
 
 

University of Birmingham

Objects and Classes in Algol-like Languages
Reddy, Uday

DOI:
10.1006/inco.2001.2927

Document Version
Early version, also known as pre-print

Citation for published version (Harvard):
Reddy, U 2002, 'Objects and Classes in Algol-like Languages', Information and Computation, vol. 172, no. 1, pp.
63-97. https://doi.org/10.1006/inco.2001.2927

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Copyright, Elsevier, 2002

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1006/inco.2001.2927
https://doi.org/10.1006/inco.2001.2927
https://birmingham.elsevierpure.com/en/publications/971ae2ba-21c6-4e49-a6ca-a64cb81b42a0


Objects and Classes in Algol-like Languages1

Uday S. Reddy

The University of Illinois at Urbana-Champaign

Many object-oriented languages used in practice descend from Algol.

With this motivation, we study the theoretical issues underlying such lan-

guages via the theory of Algol-like languages. It is shown that the basic

framework of this theory extends cleanly and elegantly to the concepts of

objects and classes. Moreover, a clear correspondence emerges between

classes and abstract data types, whose theory corresponds to that of exis-

tential types. Equational and Hoare-like reasoning methods, and relational

parametricity provide powerful formal tools for reasoning about Algol-like

object-oriented programs.

Key Words: Algol-like languages, relational parametricity, speci�cation logic, object-

oriented programming, semantics.

1. INTRODUCTION

Object-oriented programming �rst developed in the context of Algol-like lan-

guages in the form of Simula 67 [17]. The majority of object-oriented languages used

in practice either descend from Algol or use ideas from the Algol tradition. Thus,

it seems entirely appropriate to study the concepts of object-oriented programming

in the context of Algol-like languages. This paper is an e�ort to formalize how

objects and classes are used in Algol-like languages and to develop their theoretical

underpinnings.

Our formal framework is based on Reynolds's analysis of \Algol-like languages."

The Idealized Algol of Reynolds is a typed lambda calculus with base types that

support state-manipulation (for expressions, commands, etc.). The typed lambda

calculus framework gives a \mathematical" 
avor to Idealized Algol and sets it

within the broader programming language research. Yet, the base types for state-

manipulation make it remarkably close to popular programming languages. This

combination gives us an ideal setting for studying various programming language

phenomena of relevance to languages like C++, Modula-3 and Java etc.

Reynolds also argued [59, Appendix] that object-oriented programming concepts

are implicit in his Idealized Algol. The essential idea is that classes correspond

1This research was supported by National Science Foundation grant CCR-96-33737.

1



to \new" operators that generate instances every time they are invoked. This

obviates the need for a separate \class" concept. The idea has been echoed by

others [56, 2]. In contrast, we take here the position that there is signi�cant bene�t

to directly representing object-oriented concepts in the formal system instead of

encoding them by other constructs. While the e�ect of classes can be obtained by

their corresponding \new" operators, not all properties of classes are exhibited by

the \new" operators. Thus, classes form a specialized form of \new" operators that

are of independent interest.

In this paper, we de�ne a language called IA+ as an extension of Idealized Algol

for object-oriented programming and study its semantics and formal properties. An

important idea that emerges, from the view point of Algol theory, is that classes

are abstract data types whose theory corresponds to that of existential types as in

SOL [43]. (While the intuitive connection between classes and abstract types is

well-known and dates back to Hoare's early insights [28], a formal theory of classes

comparable to that of SOL has not been previously available.) In a sense, IA+

is to Idealized Algol what SOL is to polymorphic lambda calculus. Like SOL,

it adds types and features that explicitly represent data abstraction. However,

while SOL can be faithfully encoded in polymorphic lambda calculus [55], the data

abstraction features of IA+ are more re�ned than those expressible in Idealized

Algol. The corresponding encoding does not preserve equivalences. Thus, IA+ is a

proper extension.

Related work

In the earlier work of the author [56, 32], a global state-based semantics was

de�ned for stateful object-oriented programs. Being a global state-based semantics,

it does not handle the state encapsulation issues of objects adequately. The de�cien-

cies of the global state set-up have been discussed in a number of papers [39, 51, 58].

Work on speci�cation of stateful objects includes [6, 34, 35, 36] in addressing

subtyping issues and [3, 7] in addressing self-reference issues.

A number of recent papers [1, 8, 11, 19, 18] discuss object-oriented type systems

for languages with side e�ects, but this work does not address reasoning principles

for programs. A related direction is that of \object encodings" which might be

thought of as syntactic presentations of semantics. Pierce and Turner [54] study

the encoding of objects as abstract types, which bears some similarity to the

parametricity semantics in this paper. More recent work along these lines is [12].

Fisher and Mitchell [21, 20] also relate classes to data abstraction, though this seems

to be at a di�erent level than that discussed here. All this work is usually carried

out in a functional setting for objects, but some of the ideas deal with \state."

The major developments in the research on Algol-like languages are collected in

[52]. Tennent [67] gives a gentle introduction to the concepts as of 1994.

2. OBJECTS

Object-oriented programming involves several novel concepts that are of interest

from a semantic point of view. The foremost among them is the notion of state

encapsulation. This is the idea that objects encapsulate some physical resources,

typically memory locations, and provide operations to manipulate these resources.

State encapsulation gives rise to data abstraction because the encapsulated re-



sources are not accessible to client programs except via the exported operations.

This form of data abstraction was �rst studied by Hoare [28], but it was formalized

for full Algol-like languages only recently by O'Hearn and Tennent [51] using

the theory of relational parametricity. Explicating this theory for object-oriented

languages with classes is the main focus of this paper.

A second novel concept of object-oriented programming is the notion of self-

reference and how it interacts with inheritance. One of the well-understood seman-

tic models for these concepts is in terms of recursion and �xed points, studied by

Cardelli [13], Cook [15] and Reddy [56]. The recursion model can be readily adapted

to Algol-like languages because it works within a typed lambda calculus framework.

We will point out how this goes. (Another semantic model for self-reference is

in terms of self-application [31, 32] which has received much attention in the

Abadi-Cardelli calculus of objects [2]. We do not consider the self-application model

in this paper.)

A third important concept in object-oriented programming is the notion that

objects form dynamic data. All objects have references that uniquely identify them,

and these references can be assigned to variables and manipulated dynamically.

While dynamic data structures are pervasive in traditional languages of the Algol

family (e.g., in Algol W, Simula, Pascal and Ada), their theoretical foundations

are only now beginning to be studied [23], and much work remains to be done.

So, we omit the treatment of references from the main body of the paper, except

to note how they can be incorporated in an Algol-like type system. The issues of

state encapsulation are, however, present in all object-oriented languages used in

practice.

In this section, we describe these issues informally in order to motivate the formal

treatment that follows in the remaining sections.

An object is a programming abstraction that encapsulates some physical resources

| such as memory locations, input/output streams and other devices | and

exports operations to manipulate these resources. The exported operations are

called the \methods" of the object. Anticipating type systems that allow us to

group all the methods together into a unit, we call such a group a \method suite."

The resources encapsulated by an object are said to comprise its \state." In a

language with dynamic data, an object would also have a \reference" which is

assigned when the object is created and uniquely identi�es the object.

Two attributes of an object are of semantic interest:

� its type, which describes the interface of the object as manipulated through its

methods, and

� its class, which determines the behavior of the object.

As an example, consider a counter object that remembers an integer count and

provides operations for reading and incrementing the value of the count. We might

de�ne its type as

type counter = fval : exp[int]; inc : commg

The val method, which reads the count, is an \expression" in Algol terminology.

It reads the state of the counter to produce an integer. The inc method is a



\command" which transforms the state of the counter. The two methods are

grouped together into a record, signi�ed by braces f: : :g.

There is nothing in the type of counters that describes their behavior (i.e., what

the val method reads and what the inc method does). The speci�cation of such

behavior constitutes the class of the counter. Note that the state encapsulated

by a counter object is invisible to the client programs. Thus, di�erences in the

encapsulated state should be factored out in specifying the class. We consider

two kinds of class descriptions: a state-based description, where the behavior is

speci�ed in terms of a hypothetical state set, and an event-based description, where

the behavior is speci�ed in terms of events observed via method invocation. Both of

these descriptions are semantic concepts. Syntactic notations for describing classes

will be discussed in the sequel.

State-based descriptions of classes

A state machine for counter objects can be described by giving

� a state set Q,

� the initial state when the counter is created, q0 2 Q, and

� the e�ect of the methods on the counter state.

For our chosen methods, the e�ect of val is given by a function of type Q ! Int

and the e�ect of inc is given by a function of type Q ! Q. (We are ignoring the

issues of divergence and recursion.) For example, a state machine for counters can

be:

M = hInt ; 0; fval = �n: n; inc = �n: n+ 1gi

Here the state set is the set of integers, 0 is the initial state, the val method returns

the integer state and the inc method increments the integer state. Another state

machine for counters is:

M 0 = hInt ; 0; fval = �n: (�n); inc = �n: n� 1gi

The di�erence from M is that the inc method decrements the integer state (so

that successive increments trace through the sequence 0;�1;�2; : : :). However, the

val method negates the integer state to give its output. So, the overall behavior

described by M 0 is the same as that described by M . We say that M and M 0 are

behaviorally equivalent.

The equivalence of M and M 0 can be established by exhibiting a simulation

relation R between the two state sets:

nRn0 () n � 0 ^ n0 = �n (1)

The relationR relates the states in the two machines that have equivalent observable

e�ect. We see that the two val operations give equal results for R-related states

and the two inc operations map R-related states to R-related states. This is stated

more formally as

M:val [R! �Int]M
0:val

M:inc [R! R]M 0:inc



where �Int is the equality relation for Int and the relational operator ! says that

related inputs are mapped to related outputs. The machines M and M 0 are said

to be similar (by virtue of the simulation relation). Behavioral equivalence is the

transitive closure of similarity.

A state-based description of a class consists of an equivalence class of state

machines under behavioral equivalence. By giving a state machine, such as M or

M 0, we uniquely describe its equivalence class. The state set used in the description

is \hypothetical" in the sense that it does not form an essential part of the behavior

but is used as a tool in describing the behavior. Di�erent state sets can be used in

di�erent ways to describe the same behavior.

Event-based description of classes

Since the state sets are incidental in describing object behavior, it is natural to

ask if a state-free description of the behavior can be given. Indeed, in automata

theory, the behavior of a state machine can be described in terms of the language

accepted by the machine or the sequential function computed by the machine

without reference to states. This approach has also been used in concurrency

theory to good e�ect [29, 41]. A similar approach can be used for objects but,

since the operations of objects are of complex types, the vocabulary used for their

description is more sophisticated. The basic structure of such vocabulary originates

from Winskel's event structures [68] though the recently developed game semantics

can be used to give more re�ned descriptions [5].

For the expository treatment of this section, we indicate how events can be used

to describe object behavior, leaving further details to Section 5.2. An \event"

represents the information exchanged between an object and a client program

during a method invocation. Di�erent types have di�erent events associated with

them (because the information exchanged depends on the type). Moreover, events

for compound types are built from events for their constituent types.

For example, events for the type exp[Æ] are just Æ-typed data values. Events for

comm include a single event `�' denoting the successful completion of a command

execution. Even though the execution of a command transforms the state, no

information about the transformation is directly exchanged by the object and the

client. Thus, the only event directly observable by running a command is its

termination. Events for a record type fm1 : �1; : : : ;mn : �ng are pairs (mi; d)

where mi is a �eld name and d is an event appropriate for the corresponding type

�i. The event (mi; d) denotes the action of a client program selecting the mi �eld

and then constructing an event d in the process of using this �eld.

We refer to a sequence of events of a particular type as an event trace. The

set of event traces observable from an object is called its trace set. The trace set

constitutes a state-free description of the object behavior. For example, the trace

set of a counter object is shown in Figure 1 in diagrammatic form. (The traces

in the set are the sequences of labels of all paths starting from the top node.).

