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An Automata-Theoretic Model of Objects
Uday S. Reddy

University of Birmingham
Brian P. Dunphy

University of Illinois at Urbana-Champaign

Abstract—In this paper, we present a new model of class-
based Algol-like programming languages inspired by automata-
theoretic concepts. The model may be seen as a variant of
the ”object-based” model previously proposed by the author,
where objects are described by their observable behaviour in
terms of events. At the same time, it also reflects the intuitions
behind state-based models studied by Reynolds, Oles, Tennent
and O’Hearn where the effect of commands is described by state
transformations. The idea is to view stores as automata, capturing
not only their states but also the allowed state transformations.
In this fashion, we are able to combine both the state-based
and event-based views of objects. We illustrate the efficacyof
the model by proving several test equivalences and discuss its
connections to the previous models.

I. I NTRODUCTION

Imperative programming languages provideinformation
hidingvia local variables, which is exploited in object-oriented
programming in a fundamental way. The use of such infor-
mation hiding in everyday programming can be said to have
revolutionized the practice of software development.

Meyer and Sieber [15] pointed out that the traditional
semantic models for imperative programs do not capture such
information hiding, even though researchers working in the
area were probably aware of the issues much earlier. Rapid
progress was made in the 1990’s to address the problem.
O’Hearn and Tennent [19] proposed a model using relational
parametricity to capture the independence of data representa-
tions. Reddy [23] proposed an alternative event-based model
which hides data representations entirely. Both the models
have been proved fully abstract for second-order types of
Idealized Algol (though this does not cover “passive” or
“read-only” types) [16, 17]. Abramsky and McCusker [1], and
subsequently with Honda [2], refined the event-based model
using games semantics and proved it fully abstract for full
higher-order types.

Despite all this progress, the practical application of these
models for program reasoning had stalled. As we shall see,
“second-order functions” in Idealized Algol only correspond
to basic functions (almost zero-order functions) in the object-
oriented setting. The event-based model is a bit removed
from the normal practice in program reasoning, while the
applicability of the parametricity model for genuine higher-
order functions has not been investigated. In fact, Pitts and
Stark [22] showed in “awkward example” in a bare bones
ML-like language, which could not be handled using the
parametricity technique.

The present work began in the late 90’s with the motiva-
tion of bridging the gap between state-based parametricity

models and the event-based models, because they clearly
had complementary strengths. These investigations led to an
automata theory-inspired framework where both states and
events play a role [24, 27, 26]. However, it was noticed
that the basic ingredients of the model were already present
in the early work of Reynolds [30]. The subsequent work
focused on formalizing the category-theoretic foundations of
the framework, documented in Dunphy’s PhD thesis [8, 9],
but the applications of the framework remained unexplored.

The interest in the approach has been renewed with two
parallel developments in recent work. Amal Ahmed, Derek
Dreyer and colleagues [3, 6, 7] began to investigate reasoning
principles for higher-order ML-like languages where similar
ideas have reappeared. In the application of Separation Logic
to concurrency, a technique called “deny-guarantee reasoning”
has been developed [4, 5] where, again, a combination of states
and events is employed. With this paper, we hope to provide
a denotational semantic foundation for these techniques and
stimulate further work in this area.

II. M OTIVATION

In this section, we informally motivate the ideas behind the
new semantic model.

The two existing classes of semantic models for imperative
programs are state-based parametricity models, formulated
by O’Hearn and Tennent [19] and event-based models, for-
mulated by Reddy [23]. Both of them were first presented
for Algol-like languages, and later adapted to object-oriented
programs [28].

In the state-based model, an object is described as a state
machine with

• a state setQ,
• the initial state when the object is created,q0 ∈ Q, and
• the effect of the methods on the object state.

For example, a counter object with methods for reading the
value and for incrementing the state can be semantically
described by:

M = 〈Q = Int , 0, {val = λn. n, inc = λn. n + 1}〉

Here,val is given by a function of typeQ → Int and the effect
of inc is given by a function of typeQ → Q. (We are ignoring
the issues of divergence and recursion.) An alternative state
machine for counters using a different representation (negative
numbers) is described by:

M ′ = 〈Q′ = Int , 0, {val = λn. (−n), inc = λn. n − 1}〉
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Fig. 1. Trace set of a counter object

The behavioral equivalence of the two implementations of
counters can be established by exhibiting asimulation relation
between the state sets:

n
[

R
]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n (1)

and showing that all the operations “preserve” the simulation
relation.

In contrast, the event-based description constructs a vocab-
ulary of events for the methods of the object, e.g.,

{ (val , n) | n ∈ Int } ∪ {(inc, ∗)}

and describes the objects by theirtrace sets, i.e., sets of
sequences of events that can be observed from the object. The
trace set of counter objects can be depicted graphically, as
shown in Fig. 1. The two distinct implementations of counter
objects have exactly thesame trace set in the event-based
description. In this sense, the event-based description ismore
“extensional” than the state-based one. However, multiple
traces that have the same effect on the internal state of the
object are represented differently in the semantics.

A second, more subtle, difference between the two models
is that the event-based description captures theirreversibility
of state change. The action of incrementing the counter over-
writes the old state of the counter and it is not possible to go
back to the old state. For example, if we pass a counter object
to a procedure, we can be sure that, after the procedure returns,
the value in the counter could be no less that what it was before
the call. This fact is obvious in the event-based description.
The traces incorporate the direction of time. However, it isnot
possible to prove it in the state-based description. In short,
the state-based description only captures what is the in the
state but not how states are altered. Offsetting this technical
deficiency, the state-based model has the advantage of being
highly intuitive and quite familiar from traditional reasoning
principles of programs.

In this paper, we define a new model that combines the
advantages of the state-based and event-based models. For
this purpose, we turn to automata theory. Asemiautomaton
in automata theory is a triple(Q, Σ, α), where Q is a set
of states,Σ is a set of action symbols – representingstate

transitions– and a functionα : Σ × Q → Q describing the
effect of action symbols on states. The transition functionis
then extended to sequences of action symbolsΣ∗ × Q → Q.
From this point of view, it is clear that the “state-based
description” is focusing on state sets (Q) whereas the “event-
based description” is focusing on the action symbols (Σ). A
more abstract treatment of semiautomata is studied in algebraic
automata theory [11, 13], calledtransformation monoids. The
essential idea is to replace the free monoid of actionsΣ∗ by a
monoid of state transformationsT ⊆ [Q → Q]. Such a monoid
has an implicit action on statesα : T ×Q → Q, viz., function
applicationα(a, q) = a(q). An automata-theoretic model of
objects can now be given in four parts:

• a state setQ,
• a monoid of state transformationsT ⊆ [Q → Q],
• the initial state of the object,q0 ∈ Q, and
• the effect of the methods on the object state as well as

the state transformations.

For example, the automata-theoretic model of counter objects
corresponding toM is:

N = 〈Q = Int , T = Int
+,

0, {val = λn. n, inc = λn. n + 1}〉

Here, Int
+ = {λn. n + k | k ≥ 0 } is the set of allowed

transformations that only increase the value of the internal
state. Note that it is a monoid:(λn. n + k) · (λn. n + k′) =
λn. n + (k + k′). The type ofval is Q → Int as before, but
the type ofinc is T . Any state change operations in methods
are interpreted inT . So, they must be among theallowed
transformations of the state machine.

The automata-theoretic model corresponding toM ′ is:

N ′ = 〈Q′ = Int , T ′ = Int
−,

0, {val = λn.−n, inc = λn. n − 1}〉

Proving the equivalence of the two state machines requires us
to exhibit two relations: a relationRQ between the state sets
and a relationRT between the state transformations:

n
[

RQ

]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

a
[

RT

]

a′ ⇐⇒ ∃k. a = λn. n + k ∧ a′ = λn. n − k

The two relations have to satisfy some coherence conditions,
which are detailed in Sec. IV. Using these relations, it is
possible to prove, for instance, that a procedure that takes
a counter as an argument can only increase the value of
the counter (as visible from the outside). The transformation
components in the state machines provide a direction of time,
which is absent in the purely state-based model.

