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An Automata-Theoretic Model of Objects

Uday S. Reddy Brian P. Dunphy
University of Birmingham University of Illinois at Urbana-Champaign

Abstract—In this paper, we present a new model of class- models and the event-based models, because they clearly
based Algol-like programming languages inspired by autome- had complementary strengths. These investigations ledto a
theoretic concepts. The model may be seen as a variant ofytomata theory-inspired framework where both states and
the "object-based” model previously proposed by the authar - .
where objects are described by their observable behaviourni events pIay_a.roIe [_24' 27, 26]. However, it was noticed
terms of events. At the same time, it also reflects the intuitins that the basic ingredients of the model were already present
behind state-based models studied by Reynolds, Oles, Temte in the early work of Reynolds [30]. The subsequent work
and O'Hearn where the effect of commands is described by stat focused on formalizing the category-theoretic foundatioh
transformathns. The idea is to view stores as automata, cznp;rmg the framework. documented in Dunphy’s PhD thesis [8 9]
not o_nIy the_lr states but also the aIIowc_ed state transformabns. but the aopli - f the f K ined | ' d ’
In this fashion, we are able to combine both the state-based pplications of the framework remained unexplored.
and event-based views of objects. We illustrate the efficacyf The interest in the approach has been renewed with two
the model by proving several test equivalences and discustsi parallel developments in recent work. Amal Ahmed, Derek
connections to the previous models. Dreyer and colleagues [3, 6, 7] began to investigate reagoni
principles for higher-order ML-like languages where sanil
ideas have reappeared. In the application of SeparatioicLog

Imperative programming languages providgformation to concurrency, a technique called “deny-guarantee réagon
hidingvia local variables, which is exploited in object-orientethas been developed [4, 5] where, again, a combination @fsstat
programming in a fundamental way. The use of such infoand events is employed. With this paper, we hope to provide

mation hiding in everyday programming can be said to havedenotational semantic foundation for these techniquds an

I. INTRODUCTION

revolutionized the practice of software development. stimulate further work in this area.
Meyer and Sieber [15] pointed out that the traditional
semantic models for imperative programs do not capture such [I. MOTIVATION

information hiding, even though researchers working in the In this section, we informally motivate the ideas behind the
area were probably aware of the issues much earlier. RaH'QN semantic model

progress was made in the 1990's to address the proble

, . PeMrhe two existing classes of semantic models for imperative
O’Hearn and Tennent [19] proposed a model using relatio

. . ograms are state-based parametricity models, forntllate
parametricity to capture the independence of data reptase O'Hearn and Tennent [19] and event-based models, for-

tions. Reddy [23] proposed an alternative event-based mo lated by Reddy [23]. Both of them were first presented

which hides data representations entirely. Both the mod% Algol-like languages, and later adapted to object-te
have been proved fully abstract for second-order types Slograms [28] ’

Idealized Algol (though this does not cover “passive” or
“read-only” types) [16, 17]. Abramsky and McCusker [1], anﬁjn
subsequently with Honda [2], refined the event-based mode
using games semantics and proved it fully abstract for full * @ Staté set, o
higher-order types. « the initial state when the object is c_reatqgl,e @, and
Despite all this progress, the practical application ofsthe * the effect of the methods on the object state.
models for program reasoning had stalled. As we shall sé@r example, a counter object with methods for reading the
“second-order functions” in Idealized Algol only correspb Value and for incrementing the state can be semantically
to basic functions (almost zero-order functions) in theeobj described by:
oriented setting. The event-based model is a bit removed )
from the normal practice in program reasoning, while the /= (@ = Int, 0, {val = An.n, inc=An.n+1})
applicability of the parametricity model for genuine highe Here,val is given by a function of typ&) — Int and the effect
order functions has. not been investigated.lln fact, Pitd apsincis given by a function of typ& — Q. (We are ignoring
Stark [22] showed in “awkward example” in a bare bonegg jssues of divergence and recursion.) An alternativee sta
ML-like language, which could not be handled using thgachine for counters using a different representationg(iegy

parametricity technique. numbers) is described by:
The present work began in the late 90’s with the motiva-

tion of bridging the gap between state-based parametricityM’ = (Q’ = Int,0, {val = M. (—n), inc = In.n — 1})