The events for this object are \(inc; �)" denoting a successful completion of the inc

method, and \(val; i)" denoting a completion of the val method with the result i

(an integer). The nodes can be thought of as (abstract) states and events as state

transitions. Note that a val event does not change the state whereas an inc event

takes the object to a state with a higher val value. For discussion purposes, we



(inc,*)

(inc,*)

(inc,*)

(val,0)

(val,1)

(val,2)

FIG. 1. Trace set of a counter object

can label each node with an integer (which might well be the same integer given by

val). The trace set can then be described mathematically by a recursive de�nition:

cnt(0) where

cnt(n) = f�g [ f(inc; �)g � cnt(n+ 1)

[ f(val; n)g � cnt(n)

The parameter of the cnt function is the label of the state. Note that these labels

can be anything we make up, but often it makes sense to use labels that correspond

to states in an implementation. For instance, here is another description of the

same trace set using negative integers for labels:

cnt
0(0) where

cnt
0(n) = f�g [ f(inc; �)g � cnt0(n� 1)

[ f(val; (�n))g � cnt0(n)

This description corresponds to the state machineM 0. While it is obvious that the

two trace sets are the same, a formal proof would use the simulation relation S

de�ned in (1). We can show by �xed point induction that

n S n0 =) cnt(n) = cnt
0(n0)

and it follows that cnt(0) = cnt
0(0).

Note that in this description there is virtually no di�erence between classes and

instances. A class determines a trace set which is then shared by all instances of

the class.

The two forms of class descriptions play complementary roles. While the state-

machine description gives a closer connection to implementations by focusing on

the internal structure of objects, the event-based description gives a more abstract

view in terms of the observable behavior. The latter would be more appropriate,

for instance, in a distributed setting where objects might have complex internal

structure but simple interfaces.

Object behavior, speci�ed either in terms of state machines or trace sets, consti-

tutes a class. Any object with the speci�ed behavior is said to be an instance of this



class. Note that all instances of a class have exactly the same behavior. However,

each of them encapsulates separate physical resources to maintain its state. Hence,

each has its own path of evolution independent of all other instances of the class.

This is the only di�erence between di�erent instances of a class.

Class implementations

The two methods of class description mentioned above are meant for building

abstract conceptual models of classes. Within the programming language, classes

are de�ned by giving implementations. We implement objects of a new class by

using one or more local objects of previously de�ned classes, and writing a term for

the method suite which invokes the methods of these local objects. The objects used

in building the new object are local to the new object in that they are inaccessible

to the client of the new object except via the methods. For example, a class

implementation for counters might be of the form:

Counter = class:

finc: comm, val: exp[int]g

local

Var[int] cnt

init

cnt := 0

meth

finc = (cnt := cnt + 1),

val = cnt g

Counter objects are implemented here using an integer variable as a local object.

The inc and val methods are de�ned by appropriate terms of type comm and exp[int]

respectively. The init term serves to initialize the state of the local object. It is

not hard to see that any such class implementation determines an abstract state

machine which in turn determines a class behavior.

Types versus classes

In most object-oriented languages of the Algol family, classes are regarded as

types. On the other hand, our analysis brings out types and classes as distinct

concepts. So, this divergence warrants some comment.

One reason for treating classes as types is that it gives tight control over which

objects are regarded as belonging to a type. This is not the case with interface

types. For example, even though we used the name counter as an abbreviation for

the type finc: comm, val: exp[int]g, an arbitrary record of this type need not behave

anything like a counter. On the other hand, all instances of the class Counter have

the behavior of counters. Thus, by treating the class Counter as a type, we obtain

tighter control over values of the type.

However, the class Counter is a particular implementation of the abstract be-

havior of counters. We can de�ne another class, e.g., one that corresponds to the

state machine M 0, which has the same behavior as Counter. In a type system that

regards classes as types, the two classes would be regarded as distinct types even

though they describe the same behavior. Since one would like to be able to freely



interchange di�erent implementations of the same behavior, this would seem to be

too limiting.

An appropriate solution that combines the advantages of both the approaches is

to use abstract types. By postulating counter as an abstract interface type that is

implemented by the class Counter, we retain the 
exibility of de�ning other classes

that implement the same interface. Since this solution is entirely consistent with

our approach of treating interfaces as types, we continue to use interface types in

the main body of the paper. In section 6, we discuss how to add abstract interface

types to the type system.

Many of the types and type constructors typically found in Algol-like languages,

such as variables, arrays and records, appear as classes and class constructors in

our formulation. The reason is that these so-called \types" determine not only

the interface but also the behavior of the corresponding data objects. Typical

\declarations" in these languages are instance-creation operations, not type decla-

rations. It may be seen that our analysis sheds light on the nature of \types" and

\declarations" in these languages.

3. THE LANGUAGE IA+

The language IA+ is an extension of Idealized Algol with classes. Thus, it is a

typed lambda calculus with base types corresponding to imperative programming

phrases. The base types include:

� comm, the type of commands or state-transformers, and

� exp[Æ], the type of state-dependent expressions giving Æ-typed values,

� val[Æ], the type of phrases that directly denote Æ-typed values (without any

state-dependence).

Here, Æ ranges over a collection of data types such as int(eger) and bool(ean) whose

values are storable in variables. The \types" like exp[Æ] and comm are called \phrase

types" to distinguish them from data types. Values of arbitrary phrase types are

not storable in variables.2

An important principle of Algol-like languages is that the types of terms precisely

demarcate the e�ects that terms might have. For example, the only terms that

transform the state are those of type comm. Terms that can read the state are

those of types comm or exp[Æ]. On the other hand, terms of type val[Æ] and those

of other phrase types like function types do not read or write the state.

The collection of phrase types (or \types," for short) is given by the following

syntax:

� ::= � j �1 � �2 j �1 ! �2 j fx1: �1; : : : ; xn: �ng j cls �

where � ranges over base types (exp[Æ], comm and val[Æ]). Except for cls � types, the

remaining type structure is that of simply typed lambda calculus with record types

2It is possible to postulate a data type of references (or pointers) ref �, for every phrase type �,
whose values are storable in variables. This obtains the essential expressiveness that the object-
oriented programmer desires. Unfortunately, our theoretical understanding of references is not
well-developed. So, we omit them from the main presentation and mention issues relating to them
in Sec. 6.2.



� <: �

� <: �0 �
0
<: �00

� <: �00

�1 <: �
0

1 �2 <: �
0

2

(�1 � �2) <: (�
0

1 � �
0

2)

�
0

1 <: �1 �2 <: �
0

2

(�1 ! �2) <: (�
0

1 ! �
0

2)

� <: �0

cls � <: cls �0

�1 <: �
0

1 � � � �n <: �
0

n

fx1: �1; : : : ; xn: �n; : : : ; xm: �mg <: fx1: �
0

1; : : : ; xn: �
0

ng

val[Æ] <: exp[Æ] fget : exp[Æ]; put : val[Æ]! commg <: exp[Æ]

TABLE 1

Subtyping rules

and subtyping. See, for instance, Mitchell [42, Ch. 10] for details. The type cls �

is the type of classes that describe the behavior of �-typed objects. The subtyping

rules of IA+ are shown in Table 1. The basic subtypings are the following:

� val[Æ] <: exp[Æ] regards a state-independent value as a state-dependent expres-

sion;

� var[Æ] <: exp[Æ], where var[Æ] = fget : exp[Æ]; put : val[Æ] ! commg denotes the

signature type of variables, supports the implicit selection of the get operation; and

� record subtyping includes \width subtyping," whereby a longer record type is

considered a subtype of a shorter record type, and \depth subtyping," whereby

subtyping of �elds propagates to the record types as a whole.

Our interpretation of subtyping is by coercions [42, Sec. 10.4.2]. For example, the

width subtyping of records is interpreted by the forgetting-�elds coercion.

The standard parameter passing mechanism of IA+ is call by name (as is usual

with typed lambda calculus). It is possible to incorporate Algol-style call by value

via primitive operations.

Classes

For de�ning classes, we use a notation of the form:

class: �

local C1 x1; : : : ;Cn xn
init A

meth M

The various components of the description are as follows:

� � is a type (the type of all instances of this class), called the signature of the

class,



� x1; : : : ; xn are identi�ers (for the local objects),

� C1; : : : ; Cn are terms denoting classes (of the respective local objects),

� A is a comm-typed term (for initializing the local objects), and

� M is a term of type � (de�ning the methods of the class).

Admittedly, this is a complex term form but it represents quite closely the term

forms for classes in typical programming languages. Moreover, we will see that

much of this detail has a clear type-theoretic basis.

Any instance of a class thus de�ned contains n local objects encapsulated within

it (of classes C1; : : : ; Cn respectively), and exports a method suite denoted by M .

The initialization command A is used to initialize the local objects of the instance.

Note that it would not be enough to just declare the types of the local objects (as

opposed to their classes) because the types determine only the interface, not the

behavior.

By default, the local objects declared in a class are \private," i.e., not part of

the exported method suite. However, it is possible, if need be, to de�ne a method

that gives direct access to a local object.

It is noteworthy that we cannot de�ne nontrivial classes without �rst having some

primitive classes (needed for de�ning local objects). We will assume a primitive

class of (mutable) variables for each data type Æ, via the constant:

Var[Æ] : cls var[Æ]

where var[Æ] = fget : exp[Æ]; put : val[Æ]! commg

If x is an instance of Var[Æ] (a \variable"), then x:get is a state-dependent expression

that gives the value stored in x and x:put(k) is a command that stores the value

k in x.3 The subtyping var[Æ] <: exp[Æ] allows us to write simply x where x:get is

meant (often called implicit \dereferencing").

The Counter class mentioned in Section 2 gives an example of a de�ned class. It

also illustrates the use of the the variable class. In writing

cnt := cnt + 1

we have used the subtyping var[Æ] <: exp[Æ] for the occurrence of cnt on the right

hand side. We could have written cnt :get to make this conversion explicit. The

\:=" operator itself is a de�ned operation which invokes the put method of the

variable (discussed below).

For creating instances of classes, we use the notation:

new C

which is a value of type (� ! comm)! comm where � is the signature type of class

C. For example,

new Counter �a. B

3We assume that all new variables come initialized to some speci�c initial value initÆ. It is also
possible to use a modi�ed primitive Var[Æ]: val[Æ]! cls var[Æ] that allows explicit initialization via
a parameter.



creates an instance of Counter, binds it to a and executes the command B.4 The

partial phrase

new Counter �a.

is called an instance declaration. The e�ect of the declaration is roughly equivalent

to the Java locution:

final Counter = new Counter();

However, there are no references (pointers) involved in our term. The identi�er a is

directly bound to the Counter object whereas, in the Java version, a is a variable

that holds a reference to the newly created object.

Remark. The type of new C illustrates how the \physical" nature of objects

is reconciled with the \mathematical" character of Algol. If new C were to be

regarded as a value of type � then the mathematical nature of Algol would prohibit

stateful objects entirely. For example, a construction of the form

let a = new Counter

in a.inc; print a.val

would be useless because it would be equivalent, by �-reduction, to:

(new Counter).inc; print (new Counter).val

thereby implying that every use of a gives a new counter and no state is propagated.

The higher-order type of newC gives rise to no such problems. This insight is due

to Reynolds [60] and has been used in several other languages [45, 65].

One would want a variety of combinators for classes. The following polymorphic

\product" combinator for making pairs of objects is an essential primitive:

* : cls �1 � cls �2 ! cls (�1 � �2)

If C1 and C2 are classes then C1 �C2 is a class whose instances are pairs consisting

of an instance of C1 and an instance of C2. So, the declaration

new (C1 � C2) �(x, y).

binds x and y to new instances of C1 and C2 respectively. The \�" combinator is

intuitively similar to the product constructor of types, but it operates on classes.

Since classes represent (the equivalence classes of) state machines, the product

operation of classes is semantically quite di�erent from products of types. (Cf.

Section 5.1.)

Common data structures in programming languages such as arrays and records

also give rise to class combinators. The constructor for arrays can be regarded as

a combinator of type:

Array : cls � ! val[int] ! cls (val[int] ! �)

4We use the convention that the scope of a lambda abstraction extends as far to the right as
possible, often terminated by a closing parenthesis. We do not let \;" terminate the scope.



If C is a class and n an integer value, (Array C n) is equivalent to the n-fold class

product C � � � � � C. Its instances are vectors of the form (a1; : : : ; an) where each

ai is an independent instance of C. We regard such vectors as (partial) functions

from integers to C-objects so that we can use the \subscripting" notation a(i) to

select the i' th component.

The Pascal-like record construction

record C1 x1; : : : ;Cn xn end

is a variant of the class product C1 � � � � � Cn. If C1; : : : ; Cn are classes of types

cls �1, . . . , cls �n respectively, then record C1 x1; : : : ;Cn xn end is a class of type

cls fx1: �1; : : : ; xn: �ng. So, its instances are records with �elds named x1; : : : ; xn.

This compares with the class product C1 � � � � � Cn whose instances are tuples of

type �1 � � � � � �n.