While simulation relations are useful for proving the equiva-
lence of two implementations of classes, they form an instance
of a general theory of relational parametricity which works
for relations of arbitrary arity [12, 18]. The case of “unary
relations” is particularly noteworthy because it gives us anew
notion of invariants. Our theory therefore posits that invariants
of classes again come in two parts: one on state sets and one

2



on state transformations. The invariants for counter objects
represented byN are:

PQ(n) ⇐⇒ n ≥ 0
PT (a) ⇐⇒ ∃k. a = λn. n + k

State invariants are well-known from traditional reasoning
methods, while the invariant properties of transformations
might be called “action invariants” or “transition invariants”.

The recent work on reasoning about state has focused on
higher-order procedures and higher-order state, in particular
the work of Ahmed, Dreyer and colleagues [3, 6]. This work
has brought home the fact that the traditional theory of Algol-
like languages fails to be abstract for higher-order procedures.1

We illustrate the problem with an example from Pitts and Stark
[22], which was termed an “awkward example” in their paper.
Consider the following class, written in the IA+ language [28]:

C = class : comm → comm

local var[int] x;
init x := 0;
meth {m = λc. x := 1; c; test(x = 1)}

test(b) , if b then skip else diverge

This class provides a single method of typecomm → comm,
i.e., a procedure that takes a command-typed argument. (This
is a call-by-name language, where commands can be passed
as arguments, but similar examples can be constructed using
call-by-value as well.) The problem is to argue that the
method always terminates. Intuitively, one might expect that
this should always be the case because the local variablex is
only available inside the class. However, the intuition is not
a very good guide here because the methods are higher-order.
When the method ofC invokes the argument commandc, it
is possible forc to alterx. For example, the following client
does so:

new C λp. p.m (p.m skip)

When the outer call top.m is executed, it setsx to 1 and calls
its argumentc ≡ p.m skip. Since the argument in turn calls
p.m, it has the effect of settingx to 1. So, the argument that
c does not have “access” tox is not sound.2

A more sophisticated argument for the termination ofC ’s
method notes that the only change that a call toc can make tox
is setting it to1. Therefore, at the end of the call toc, x is still
1, and so the test should succeed. However, as noted by Dreyer
et al. [6], this cannot be proved by the usual “invariant-based”
reasoning, i.e., by exhibiting relations on states. Instead, one
must use relations on state transformations.

1Both the state-based and the event-based models have been proved fully
abstract for second-order Algol types. Translated to object-oriented languages,
this amounts to saying that they can prove the equivalence ofclasses whose
methods take at best value-typed, i.e., state-independent, arguments. If the
methods take higher-type arguments, e.g., other procedures, then the full
abstraction results do not apply.

2Note that the system of “Syntactic Control of Interference”studied in the
original object-based model [23] prohibits calls such asp.m (p.m skip)
because the procedure and the argument interfere. So, the naive intuition
is sound for Syntactic Control of Interference. But it is notsound for full
Idealized Algol.

In our framework, we start by defining a two-part invariant
for the class:

PQ(x) ⇐⇒ x = 0 ∨ x = 1
PT (a) ⇐⇒ a = (λn. n) ∨ a = (λn. 1)

To maintainPT as an “invariant”, the methodm must restrict
its actions to those satisfyingPT , while assumingthat the
argumentc does so as well. So, by assumption, the call toc

will either leavex unchanged or set it to1. In either case, the
value of x at the end ofc will be 1. So, the method always
terminates.

Other examples discussed by Dreyer et al. [6] can be verified
similarly, as long as they fit within our framework — with only
ground-typed state and no control effects.

III. PRELIMINARIES

The programming language we use in this paper is the
language IA+ described in [28], which represents Idealized
Algol [30] extended with classes.

Recall that Idealized Algol is a call-by-name simply typed
lambda calculus with base types supporting imperative pro-
gramming. These base types include

val[δ] exp[δ] comm

whereδ ranges over “data types” such asint andbool.
To support classes, we use a type constructorcls so that

clsθ is the type of classes whose method suite is of typeθ. So,
θ is the interface type of the class. The language comes with
a family of predefined classesvar[δ] for assignable variables
of type δ, whose type is

var[δ] : cls {get : exp[δ], put : val[δ] → comm}

In essence, a variable is treated as an object with a “get”
method that reads the state of the variable and “put” method
that changes the state to a given value. User-defined classes
are supported using terms of the form

class : θ

local C x;
init A;
meth M

whereC is another class,x is a locally bound identifier for
the “instance variable,”A is a command for initializing the
instance variable, andM is a term of typeθ serving as the
method suite. For simplicity of exposition, we only consider
“constant classes” in the main body of the paper, which are
defined by closed terms of typecls θ. See Appendix for a
treatment of general classes with free identifiers.

Instances of classes are created in commands using terms
of the form

new C λo. B

whose effect is to create an instance of classC, bind it to o

and execute a commandB whereo is allowed to occur as a
free identifier. So,new is a constant of type:

new : cls θ → (θ → comm) → comm
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Semantics of Algol-like languages is normally given us-
ing a category-theoretic possible world semantics, where the
“worlds” represent the shapes of store. Each typeθ is inter-
preted as a functor

[[θ]] : Wop → CPO

whereW is a category of possible worlds andCPO is the
category of directed-complete partial orders and continuous
functions. So[[θ]](W ), for each worldW , is a cpo. Further,
if f : X → W is a morphism in the category of worlds,
representing the idea thatX is a “future wold” of W , then
[[θ]](f) : [[θ]](W ) → [[θ]](X) is a continuous function that
restates values of typeθ at world W as values of typeθ at
the future worldX .3 Note that the morphisms in the category
of worlds go from future worlds to the current world. This
is consistent with an object-oriented view because the future
world generally represents alarger state than the current
world. It is possible to think of a subtyping relationship
X <: W between the future world and the current world,
except that there may not be a unique way in whichX is a
subtype ofW . The morphism describes the way in whichX

is a subtype ofW .
To incorporate relational parametricity, we extend categories

with relations so that we formally work inreflexive graphsof
categories [19, Sec. 7]. Intuitively, this means that we usetwo-
dimensional categorical structures, where morphisms occupy
one dimension and relations between categorical objects oc-
cupy the second dimension, as in the diagram below:

X
f - Y

X ′

R

?

6

f ′

- Y ′

S

?

6

A diagram of this form, called a relation-preservation square,
states the property that the morphismsf andf ′ mapR-related
arguments toS-related results. The textual notation for the
property isf

[

R → S
]

f ′.
The reflexive graphs we work with are calledparametricity

graphs [8, 9]. They incorporate additional axioms to cap-
ture the idea that relations in the vertical dimension indeed
behave like “relations” in the intuitive sense. The termop-
parametricity graphis used to describe the structureW whose
dual,Wop, is a parametricity graph. Our possible worlds form
an op-parametricity graph.

The term PG-functor is used to denote maps between
parametricity graphs. It involves a pair of functors, one for
the category of objects and morphisms, and the other for the
category of relations and relation-preservation squares.So, the
overall structure of our interpretation is

[[θ]] : Wop → CPO

3In [19, Sec. 3] and [28], a “category-free” presentation of the semantic
model is given to make it easier to follow. We do not yet know ifa similar
presentation is possible for our model. So, we use a full categorical treatment.

where W is an op-parametricity graph,CPO is a para-
metricity graph of cpo’s (with directed-complete relations
as relations) and[[θ]] is a PG-functor. For the category of
such PG-functors to be cartesian-closed, there is an additional
requirement that the PG-functors should factor through the
embedding ofCPO⊥ in CPO:

Wop - CPO⊥
- CPO

which means basically that each[[θ]](W ) should be apointed
cpo, each[[θ]](f) should be astrict continuous function, and
each[[θ]](R) should be (pointed) complete relation.

The focus of this paper is on defining a suitable category (or,
rather, an op-parametricity graph)W. This is where automata-
theoretic ideas come in. Defining the semantics itself follows
more or less along the traditional lines [19, 16].

