dynamic allocation (V := new §).

For the local variable construct, we are given a dynamic context X <: W
and a state s (in this context). The interpretation finds a new location [ for the
local variable, builds the extended context X+ = X & {I} and extended state
s * [[—»inits] where the new location is initialized. The body of the block, C,
is interpreted in the extended context starting with the extended state. The
resulting state is then cut back to X by hiding the location | (representing the
deallocation of the local variable). Any pointer value stored in the location !
will thus be lost turning its heap variable into a potential garbage location.

For the dynamic allocation construct, the interpretation is via the allocw
operation. The context W is somewhat redundant since alloc is parametric in
W. It is appropriate to think of V as the static context and X as the dynamic
context. The interpretation is then quite similar to that of the local variable
construct, the only difference being that the identity of the newly allocated
location [ is stored in a variable. Hiding the new location [ does not signify
deallocation in this case, since a pointer to it has been stored within the context
X.

How do heap variables get deallocated? Indeed, a cursory reading of the
interpretation of the com type might suggest that contexts only get bigger,
never smaller. However, this is not actually the case. The result type of a
command is of the form (y<.xSt(Y)) + {e}, which signifies that all the new
locations allocated by a command get hidden. Unless pointers to them are
stored within the initial context X, the new locations are free to be deallocated.
(Cf. Lemma 13.) For example, the following equivalence holds in the semantics:

z:=newd; r:=nil = g:=nil
Evaluating the left hand side in a world W = {lp}, environment = [z—
varw(lo)], dynamic context X <: W and state s, the resulting state is:

QX W {l}, S[lo—)ﬂil] * [l—>init5]l)x

which is equal to (X, s[lo—»nil])x. Note that this is also the resulting state of
the right hand side with the given parameters.

The class construct similarly allocates a location for the local variable in the
dynamic context. However, it packages its result as a structure (V*,m, i)y
where V7T is the extended context, m the interpretation of the method suite in
the context V1 and ¢ the initialization operation. Such a structure is unpacked
when a class is instantiated using the local K x declaration.

5 Results

The most basic result to be proved about our semantics is that it satisfies an
abstraction theorem. (Really, this is not a separate result from the semantic
definition, but rather an integral part of checking that the semantics is well-
defined.)
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Theorem 17 The meaning of every term [+ M:0] is a parametric transfor-
mation of type [I] — [0]. That is,

1. for all worlds W and all environments n € [L|(W), [M]wn € [6](W),
and

2. for all pR: W < W', and all related environments n[{I') (pR)]n’,
[M]wn [(O) (pR)] [M]w '

Proof:[Sketch] The proof is by induction on the structure of M. All cases follow
easily from the definition once all operators used in the semantics, such as
bind, deref and alloc, are proved to be parametric transformations. We show
the parametricity of alloc, which illustrates the subtleties of the definition of
correspondences. Let pR be a correspondence between W and W'. We need to
show that for all extensions 7P : V <+ V' of pR, the functions allocy[V] and
allocSy, [V'] are related by

[(var (16)) (7 P) = {com)) (7 P)].

Let (p,g) and (p',g') be variables related by {var(16))(7P), let 05 : X + X’
be a relational correspondence extending 7P, and let s and s’ be states related
by St(¢S). From the definition of {{var(14))), the put methods p and p' are
related by {16 — com))(nP). Let [ and I’ be the locations chosen by alloc in
X and X'. We define a correspondence 77T : X & {I} > X' {I'} such that

7T <:08, 1[r]l'; and s*[l-inits] [St(7T)] sx[l'»inits].

Then, since p[XW{l}] [(1IN(7T) — {com)(7T)] p'[X'&{l'}], the parametricity
of hide shows that allocly [V](p, g)[X]s and allocSy [V'](p',¢')[X']s' are related.
Such a correspondence is given by

r=cW{(,I")} and T(¢) =S(®) for all ¢ <: 7.

Note that the states s * [[—inits] and s’ * [I'~inits] are related by St(7T"): From
definition, we see that they are related by EQ, x S(o), and, since S(o) C S(7)
by the condition for correspondences, they are related by EQ . % S(r) which is
the same as FQ, T (7). m|

Corollary 18 The meaning of every term [I' b M:0] is natural, i.e., for all
extensions V. <: W and all n € [L](W), (IMIwn) Ny = [M]v (ntiy)-

Proof: Since [I'] and [6] are subsumptive functors, a parametric transformation
[T F M:6] is natural by Proposition 21. O