The recursion mechanism of the language provides for self-reference in class

de�nitions. A class for describing self-referential objects of type � is typically of

type cls (� ! �), which allows the method suite to be parameterized by \self." For

example, a class for counter objects with a \set" method may be de�ned as follows:

type setcounter = fset: val[int] ! comm, inc: comm, val: exp[int]g

SetCounter =

class: setcounter ! setcounter

local Var[int] cnt

init cnt := 0

meth

�self. fval = cnt.get,

set = cnt.put,

inc = self.set(self.val + 1)g

The method suite is parameterized by an object self, and the inc method invokes

the methods of this object rather than reading and writing the local variable. The

�xed point of the method-suite forms an object that has the desired behavior of

counters.

We can de�ne a generic combinator for taking such �xed-points:

close: cls (� ! �) ! cls �

close c = class: � local c f init skip meth (�x f)

The close combinator converts a self-referential class C to an ordinary class whose

instances invoke their own methods recursively. Now, a declaration of the form:

new (close SetCounter) �a.

binds a to a counter object.

Another interesting application of the recursion mechanism is for creating inter-

linked objects that invoke each other's methods. Such inter-linked objects arise in

simulation applications as well as in graphical user interfaces. See, for example, [4,

Sec. 3.3.4] and the Observer pattern in [22]. Consider an \inter-link" operator <>



de�ned as follows:

<> : cls(�1 � �2 ! �1)� cls(�2 � �1 ! �2)! cls (�1 � �2 ! �1 � �2)

C1 <>C2 = class : �1 � �2 ! �1 � �2
local C1 f1; C2 f2
init skip

meth �(x; y): (f1(x; y); f2(y; x))

Here, C1 and C2 are classes whose method suites are parameterized by two objects:

the �rst is the \self" object and the second is some other object that is meant to

be inter-linked. Now, an instance of the class close(C1 <>C2) is a pair of objects x

and y which invoke each other's methods in a mutually recursive fashion.

Inheritance is accomplished by record-update with due attention paid to self

reference. For record-update, we use the term form

M1 with[� ] M2

where M1 is a record of type � and M2 is a record of type � , which denotes the

record obtained by updating M1 with � -�elds from M2. (Any extra �elds in M2,

not mentioned in � , are ignored.) This is essentially the update operation of [16]

but adjusted to treat record subtyping correctly. (Cf. [20] for a discussion of the

last issue.)

As an example, considered a counter class that prints a warning when a preset

limit is reached:

LimitCounter lim =

class: setcounter ! setcounter

local SetCounter f

init skip

meth

�self. (f self) with[set: val[int] ! comm]

fset = �k. if k � lim then

(f self).set k

else print \Limit reached" g

This is de�ned as a derived class of the class SetCounter with an updated set

method that forces the counter to stay within the limit. An instance of close(LimitCounter)

contains the updated set method. Moreover, since the inc method is de�ned in

terms of set, any use of the inc method also respects the limit. This modeling of

inheritance is due to Cook [15] and Reddy [56].

Term syntax

The type rules of IA+ are shown in Table 2. The typed lambda calculus aspects

of IA+ are standard. As to cls types, we have one rule for introduction and one

for elimination, whose term forms are class de�nition and instance declaration. We

show a single local object in a class term for simplicity. This is obviously not a

limitation because the � combinator of classes can be used to create multiple local

objects.



�; x: � � x : �
Id

�� c : �
Const

��M : �

��M : �0
Subs (if � <: �0)

��M : � ��N : �0

�� hM;Ni : � � �
0

�Intro
��M : �1 � �2

�� �iM : �i
�Elim (i = 1; 2)

��Mi : �i (i = 1; : : : ; n)

�� fx1 =M1; : : : ; xn =Mng : fx1: �1; : : : ; xn: �ng
f g Intro

��M : fx1: �1; : : : ; xn: �ng

��M:xi : �i
f g Elim

��M : f~x:~�; ~y: ~�g ��N : f~y: ~�0; ~z:~�g

��M with[f~y: ~�0; ~z:~�g] N : f~x:~�; ~y: ~�0; ~z:~�g
f g Update

(where ~x and ~z have no common identi�ers)

�; x: � �M : �0

�� �x: M : (�! �
0)

! Intro
��M : � ! �

0 ��N : �

��M N : �0
! Elim

�� C : cls � �; x: � �A : comm �; x: � �M : �

�� (class : � local C x init A methM) : cls �
cls Intro

�� C : cls �

�� new C : (�! comm)! comm
cls Elim

TABLE 2

Type rules of IA+



skip : comm

; : comm� comm ! comm

letvalÆ;� : exp[Æ]! (val[Æ]! �)! �

(where � = exp[Æ0] or comm)

if � : val[bool]! � ! �! �

�x� : (�! �)! �

Var[Æ] : cls var[Æ]

��1;�2 : cls �1 � cls �2 ! cls (�1 � �2)

TABLE 3

Essential constants of IA+

There are no restrictions on what free identi�ers can occur in a class term. So,

it is possible for the meth term to modify non-local variables. It is also possible

for the initialization command to modify non-local variables.

The important constants of IA+ are shown in Table 3. (The constants for

expression and value types are omitted.) The constant skip denotes the do-nothing

command and \;" denotes sequential composition. The letval operator sequences

the evaluation of an expression with that of another expression or command. More

precisely, letval e f evaluates e in the current state to obtain a value x and then

evaluates f x. (Note that this would not make sense if letval e f were of type

val[Æ0].) In typical usage, letval is used to evaluate an expression and bind its value

to an identi�er, e.g.,

letval e �x:

A(x)

The letval primitive provides a mechanism for forcing the evaluation of an ex-

pression inside another expression or a command. Such forcing cannot be done in all

types of values. For example, values of type val[Æ] are static and state-independent.

So, they cannot incorporate an expression evaluation. We identify a class of types

called \hereditarily state-dependent types" which support the forcing of expression

evaluation. They are given by the following syntax:

� := exp[Æ] j comm j �1 � �2 j fxi:�igi j �1 ! �2

Note that types of the form val[Æ] and cls � are not hereditarily state-dependent.

The letval operator is extended to hereditarily state-dependent types as follows:

letvalÆ;�1��2 e f

= (letvalÆ;�1 e (fst Æ f); letvalÆ;�2 e (snd Æ f))

letvalÆ;fxi:�igi e f

= fxi = letvalÆ;�i e �k: (f k):xigi
letvalÆ;�1!�2 e f

= �x: �1: letvalÆ;�2 e �k: f k x



Since values of all hereditarily state-dependent types are eventually used in the

context of a state, they can incorporate expression evaluation as a component.

Values of other types do not have this capability.

Call by value. We also use an implicit conversion that corresponds to Algol's

notion of call by value. If f : val[Æ] ! � is a value-accepting function to a

hereditarily state-dependent type �, and e : exp[Æ] is an expression, we allow an

application of the form (f e) with the interpretation:

f e = letval e �x: f(x)

We call this \call-by-value application." Notice its use in writing self.set(self.val

+ 1) in the SetCounter class above. It is also used in writing typical conditional

commands of the form

if E A B

where E is a state-dependent expression of type exp[bool]. The implicit call-by-value

application has the e�ect that type declarations become mandatory. For example,

the function abstraction term:

�x. (y := y + 1; print x)

can be assigned both the types of the form val[Æ]! comm and exp[Æ]! comm with

quite di�erent meanings. (Consider applying the function to y.)

The in�x operator \:=" for variable assignment is de�ned by:

\:=" : var[Æ]� exp[Æ]! comm

v := e
def
= letval e �x: (v:put(x))

Note that it forces expression evaluation via letval.

An important property of all the constants mentioned in Table 3 is that they

do not have global side e�ects.5 This is a requirement of our semantics, imposed

to ensure that closed terms are free of global side e�ects. The property would

be violated, for instance, if we were to add a constant print : val[Æ] ! comm

for printing. (A closed term, like print(20), would cause a global state change.)

The preferred method is to treat print as a free identi�er that is bound in the

environment of program execution.

Equational properties

The equational calculus for the typed lambda calculus part of IA+ is standard.

For cls type constructs, we have the following laws:

(�) new (class : � local C x initA methM)

= �p:new C �x:A; p M

(�) (class : � local C x init skip meth x)

= C

5A function-typed value in an Algol-like language is said to have a \side e�ect" if it involves
state changes other than those of its arguments.



The (�) law speci�es the e�ect of an Intro-Elim combination. The (�) law speci�es

the e�ect of an Elim-Intro combination where the \Elim" is the implicit elimination

in local object declarations.

The new operator supports a number of interesting equational properties. Unfor-

tunately, these properties do not hold in general because the initialization command

of a class may have global side e�ects (change objects other than the local objects

of the class). However, most classes used in practice are de�ned by closed terms.

We call such classes \closed classes." Since closed terms do not have global side

e�ects, the properties of interest hold for them. These properties also hold for a

more general class of terms called \constant terms" de�ned in the Appendix.

The following equation scheme allows one to reorder new declarations. Whenever

C1 and C2 are closed classes:

new C1 �x:new C2 �y:M = new C2 �y:new C1 �x:M (2)

The interaction of new declarations with various constants is expressed by the

following equation schemes (where C is a closed class and a; b : comm, f; g : � !

comm, e : exp[Æ], h : � ! val[Æ]! comm and p : val[bool] are free identi�ers):6

new C �x: skip = skip (3)

new C �x: (a; g(x)) = a; new C �x: g(x) (4)

new C �x: (g(x); b) = (new C �x: g(x)); b (5)�
new C �x:

letval e �z: h x z

�
=

�
letval e �z:

new C �x: h x z

�
(6)

new C �x: if p (f x) (g x) = if p (new C f) (new C g) (7)

(In the presence of nonterminating initializations, the equation (3) must be weak-

ened to an inequality new C �x: skip v skip. We are also ignoring the issue of

\visible e�ects," such as printing, which might occur before nontermination and

invalidate equations like (2) and (4).) These equations state that the new operator

commutes with all the operations of IA+. Any computation that is independent

of the new instance can be moved out of the scope of new. Compilers (implicitly)

use these kinds of equations to enlarge or contract the scope of local variables and

to eliminate \dead" variables. By formally introducing classes as a feature, we

are able to generalize them from variables to all objects. Notice that, by setting

g = �x: skip in (4) and using (3), we can derive the famous equation:

new C �x: a = a (8)

This equivalence has been discussed in various papers on semantics of local vari-

ables [38, 39, 50].

6Note that these are equations of the typed lambda calculus. The symbols a; g; : : : are free
identi�ers which can never be substituted by terms that capture bound identi�ers. For instance,
in equation (4), a cannot be substituted by a term that has x occurring free.



In [59, Appendix], Reynolds suggests encoding classes as their corresponding

\new" operators. This involves the translation:

cls � ; (� ! comm)! comm

(class : � local C x initAmethM)

; �p: new C �x: (A; p(M))

new C ; C

For instance, the class Counter would be encoded as an operator newCounter :

(counter ! comm)! comm. Unfortunately, arbitrary functions of this type do not

satisfy the axioms of new listed above. The reason is that the type of newCounter

does not constrain it to call its argument procedure exactly once. (This means that

Reynolds's encoding does not give a fully abstract translation from IA+ to Idealized

Algol.) Our treatment can be seen as a formalization of the properties intrinsic to

\new" operators of classes.

4. SPECIFICATIONS

An ideal framework for specifying classes in IA+ is the speci�cation logic of

Reynolds [61]. (See the survey article [67] for a detailed description of speci�cation

logic.) Speci�cation logic can be regarded as a theory within (typed) �rst-order

intuitionistic logic. We use the following intuitionistic connectives:

& conjunction

=) implication

8 universal quanti�cation

9 existential quanti�cation

The types include those of Idealized Algol and an additional base type assert

for assertions (state-dependent classical logic formulas). The atomic formulas of

speci�cation logic include:

� equations, M =� N , for �-typed terms M and N ,

� Hoare-style partial correctness triples, fPgA fQg, for command A and asser-

tions P and Q, and

� non-interference formulas, A #�;�0 B, where A and B are terms of types � and

�0 respectively.

The type rules for these formulas are shown in Table 4 using judgments of the form

\' Formula." Note that assertions form a \logic within logic." One can use classical

reasoning for them even though the outer logic is intuitionistic. Speci�cation logic

includes �xed point induction to deal with recursion. This is typically used for

proving partial correctness properties. Termination must be proved separately

(outside the logic).