IV. T RANSFORMATION MONOIDS

Our starting point is the notion of transformation monoids
that comes from algebraic automata theory.

A semiautomaton(or generically a “state machine”) is
usually represented as a triple(Q, Σ, α) whereQ is a set (of
“states”), Σ is a set (of “actions”),α : Σ → [Q ⇀ Q] is
a function interpreting each action as a state-transformation
function. A semiautomaton differs from a normal automaton
in that it does not specify a start state or final states. It
describes the generic behaviour of a state machine rather than
a particular instance of the machine.

A semiautomaton can be viewed as arepresentationof the
free monoidΣ∗ by transformations ofQ (or equivalently, as
an action of the free monoidΣ∗ on Q). A more abstract
representation can be achieved by moving from free monoids
Σ∗ to arbitrary monoidsT , which are still meant to represent
“actions.” Since all that matters about the elements ofT is the
action they have on the state set, we can as well takeT to be
a submonoid of the monoid of transformationsT (Q) = [Q ⇀

Q]. This leads to the concept of atransformation monoid.
a) Notation: We regard partial functions fromA to B as

total functions fromA to B⊥, but continue to use the notation
f : A ⇀ B for such functions. The set of such functions[A ⇀

B] forms a directed complete partial order (dcpo) under the
pointwise order (has sups of directed sets) and is pointed (has
a least element). The⇀ notation is also extended to functions
and relations:

(sets) [A ⇀ B] = [A → B⊥]
(functions) [f ⇀ g] = [f → g⊥]
(relations) [R ⇀ S] = [R → S⊥]

Recall thatg⊥ is the extension of a functiong : B → B′

to a strict functionB⊥ → B′
⊥ sending⊥ to ⊥. Likewise,

S⊥ = S ∪ {(⊥,⊥)}. We write the sequential composition of
“partial functions” asf · g or as f ; g∗. When x ∈ A⊥ and
y ∈ B⊥, we use the notation:

[x, y]⊥ ,

{

⊥, if x = ⊥ or y = ⊥
(x, y), otherwise

Recall that amonoid is a set with an associative binary
operation, denoted “·”, and a unit element for this operation.
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The set of all (finite) sequences over a setΣ forms a monoid
Σ∗ with concatenation as the binary operation and the empty
sequence serving as the unit element. This is in fact the free
monoid generated by the setΣ. The set of all transformations
T (Q) = [Q ⇀ Q] forms a monoid under sequential compo-
sition “·” with the unit being the injectionjQ : Q ⇀ Q . We
also write the unit element as nullQ for better readability. In
addition to being a monoid,T (Q) is a pointed cpo (in fact a
bounded complete cpo) under the pointwise ordering with the
least element being the constantly-⊥ function⊥.

We use the termcomplete ordered monoidto refer to a
monoid that is also a pointed cpo, and the multiplication is a
strict, continuous function. Acomplete ordered submonoid(or
simply a “submonoid” when the context is clear) is a subset
that is not only closed under the unit and multiplication but
also contains the least element and the sup’s of directed sets. A
morphism of complete ordered monoidsis a monoid morphism
that is also strict and continuous.

A transformation monoid(tm) is a pair(Q, T ) whereQ is
a set (of “states”) andT is a submonoid ofT (Q). There is an
implicit monoid actionα : T → [Q ⇀ Q] coming from the
fact thatT is a submonoid of the monoid of transformations,
which is a morphism of complete ordered monoids. We denote
the uncurried function corresponding toα by α† : T×Q ⇀ Q,
which represents a monoid action.

A relation of tm’s R : (Q, T ) ↔ (Q′, T ′) is a pair
R = (RQ, RT ) where RQ : Q ↔ Q′ is a relation and
RT : T ↔ T ′ is a complete ordered monoid relation (relation
compatible with the units, multiplication, least elementsand
sup’s of directed sets) such that they are compatible with the
monoid action, i.e.,α

[

RT → [RQ ⇀ RQ]
]

α′. When there is
no cause for confusion, we omit the subscripts inRQ andRT ,
e.g., we may writeq

[

R
]

q′ for states anda
[

R
]

a′ for actions,
using the context to distinguish the uses. The identity relation
I(Q,T ) : (Q, T ) ↔ (Q, T ) is I(Q,T ) = (∆Q, ∆T ) consisting
of the diagonal relations (equality relations) on states and
transformations.4

Intuitively, the transformations inT represent the actions
executed by commands in the programming language. The
sequential composition “·” corresponds to the sequential com-
position in the programming language and the unit transfor-
mation nullX represents the do-nothing commandskip. So,
it is reasonable to require thatT should be closed under
these operations and the relations between worlds should be
compatible with them as well. However, while these operations
were perhaps adequate for traditional automata theory, they
are not enough to capture the computations in programming
languages. A command in a programming language can read
the information from the initial state and tailor its actions based
on that information. Such state-dependent actions need to be
represented by an operation in the transformation monoids.

Reynolds [30] noticed the problem and proposed an opera-

4Since the transformation components of tm’s are posets, it is also possible
to use the partial order⊑T of the transformations as the second component
of identity edges. This choice would lead to a possible worldcategory with
a similar effect to that of Tennent [33].

tion called the “diagonal” operation. We write it as “readX ”
with the type(Q → T ) → T because it has the effect of
“reading” the initial state. It has a straightforward definition:

readX(p) = λx. p(x)(x)

The intuition is that given a state-dependent actionp,
readX(p) executes it using the initial state to satisfy the state
dependence ofp.

We call a transformation monoidX = (QX , TX) that
is closed under the Reynolds diagonal operation aReynolds
transformation monoid(or “rtm” for short). A relation of rtm’s
is a relation of tm’sR = (RQ, RT ) that is compatible with
the Reynolds diagonal operation:

readX

[

[RQ → RT ] → RT

]

readX′

If X = (QX , TX) is a transformation monoid that is not
closed under thereadX operation, then additional elements
can be added toTX so that it becomes closed underreadX .
The read closureof TX is the least set of transformations
R(TX) closed underreadX . Such a closure is guaranteed
to exist becauseT (QX) is always read-closed, and read-
closure is preserved under intersection by the usual argument
of universal algebra.

Examples of relations

Transformation monoids place an upper bound on the trans-
formation components of relationsRT (which should be in-
cluded in[RQ ⇀ RQ]). But there is no lower bound other than
the trivial one:{(jX , jX′), (⊥,⊥)}. Reynolds transformation
monoids requireRT to be closed under theread operations,
placing a requirement on what should be included inRT .

1) It is always permissible to pick RT to be
[RQ ⇀ RQ] for any given state relationRQ. If

p
[

RQ → [RQ ⇀ RQ]
]

p′ then clearly s
[

RQ

]

s′

implies p(s)(s)
[

(RQ)⊥
]

p′(s′)(s′). Hence,
readX(p)(s)

[

RQ ⇀ RQ

]

readX(p)(s). However,
this choice of RT means that we are not using
the additional degree of freedom available in the
transformation components of tm’s.

2) For a more interesting example, consider the relation
R : (Int , T (Int)) ↔ (Int , T (Int)) defined by:

n
[

R
]

n′ ⇐⇒ n = n′

a
[

R
]

a′ ⇐⇒ a = a′ ∧ (∀n. a(n) = ⊥ ∨ a(n) ≥ n)

The relation is really a “unary” relation (or “invariant”)
represented in binary form. While the state part of the
invariant is unconstrained, the transformation part states
that the integer value of the state can only increase
during command execution. Such a constraint may be
thought of as a “transition invariant” or “step invariant.”
To check that it preserves theread operation, suppose
p is related to itself byRQ → RT , i.e., for all statesn,
p(n) is related to itself byRT . Thenp(n)(n) is either
⊥ or a larger integer thann. So, read(p) is related to
itself by RT .
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3) As a binary version of the above example, considerR :
(Int , T (Int)) ↔ (Int , T (Int)) defined by:

n
[

R
]

n′ ⇐⇒ n ≥ 0 ∧ n′ = −n

a
[

R
]

a′ ⇐⇒ ∀n, n′. a(n) − n ≃ −(a′(n′) − n′)

This relates transformationsa and a′ whenevera in-
creases the integer state by some amount anda′ de-
creases the state by the same amount.5

4) As a trivial example, considerR = (RQ, RT ) where
RQ is arbitrary andRT = { (a, a′) | a ⊑ jX ∧ a′ ⊑
jX′ }. Then, assumingp

[

RQ → RT

]

p′, ands
[

RQ

]

s′,
we havep(s) ⊑ jX and p′(s′) ⊑ jX′ , which implies
readX(p) ⊑ jX andreadX′(p′) ⊑ jX′ .