The abstraction theorem immediately implies the soundness of the simula-
tion principle for data representation reasoning. Suppose {{F(V),my,iv)}v
and {(F'(V),my,,i,)}v are two similar implementations of a class, i.e., for
any world V, there is a simulation relation ¢S : F(V) < F'(V) such that
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0S <: Iy and my [(exp v)(0S)] m}, and iy and 4}, are related by St(Iy) —
(FrT<:05St(7,T)) + Ac}- Then in any command term of the form ', C:cls v
{local C z; M} : com, we get the same results independent of which im-
plementation is used for C. This is because when iy s = (Z,s1)p(y) and

ZIV S = qZ’,SIIDF/(V),

hidez<.v ([M]z (% [z—m[Z]s1])[Z]s1) =
hide 1 <.v ([M]z (1§ le—m'[2']s1])[2"]s})

for all n € [I']w and V <: W, which follows from the abstraction theorem.

The separation logic for reasoning about heap data structures [24, 11, 31]
contains an important rule called the “frame rule,” which is central to the local
reasoning methodology developed there. The frame rule is supported by the
frame property of commands which says that if a command is safe in a given
state, then the result of executing it in a larger state can be predicted based on an
execution on the original state. This property is satisfied by our semantics. Say
that a command ¢ € [com](W) is safe for world X <: W and state s € St(X)
if ([X](s) #e.

Theorem 19 Let ¢ € [com](W) be safe for world X <: W and state s. Then
for all extended worlds X & Z and states s xt € St(X & Z),

1. ¢ is safe for X W Z and s x t, and

2. there exist world Y <: X and state s' € St(Y) such that Y N Z = 0,
c[X]s=(Y,s')x, and c[X W Z] (sxt) = (Y W Z,s' xt)xwz.

Proof: Let jR: X W Z < X be a relational correspondence defined by:
Ll <= 1=1'"€e X so[R(¢)] sy < so =1t A dom(sy) = 0.
Since jR <: Iw, s xt [St(jR)] s, and ¢ [X] s # €, we have that
c[X W Z] (s*t) [Tos<:jrSt(0S)] ¢ [X] s.
Thus, there exist ({V, so)xwz = c[X W Z] (s xt), (V',sdx = c[X] s, and 7P :
V 4 V' such that sq [St(7nP)] sy and 7P <: jR. Note that c[X W Z] (s xt) #¢;

thus, c is safe for X & Z and s x t. Since S(0) = R(o) * P for some P, there are
heaps s1, s2, 81, 85 such that

8o = 81 %t*x 8y, sy =8y %8y, and s3[EQ,] s).

Pick a world Y and a renaming relation 7: Y < (dom(ss) — X) such that 7 is a
type-respecting isomorphism between ¥ and (dom(sz) — X), and Y is disjoint
from VUV'. Let 0g: X WY > dom(ss) be a renaming relation defined by

loo)l! <= I=l'e X v Il
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and let s3 be a state in St(X WY") such that s3 [EQ,, ]| s2. We will show that
(V81 %82 % t)xwz R (X WY W Z, 83 %t)xwz and
(Vs xsh)x m (X WY, s83)x.

This implies the second condition, because s; * s2 xt = s and s} * s§ = ;.
Let (o1, R1) : V & X WY WZ, and (01, R]) : V' & X WY be relational
correspondences defined by:
lo]l! <<= Vool vi=leZ
to [Rl] t6 <~ dom(tf)) =0

lop]l! < 1=VeX Vv 3l Aly[o]l
to [R1]t, <= dom(t)) =10
Then, (01, R1) <: Ixwz, and (o1, R}) <: Ix. Moreover, s1 *x so *t and s3 * t are
related by St(o1, R1), and s * s, and s3 are related by St(of, R}). Therefore,
we have the required equivalence. |

We expect that this connection will pave the way for integrating the data
representation reasoning studied here and the state-based reasoning developed
with separation logic.

5.1 Examples of Reasoning

We illustrate the semantic definitions by returning to the examples from Section
2. Since we are not treating divergence in this paper, we interpret the command
diverge as giving an error:

[diverge]wn = AX <:W. As. €
Consider the third program block from Example 1:

{ local var (tint) x;

X := new int; xt := 0;

pO;

if xt = 0 then diverge
}

Let W be a world denoting the static context, ly a location that is not in W,
W+ =W w{lo}, n an environment for W, and n* = 17TI'M‘£+ [x—vary+(lo)].
[x := new int]y+nt = AX<:W*. \s. allocits [X](vary+ (lo)Tiv+)[X]s
= AX<WT. s qX+, 8[lo—>l1] * [ll—ﬂl’llt]DX
where [; = newloc(X) and Xt =X W {l;}

€, otherwise
[POlw+nt = AX<WF. As. g+ (p)[X] (%) [X](5)