Non-interference

A non-interference formula A # B (read \A does not interfere with B" or \A is

independent of B") means intuitively that A and B do not access any common stor-

age locations except in a read-only fashion. We use a symmetric non-interference



��M : � ��N : �

��M =� N Formula

��M : � ��N : �0

��M #�;�0 N Formula

�� P : assert ��A : comm ��Q : assert

�� fPgA fQg Formula

��C : cls � �; x: � � ' Formula

�� Inst C x: ' Formula

TABLE 4

Selected type rules of IA+ speci�cation logic

predicate (from [59, 47]), which is somewhat easier to use than Reynolds's original

version in speci�cation logic. The basic facts for non-interference come from in-

stance declarations. A newly created instance is independent of all other existing

objects, unless its class interferes with those objects. Starting from these facts, we

can infer non-interference for more complex terms using the following proof rules:

1. If A and B are terms with free identi�ers fxigi and fyjgj then

&i;j(xi # yj) =) A # B

2. If both A and B are of \passive" types then A # B.

3. If either A or B is of a \constant" type then A # B.

4. If A # B then B # A.

Passive types are those that hereditarily lead to val[Æ] or exp[Æ] types, and constant

types are those that hereditarily lead to val[Æ]. They are given by the following

syntax:

(Passive types) � ::= val[Æ] j exp[Æ] j �1 � �2 j �1 ! �2 j fxi:�igi
(Constant types) � ::= val[Æ] j �1 � �2 j �1 ! �2 j fxi: �igi

See Appendix for further discussion, where there are also new typing mechanisms

de�ned for enlarging these classes in a signi�cant way.

The �rst rule of non-interference reduces the non-interference of terms to that

of their free identi�ers. If all the free identi�ers of A and B are non-interfering,

then A and B are non-interfering. Passive types, used in the second rule, identify

computations that only read the state. Two computations that only read the state

are always non-interfering. In the third rule, constant types identify computations

that neither read nor write the state. Such computations do not interfere with

anything.

The e�ect of the non-interference predicate is best illustrated by the axiom:

8a; b : comm: a # b =) a; b = b; a



which states that two non-interfering commands can be freely reordered. The equiv-

alences stated in Sec. 3 can also be formalized as axioms using the non-interference

predicate. For example, the equivalence (2) can be stated as:

8c1: cls �1:8c2: cls �2:8g: �1 � �2 ! comm: c1 # c2 =)

new c1 �x:new c2 �y: g(x; y)

= new c2 �y:new c1 �x: g(x; y)

Class speci�cations

For handling IA+, we extend speci�cation logic with cls types and add a new

formula of the form:

Inst C x: '(x)

where C is a class, x an identi�er (bound in the formula) and '(x) is a formula.

The meaning is that all instances x of class C satisfy the formula '(x). An example

is the following speci�cation of the variable class:

Inst Var[Æ] x.

8p: exp[Æ] ! assert. x # p =)

fp(k)g x.put k fp(x.get)g

Thus, the Hoare logic's axiom scheme for assignment becomes a speci�cation of the

variable class.

One can also write equational speci�cations for classes. For example, consider

the speci�cation of counters given by:

Inst Counter x.

8g: exp[int] ! comm. x # g =)

x.inc; g(x.val) = g(x.val + 1); x.inc

The quanti�ed function identi�er g plays the role of a \conversion" function, to

convert expressions into commands. The speci�cation says that incrementing the

counter and using its value in some context g is equivalent to using one plus the

value before incrementing the counter. In essence, the e�ect of inc is to increment

the val of the counter. As a less trivial example, an equational speci�cation of a

Queue class is shown in Table 5. Its structure is similar to that of the Counter

speci�cation.

Speci�cation logic allows the use of both equational reasoning and reasoning via

Hoare-triples. The choice between them is a matter of preference, but Hoare-like

reasoning is better understood and is often simpler. For example, a Hoare-triple

speci�cation of counters can be written as

Inst Counter x.

8k: val[int].

fx.val = kg x.inc fx.val = k + 1g

This states much more directly that the e�ect of x:inc is to increment x:val .

For more interesting data structures, where the state is not directly accessible via

methods, Hoare-triple speci�cations can be written using abstraction predicates.



TABLE 5

Equational speci�cation of a queue class

type queue = finit: comm, ins: val[int] ! comm, del: comm, front: exp[int] g

Queue : cls queue

Inst Queue q.

8x,y: val[int]. 8g: exp[int] ! comm. g # q =)

q.init; q.ins(x); q.del = q.init

& q.ins(x); q.ins(y); q.del = q.ins(x); q.del; q.ins(y)

& q.init; q.ins(x); g(q.front) = q.init; q.ins(x); g(x)

& q.ins(x); q.ins(y); g(q.front) = q.ins(x); g(q.front); q.ins(y)

TABLE 6

Hoare-triple speci�cation of queues

Inst Queue q.

9elems: val[list int] ! assert.

8k: val[int]. 8s: val[list int].

ftrueg q.init felems([ ])g

& felems(s)g q.ins(k) felems(s@[k])g

& felems(k::s)g q.del felems(s)g

& ftrueg skip felems(k::s) ) q.front = kg

For example, in Table 6, we show a Hoare-triple speci�cation of Queue. The

speci�cation asserts the existence of an elems predicate representing an abstraction

of the internal state of the queue as a list. (We are using an ML-like notation for

lists. Note also that we are regarding list int as a data type for the purpose of

abstract reasoning.) The logical facilities of speci�cation logic allow us to specify

the existence of an abstraction function whose de�nition can only be determined

in the context of an implementation of the class.

Consider an implementation of the Queue class using \unbounded" arrays,7

shown in Table 7. To show that it meets the Hoare-triple speci�cation, we pick

the assertion:

elems(s) () f � r ^ a[f + 1, : : :, r] = s

A Queue-state represents a queue with elements s i� f � r and the list of array

elements between f+1 and r is s. (We are using the notation a[f+1; : : : ; r] for the

array section between the two bounds, regarded as a list.) Note that the predicate

incorporates both the \representation invariant"(the condition f � r) and the

7We are using \unbounded" arrays as an abstraction to �nesse the technicalities of bounds.
Clearly, both the speci�cation and the implementation of Queue can be modi�ed to deal with
bounded queues.



TABLE 7

An implementation of queues

Queue =

class queue

local (UnboundedArray Var[int]) a;

Var[int] f, r

init (f := 0; r := 0)

meth

finit = (f := 0; r := 0),

ins = �x. (r := r + 1; a(r) := x),

del = (if f < r then f := f + 1 else skip),

front = if f 6= r then a(f + 1).get else 0 g

\representation function" (given by the expression a[f + 1; : : : ; r]) in conventional

terminology [6].

Speci�cation logic is also able to express \history properties" of the kind recom-

mended by Liskov and Wing [36]. For example, here is a formula that states that

a counter's value can only increase over time:

Inst Counter x.

8k: val[int]. 8a: comm.

fx.val = kg a fx.val � kg

Note that we do not have an assumption x # a in this speci�cation. So, it is

possible for a to make its own state changes to x (through aliasing, for example).

The speci�cation still holds because the only possible state changes to x are via the

inc operation. On the other hand, if we were to replace Counter by SetCounter,

the speci�cation would fail. In that case, the command a can potentially decrease

x through the set operation. In general, adding methods to a class can falsify its

history properties.

Using Inst-speci�cations, we formulate the following proof rule for new declara-

tions:8

Inst C x: '(x)

�
'(x)

fC # Ti =) x # Tigi

�

�
�
�

fPg g x fQg

fPg new C g fQg

(9)

where x does not occur free in any undischarged assumptions, the terms Ti and

the assertions P and Q. This states that, to prove a Hoare triple speci�cation

for (new C g), we need to prove it for (g x), where x is an arbitrary instance of

8We are presenting the rules in a natural deduction form for readability. They can also be
stated as axioms in the style of [61].



C. During the proof, we get to assume that x satis�es the speci�cation '(x) and

the fact that x does not interfere with anything unless C interferes with it. The

terms Ti can be any terms whatever but, in a typical usage of the rule, they are the

free identi�ers of the speci�cation fPg g x fQg. These non-interference assumptions

arise from the fact that x is a \new" instance. They form the basic raw material

for non-interference reasoning.

The rule for inferring Inst-speci�cations is:

Inst C z:  (z)

�
 (z)

fC # Ti =) z # Tigi

�

�
�
�

'(M)

Inst (class : � local C z initAmethM) x: '(x)

(10)

where z does not occur free in any undischarged assumptions, the terms Ti and

the formula '(�). The proof that the queue implementation of Table 7 satis�es

the Hoare-triple speci�cation is carried out using this rule. Proving that the queue

implementation satis�es to the equational speci�cation of Table 5 is more involved.

We discuss it in Sec. 5.1.

The initialization command A does not play any role in the above proof rule

because Inst-speci�cations state the properties that hold in all states, not only the

initial state. To state the properties that hold in the initial state, axioms involving

new-terms can be used. For example, the Counter class satis�es the following

\initialization" axiom:
�
new Counter �x.

g(x.val); h(x)

�
=

�
new Counter �x.

g(0); h(x)

�

which speci�es that the initial value of a newly created counter is 0. Such initial

value axioms are a bit cumbersome to write because they have to specify equalities

that hold in a particular context. The properties speci�ed in Inst-speci�cations,

on the other hand, hold in all contexts.

No new logical principles are involved in handling self-reference and inheritance

because these concepts are modelled using recursion. For example, the proof

principle for self-referential classes can be derived from �xed-point induction:

'(?) ^ (Inst c f:8x: '(x) =) '(f(x)))

=) Inst (close c) x: '(x)

So, to verify that the instances of (close c) satisfy ', we need to show that the

instances of c preserve '. As an example, the SetCounter class can be shown to

satisfy:

Inst SetCounter f. 8x. '(x) =) '(f(x))

where '(x) � 8k: val[int]. 8p: exp[int] ! assert. x # p =)

fp(k)g x.set k fp(x.val)g

& fp(x.val + 1)g x.inc fp(x.val)g

Since the formula '(x) is a partial-correctness speci�cation, it trivially holds for ?.

Hence, we have



Inst (close SetCounter) x. '(x)

See [30] for more discussion of this and other similar techniques.

The non-interference conditions occurring at various parts of this theory might

seem unusual and somewhat heavy but, once their role is understood, they are quite

easy to handle and are seen to help reasoning considerably. The �rst proof rule of

non-interference reduces non-interference of terms to non-interference of their free

identi�ers: two terms A and B are non-interfering if all the free identi�ers of A

are non-interfering with all the free identi�ers of B. This is easily ensured by a

syntactic examination of A and B, provided we know which free identi�ers have the

possibility of interference. It is usually a good practice to make sure that no two

free identi�ers of a term or formula interfere. In our example formulas, we followed

this practice. For example, in the equational speci�cation of Counter, we laid down

the condition x# g as soon as the two identi�ers are introduced in the context.

Reynolds has also de�ned a system for \Syntactic Control of Interference" [59]

where it can be automatically veri�ed that no two free identi�ers interfere. If this

practice is strictly followed, then the non-interference of A and B can be ensured

by just checking that they have no common free identi�ers. (The second and third

axioms relax this condition by allowing certain kinds of free identi�ers to be shared

by A and B.)

Within programs, the basic raw material for showing non-interference comes from

instance declarations. Whenever a new instance of a class C is created, it is known

to be non-interfering with anything that C does not interfere with. Since most

classes are de�ned by closed terms (e.g., the Queue class of Table 7), such classes

do not interfere with anything. If a class is given by a closed term, evey instance

of the class is non-interfering with other objects previously in existence.

Thus, though non-interference conditions seem to have an overbearing presence

in the theory, reasoning about them is usually straightforward in most practical

situations. An exception to this observation is the handling of data structures, e.g.,

arrays. If we want to pass two array components, say, a(i) and a(j), as arguments

to a procedure and the procedure speci�cation requires the two arguments to be

non-interfering, we have to reason about the inequality of i and j. Techniques for

such reasoning are still under investigation.

5. SEMANTICS

The denotational semantics of IA+ brings out important properties of classes

and objects. We consider two styles of semantics: parametricity semantics along

the lines of [51], which highlights the data abstraction aspects of classes, and

object-based semantics along the lines of [58], which highlights the class-instance

relationship.