The following result is technical, but it gives some intuition
for the strength of the read-closed condition.

Lemma 1 (Down-closure) 1) In an rtm (QX , TX) the
transformation component is down-closed, i.e.,a ∈ TX

anda′ ⊑ a implies a′ ∈ TX .
2) If R : (QX , TX) ↔ (QY , TY ) is a relation of rtm’s, the

transformation componentRT is “parallel down-closed,”
i.e., a

[

RT

]

b, (a′, b′) ⊑ (a, b) and a′
[

RQ ⇀ T
]

b′

implies a′
[

RT

]

b′. (T is the universally true relation.)

Morphisms

We will designate some of the relations of rtm’s as “mor-
phisms” so that they can be used to talk about possible worlds.

Note that, wheneverf : A → A′ is a set-theoretic function,
its function graph is a binary relation〈f〉 : A ↔ A′. If R :
A ↔ A′ is a relation, we writeR` : A′ ↔ A for the converse
of R.

A morphism of rtm’sf : X → W is a pairf = (φf , τf )
whereφf : QX → QW is a function andτf : TW → TX

is a complete ordered monoid morphism such that the pair
(〈φf 〉, 〈τf 〉

`) is a relation of rtm’s.

X

W

f

?
=











QX TX

,

QW

φf

?
TW

τf

6











Computationally, the intuition is that, whenX is a future world
of W , it extendsand possiblyconstrains the states of the
current world. So, it is possible to recover the state information
at the level of the current worldW via the functionφf . On the
other hand, the actions possible in the current world continue
to be possible in the future world, which is modelled by the
function τf going in theoppositedirection.

The condition that(〈φf 〉, 〈τf 〉
`) is a relation of rtm’s

amounts to the following properties:

• τf is a morphism of complete ordered monoids, i.e., it is
a strict, continuous function that preserves the unit and
the composition.

5We use≃ to denote the Kleene equality: either both the sides are⊥ or
both are defined and they are equal.

• the implicit monoid action is preserved:

αX

[

〈τf 〉
` → [〈φf 〉 ⇀ 〈φf 〉]

]

αW

which can be expressed more directly by writing

∀a ∈ TW . (φf )⊥ ◦ τf (a) = a ◦ φf

• the Reynolds diagonal operation is preserved:

readX

[

[〈φf 〉 → 〈τf 〉
`] → 〈τf 〉

`

]

readW

which can be written equivalently as, for allp ∈ (QW →
TW ),

τf (readW (p)) = readX(τf ◦ p ◦ φf )

The knowledgeable reader will be able to verify that these are
precisely the morphisms considered by Reynolds [30], except
that he used full transformation monoids whereTX is always
T (QX).

A relation-preservation squareof rtm’s

(QX , TX)
f = (φf , τf )- (QW , TW )

(QX′ , TX′)

(SQ, ST )

?

6

f ′ = (φf ′ , τf ′)- (QW ′ , TW ′)

(RQ, RT )

?

6

exists iff φf

[

SQ → RQ

]

φf ′ andτf

[

RT → ST

]

τf ′ .
This data constitutes a cpo-enriched reflexive graphRTM.

(See [9, 19] for the background on reflexive graphs.) The
partial order on morphismsf, f ′ : X → Y is given by:

f ⊑X→Y f ′ ⇐⇒ φf = φf ′ ∧ τf ⊑ τf ′

To the best of our knowledge, these kinds of morphisms and
relations between transformation monoids have not been stud-
ied in algebraic automata theory. The morphisms considered
there generally keep the monoid of actions fixed, whereas our
interest is in varying the monoid as well as the state set.

Lemma 2 RTM is a cpo-enriched op-parametricity graph,
i.e., it is relational, op-fibred and satisfies the identity condi-
tion.

RTM is evidently relational. For op-fibration, we need a
strongest post-edgeR[f, f ′] for every R, f and f ′ as in the
situation shown below:

Y
f - X

Y ′

R

?

6

f ′
- X ′

R[f, f ′]

?

6

We define it as the pair

R[f, f ′] = (RQ[φf , φf ′ ], [τf , τf ′ ]RT )

6



Diagrammatically:

QY

φf- QX

QY ′

RQ

?

6

φf ′

- QX′

?

6
TY

�τf
TX

TY ′

RT

?

6

�
τf ′

TX′

?

6

The first component is the strongest post-edge inSet which
is nothing but the “direct image”:

RQ[φf , φf ′ ] = { (x, x′) | ∃y, y′. y
[

RQ

]

y′ ∧
φf (y) = x ∧ φf ′(y′) = x′ }

and the second component is the weakest pre-edge in the
reflexive graph of complete ordered monoids which is nothing
but the “inverse image”:

[τf , τf ′ ]RT = { (b, b′) | τf (b)
[

RT

]

τf ′(b′) }

An op-parametricity graph has asubsumptionmap whereby
each morphismf : Y → X is “subsumed” by a relation
〈f〉 : Y ↔ X . This is given by〈f〉 = IY [idY , f ]. In the case
of RTM, this gives〈(φf , τf )〉 = (〈φf 〉, 〈τf 〉

`).

Examples of morphisms

1) The expansion of a full transformation monoid
(Q, T (Q)) with additional state components represented
by a setZ, and leading to a larger world(Q×Z, T (Q×
Z)), is represented by a morphism×Z = (φ, τ) :
(Q×Z, T (Q×Z)) → (Q, T (Q)). Here,φ : Q×Z → Q

is the projection of theQ component, andτ : T (Q) →
T (Q × Z) is given by

τ(a)(q, z) = [a(q), z]⊥ = (a(q) = ⊥ → ⊥; (a(q), z))

This example is from [30], and it is easy to verify
that ×Z preserves the implicit monoid action and the
Reynolds diagonal.

2) A state change restrictionmorphism for a tm(QX , TX)
restricts the state transformations to a submonoidT ′ ⊆
TX . The morphismf = (φ, τ) : (QX , TX) → (QX , T ′)
is given byφ = idQX

andτ the injection ofT ′ in TX .
3) A passivity restrictionmorphism is an extreme case of

state change restriction morphism that prohibits all state
changes:pX = (idQX

, τ) : (QX , TX) → (QX ,0X)
where0X is the complete ordered monoid containing
the unit transformationjQX

and all its approximations.
Note that “state set restriction” and “state change constraints”
morphisms found in the Tennent’s category of worlds [33] do
not have any counterparts inRTM.

V. M ODELING STORES

Now that we have the basic definitions of transformation
monoids, we would like to present the intuition that they
model stores of locations viewed as a rudimentary form of
objects. This view point fits somewhere in between the state-
based models [17, 19], where stores are viewed in a static

form as sets of states, and the object-based models [16, 28],
where stores are viewed as full-blown objects. Compared to
the state-based models, we have more “activity” represented in
transformation monoids. The allowed state transformations are
part of the descriptions. Compared to the object-based models,
we have less “activity.” Only the state transformation aspects
of the objects are retained in the description.

Nevertheless, the intuitions to be used for understanding the
transformation monoids are similar to those of the object-based
model. A morphismf : X → W may be thought of as a way
of constructing aW -typed object from anX-typed object. In
doing so, all the states ofW should be representable in the
X-typed store. Moreover, all the state transformations needed
for W should be allowed on theX-typed store. For example,
let X be a store representing a single integer variable and let
W be a store representing a counter object. ThenX allows
all possible transformations of the integer state, whereasW

needs only the transformations corresponding to incrementing
the counter. Since the latter is a subset of the former, we have
a morphismX → W (a state change restriction morphism),
but there is no morphism in the opposite direction.