[xt:= Ow+nt = AX<WT. Xs. { I, sls(lo)>0lbx; if s(lo) 7 nil

[if (xt = 0) then diverge]w+nt =

| g, S D=0
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Hence,

[x := new int;x? := 0;p();if (x? = 0) then diverge]y+nt =
AX<:W+.\s. case (n+(p)[X+](*)[X+] (sllo—1] * [zﬁo])) of

€ = ¢
| QY,tbx+ = if (t(lo) =nil VvV t(t(lo)) = 0)
then e
else (Y, t)x

We would like to show that this function has the value € for all arguments X
and s. Note that n*(p) = n(p)tly and 7+ (p)[X*+] = n(p)[X*].

The procedure p is of type unit — com where unit is the nullary product
type with the interpretation [unit](WW) =1 = {x}, a singleton set.

[unit — com](W) Vy<w 1 = [com](V)

[com] (W)

R

Any p € [unit — com](W) satisfies p[V](x) = (p[W](*))1}y and, is uniquely
determined by its W-component. Let po = n(p)[W](*) be the W-component of
n(p) with type Vx+.w St(X1) = [Fz<.x+ St(Z)] + {e}. So, for all correspon-
dences pR: Xt ¢ X such that pR <: Iw, we have that

51[St(pR)]s2 => po[XT]s1 = po[XT]s2 =¢
or X *s1 (3750 St(05)] polX s

Let p = iw, and R(¢) be the relation
Sl[R(w)]SQ <~ Sl(lo) =L A Sl(ll) =0

The state s[lo—l1] * [l1—0] is related to itself by EQ, * R(p). Then, either
p[XH](s[lo—l1] % [11—0]) is &, or it is related to itself by I,s<.,r St(cS). We will
focus on the case that p[Xt](s[lo—l1] * [l1-0]) is {Y,t)x+. In this case, there
are representatives, say (Y7,t1) and (Y2,1s), of (Y, t)x+ and a correspondence
05:Y; < Y5 such that 6S <: pR and t;[EQ, * S(0)]t2. Since S(o) is of the
form R(o) x P, we conclude that ¢,(lp) = l; and ¢1(l1) = 0. Thus, the boolean
expression of the following conditional statement evaluates to false, so the whole
command diverges.

For the second program block of Example 1, where x is a non-local variable,
we can use the same calculation as above, but with world W and environment
n (instead of W+ and 7). The difference this makes is that n(p) denotes a
procedure that has access to n(x). Hence, the partial bijection p involves the
locations Iy and I; and it is not possible to choose a relation R(¢) that constrains
the contents of these locations. So, we cannot conclude that the program block
diverges.

The program block of Example 2 involves a procedure h of type

h:ftint - com
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and
[tint = com](W) = Vy«.w [tint](V) = [com](V).

We have argued that there that the call h(x) amounts to leakage of the heap
variable xt and we cannot conclude that xt is hidden from the subsequent
procedure call to p. We now show how this leakage is handled in the semantics.

Let W be a world denoting the static context, Iy a location that is not in
W, W+ =W {lp}, n an environment for W and n* = nTer [x—vary+ ()]
Let X <: W+ be a world denoting the dynamic context, I; = newloc(X) and
Xt =Xu{l;}. We can calculate:

[x := new int;h(x)]w+nt[X](s) =
hidex+<.x (n(h)[X+](ll)[X+] (s[lo—11] * [ll—ﬁnit]))-

Let this be denoted (Y, t)x. The type of n(h) implies that, for all pR <: Iy,

b [(He) (pR)] b = n()[X*]() [§eom)) (pR)| n(B)[X*](k).

For the hypothesis to hold, we must have p <: iyyq,}- The result of the
above command, (Y, t)x, is related to itself by 3,5<:pr St(cS). So, the best
we can infer is that t is related to itself by St(cS) where o <: iwuwy,). We
cannot duplicate the previous reasoning for the subsequent procedure call p(),
because we cannot show that the state ¢[l;—0] is related to itself by a relation
St(7T") where 7 does not relate /1. The effect of saying p <: iy, is that the
procedure call h(x) is at liberty to store a pointer to l; somewhere in the visible
part of the state. So, it is not protected from access by another procedure p.
As an example of reasoning about classes, we consider a toy memory allocator
object which keeps a store of list nodes and dispenses them one at a time. This
represents half of a memory manager object. (The other half would include a
routine for returning nodes to the memory manager [12]. We cannot handle such
a routine using the techniques of this paper because it would leave “dangling”
references to the returned nodes in client programs.) In addition to classes,
this example also illustrates the transfer of heap cells from the hidden part of
the object’s storage to the visible part. This kind of transfer was mentioned
in Example 4 which can also be handled in a similar fashion. The handling
of such transfer crucially depends upon the more general conditions used in
Definitions 5 and 6. The original definitions of [21] do not allow such transfer.