5.1. Parametricity semantics

Recall, from Sec. 2, that objects can be regarded as state machines with a state set

Q and operations that act on the state set Q. Since these operations correspond to

methods written in IA+, it follows that IA+ types � correspond to type constructors

parameterized by state sets Q. For example, methods of type comm are interpreted

as state transformations of type (Q ! Q). So, corresponding to the IA+ type



comm, we have the type constructor (� ! �) which maps any state set Q to the

set of state transformations for Q. Similarly, for every IA+ type �, we have a type

constructor [[�]] so that a method of type � in an object with state set Q can be

interpreted as an operation of type [[�]](Q). The interpretation is as follows:

[[exp[Æ]]](Q) = Q! [[Æ]]

[[comm]](Q) = Q! Q

[[val[Æ]]](Q) = [[Æ]]

[[�1 � �2]](Q) = [[�1]](Q)� [[�2]](Q)

[[fxi: �igi]](Q) =
Q

xi
[[�i]](Q)

[[�1 ! �2]](Q) = 8Z: [[�1]](Q� Z)! [[�2]](Q� Z)

[[cls �]](Q) = 9Z: [[�]](Q � Z)� [Q! Q� Z]

(11)

In interpreting types using sets, we are ignoring the issues of termination and

recursion. See the end of this section for remarks on how to extend it to handle

these features.

Expressions are interpreted as functions from states to values (modeling state-

dependent valuations) and commands as functions from states to states (modeling

state transformations). Value types are simply interpreted as sets of values. We are

using [[Æ]] to mean the set of values for the data type Æ ([[int]] is the set of integers,

[[bool]] is the set of boolean values, etc.) Product types are interpreted as pointwise

products, because a pair of methods corresponds to a pair of operations. Record

types are similarly interpreted as pointwise products (indexed by �eld identi�ers).

We will ignore record types in the remainder of this section because they are very

much similar to product types. The interpretation of function types and class types

is more sophisticated.

When a function method of type �1 ! �2 is called, we can supply an argument

which is potentially dependent on some other object. Thus, the argument lives in

an expanded state set Q� Z which incorporates both the state set of the receiver

object and the extra state of the argument object. The result of the method-call

likewise lives in the expanded state set. Moreover, the method must be prepared to

accept arguments in all possible expanded state sets, treating those expansions in a

uniform way. This explains the quanti�cation 8Z in the interpretation of function

types. This is the same form quanti�cation as in polymorphic lambda calculus [62].

(See also [42, Ch. 9].)

The interpretation of class-types involves the dual form of quanti�cation 9Z. A

class de�ned in the context of some state set Q, �rst speci�es a state set Z for the

objects of the class. In addition, it gives a method suite of type � which acts on the

combined state set Q�Z of the context and the object and, �nally, an initialization

operation (of type Q! Q� Z). The quanti�cation involved in this interpretation

is existential quanti�cation because the class de�nition provides a state set Z which

serves as a hypothetical state set for describing the behavior of the class. This form

of existential quanti�cation was introduced by Mitchell and Plotkin [43] to describe

the types of data abstractions. See also Cardelli and Wegner [14] and [42, Ch. 9]

for a detailed discussion of existential quanti�cation.



An IA+ term with typing x1 : �1; : : : ; xn : �n � M : � is interpreted as a

polymorphic function of type

[[M ]] : 8Q: [[fx1 : �1; : : : ; xn : �ng]](Q)! [[�]](Q)

Thus, the term M has a value in every state set Q in which the free identi�ers can

be assigned values. And, this interpretation is \uniform," i.e., acts the same way

for all state sets. The fact that the meanings of terms are polymorphic functions,

not ordinary functions, leads to a characteristic di�erence between closed terms and

open terms. Possible values for closed terms are often few. For example, the only

possible values for closed terms of type comm are the diverging command and skip.

On the other hand, open terms of type comm have more interesting possibilities

because they can use the state information of the free identi�ers.

To formalize the behavioral equivalence of classes as well as the uniformity of

IA+ functions, we must interpret the type expressions occurring in (11) using the

ideas of relational parametricity [62, 51]. The idea is that every type expression

T (�) denotes a type operator which not only maps each state set Q to a set

T (Q), but also maps every relation R : Q$ Q0 between state sets to a relation

T (R) : T (Q)$ T (Q0). The meaning of the quanti�ers 8 and 9 take this relational

action into account. The basic ideas for this interpretation are due to O'Hearn

and Tennent [51] and we follow the presentation in Section 2 of their paper. In

particular, we ignore recursion and curried functions. The later discussion in [51]

about handling these features is immediately applicable.

Type operators

A unary type operator of T over a collection of sets S is a pair hTset; Treli where

� the \set part" Tset assigns to each set X 2 S, a set Tset(X), and

� the \relation part" Trel assigns to each binary relation R : X $ X 0, a relation

Trel(R) : Tset(X)$ Tset(X
0).

such that Trel(�X) = �Tset(X) where �X denotes the identity relation of X . (We

normally write both Tset and Trel as simply T , using the context to disambiguate the

notation.) The condition that T (�X) = �T (X) is called the \identity extension"

property. One can de�ne n-ary type operators similarly, with set parts of the form

T (X1; : : : ; Xn) and relation parts of the form T (R1; : : : ; Rn). The identity extension

property is T (�X1
; : : : ;�Xn

) = �T (X1;:::;Xn). We use type operators of this kind

to interpret type expressions occurring in the interpretation (11).

Since our type operators involve quanti�ers, we assume that the collection S

forming the range of type variables is a set. Note that, in our application, S is the

collection of state sets. For most practical purposes, S can be taken to be the set

of countable sets. Alternatively, one can assume a universe set that is closed under

all set-theoretic constructions [37, Sec. I.6] .

We have the following basic type operators:

Identity J(X) = X

J(R) = R

Constant �A(X) = A (for a set A)
�A(R) = �A



For the n-ary case, we also have the projection operators �ni with �ni (
~X) = Xi and

�ni (
~R) = Ri . The product and function-space constructions have their counterparts

for type operators:

Product (T1 � T2)(X) = T1(X)� T2(X)

(T1 � T2)(R) = T1(R)� T2(R)

Function space (T1 ! T2)(X) = T1(X)! T2(X)

(T1 ! T2)(R) = T1(R)! T2(R)

The relation operators � and ! used here are standard:

(x; y) [R� S] (x0; y0) () x R x0 ^ y S y0

f [R! S] f 0 () 8x; x0: x R x0 =) f(x) S f 0(x0)

For readability, we often denote type operators by type expressions. For example,

the type expression

T (X) = (X ! A)� (X ! B)! (X ! A�B)

in a type variable X denotes the type operator:

T = (J! A)� (J! B)! (J! A�B)

The relation part of the type operator is:

T (R) = (R! �A)� (R! �B)! (R! �A�B)

whose form parallels that of T (X) except that the set variable X is replaced by a

relation variable R and the set constants A, B and A � B are replaced by their

identity relations. (This is generally the case.)

Quanti�ed type operators

Next, we de�ne quanti�ers for type operators. The universal quanti�er 8 repre-

sents parametrically polymorphic functions and the existential quanti�er 9 repre-

sents abstract data types.

If T (X;Z) is a binary type operator, we have a unary type operator 8Z: T (X;Z)

which represents parametrically polymorphic functions p with components pZ 2

T (X;Z) for each set Z 2 S. (The \component" pZ is nothing but the instance of

the polymorphic function at type Z. We also use the notation p[Z] to denote such a

component.) The type operator 81(T ) (denoted informally by the type expression

8Z: T (X;Z)) is de�ned as follows:

� the set part maps a set X to the set 8Z: T (X;Z) whose elements are S-indexed

families p = fpZgZ2S such that, for all relations S : Z $ Z 0,

pZ [T (�X ; S)] pZ0

� the relation part maps a relation R : X $ X 0 to the relation 8S: T (R;S) :

8Z: T (X;Z)$ 8Z: T (X 0; Z) de�ned by

p [8S: T (R;S)] p0 ()

8Z;Z 0 2 S: 8S : Z $ Z 0: pZ [T (R;S)] p0Z0



(Similarly, one can de�ne 8n(T ) for each arity n � 0.) The condition pZ [P (�X ; S)]

pZ0 in the set part is referred to as the \parametricity condition." It ensures that

all the components pZ of the polymorphic function act the same way. (The identity

relation �X occurs in the �rst argument position because all the components pZ
are de�ned for the same set X in the �rst position.) As an example, consider the

family of functions

swapX 2 8Z:X � Z ! Z �X

(swapX)Z(x; z) = (z; x)

We verify that this is parametrically polymorphic by noting that (swapX)Z and

(swapX)Z0 are related by [�X � S ! S ��X ] , i.e.,

(x; z) [�X � S] (x0; z0) =) (z; x) [S ��X ] (z
0; x0)

This property is often denoted diagramatically by:

X � Z
(swapX)Z- Z �X

X � Z 0

�X � S

?

6

(swapX )Z0- Z 0 �X

S ��X

?

6

The intuition is that the swapX family is uniform: it acts the same way for every

type Z. If swapX were non-uniform, for example, by negating the second component

of the pair for Z = Bool and leaving it unchanged for all other Z, then it would

fail to satisfy the parametricity condition.

The existential quanti�er works in a dual fashion. If T (X;Z) is a binary type

operator then we have a unary type operator 9Z: T (X;Z) which represents data

abstractions that hide a representation type Z. To de�ne it, consider \data type

implementation" pairs of the form hZ; pi where Z 2 S and p 2 T (X;Z). If hZ; pi

and hZ 0; p0i are two implementations and S : Z $ Z 0 is a relation such that

p [T (�X ; S)] p
0

we say that S is a simulation relation, and that the two implementations are similar.

For example, the abstract state machines M and M 0 for counters, mentioned

in Section 2, are similar (where the type operator T (X;Z) is Z � fval :Z !

Int ; inc:Z ! Zg.) We write hZ; pi � hZ 0; p0i to denote that two implementations

are similar.

The similarity relation � is re
exive and symmetric.9 So, its transitive closure��

is an equivalence relation. Write the equivalence class of hZ; pi under �� as hjZ; pji.

The type operator 91(T ) (denoted informally by the type expression 9Z: T (X;Z))

is de�ned as follows:

9The re
exivity of � is witnessed by the identity simulation relation, and symmetry by the
converse-relation construction. Similarity is not transitive, however. The composition of two
simulation relations is not necessarily a simulation relation. Consider, for example, the type
operator T (X;Z) = (Z ! Z)! X. Further discussion of this issue may be found in [33].



� The set part maps a set X to the set 9Z: T (X;Z) whose elements are equiva-

lence classes of implementations under the equivalence relation ��.

� The relation part maps a relation R : X $ X 0 to the relation 9S: T (R;S) :

9Z: T (X;Z)$ 9Z: T (X 0; Z), which is the least relation such that

hjZ; pji 9S: T (R;S) hjZ 0; p0ji (= 9S:Z $ Z 0: p T (R;S) p0

In other words, hjZ; pji and hjZ 0; p0ji are related i� there exist hZ0; p0i �
� hZ; pi and

hZ 00; p
0
0i �

� hZ 0; p0i such that:

9S:Z0 $ Z 00: p0 T (R;S) p
0
0

The intuition here is that the representation type Z of the implementation hZ; pi

is hidden from the client programs, and the client programs give the same results

if we replace the implementation by a similar implementation hZ 0; p0i. Hence all

similar implementations are behaviorally equivalent. Identifying such behaviorally

equivalent implementations is the semantic essence of data abstraction.

To complete the de�nition of the existential quanti�er, we must verify that

91(T ) has the identity extension property. (For the other operations, the identity

extension property is already known [62].) We show this in two steps.

� 9S: T (�X ; S) � �9Z: T (X;Z)

If hjZ; pji [9S: T (�X ; S)] hjZ
0; p0ji, we have implementations hZ0; p0i �

� hZ; pi and

hZ 00; p
0
0i �

� hZ 0; p0i such that

9S : Z0 $ Z 00: p0 [T (�X ; S)] p
0
0

The relation S is a simulation. Hence, hZ0; p0i �
� hZ 00; p

0
0i and hjZ; pji = hjZ 0; p0ji.

� �9Z: T (X;Z) � 9S: T (�X ; S).

If hjZ; pji = hjZ 0; p0ji then the identity relation �Z : Z $ Z serves as the required

relation S.

The �rst step in the above proof shows that the identi�cation of behaviorally equiv-

alent implementations is a necessary condition for the identity extension property.

The basic reference for parametricity is Reynolds [62], while Plotkin and Abadi [55]

de�ne a logic for reasoning about parametricity. The notion of existential quan-

ti�cation is from [43], but its parametricity semantics discussed above seems new.

The idea of simulation relations for implementations dates back to Milner [40] and

appears in various sources including [9, 33, 26, 44, 63].

The types � of IA+ are interpreted as type operators [[�]] in the above sense. For

completeness, we indicate the relation parts of these type operators.