These intuitions come into the fore in trying to define “prod-
ucts” of transformation monoids. SupposeX = (QX , TX)
and Y = (QY , TY ) are rtm’s denoting two separate stores
of locations (along with allowed transformations). We would
like to define a product rtmX ⋆ Y that corresponds to
their combined store. There are two separate ways of doing
this, depending on what transformations are allowed on the
combined store. The “independent product”, denotedX ⊗ Y ,
allows the two parts of the store to be used independently,
with no transfer of information between them. The “dependent
product”, denotedX ⋆Y , allows information to be transferred
between them.

Independent product

Given transformationsa ∈ TX and b ∈ TY , we use the
notationa⊗ b for the transformation inT (QX ×QY ) defined
by:

(a ⊗ b)(x, y) = [a(x), b(y)]⊥

Let TX ⊗ TY denote the monoid of all transformations of the
form a ⊗ b. Then, the independent product ofX and Y is
defined as

X ⊗ Y = (QX ×QY , TX ⊗ TY )

The corresponding action on relations mapsR : X ↔ X ′ and
S : Y ↔ Y ′ to R ⊗ S : X ⊗ Y ↔ X ′ ⊗ Y ′ given by:

RT ⊗ ST = { (a ⊗ b, a′ ⊗ b′) | a
[

RT

]

a′ ∧ b
[

ST

]

b′ }
R ⊗ S = (RQ × SQ, RT ⊗ ST )

TheRT ⊗ST relation is well-defined even thougha⊗ b does
not uniquely determinea andb.

The independent product has projections(π1)X,Y : X ⊗
Y → X and (π2)X,Y : X ⊗ Y → X . For example,

(π1)X,Y = (π1 : QX ×QY → QX , ι1 : TX → TX ⊗ TY )
whereι1(a) = a ⊗ jQY

It is easy to see that(π1)X,Y

[

R ⊗ S → R
]

(π1)X′,Y ′ .
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Dependent product

The dependent productX ⋆ Y is defined by:

TX ⋆ TY = the read-closure ofTX ⊗ TY

X ⋆ Y = (QX ×QY , TX ⋆ TY )

While TX ⊗ TY represents an independent product of the
two stores, its read-closure adds transformations of the form
λ(x, y). a(x, y) ⊗ b(x, y), allowing transfer of information
between the two stores.

The corresponding relational actionR⋆S : X⋆Y ↔ X ′⋆Y ′

is a bit involved. The state set component is the expected one:
(R⋆S)Q = RQ×SQ. The transformation component is defined
as follows:

t
[

(R ⋆ S)T

]

t′ ⇐⇒
∀x, x′, y, y′. (x, y)

[

R ⋆ S
]

(x′, y′) =⇒
(∃a ∈ QX , a′ ∈ QX′ , b ∈ QY , b′ ∈ QY ′ .

a
[

R
]

a′ ∧ b
[

S
]

b′ ∧
t(x, y) = (a ⊗ b)(x, y) ∧
t′(x′, y′) = (a′ ⊗ b′)(x′, y′))

This says essentially thatt andt′ can be decomposed asa⊗ b

anda′ ⊗ b′ respectively. However, the choice of the witnesses
a, a′, b andb′ can depend on the initial states. The witnesses
are not uniform across all states. Note thata and b depend
only onx andy whereasa′ andb′ depend only onx′ andy′.
We can make this explicit by writingaxy, a′

x′y′ etc. instead
of simple variablesa, a′.

The projections(π1)X,Y : X ⋆ Y → X and (π2)X,Y : X ⋆

Y → Y are defined similar to those of independent products.

Terminal object

The terminal object inRTM, representing the “empty
store,” is 1 = (1,01), where 01 = {j1,⊥}. The unique
morphism!X : X → 1 is !X = (!QX

, τ!X ) whereτ!X sends
j1 to jQX

and⊥ to ⊥. These morphisms are parametric in
X , i.e., if R : X ↔ X ′, then !X

[

R → I1
]

!X′ .
The terminal object is the unit for both forms of products:

A ⊗ 1 ∼= A andA ⋆ 1 ∼= A.

VI. SEMANTICS

The reflexive graphCPO consists of directed-complete
partial orders as objects, continuous functions as morphisms,
and directed-complete relations as edges. It is a parametric-
ity graph. The weakest pre-edge[f, f ′]R is the pre-image
{ (x, x′) | f(x)

[

R
]

f ′(x′) } which is easily seen to be a
directed-complete relation. Note that the “graph” of a mor-
phismf : A → A′ (in the formal sense) is[f, idA′ ]IA′ , which
is nothing but the graph of the continuous functionf .

The reflexive graphCPO⊥ consists of pointed cpo’s (cpo’s
with least elements) as objects, strict continuous functions as
morphisms and complete relations that relate least elements as
edges. (A “complete” relation is a directed-complete relation
that also relates the least elements.) It is also a parametricity
graph.

We will be interested in PG-functorsF : RTMop → CPO

that factor through the embeddingJ : CPO⊥ →֒ CPO. That

means thatF (X) is a pointed cpo for each rtmX , F (f) is
a strict continuous function for each morphismf of rtm’s
and F (R) is a pointed complete relation for each relation
R of rtm’s. Such functors form a categoryC(RTM) with
parametric transformations as morphisms.

Theorem 3 If C is an op-parametricity graph, letC(C)
denote the category of PG-functorsCop → CPO that factor
through the embeddingJ : CPO⊥ →֒ CPO. ThenC(C) is
cartesian closed.

Products are given pointwise:(F × G)(X) = F (X) × G(X)
and (F × G)(R) = F (R) × G(R). Exponents are given as
in presheaf categories:(F ⇒ G)(X) = ∀h:Z→X [F (Z) →
G(Z)], where ∀ denotes the “parametric limit” (inCPO)
indexed by morphismsh leading to X [9]. Explicitly, the
parametric limit consists of families of the form{th ∈
[F (Z) → G(Z)]}h:Z→X that are parametric in the sense that
h

[

S → IX

]

h′ ⇒ th
[

F (S) → G(S)
]

th′ . SinceF and G

are PG-functors, such families are automatically natural [9]. It
can be verified that it is a pointed cpo under the component-
wise ordering. The relation∀S→R[F (S) → G(S)] relates two
families {th}h:Z→X and {t′h′}h′:Z′→X′ iff, for all relations
S : Z ↔ Z ′ and allh, h′ of appropriate types:

h
[

S → R
]

h′ =⇒ th
[

F (S) → G(S)
]

t′h′

C(C) also extends to a parametricity graph, which is a fact
used in interpretingpolymorphicAlgol-like languages [10].
However, we will not need this extension for the present
purposes.

All types of IA+ can be interpreted inC(RTM). The in-
terpretation is shown in Fig. 2. To avoid excessive bracketing,
we use names like COMM etc. for semantic functors, instead
of the usual notation of semantic brackets ([[comm]] etc.)
We also identify the names of data typesδ with the sets of
values denoted by them. For brevity, we omit theval[δ] types
and record types, which can be handled in a straightforward
manner. Note that variables are interpreted as objects withget
and put methods as described in Sec. III, except that we are
now representing it as a pair of methods instead of a record of
methods. The product and exponential constructions are from
Theorem 3. The interpretation of classes (CLS F ) involves a
hidden world for the data representation (an rtm) along with
an initial state in that world and an implementation of the
method suite in the world. Recall that we are only treating
“constant classes” with no free identifiers. Such a class does
not depend on the non-local store, and therefore(CLS F )(R)
is the identity relation.