Example 20 We define a class for a toy memory allocator as follows:
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C: = class : var(fnode) — com
local var (tnode) head;
init head := nil;
meth Ax. { if head = nil then {
local var (tnode) t;
local var int i;
for i := 1 to 10 do {

t := head;
head := new node;
headt.2 := t
}
X := head;

head := headt.2;
xt.2 := nil }
end

The meaning of the procedure serving as the sole method of the class can be
calculated for a world W and environment n with n(head) = varw (l).

AV<W. X(p,g)- AX<:V. As.
if (s(1) = nil)
then hidex++.x (p[XTH](L)[X ] (s[l=12] * s7))
where I = newloc(X), lo = newloc(X W {l1}),...
sf = [l1—(init, nil), lo—(init, I3), ... l1o—(init, nil))
Xtt=Xu {ll,...,llo}
else p[X](s(1))[X](s[l—s(s(1)).2, s(1)~(s(s(1)).1,nil)])

Since this value is constant for all 7 such that n(head) = varwy (I), we denote it

by aw(l)
The meaning of the class is given by

[Cilwn = AV<W. VT, unity+(ay+(lo)), As. {V, s [lo-nil])y+)v
where ly = newloc(V), VT =V W {lo}

We would like to show that this class is equivalent to a naive allocator that
always creates a new node.

C2 = class : var(Tnode) — com
init skip;
meth Ax. { x := new node; xt.2 := nil }
end

The meaning of the method can be calculated for a world W and environment
7 as follows:

AV<W. A(p, g). AX <:V. s
hide x+<.x (p [X*+](Fk1)[X*] (5 * [k1 - (init, nil)]))
where k1 = newloc(X), Xt =X W {k}
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Since this value is independent of 1, we simply denote it as by,. The meaning
of the class is given by

[Colwn = AV<W. {V, unity (by), As.{V,shv)v
To prove that the two classes are equivalent, we need to show that
(V*, unity+(ay+ (o)), As. (VT s*[lo—nil])y) =~y (V, unity (by), As.{V, s)hv)
We define a correspondence pR: V1 «» V such that pR <: Iy .

p=jviyv = {{,)|1eV}
R(¢) = {([l0—>ll, llﬁ(init,lz),.. .,lna(init,nil)], []) |
li,...,l, € LoChoge A >0}

This signifies that the empty heap in the representation of Cy corresponds to an
arbitrary linked list stored at head in the representation of C;. Note that the
initial states of the classes are related by this correspondence:

(s * [lo—nil]) [St(p) * R(p)] s.

To show that the two methods are related by the correspondence, we need:

unity+ (ay+(lo)) [((exp(var (tnode — com)))) (pR)] unity (by)

That is,
ay+(lp) [{var (Tnode) — com))(pR)] by .

After examining the definitions of ay+(lp) and by, we note that the key veri-
fication concerns the state transformation up to the assignment of the pointer
(I1 and k1, in the two cases) to the argument variable. Therefore, assume that
X; <: VT and X, <: V are two worlds with a correspondence 0S: X; < X»
such that ¢S <: pR. Let s1 € St(X1) and sy € St(X5>) be states such that
51[St(6S)]s2. Then, we have two cases:

e Case s51(lp) = nil:

We need a correspondence 7T : X;'T <+ X, such that the states

84 s1[lo—l2] * [l1—(init, nil), l3—(init, l3), ..., l10—(init, nil)]
sh = 8o % [k1—(init,nil)]

are related by St(77). Choose:

T = O"U{(ll,k‘l)}
T(p) = S

To show that s| and s} are related by St(7T), recall that s; [St(cS)] sa,

ie., s1 [EQ, * S(0)] s2. Moreover, since 0S5 <: pR, S(o) is of the form
R(o) * P for some heap relation P. Therefore, we can decompose s; and
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s2 as s = hi x hY = h{" and s2 = hj * h x hY' such that b} [EQ,] h),
Y [R(o)] hY, and h{' [P] hY'. It is easy to see that h{ = [lp—nil] and
hi =[]. We can then restate s] and s/ as:

st = (h} x[li—(init, nil)]) * ([lo—la] * [la—(init, l3), . . ., ly0—(init, nil)]) * A}’
sh = (hh*[k1—(init,nil)]) =[] * AL’

and it is immediate that s} [EQ, * R(c) * P] s,. Recall that R(c) * P =
S(o) and S(o) C S(7) by virtue of 7 <: ¢. Since T(7) = S(7), we have
st [BQ, * T(7)] 5.

e Case s51(lp) # nil:

We need a correspondence 7T : X; ¢ X2+ such that 7T <: ¢S and the
states
Sll = 81[l0—>12, l1—>(81(l1).1,1’1i1)]

and
812 = S9 % [k1—>(init,ni1)]

are related by St(77"). Choose:

T = UU{(llakl)}
Ty) = S@®)

The argument that s} and s/, are related follows along the same lines as
above.