[[exp[Æ]]](R) = R! �[[Æ]]

[[comm]](R) = R! R

[[val[Æ]]](R) = �[[Æ]]

[[�1 � �2]](R) = [[�1]](R)� [[�2]](R)

[[� ! �]](R) = 8S: [[�]](R� S)! [[�]](R � S)

[[cls �]](R) = 9S: [[�]](R � S)� [R! R� S]



The type operators of Algol types have additional structure. Whenever R : Q$ Q0

is the graph of a bijection Q �= Q0, [[�]](R) is a bijection [[�]](Q) �= [[�]](Q0). Further,

as explained in [51, Sec. 3.2], there are certain \expand" functions which allow us to

map a value in a small state to a related value in large state. Whenever Q0 �= Q�X

is an expansion of the state set Q, there is a function expand� of type:

expand�[Q;Q
0] : [[�]](Q)! [[�]](Q0)

(Mathematically, this means that the type operators [[�]] are functors from a certain

category of state sets to the category of sets.) We use the abbreviated notation v"Q
0

Q

to denote expand�[Q;Q
0](v). The expanded value v"Q

0

Q has the same action in the

state set Q0 as v has in Q. For example, if � = comm and a 2 [[comm]](Q), the

expansion of a to Q�X is:

a"Q�XQ = �(q; x): (a(q); x)

The expanded command has the same action as a in that it transforms the Q

component via a and leaves the extra state component unchanged. The de�nition

of expand functions for Algol types may be found in [51, Sec. 3.2]. For � = cls �0,

the expand function is de�ned by:

hjZ; (m; i)ji"Q�XQ =

hjZ; (m"Q�X�ZQ�Z ; �(q; x): (q0; x; z0) where (q
0; z0) = i(q))ji

Term interpretation

The interpretation of terms is as follows. A termM of type � with free identi�ers

x1: �1; : : : ; xn: �n is a parametrically polymorphic function

[[M ]] : 8Q: [[fx1: �1; : : : ; xn: �ng]](Q)! [[�]](Q)

So, for each state set Q, the meaning of M has a component [[M ]]Q that maps

records of type [[fxi : �igi]](Q) | which we call \environments" | to values of type

[[�]](Q). Moreover, these components satisfy:

� the parametricity condition: for all relations R : Q$ Q0,

� [[fxi : �igi]](R) �
0 =) [[M ]]Q(�) [[�]](R) [[M ]]Q0(�0)

� the naturality condition: whenever Q0 �= Q�X ,

[[M ]]Q0(�"Q
0

Q ) = [[M ]]Q(�)"
Q0

Q

The semantics of Algol phrases is as in [51]. We specify the interpretation of class

constructs:

[[class : � localC x initA methM ]]Q(�) =

hjZ; ([[M ]]Q�Z(�
0); [[A]]Q�Z (�

0) Æ i0)ji

where hjZ; (m0; i0)ji = [[C]]Q(�) and �
0 = � "Q�ZQ [x! m0]

[[new C P ]]Q(�) =

fst Æ pZ(m) Æ i

where hjZ; (m; i)ji = [[C]]Q(�) and p = [[P ]]Q(�)



A class de�nition builds an abstract type. This involves giving the representation

state set for the objects of the class, the operations for the method suite, and the ini-

tialization operation. The new operator \opens" the abstract type and instantiates

the client procedure P with the representation state set obtained from the abstract

type. Thus it is that an \instance" is created. In the normal case where P is an

abstraction �x:N , its meaning is a family f�m: [[�]](Q� Z): [[N ]]Q�Z(�"
Q�Z
Q [x !

m])gZ . So, the body term N will now use the expanded state set Q � Z. Every

time the class C is instantiated, a new Z component is added to the state set in this

fashion. Thus, every \opening" of the abstract type gives rise to a new instance

with its own state component that is independent of all other state components.

Remark. In comparing this operation with the object encoding proposed by

Pierce, Turner and others [54, 12], we note that they treat objects as abstract types

whereas we treat classes as abstract types. Our objects correspond to \opened

abstract types" whose representation types are merged into the global state set.

Sending a message to the object merely involves selecting a component of its method

suite. This is in contrast to the Pierce-Turner encoding where sending a message

involves opening the object and repacking the results again to form a new object.

Such repeated opening-closing operations are not present in the use of objects in

Algol-like languages.

The interpretation of subtyping is by coercions. For each derivable subtyping

� <: �0, we assign a coercion function of type:

[[� <: �0]] : 8Q: [[�]](Q)! [[�0]](Q)

This is used in interpreting the Subsumption type rule. The coercions for the

basic subtypings are the evident ones. For derived subtypings, we follow the

general scheme as in [42, Sec. 10.4.2]. In particular, the interpretation of the width

subtyping of records is the forgetting-�elds coercion.

Finally, consider the interpretation of constants. A constant c of type � must be

interpreted as a parametrically polymorphic family [[c]] 2 8Q: [[�]](Q) subject to the

naturality condition: [[c]]Q0 = [[c]]Q"
Q0

Q . The naturality condition implies that the

entire family [[c]] is uniquely determined by its component at the singleton state set

1 (because every state set Q is an expansion of 1). Hence we only need to specify

the interpretation at the singleton state set.



Here is the interpretation of the class constants:

[[Var[Æ]]]1 =

hj[[Æ]]; (fget = �d: [[Æ]]: d;

put = f�n: [[Æ]]: �(d; x): [[Æ]] �X: (n; x)gX g;

�x:1: initÆ)ji

([[�]]1)Q(c1; c2) =

hjZ1 � Z2; ((m
0
1;m

0
2); i

0
2 Æ i1)ji

where hjZ1; (m1; i1)ji = c1
hjZ2; (m2; i2)ji = c2

m0
1 = m1 "

Q�Z1�Z2

Q�Z1

m0
2 = m2 "

Q�Z1�Z2

Q�Z2

i02 = �(q; z1): (q
0; z1; z

0
2) where (q

0; z02) = i2(q)

The Var[Æ] class denotes a state set [[Æ]] with get and put operations on it. The

� operator combines two classes by joining their state sets. The method suites of

the individual classes are expanded to operate on the combined state set and the

respective initialization operations are sequenced.

The following results are based on a straightforward veri�cation:

Lemma 5.1. The interpretation of terms satis�es the parametricity and natural-

ity conditions.

Theorem 5.1. All the equivalences of Sec. 3.0.7. hold in the model.

Semantics of speci�cations

Speci�cation logic can also be interpreted in this model to some extent. The

modeling is not complete because there is no clear notion of \locations used" in a

computation. Such a notion is involved in our intuitive idea of non-interference.

However, the basic structure of speci�cations, including the speci�cation of classes,

�nds a satisfactory interpretation.

To interpret a speci�cation logic formula ' in a typing context �, we use state-

ments of this form

Q; � j= '

where Q is a state set and � is an environment in [[�]](Q). We read this as \' holds

in the state set Q and environment �.". A formula ' is said to be valid if it holds

in all state sets and all environments.

The interpretation of Speci�cation logic constructs is shown in Table 8. The

interpretation of Hoare-triple formulas is standard. A non-interference formula

M #N holds if there are independent parts X and Y of the current state set Q

such that the value of M is the expansion of some value in the state set X and

the value of N is the expansion of some value in Y [47]. This captures the idea

that M and N do not use any common storage locations. The interpretation of

logical connectives follows the possible world semantics of intuitionistic logic. The



TABLE 8

Interpretation of speci�cations

Q; � j= M =� N () [[M ]]Q� =[[�]](Q) [[N ]]Q�

Q; � j= fPgAfP 0g () 8q; q0 2 Q: [[P ]]Q�q = true ^ [[A]]Q�q = q0 =)

[[P 0]]Q�q
0 = true

Q; � j= M #�;�0 N () 9X;Y; Z:Q �= X � Y � Z ^

9a 2 [[�]](X): 9b 2 [[�0]](Y ):

[[M ]]Q(�) = a"QX ^ [[N ]]Q(�) = b"QY

Q; � j= ' =) '0 () 8Z: (Q� Z; �"Q�ZQ j= ') =) (Q� Z; �"Q�ZQ j= '0)

Q; � j= 8x: �: ' () 8Z: 8v 2 [[�]](Q� Z): (Q� Z; �"Q�ZQ [x! v]) j= '

Q; � j= 9x: �: ' () 9v 2 [[�]](Q): (Q; �[x! v] j= ')

Q; � j= Inst C x: ' () 9hZ; hm; iii �� [[C]]Q�:(Q� Z; �"Q�ZQ [x! m] j= ')

meaning of Inst C x: ' is that ' should hold for x, where x is an instance of some

implementation of the class C. It is not necessary to use the same implementation as

that in the de�nition of C. Because all implementations of the class are behaviorally

equivalent, any one of them can be used to show that the instances satisfy '. We

use this feature below in showing that classes meet equational speci�cations.

Lemma 5.2. The inference rules (7) and (8) for Inst-speci�cations are sound.

We were unable to validate the proof rules of the non-interference predicate in this

model, and it is very likely that they do not hold. A more explicitly location-based

approach, as in [46], seems necessary to validate these rules.

Examples

The meaning of the class Counter, from Sec. 2, can be calculated as follows:

[[Counter]]Q(�) =

hjInt ; (finc = �(q; n): (q; n+ 1); val = �(q; n): ng; �q: (q; 0))ji

The parameter (q; n) appearing in the operations is a state of type Q� Int . Here,

Q is the state set of the context in which the class de�nition appears and Int is

the representation state set of the class. Note that the context part of the state

is ignored. This is because the class Counter is given by a closed term, and its

meaning in a state set Q is just the expansion of its meaning in the singleton state

set 1.

Consider the following class as an alternative to Counter:

Counter0 = class: finc: comm, val: exp[int]g



local Var[int] st

init st.put 0

meth

finc = (st.put := st.get � 1),

val = �st.get g

Its meaning can be similarly calculated as

[[Counter0]]Q(�) =

hjInt ; (finc = �(q; n): (q; n� 1); val = �(q; n):�ng; �q: (q; 0))ji

The two implementations are equivalent because there is a simulation relation

S: Int $ Int given by

n S m () n � 0 ^m = �n (12)

which is preserved by the two implementations. Hence, the two abstractions (equiv-

alence classes) are equal: [[Counter]] = [[Counter0]]. Thus, the parametricity seman-

tics gives an extremely useful proof principle for reasoning about equivalence of

classes.

The implementation of queues shown in Table 7 does not directly satisfy the

equational axioms given in Table 5. For example, the second axiom does not hold for

the implementation. (The left hand side gives a state where f = r = 1 whereas the

right hand side gives a state where f = r = 0.) However, according to the semantics

of Inst-speci�cations, it is enough for some behaviorally equivalent implementation

to satisfy the axioms. The class is then deemed to satisfy the Inst-speci�cation.

We illustrate this here by giving an abstract implementation of queues, using lists,

which is behaviorally equivalent to the original one (Table 9). It is easy to verify

that the abstract implementation satis�es the queue axioms. The equivalence of

this abstract queue implementation with the original one can be shown using the

simulation relation:

S : (Int ! Int)� Int � Int $ List Int

(m; i; j)S e() i � j ^m[i+ 1; : : : ; j] = e

The three components in the state of the Queue class are the state of the array a

(regarded as a function from integers to integers) and the values of the variables f

and r.

Handling recursion

The above semantics can be adapted to handle recursion using the strict function

framework in [49]. We replace the various concepts in the set-theoretic semantics

as follows:

state sets 
at pointed cpo's

sets pointed cpo's

relations complete relations



TABLE 9

An abstract implementation of queues

AbstractQueue =

class queue

local Var[list int] e

init e := [ ]

meth

finit = (e := [ ]),

ins = �x. (e := e@[x]),

del = (if e = [ ] then skip else e := tl(e)),

front = if e 6= [ ] then hd(e) else 0 g

The interpretation of IA+ types is

[[exp[Æ]]](Q) = Q �Æ [[Æ]]

[[comm]](Q) = Q �Æ Q

[[val[Æ]]](Q) = [[Æ]]

[[�1 � �2]](Q) = [[�1]](Q)� [[�2]](Q)

[[fxi: �igi]](Q) =
Q

xi
[[�i]](Q)

[[�1 ! �2]](Q) = 8Z: [[�1]](Q
 Z)! [[�2]](Q
 Z)

[[cls �]](Q) = 9Z: [[�]](Q 
 Z)� [Q �Æ Q
 Z]

where 
 denotes smash product, �Æ denotes strict function space, and ! denotes

continuous function space. The quanti�ers 8 and 9 are similar to the set-theoretic

case. The ordering on 8Z: T (X;Z) is pointwise while that on 9Z: T (X;Z) is the

least relation v such that

p vT (X;Z) p
0 =) hjZ; pji v hjZ; p0ji

The relation parts of the operators �Æ,! and 8 are as in the set-theoretic case. For


 and 9, the relations R
 S and 9S: T (R;S) are de�ned to be the least complete

relations satisfying:

x R x0 ^ y S y0 =) [(x; y)] R
 S [(x0; y0)]

9S:Z $ Z 0: p [T (R;S)] p0 =) hjZ; pji [9S: T (R;S)] hjZ 0; p0ji

Such least relations exist because complete relations are closed under arbitrary

intersections.