The notation∃Z T (Z) stands for the “parametric colimit,”
which is a quotient of

∐

Z T (Z) under the transitive closure
of the similarity relation “∼”, which is defined by the rule:

S : Z ↔ Z ′ ∧ a
[

T (S)
]

a′ ⇒ 〈Z, a〉 ∼ 〈Z ′, a′〉

The equivalence class of〈Z, a〉 under∼∗ is denoted by〈|Z, a|〉
and we call such an entity a “package.” The relation∃S T (S)
relates two packages〈|Z, a|〉 and 〈|Z ′, a′|〉 iff there exists a
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COMM(X) = TX COMM(R) = RT

EXPδ(X) = [QX ⇀ δ] EXPδ(R) = [RQ ⇀ ∆δ]

VARδ(X) = EXPδ(X) × [δ → COMM(X)] VARδ(R) = EXPδ(R) × [∆δ → COMM(R)]

(F × G)(X) = F (X) × G(X) (F × G)(R) = F (R) × G(R)

(F ⇒ G)(X) = ∀h:Z→X [F (Z) → G(Z)] (F ⇒ G)(R) = ∀S→R [F (S) → G(S)]

(CLS F )(X) = ∃Z (QZ)⊥ × F (Z) (CLS F )(R) = I(CLS F )(X)

Fig. 2. Interpretation of IA+ types

relationS : Z → Z ′ such thata
[

T (S)
]

a′. These notions are
discussed in detail in our prior work [25, 28].6

To complete the definition, we need to specify the action
of the functors on morphisms and show that they constitute
PG-functors. The action on morphisms can be uniquely re-
constructed from the action on edges because, ifF is a PG-
functor, thenF (〈f〉) = 〈F (f)〉, i.e., F (〈f〉) is the graph of a
strict-continuous function. There is evidently at most onesuch
function. We exhibit these functions for the functors involved
in the interpretation of IA+:

• COMM(f) = τf , which is strict and continuous by
definition.

• EXPδ(f) = [φf ⇀ idδ] sends an expression valuation
e ∈ EXPδ(X) to e ◦ φf ∈ EXPδ(Y ), which is evidently
strict and continuous.

• (F × G)(f) = F (f) × G(f), which preserves strictness
and continuity.

• (F ⇒ G)(f : X ′ → X) sends a family {th ∈
[F (Z) → G(Z)]}h:Z→X to the corresponding
family {t(h′;f)}h′:Z→X′ , which is evidently strict
and continuous.

• (CLS F )(f : X ′ → X) is just the identity morphism
id(CLS F )(X).

Using these functor actions, we can upgrade any valued of
type θ at world X to a future worldY . When the morphism
f : Y → X is clear from the context, we often use the short-
hand notationd↑Y

X , [[θ]](f)(d) to denote such upgrading.

Interpretation of terms

The meaning of a termM with typing:

x1 : θ1, . . . , xn : θn ⊢ M : θ

is a parametric transformation of type

[[M ]] : (
∏

xi
[[θi]]) → [[θ]]

This means that, for each world (rtm)X , [[M ]]X is a contin-
uous function of type(

∏

xi
[[θi]](X)) → [[θ]](X) such that all

relations are preserved, i.e., for any relationR : X ↔ X ′,

6We are glossing over some detail here because constructing colimits of
cpo’s is a nontrivial exercise [14]. We prefer the alternative solution outlined
in [25], where CPO’s are coupled with partial equivalence relations to define
more manageable colimits.

we have [[M ]]X

[

(
∏

xi
[[θi]](R)) → [[θ]](R)

]

[[M ]]X′ . To the
extent that IA+ is a simply typed lambda calculus, this is
standard [9, 19]. We show the basic constructs:

[[x]]X(u) = u(x)

[[λx : θ. M ]]X(u) =

Λh : Z → X. λd : [[θ]](Z). [[M ]]Z(u↑Z
X [x 7→ d])

[[MN ]]X(u) = [[M ]]X(u)[idX : X → X ]([[N ]]X(u))

The parameteru may be thought of as an “environment” that
provides values for the free identifiers, specifically in thegiven
world X . The meaning of a lambda abstraction of typeθ → θ′

is in ([[θ]] ⇒ θ′)(X), which consists of families of the form
{th}h:Z→X . Here, we are using notation “Λh : Z → X”
borrowed from the polymorphic lambda calculus to express the
h parameter. Note that the body of the abstraction is interpreted
in the future worldZ and the environmentu is upgraded to this
world. Parametricity inZ is crucial for capturing the fact that
[[M ]]Z does not directly access any information of the future
world. In the interpretation of function application terms, we
are again using the polymorphic lambda calculus notation to
pass in theh parameter, viz.,idX : X → X .

The interpretation of class definitions is given by:

[[class: θ local C x init A meth M ]]X(u) =
〈|Z, ([[A]]Z(u0))

∗(z0), [[M ]]Z(u0)|〉
where〈|Z, z0, m|〉 = [[C]]X(u)

u0 = {x 7→ m}

This says that the package for the classC is opened and a new
package for the class term is created using it. We are depending
on the fact that the class definition is a closed term. So, the
only free identifier inA andM is x.

The interpretation of thenew construct for creating class
instances is:

[[new C P ]]X(u) =

(λs. [s, z0]⊥) · [[P ]]X(u)[(π1)X,Z ](m↑X⋆Z
Z ) · (λ(s, z). s)

where〈|Z, z0, m|〉 = [[C]]X(u)

The interpretation extends the current worldX to X⋆Z, where
Z is a store for the internal state of the class, and executes
the body of thenew operator (P ) in the extended store. This
execution is bracketed with an allocation and deallocationof

9



equal: EXPδ × EXPδ → EXPBool equal(e1, e2) = λs. (λ(d1, d2). d1 = d2)
∗ [e1(s), e2(s)]⊥

condE : EXPBool × EXPδ × EXPδ → EXPδ condEX(e, e1, e2) = λs. (λv. v → e1(s); e2(s))
∗(e(s))

skip : 1 → COMM skipX(∗) = nullX
seq: COMM × COMM → COMM seqX(a, b) = a · b

condC : EXPBool × COMM × COMM → COMM condCX(e, a, b) = readX λs. (λv. v → a; b)∗(e(s))

deref: VARδ → EXPδ derefX(e, a) = e

assign: VARδ × EXPδ → COMM assignX((d, a), e) = readX λs. a∗(e(s))

var[δ] : 1 → CLS VARδ var[δ]X(∗) = 〈|V, initδ, mkvar|〉
whereV = (δ, T (δ)) mkvar= (λn. n, λk. λn. k)

newvar: (VARδ ⇒ COMM) → COMM newvarX(p) = (λs. (s, initδ)) · p[π1](mkvar↑X⋆V
V ) · (λ(s, n). s)

Fig. 3. Primitive operators of IA+

the class instance, so that the overall command is still in the
world X .

The interpretations of the primitives (constants) of IA+ is
shown in Fig. 3. (Recall that the notationf∗ extends a function
f : A ⇀ B to the typeA⊥ → B⊥.)

The primitive var[δ] requires some explanation. Variables
are treated in Idealized Algol as “objects” with methods
for reading and writing their values (of types EXPδ and
δ → COMM respectively). We use the shorthand VARδ =
EXPδ × (δ → COMM) for the type of variables. In the world
V = (δ, T (δ)), we can define a valuemkvarthat uses the states
of the worldV to construct the two methods. The constantinitδ
represents some global value that is presumed to be used as
the initial value for variables of typeδ.

To give additional insight, we also show a primitive called
newvar, which is nothing butnew var[δ]. Given any world
X , we have the expanded worldX ⋆ V with projections
π1 : X ⋆ V → X and π2 : X ⋆ V → V and mkvar↑X⋆V

V =
VARδ(π2)(mkvar) ∈ VARδ(X ⋆ V ). This variable object
is provided as the argument top. The remaining steps of
newvarX are the allocation and the deallocation of the local
variable.

Lemma 4 All the combinators of Idealized Algol are para-
metric transformations.

Theorem 5 The meaning of every IA+ termx1 : θ1, . . . , xn :
thetan ⊢ M : θ is a parametric transformation of type
(
∏

xi
[[θi]]) → [[θ]].

This completes the semantic definition of IA+.