O

6 Conclusion

We have presented a semantic model for languages with heap data structures
which makes explicit the information hiding properties of programs. Simulation-
based reasoning principles for data abstractions are directly captured in the
model. The main adjustment that has been made, compared to the models of
local variables [15], is that correspondences between data representations must
keep track of pointers to visible locations (pointers that can be leaked).

Comparing this to the precursor of work by Banerjee and Naumann [2], we
note that they use traditional simulation relations for data representations, and
impose additional conditions of confinement to prevent all leakage of pointers.
While notions of confinement for protecting data abstractions are definitely wor-
thy of study, we believe that they should not obscure the intrinsic information
hiding properties that the languages possess. Thus, our focus has been on the
latter. At the same time, it would be useful to unravel the confinement notions
implicit in our semantic model and to make more direct comparisons with other
work on confinement.

Object-oriented programming was not treated seriously in the present paper,
even though we have used classes to illustrate the information hiding aspects
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of the semantics. In particular, heap-allocated class instances are not treated.
There are, indeed, certain new technical issues involved in doing so because the
state becomes a higher-order entity with self-application features and recursion
can be simulated by assignment. Banerjee and Naumann use a “class-based”
approach where objects remain first-order entities but include references to
class names and recursion is handled in mapping class names to classes. The
application of this idea to our semantic framework needs to be explored.

A further question that is worth investigating is the full abstraction prop-
erty. Previous results for this form of semantics include [27] for the case of
dynamic allocation and [13] for the treatment of local variables. It would also
be interesting to find relationships with game semantics for pointer programs
[1] which has been proved fully abstract but as yet lacks support for reasoning
principles.

Finally, a fruitful direction for future research would be to integrate the
semantics of heap storage with programming logics for heap storage such as
Separation Logic [11, 12]. Even though we have used ideas from Separation Logic
such as the x connective in formulating relational correspondences, we have
treated semantics of plain programs without any specifications attached. How
the annotations of programs with specifications might impact their semantics is
an intriguing question that we leave open for future work.
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A Category-theoretic Background

We recall some key definitions from [3, 15, 18]:

o A reflexive graph category G consists of two categories and three functors

do

Gv —I— Ge

01
such that both dg o I and 1 o I are identity functors on G,. We call G,
the verter category of G, and G. the edge category of G. Objects and
morphisms of G, are called vertices and vertex morphisms, and those of

G, are called edges and edge morphisms. We write E: Vy <+ V1 to denote
that F is an edge that is projected to V; by §;.
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We

o A reflexive graph is subsumptive if and only if there is a map from vertex
morphisms f: X — Y to edges (f) : X + Y such that
1. {idx) = Ix for all identity vertex morphisms idx : X — X, and

2. there is an edge morphism ¢ from (g) to (h) such that d;(p) = f; if
and only if the following diagram commutes:

Ve fo v
g h
Vi 1%

YR

e A reflexive graph-functor F from G to G’ consists of two functors F,: G, —
Gl and F.: G, — G/ such that T o F;, = F, o I and §; o F, = F, 0 §;. We
will omit subscripts from F, and F,, and write F' in both cases.

e A reflexive graph-functor F' is subsumptive if and only if it preserves the
subsumption map: F({f)) = (F(f)) for all vertex morphisms f. The
notion of subsumptive functors in Definition 14 is a little stronger than
this as it requires F(f) to be uniquely determined by the action of F' on
edges. Hence, the action on morphisms can be omitted from the definition
of F as in the “type operators” of Section 3.

e A parametric transformation 7: F' — F': G —» G' is a family {7x: F(X) —
G(X)} of morphisms indexed by vertices X in G such that for each edge
E:Vy + V1 in G, there is an edge morphism ¢: F(E) — G(E) such that
bi(p) = v,

will use the following result about parametric transformations from [18, 3],

which says that for subsumptive reflexive graph-functors, parametricity sub-
sumes naturality.

Proposition 21 If reflexive graph-functors F, F' are subsumptive, every para-
metric transformation 7: F — F' is a natural transformation of type F, — F).
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