5.2. Object-based semantics

The \object-based" semantics described in [58, 48] (see also [5]) treats objects

as state machines and describes them purely by their observable behavior. The

observable behavior is given in terms of event traces whose structure is determined

by the type of the object. This is similar to how processes are described in the

semantics of CSP or CCS. Since no internal states appear in the denotations,

proving the equivalence of two classes reduces to proving the equality of their trace



sets. The object-based semantics, described in [58, 48], makes these ideas work

for Idealized Algol. For simplicity, we consider a version of Idealized Algol with

\Syntactic Control of Interference", where functions are only applied to arguments

that they do not interfere with. This is the language treated in [58]. The reader is

referred to this paper for all the background material for this section.

We start with the notion of a coherent space [24], which is a simple form of event

structure [69]. A coherent space is a pair A = (jAj;_^A) where jAj is a (countable)

set and_^A is a re
exive-symmetric binary relation on jAj. The elements of jAj are

to be thought of as events for the objects of a particular type. The relation _^A,

called the coherence relation, states whether two events can possibly be observed

from the same object in the same state.

The free object space generated by A is a coherent space A� = (jAj�;_^A�) where

jAj� is the set of (�nite) sequences over jAj (\traces") and _^A� is de�ned by

ha1; : : : ; ani_^A� hb1; : : : ; bmi ()

8i = 1; : : : ;min(n;m):

ha1; : : : ; ai�1i = hb1; : : : ; bi�1i =) ai _^A bi

This states that, after carrying out a sequence of events ha1; : : : ; ai�1i, the two

traces must have coherent events at position i. If ai = bi, then the same condition

applies to position i+ 1. But if ai 6= bi, then the two events lead to distinct states

and, so, there is no coherence condition on future events.

An element of a coherent space A is a pairwise coherent subset x � jAj. So, the

elements of free object spaces denote trace sets for objects. Functions appropriate

for these spaces are what are called regular maps f : A� ! B�, de�ned in [58]. It

turns out that regular maps can be described more simply in terms of linear maps

of type A� ! B. We actually de�ne \multiple-argument linear maps" because they

are needed for the term interpretation. A linear map of the form F : A�1; : : : ; A
�
k !

B is a relation F � (jA1j
�� : : :�jAkj

�)�jBj such that, whenever (~s; b); (~s0; b0) 2 F ,

we have

(8i: si _^A�

i

s0i) =) b _^B b0 ^ (b = b0 =) ~s = ~s0)

(We are using the notation ~s = (s1; : : : ; sk) for the members of jA1j
�� � � �� jAkj

�.)

Every such linear map denotes a multiple-argument regular map F � : A�1; : : : ; A
�
k !

B� given by

F � = f(~s1 � � � ~sn; hb1; : : : ; bni) j (~s1; b1); : : : ; ( ~sn; bn) 2 Fg

Coherent spaces for the events of various Idealized Algol types are shown in

Table 10. For each IA type �, there is a coherent space which we also denote

(ambiguously) by �. The symbols a; b; : : : are used for denoting events, s; s0; : : : for

event traces, and i and l for the labels in disjoint unions of sets. The trace sets for

objects of type � are the elements of ��. Since we have a state-free description of

objects, there is no characteristic di�erence between objects and classes as in the

parametricity semantics. The only di�erence is that a class can be used repeatedly

to generate new instances. So, a trace of a class is a sequence of object traces, one

for each instance generated. Therefore, we de�ne

cls � = ��



jexp[Æ]j = [[Æ]] a _^ b () a = b

jcommj = f�g �_^ �

jA1 �A2j = jA1j+ jA2j (i; a)_^ (i0; a0) () (i = i0 =) a _^Ai
a0)

jfli:Aigij = �liAi (l; a)_^ (l0; a0) () (l = l0 =) a _^Al
a0)

jA! Bj = jA�j � jBj (s; b)_^ (s0; b0) () (s _^A� s0 =) b _^B b0 ^ (b = b0 =) s = s0))

TABLE 10

Coherent spaces of events for IA types

The meaning of a term x1: �1; : : : ; xn: �n �M : � is a multiple-argument linear

map

[[M ]] : �1
�; : : : ; �n

� ! �

We regard a vector of traces ~s 2 j�1j
�� : : :� j�nj

� as a record � 2 �xi j�ij
�. So, the

linear map [[M ]] is a set of pairs (�; a), each of which indicates that, to produce an

event a for the result, the term M carries out the event traces �(xi) on the objects

for the free identi�ers.

The interpretation of interference-controlled Algol terms is as in [58]. The inter-

pretation of class terms is as follows (de�ned with reference to their typing rules):

[[class : � local C x initA methM ]] =

f(�1 � �2 � �3; t) j 9s0; s1 2 �
�:

(�1; s0 � s1) 2 [[C]];

(�2[x! s0]; �) 2 [[A]];

(�3[x! s1]; t) 2 [[M ]]�g

[[new C P ]] =

f(�1 � �2; �) j 9s 2 �
�:

(�1; s) 2 [[C]];

(�2; (s; �)) 2 [[P ]]g

The notation used in these de�nitions is as follows. The concatenation of traces as

well as the pointwise concatenation of records of traces is denoted by \�", e.g., s0 �s1
and �1 � �2. If �1 and �2 are records with disjoint sets of labels then �1� �2 denotes

their join. This occurs in the interpretation of newC P because we are considering

a language with Syntactic Control of Interference where C and P cannot share free

identi�ers.

The meaning of the class term says that the trace set of C must have a trace

s0 �s1 where s0 represents the e�ect of the initialization command A. If the methods

term M maps the trace s1 2 j� j� to a trace t 2 j�j�, then t is a possible trace for

the new class. The meaning of new C P �nds a trace s supported by C such that

P is ready to accept an object with this trace. Of course, C supports many traces.

But, P will use at most one of these traces.

A primary advantage of the object-based semantics is that, by �nessing the state

representation in denotations, it makes it easier to reason about equality. Recall



that, to show that a class implementation meets an equational speci�cation, we

have had to �nd an equivalent implementation where the equational axioms actually

hold. This is because implementations often have distinct states that are observa-

tionally equivalent and equality veri�cation has to take this into account. However,

since the object-based semantics is a state-free description, equational axioms can

be veri�ed directly. For example, the equation x.inc; g(x.val) = g(x.val+1); x.inc

of the Counter class is veri�ed by noting that

s � h(inc; �); (val; k + 1)i 2 cnt () s � h(val; k); (inc; �)i 2 cnt

where cnt is the trace set of the counter objects, de�ned in Sec. 2. Similarly, the

equational axioms of queues can be veri�ed for the Queue class by calculating its

trace set and testing for particular sequences of events.

6. MODULARITY ISSUES

In this section, we brie
y touch upon the higher-level modularity issues relevant

to object-oriented programming. Further work is needed in understanding these

issues.

6.1. Types and classes

In most object-oriented languages, the notion of types and classes is fused into

one. Such an arrangement is not feasible in IA+ because classes are �rst-class

values and their equality is not decidable. For example, the classes (Array c n) and

(Array c n0) are equal only if n and n0 are equal. Such comparisons are neither

feasible nor desirable. However, a tighter integration of classes with types can

be achieved using opaque subtypes as in Modula-3, also called \partially abstract"

types [14]. For example, the counter class may be de�ned as:

newtype counter <: finc: comm, val: exp[int]g

reveal counter = finc: comm, val: exp[int]g

in

Counter = class: counter local . . .

end

A client program only knows that counter is some subtype of the corresponding

signature type and that Counter is of type cls counter . Thus, it can create

instances of Counter and manipulate them using the visible interface of counter.

The de�nition of Counter, on the other hand, is inside the abstraction boundary

of the abstract type counter, and regards counter as being equal to the signature

type. (This is needed to type check the de�nition of the class.) A similar use of

partially abstract types is made in [53] for modeling friend functions.

By associating a partially abstract type with each class in this fashion, we

obtain types that correspond to classes. However, this set-up is more 
exible than

simply treating classes as types. For instance, we can de�ne two behaviorally

equivalent classes with the same associated partially abstract type. Their instances

will be regarded as substitutable for each other. Moreover, there are no issues of

undecidable equality with partially abstract types.



To ensure that all classes that have an associated partially abstract type imple-

ment common behavior, we can specify requirements for partially abstract types.

For example, the speci�cation:

8x: counter

8k: val[int].

fx.val = kg x.inc fx.val = k + 1g

states that all values of type counter must have inc and val methods with the

counter behavior. All reveal blocks of the type counter get a proof obligation to

demonstrate that their use of the type counter satis�es the speci�cation.

Other applications of partially abstract types for controlling visibility of methods

may be found in [20].

6.2. Dynamic Objects

Typical languages of the Algol family provide dynamic storage via Hoare's [27]

concept of \references" (pointers). An object created in dynamic storage (or heap

storage) is accessed through a reference, which is then treated as a data value

and becomes storable in variables. Some of the modern languages, like Modula-3

and Java, treat references implicitly (assuming that every object is automatically a

reference). But it seems preferable to make references explicit because the reasoning

principles for them are much harder and not yet well-understood.

To provide dynamic storage in IA+, we stipulate that, for every type �, we have

a data type ref �. The operations for references are roughly as follows:

� ` C : cls �

� ` newref C : (val[ref �]! comm)! comm

� `M : val[ref �]

� `M" : �

The rule for newref is not sound in general. Since references can be stored in

variables and exported out of their scope, they should not refer to any local variables

that obey the stack discipline. If and when the local variables are deallocated, these

references would become \dangling references." Or, put another way, the stack

discipline of local variables breaks down. A correct type rule for newref is given

in the Appendix.

Our knowledge of semantics for dynamic storage is rather incomplete. While

some semantic models exist [64, 65], it is not yet clear how to integrate them with

the reasoning principles presented here.

7. CONCLUSION

Reynolds's Idealized Algol is a quintessential foundational system for Algol-like

languages. By extending it with objects and classes, we hope to provide a similar

foundation for object-oriented languages based on Algol. In this paper, we have

shown that the standard theory of Algol, including its equational calculus, speci�-

cation logic and the major semantic models, extends to the object-oriented setting.

In fact, much of this has been already implicit in the Algol theory but perhaps in

a form accessible only to specialists.



Among the issues we leave open for future work are a more thorough study of

inheritance models, reasoning principles for references, and investigation of call-by-

value Algol-like languages.

APPENDIX: REFLECTIVE TYPE CLASSES

In stating the equational properties of Sec. 3.0.7., we assumed that classes were

given by closed terms. This is too severe an assumption. Typical class de�nitions

are not closed terms, but they have free identi�ers for constant values, class names

etc. One still expects such classes to satisfy the properties mentioned in 3.0.7.

because they do not have global side e�ects. A reasonable relaxation is to allow

free identi�ers but only if it is known that they refer to other quantities that are

free of global side e�ects as well. This kind of restriction is also useful in other

contexts, e.g., for de�ning \function procedures" that read global variables but do

not modify them [65, 67].

The use of dynamic storage involves a similar restriction. A class used to

instantiate a dynamic storage object should not have any references to local store.

We de�ne a general notion that is useful for formalizing such restrictions.

Definition A.1. A re
ective type class is a set of type terms T such that

1. �1; �2 2 T =) �1 � �2 2 T

2. � 2 T =) � ! � 2 T

3. �1; : : : ; �n 2 T =) fx1: �1; : : : ; xn: �ng 2 T

The terminology is motivated by the fact that these classes can be interpreted

in re
ective subcategories of the semantic category [57].

We de�ne several re
ective type classes based on the following intuitions. Con-

stant types involve values that are state-independent; they neither read nor write

storage locations. (Such values have been called by various quali�cations such as

\applicative" [65], \pure" [45], and \chaste" [66]). Values of passive types read

storage locations, but do not write to them (one of the senses of \const" in C++).

Values of dynamic types access only dynamic storage via references.