Example equivalences

Example 6 We can define two classes for counter objects as
follows:7

counter1 = class : exp[int] × comm

local var[int] x;
init x := 0;
meth (derefx, x := x + 1)

counter2 = class : exp[int] × comm

local var[int] x;
init x := 0;
meth (−(derefx), x := x − 1)

Their meanings should be semantic values of type:

∃Z (QZ)⊥ × (EXPInt × COMM)(Z)

The meaning of the classcounter1 is as follows:
• The storeZ1 for the object is given by

QZ1
= Int

TZ1
= read-closure of{⊥} ∪ { inc(k) | k ≥ 0 }

where inc(k) = λn. n + k

Note thatTZ1
is a monoid with the unit element inc(0).

• The initial value is0.
• The method suite in(EXPInt × COMM)(Z1) is the pair:

meth1 = ((λn. n), inc(1))

The meaning of the classcounter2 is similar:
• The future world isZ2 = X ⋆ K2 whereK2 is given by

QZ2
= Int

TZ2
= read-closure of{⊥} ∪ { dec(k) | k ≥ 0 }

where dec(k) = λn. n − k

7Since the class is defined using a variable object, the semantic definition
states the meaning in terms of the worldV for the internal state of the
counter, which includes the full transformation monoid(δ, T (δ)). However,
the meaning of the class is an abstract “package,” unique upto behavioral
equivalence. So, we can cut down the transformation component of the
world to just those transformations directly used in the class via behavioral
equivalence.

10



• The initial value is0.
• The method suite in(EXPInt × COMM)(Z2) is the pair:

meth2 = ((λn.−n), dec(1))

To demonstrate that the two classes are equal in the parametric
colimit, we can exhibit a relationR : Z1 ↔ Z2 that is
preserved by the initialization and the method suite. The
relation isS : Z1 ↔ Z2, given by:

SQ = { (n, −n) | n ≥ 0 }

ST = {(⊥,⊥)} ∪ { (inc(k), dec(k)) | k ≥ 0 }

The preservation properties to be verified are:

0
[

(SQ)⊥

]

0

meth1
[

(EXPInt × COMM)(S)
]

meth2

It is easy to verify them once we note that
(EXPInt × COMM)(S) = [SQ ⇀ ∆Int ] × ST .

Example 7 (Pitts and Stark “awkward” example)
Consider the following classes:

C1 = class : comm → comm

local var[int] x;
init x := 0;
meth λc. x := 1; c; test(x = 1)

C2 = class : comm → comm

local var[int] x;
init x := 0;
meth λc. c

wheretest(b) = if b then skip else diverge.
A relation S between the internal states of the classesC1

andC2 has two components, a relationSQ between their state
sets and a relationST between their state transformations.
The transformation componentST relates the transformations
null and put(1) of C1 to the null transformation ofC2. Since
the c arguments to the methods are assumed to be related by
ST , we can conclude that the call toc in C1 executes some
combination of null and put(1) actions, with the result thatx
is 1 after the call.

We show the detailed proof. The meanings of the classes
should be semantic values of type:

∃Z

(

(QZ)⊥ × ∀g:Y →Z COMM(Y ) → COMM(Y )
)

The meaning of the classC1 is as follows:

QZ1
= Int

TZ1
= read-closure of{⊥, nullZ2

, put(1)}
init1 = 0
meth1 = Λg : Y → Z1. λc : COMM(Y ).

put(1)↑Y
Z1

· c · check(1)↑Y
Z1

where put(k) = λn. k and check(k) = read λn. n = k →
null; ⊥.

The meaning of the classC2 is similar:

QZ2
= Int

TZ2
= read-closure of{⊥, nullZ2

}
init2 = 0
meth2 = Λg : Y → Z2. λc : COMM(Y ). c

To demonstrate that the two classes are equal, we exhibit a
relationS : Z1 ↔ Z2 given by:

SQ = { (n, 0) | n ≥ 0 }

ST = {(⊥,⊥), (nullZ1
, nullZ2

), (put(1), nullZ2
)}

The preservation properties to be verified are:

init1
[

(SQ)⊥

]

init2

meth1
[

(COMM ⇒ COMM)(S)
]

meth2

Note that (COMM ⇒ COMM)S = ∀R→S COMM(R) →
COMM(R) = ∀R→S RT → RT . So, the relationship to be
proved between the two method suites is:

∀g1 : Y1 → Z1. ∀g2 : Y2 → Z2. g1

[

R → S
]

g2 =⇒
∀c1, c2. c1

[

RT

]

c2 =⇒
meth1[g1](c1)

[

RT

]

meth2[g2](c2)

Since put(1)
[

ST

]

null, we have put(1)↑Y1

Z1

[

RT

]

null↑Y2

Z2
.

Sincec1

[

RT

]

c2 by assumption, the state inZ1 (the value of
x) is 1, as argued above. Therefore check(1) has the effect of
nullZ1

. Hence, we have the required property.

Example 8 (Dreyer, Neis and Birkedal) Consider the fol-
lowing classes:

C1 = class : comm → comm

local var[int] x;
init x := 0;
meth λc. x := 0; c; x := 1; c; test(x = 1)

C2 = class : comm → comm

local var[int] x;
init x := 0;
meth λc. c; c

wheretest(b) = if b then skip else diverge.
This example is similar to the “awkward” example, except

that we have two calls toc in the method ofC1, interspersed
by different assignments tox. The differences from the above
example are as follows:

TZ1
= read-closure of{⊥, nullZ1

, put(0), put(1)}
meth1 = Λg : Y → Z1. λc : COMM(Y ).

put(0)↑Y
Z1

· c · put(1)↑Y
Z1

· c · check(1)↑Y
Z1

TZ2
= read-closure of{⊥, nullZ2

}
meth2 = Λg : Y → Z2. λc : COMM(Y ). c · c

ST = {(⊥,⊥), (nullZ1
, nullZ2

), (put(1), nullZ2
)}

It is worth noting that the relationST : TZ1
↔ TZ2

is the
sameas that in the awkward example.

We verify the simulation property

meth1
[

(COMM ⇒ COMM)(S)
]

meth2
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as in the previous example, which involves the condition:

∀g1 : Y1 → Z1. ∀g2 : Y2 → Z2. g1

[

R → S
]

g2 =⇒
∀c1, c2. c1

[

RT

]

c2 =⇒
meth1[g1](c1)

[

RT

]

meth2[g2](c2)

We first argue thatmeth1[g1](c1) andmeth2[g2](c2) are related
by RQ ⇀ RQ. Starting from related initial statesn and0, the
first action inmeth1 is put(0), which changes the local state to
0. Calling c has the effect of either nullZ1

or put(1) on x. So,
x is either0 or 1, both of which are related to0 by RQ. The
next action put(1) overrides the previous effect and changes
the local state to1. The second call toc again has the effect
of either nullZ1

or put(1), with the result that the local state
continues to be1 and, so, check(1) succeeds. Thus, the overall
effect ofmeth1 is to set the local state to1, i.e., a put(1) action,
and two calls toc for the effects on the non-local state. This
is related toc · c in meth2 by theRT relation.

Dreyer et al. [6] characterize actions as put(0) in meth1 as
“private transitions” because they are not visible at the end of
method calls. Note that no special treatment is needed in the
semantics to capture such private transitions. Essentially, the
private transitions are handled byRQ, the state components
of the rtm-relations, whereas the public transitions are handled
by RT , the transformation components of the relations.

VII. C ONCLUSION

We have outlined a new denotational semantic model for
class-based Algol-like languages, which combines the ad-
vantages of the existing models. Similar to the state-based
models, it is able to represent the effect of operations as state
transformations. At the same time, it also represents stores as
rudimentary form of objects, whose state changes are treated
from the outside in a modular fashion. Further, this modeling
allows one to prove observational equivalences of programs
that were not possible in the previous models. This work
complements that of Ahmed, Dreyer and colleagues [3, 6]
who use anoperational approachto develop similar reasoning
principles.