We add three new type constructors Const, Pas and Dyn which identify the values

with these properties:

� ::= : : : j Const � j Pas � j Dyn �

A value of type Const � is a �-typed value that has been built using only constant-

typed information from the outside. So it can be regarded as a constant value.

We de�ne the following classes as the least re
ective classes satisfying the respec-

tive conditions:

1. Constant types include val[Æ] and Const � types.

2. State-dependent types include exp[Æ] and comm, and are closed under Const,

Pas and Dyn type constructors.

3. Passive types include val[Æ], exp[Æ], Const � and Pas � types.

4. Dynamic types include val[Æ];Const � and Dyn � types.



Definition A.2. If � `M : �0, a free identi�er x: � in � is said to be T -used in

M if every free occurrence of x is in a subterm of M with a T -type. (In particular,

we say \constantly used", \passively used", and \dynamically used" for the three

kinds of usages.)

The introduction rules for Const, Pas, and Dyn are as follows:

� `M : � if � is constantly-used in M and

there are no occurrences of ".� `M : Const �

� `M : �
if � and " are passively used in M .

� `M : Pas �

� `M : �
if � is dynamically used in M .

� `M : Dyn �

The dereference operator (") is treated as if it were an identi�er; � is T -used means

that every identi�er in � is T -used. For the elimination of these type constructors,

we use the subtypings (for all types �):

Const � <: Pas � <: �

Const � <: Dyn � <: �

Note that any closed term can be given a type of the form Const �. For example,

the counter class of Section 3 has the type Const (cls counter).

Application to class de�nitions. The type rule for classes is now modi�ed as

follows:

�� C : cls � �; x: � �M : � �; x: � �A : comm

�� (class : � localC x initA methM) : cls �

(if � is passively used in A)

This allows the free identi�ers � to be used in A, but in a read-only fashion. The

parametricity interpretation of cls-type must be modi�ed to [[cls�]](Q) = 9Z: [[�]](Q�

Z)� [Q! Z]. The rest of the theory remains the same, except that the equation

(4) becomes conditional on non-interference:

c # a =) new c �x: a; g(x) = a; new c g

Application to references. We use the following rule for creating references:

�� C : Dyn (cls �)

�� newref C : (val[ref �]! comm)! comm

The rule ensures that the class instantiated in the dynamic store does not use any

locations from the local store, so the instance will not use them either. This avoids

the \dangling reference" problem.



ACKNOWLEDGMENT

It is a pleasure to acknowledge Peter O'Hearn's initial encouragement in the development of
this work as well as his continued feedback. John Reynolds, Bob Tennent, Hongseok Yang and
the anonymous referees of FOOL 5 provided valuable observations that led to improvements in
the presentation. This research was supported by the NSF grant CCR-96-33737.

REFERENCES

1. M. Abadi and L. Cardelli. An imperative object calculus. Theory and Practice of Object
Systems, 1(3):151{166, 1996.

2. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

3. M. Abadi and R. M. Leino. A logic of object-oriented programs. In TAPSOFT '97 and
CAAP/FASE, volume 1214 of LNCS, pages 682{696. Springer-Verlag, 1997.

4. H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 1985.

5. S. Abramsky and G. McCusker. Linearity, sharing and state. In Algol-like Languages [52],
chapter 20.

6. P. America. Designing an object-oriented programming language with behavioural subtyping.
In J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-
Oriented Languages, volume 489 of LNCS, pages 60{90. Springer-Verlag, 1990.

7. D. S. Andersen, L. H. Pedersen, H. H�uttel, and J. Kleist. Objects, types and modal logics. In
FOOL 4, http://www.cs.indiana.edu/hyplan/pierce/fool/, 1997. Electronic proceedings.

8. V. Bono and K. Fisher. An imperative, �rst-order calculus with object extension. In European
Conf. on Object-oriented Programming, 1998.

9. P. Borba and J. Goguen. Re�nement of concurrent object-oriented programs. In S. Goldsack
and S. Kent, editors, Formal Methods and Object Technology, chapter 11. Springer-Verlag,
1996.

10. S. Brookes, M. Main, A. Melton, and M. Mislove, editors. Mathematical Foundations of
Programming Semantics: Eleventh Annual Conference, volume 1 of Electronic Notes in Theor.
Comput. Sci. Elsevier, 1995.

11. K. B. Bruce. PolyTOIL: A type-safe polymorphic object-oriented language. In ECOOP'95,
volume 952 of LNCS, pages 27{51. Springer-Verlag, 1995.

12. K. C. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings. In Theoretical Aspects
of Computer Software, volume 1281 of LNCS, pages 415{438. Springer-Verlag, Berlin, 1997.

13. L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. B. MacQueen, and G. Plotkin,
editors, Semantics of Data Types, volume 173 of LNCS, pages 51{67. Springer-Verlag, 1984.

14. L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471{522, 1986.

15. W. R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Dep. of Computer Science,
Brown Univ., May 1989. (Tech. Report CS-89-33).

16. W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In ACM Symp. on
Princ. of Program. Lang., pages 125{135. ACM, 1990. (Reprinted as Chapter 14 of [25]).

17. O.-J. Dahl and K. Nygaard. An Algol-based simulation language. Comm. ACM, 9(9):671{678,
September 1966.

18. P. DiBlasio and K. Fisher. A calculus for concurrent objects. In CONCUR '96, volume 1119
of LNCS, pages 655{670. Springer-Verlag, 1996.

19. J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. An interpretation of typed OOP in a language
with state. J. Lisp and Symbolic Comput., 8(4):357{397, 1995.

20. K. Fisher and J. C. Mitchell. On the relationship between classes, objects and data abstraction.
Theory and Practice of Object-oriented Systems, 4(1):3{25, 1995.

21. K. Fisher and J. C. Mitchell. Classes = objects + data abstraction. Technical Report STAN-
CS-TN-96-31, Stanford University, 1996.

22. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, Reading,
MA, 1995.



23. D. R. Ghica. Semantics of dynamic variables in algol-like languages. Master's the-
sis, Queen's University, Kingston, Canada, Mar 1997. (available electronically from
ftp://ftp.qucis.queensu.ca/pub/rdt).

24. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Univ. Press, 1989.

25. C. A. Gunter and J. C. Mitchell, editors. Theoretical Aspects of Object-Oriented Programming.
MIT Press, 1994.

26. J. F. He, C. A. R. Hoare, and J. W. Sanders. Data re�nement re�ned. volume 213 of LNCS,
pages 187{196. Springer-Verlag, 1986.

27. C. A. R. Hoare. Record handling. In F. Genuys, editor, Programming Languages: NATO
Advanced Study Institute, pages 291{347. Academic Press, London, 1968.

28. C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271{281,
1972.

29. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, London,
1985.

30. M. Ho�man and B. C. Pierce. Positive subtyping. Information and Computation, 126:11{33,
1996.

31. S. Kamin. Inheritance in smalltalk{80: A denotational de�nition. In ACM Symp. on Princ.
of Program. Lang., January 1988.

32. S. N. Kamin and U. S. Reddy. Two semantic models of object-oriented languages. In Gunter
and Mitchell [25], chapter 13.

33. Y. Kinoshita, P. W. O'Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. An axiomatic
approach to binary logical relations with applications to data re�nement. Manuscript, Queen
Mary and West�eld, London, 1997.

34. K. Lano and H. Haughton. Reasoning and re�nement in object-oriented speci�cation
languages. In O. L. Madsen, editor, ECOOP '97, volume 615 of LNCS, pages 78{97.
Springer-Verlag, 1992.

35. G. T. Leavens. Modular speci�cation and veri�cation of object-oriented programs. IEEE
Software, pages 72{80, July 1991.

36. B. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Program. Lang.
Syst., 16(6):1811{1841, 1994.

37. S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

38. I. A. Mason and C. L. Talcott. Axiomatizing operational equivalence in the presence of side
e�ects. In Proceedings, Fourth Annual Symposium on Logic in Computer Science, pages
284{293. IEEE Computer Society Press, June 1989.

39. A. R. Meyer and K. Sieber. Towards fully abstract semantics for local variables. In Fifteenth
Ann. ACM Symp. on Princ. of Program. Lang., pages 191{203. ACM, 1988. (Reprinted as
Chapter 7 of [52]).

40. R. Milner. An algebraic de�nition of simulation between programs. In Proc. Second Intern.
Joint Conf. on Arti�cial Intelligence, pages 481{489, London, 1971. The British Computer
Society.

41. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

42. J. C. Mitchell. Foundations of Programming Languages. MIT Press, 1997.

43. J. C. Mitchell and G. D. Plotkin. Abstract types have existential types. ACM Trans. Program.
Lang. Syst., 10(3):470{502, 1988.

44. C. Morgan and T. Vickers, editors. On the Re�nement Calculus. Springer-Verlag, 1992.

45. M. Odersky, D. Rabin, and P. Hudak. Call by name, assignment and the lambda calculus. In
Twentieth Ann. ACM Symp. on Princ. of Program. Lang. ACM, 1993.

46. P. W. O'Hearn. A model for syntactic control of interference. Math. Struct. Comput. Sci.,
3:435{465, 1993.

47. P. W. O'Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control of interference
revisited. In Brookes et al. [10]. (Reprinted as Chapter 18 of [52]).

48. P. W. O'Hearn and U. S. Reddy. Objects, interference and Yoneda embedding. In Brookes
et al. [10].



49. P. W. O'Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-
calculus. Electronic manuscript, Queen Mary and West�eld, London, April 1997. URL
http://www.qmw.ac.uk/ ohearn.

50. P. W. O'Hearn and R. D. Tennent. Semantics of local variables. In M. P. Fourman, P. T.
Johnstone, and A. M. Pitts, editors, Applications of Categories in Computer Science, pages
217{238. Cambridge Univ. Press, 1992.

51. P. W. O'Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658{709,
1995. (Reprinted as Chapter 16 of [52]).

52. P. W. O'Hearn and R. D. Tennent. Algol-like Languages (Two volumes). Birkh�auser, Boston,
1997.

53. B. Pierce and D. N. Turner. Statically typed friendly functions via partially abstract types.
Technical Report ECS-LFCS-93-256, University of Edinburgh, 1993.

54. Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented
programming. Journal of Functional Programming, 4(2):207{247, April 1994.

55. G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Typed Lambda Calculi
and Applications - TLCA '93, LNCS, pages 361{375. Springer-Verlag, 1993.

56. U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In ACM
Symp. on LISP and Functional Program., pages 289{297. ACM, July 1988.

57. U. S. Reddy. Passivity and independence. In Proceedings, Ninth Annual IEEE Symposium on
Logic in Computer Science, pages 342{352. IEEE Computer Society Press, July 1994.

58. U. S. Reddy. Global state considered unnecessary: An introduction to object-based semantics.
J. Lisp and Symbolic Computation, 9:7{76, 1996. (Reprinted as Chapter 19 of [52]).

59. J. C. Reynolds. Syntactic control of interference. In ACM Symp. on Princ. of Program. Lang.,
pages 39{46. ACM, 1978. (Reprinted as Chapter 10 of [52]).

60. J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors,
Algorithmic Languages, pages 345{372. North-Holland, 1981. (Reprinted as Chapter 3 of
[52]).

61. J. C. Reynolds. Idealized Algol and its speci�cation logic. In D. Neel, editor, Tools and
Notions for Program Construction, pages 121{161. Cambridge Univ. Press, 1982. (Reprinted
as Chapter 6 of [52]).

62. J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor,
Information Processing '83, pages 513{523. North-Holland, Amsterdam, 1983.

63. O. Schoett. Behavioral correctness of data representations. Science of Computer Programming,
14:43{57, 1990.

64. Ian Stark. Categorical models for local names. Lisp and Symbolic Computation, 9(1):77{107,
February 1996.

65. V. Swarup, U. S. Reddy, and E. Ireland. Assignments for applicative languages. In Algol-like
Languages [52], chapter 9, pages 235{272.

66. R. D. Tennent. Semantical analysis of speci�cation logic. Inf. Comput., 85(2):135{162, 1990.
(Reprinted as Chapter 13 of [52]).

67. R. D. Tennent. Denotational semantics. In S. Abramsky, D. M. Gabbay, and T. S. E Maibaum,
editors, Handbook of Logic in Computer Science, volume 3, pages 169{322. Oxford University
Press, 1994.

68. G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri
Nets: Applications and Relationships to Other Models of Concurrency, volume 255 of LNCS,
pages 325{392. Springer-Verlag, 1987.

69. G. Winskel. An introduction to event structures. In J. W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models
of Concurrency, volume 354 of LNCS, pages 364{397. Springer-Verlag, 1989.