In principle, this work could have been done any time after
1983, because Reynolds used a similar framework for his
semantics in [30] and formulated relational parametricityin
[32]. We can only speculate why it wasn’t done. The alterna-
tive model invented by Oles [21] was considered equivalent
to the Reynolds’s model and it appeared to be simpler as
well as more general. However, sharp differences between the
two models become visible as soon as relational parametricity
is considered. This fact was perhaps not appreciated in the
intervening years.

In terms of further work to be carried out, we have not
addressed the issues of dynamic storage (pointers) but we
expect that the prior work in parametricity semantics [29] will
be applicable. We have not considered higher-order store, i.e.,
storing procedures in variables. This problem is known to be
hard in the framework of functor category models and it may
take some time to get resolved. More exciting work awaits to
be done in applying these ideas to study program reasoning,

including Specification Logic [31, 33], Separation Logic, Rely-
guarantee and Deny-guarantee reasoning techniques [5, 34].
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APPENDIX

Proof of Lemma 1

If a ∈ TX and a′ ⊑ a, there is a functionp′ : QX → TX

given byp′ = λx. a′(x) 6= ⊥ → a; ⊥. It is easy to see that
a′ = readX(p′).

Assumea
[

R
]

b, (a′, b′) ⊑ (a, b) anda′
[

RQ ⇀ T
]

b′. The
last of these means that, for allx, y such thatx

[

RQ

]

y, we
have(a′(x) = ⊥ ∧ b′(y) = ⊥) ∨ (a′(x) 6= ⊥ ∧ b′(y) 6= ⊥).
In other words,a′(x) = ⊥ ⇐⇒ b′(y) = ⊥. Given the
assumptions, we can constructp′ : QX → TX andq′ : QY →
TY as above, givinga′ = readX(p′) and b′ = readY (q′). If
x

[

RQ

]

y then a′(x) = ⊥ ⇐⇒ b′(y) = ⊥, which implies
p′(x)

[

R
]

q′(y). Hence,p′
[

RQ → RT

]

q′ anda′
[

R
]

b′.

Proof of Lemma 4

We show selected cases. For the assignment operation, let
(d, a)

[

VARδ(R)
]

(d′, a′) ande
[

EXPδ(R)
]

e′. Then

(λs. a∗(e(s)))
[

RQ → RT

]

(λs′. a′∗(e′(s′)))
(readX λs. a∗(e(s)))

[

RT

]

(readX′ λs′. a′∗(e′(s′)))

The second step follows from the fact that the relations are
compatible with the diagonal operation.

Consider the newvar combinator. LetR : X ↔ X ′ be a
relation of rtm’s and assumep

[

(VARδ ⇒ COMM)(R)
]

p′.

1) The relation (VAR ⇒ COMM)(R) is
∀S→R VAR(S) → COMM(S). In the particular
case used in the combinator,S is instantiated
to R ⋆ IV : X ⋆ V ↔ X ′ ⋆ V . So, we obtain
p[(π1)X,V ]

[

VAR(R ⋆ IV ) → COMM(R ⋆ IV )
]

p[(π1)X′,V ].
2) We argue that mkvar↑X

V and mkvar↑X′

V are related by
VARδ(R ⋆ IV ). Firstly, λ(s, n). n and λ(s′, n′). n′ are
related by EXPδ(R⋆IV ), i.e.,RQ×∆δ ⇀ ∆δ. Secondly,
λk. λ(s, n). (s, k) and λk′. λ(s′, n′). (s′, k′) are related
by ∆δ → COMM(R⋆IV ), i.e.,∆δ → RT ⋆∆T (δ). Note
that λ(s, n). (s, k) can be expressed as nullX ⊗ (λn. k)
in TX ⋆ T (δ). nullX and nullX′ are related byTX and
λn. k is related to itself by∆T (δ).

3) Therefore, p[(π1)X,V ](mkvar↑X
V )

[

COMM(R ⋆ IV )
]

p[(π1)X′,V ](mkvar↑X′

V ).
4) The relation COMM(R ⋆ IV ) is RT ⋆ (IV )T where

(IV )T = [∆δ ⇀ ∆δ]. So, the instancest =

p[(π1)](mkvar↑X
V ) and t′ = p′[(π1)](mkvar↑X′

V ) are
related byRT ⋆ [∆δ ⇀ ∆δ]. So, for anys ∈ QX ,
s′ ∈ QX′ and n ∈ δ, there existasn, a′

s′n, bn such
that asn

[

R
]

a′
s′n, t(s, n) = (asn ⊗ bn)(s, n) and

t′(s′, n) = (a′
s′n ⊗ bn)(s′, n).

5) In particular, the above statement holds forn = 0.
So, unlessb0(0) = ⊥, (t · (λ(s, n). s))(s, 0) = as0(s)
and(t′ · (λ(s′, n). s′))(s′, 0) = a′

s′0(s
′). In other words,

newvarX(p)(s) = as0(s) and newvarX′(p′)(s′) =
a′

s′0(s
′). If, on the other hand,b0(0) = ⊥, both the func-

tions evaluate to⊥. Hence, we can write newvarX(p)
as

(

readX λs. b0(0) = ⊥ → ⊥; as0

)

, and similarly for

newvarX′(p′). These two transformations are related by
RT .

The case of condC illustrates how expression evaluations are
embedded in commands. Again, letR : X ↔ X ′ be a relation
of rtm’s and assumee

[

EXPδ(R)
]

e′, a
[

COMM(R)
]

a′ and
b

[

COMM(R)
]

b′. To show that condCX(e, a, b)
[

COMM(R)
]

condCX′(e′, a′, b′), we need to show thatp = (λs.(λk. k 6= 0 →
a; b)∗(e(s))) and p′ = (λs′. (λk′. k′ 6= 0 → a′; b′)∗(e′(s′)))
are related byRQ → RT . So, consider the action of the
functions on statess ands′ such thats

[

R
]

s′.

1) Since EXPδ(R) = [R ⇀ ∆δ], we havee(s)
[

∆δ⊥

]

e′(s′), i.e., e(s) = e′(s′).
2) If e(s) = e′(s′) = ⊥ then p(s) = ⊥TX

and p′(s′) =
⊥T

X′
, which are relatedRT since it is a pointed relation.

3) If e(s) = e′(s′) = 0 then p(s) = b and p′(s′) = b′,
which are related byRT by assumption thatb andb′ are
related by COMM(R) = RT . The case ofe(s) = e′(s′)
being non-zero is similar.

All the other combinators can be similarly verified to be
parametric.

Treatment of general classes

In the main body of the paper, we restricted attention
to “constant classes” that have no free identifiers. Classes
with free identifiers are quite useful, e.g., for defining nested
classes. Here, we treat the general case. The interpretation of
the generalcls types is as follows:

(CLS F )(X) = ∀g:Y →X ∃h:Z→Y

[QY ⇀ QZ ] × F (Z) × [QZ ⇀ QY ]
(CLS F )(R) = ∀P→R ∃S→P

[PQ ⇀ SQ] × F (S) × [SQ ⇀ PQ]

The meaning of a class at worldX provides a way of creating
instances at all future worldsY , and such creation leads to a
further future worldZ. In addition to the method suite, of type
F (Z), we have allocation and deallocation operations, which
are both irregular state transformations.

The notation∃h:Z→X T (Z) stands for an indexed “para-
metric colimit.” It is a quotient of

∐

h:Z→X T (Z) under the
transitive closure of the “similarity” relation∼ defined by the
rule:

h
[

S → IX

]

h′ ∧ a
[

T (S)
]

a′ ⇒ 〈h, a〉 ∼ 〈h′, a′〉

The equivalence class of〈h, a〉 under∼∗ is denoted by〈|h, a|〉.
The functor action on morphisms is:(CLSF )(f : X ′ → X)

sends a family{tg}g:Y →X to the corresponding family
{t(g′;f)}g′:Y →X′ .

The interpretation ofnew for such classes is:

[[new C P ]]X(u) = i · [[P ]]X(u)[h](m) · d
where〈|h, i, m, d|〉 = [[C]]X(u)[idX : X → X ]

It makes use of the expansion morphism and the allocation
and deallocation opertions rather directly.
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