In the state-based model, an object is described as a state
?chine with



. transitions— and a functiomx : ¥ x Q@ — @ describing the
("a"o); &‘C**) effect of action symbols on states. The transition functn
then extended to sequences of action symbtilsc Q — Q.
_ From this point of view, it is clear that the “state-based
(val. 1) \('nc‘*) description” is focusing on state set§)(whereas the “event-
based description” is focusing on the action symbaly. (A
) more abstract treatment of semiautomata is studied in edgeb
("a"z); \('”C'*) automata theory [11, 13], call@dansformation monoidsThe
5 essential idea is to replace the free monoid of actbhdy a
monoid of state transformatiofisC [Q — ]. Such a monoid
- has an implicit action on states: 7 x Q — Q, viz., function
applicationa(a, q) = a(q). An automata-theoretic model of
objects can now be given in four parts:
Fig. 1. Trace set of a counter object « a state se®),

» a monoid of state transformatiofisC [Q — Q)],

« the initial state of the objecty € @, and

« the effect of the methods on the object state as well as
the state transformations.

The behavioral equivalence of the two implementations of
counters can be established by exhibitingjraulation relation

between the state sets: ) )
For example, the automata-theoretic model of counter tbjec

n[R|n<=n>0An=-n (1)  corresponding td/ is:
and showing that all the operations “preserve” the simoihati N=(Q=Int, T =Int"
relation. ’ -
L 0, {val = An.n, =.n+1
In contrast, the event-based description constructs abvoca {va et e nnt 1)
ulary of events for the methods of the object, e.g., Here, Intt = {An.n +k | £ > 0} is the set of allowed

{(val,n) | n € Int} U {(ine, )} transformations tht only ingrease the value of the interna
state. Note that it is a monoidAn.n + k) - (An.n + k') =
and describes the objects by theiace sets i.e., sets of \n.n + (k + k). The type ofval is Q — Int as before, but
sequences of events that can be observed from the object. Heetype ofinc is T. Any state change operations in methods
trace set of counter objects can be depicted graphically, @& interpreted inl". So, they must be among thallowed
shown in Fig. 1. The two distinct implementations of counta@ransformations of the state machine.
objects have exactly theametrace set in the event-based The automata-theoretic model correspondingf6is:
description. In this sense, the event-based descriptiomoie
“extensional” than the state-based one. However, multiple N'=(Q =1Int, T" = Int™,
traces that have the same effect on the internal state of the 0, {val = An. —n, inc = An.n — 1})
object are represented differently in the semantics. . . . .
) Proving the equivalence of the two state machines requses u
A second, more subtle, difference between the two mOd‘%(I)Sexhibittwo relations a relation Ry between the state sets
is that the event-based description capturesitfesersibility . Q o
of state change. The action of incrementing the counter—ovgrnd a relationzy between the state transformations:
writes the old state of the counter a}nd it is not possible to 90, [Roln! <= n>0An =-n
back to the old state. For example, if we pass a counter object, [[RA d < Tka= An+kAd = .n—k
to a procedure, we can be sure that, after the procedurasetur
the value in the counter could be no less that what it was befdrhe two relations have to satisfy some coherence condjtions
the call. This fact is obvious in the event-based descmptiowhich are detailed in Sec. IV. Using these relations, it is
The traces incorporate the direction of time. However, itas possible to prove, for instance, that a procedure that takes
possible to prove it in the state-based description. Intshoa counter as an argument can only increase the value of
the state-based description only captures what is the in the counter (as visible from the outside). The transforomati
state but not how states are altered. Offsetting this teahnicomponents in the state machines provide a direction of,time
deficiency, the state-based model has the advantage of beidngch is absent in the purely state-based model.
highly intuitive and quite familiar from traditional reasiong While simulation relations are useful for proving the eguiv
principles of programs. lence of two implementations of classes, they form an ircstan
In this paper, we define a new model that combines tloé a general theory of relational parametricity which works
advantages of the state-based and event-based models.féiorelations of arbitrary arity [12, 18]. The case of “unary
this purpose, we turn to automata theory.sAmiautomaton relations” is particularly noteworthy because it gives usesy
in automata theory is a tripléQ, >, o), where @ is a set notion ofinvariants Our theory therefore posits that invariants
of states,X is a set of action symbols — representisiggte of classes again come in two parts: one on state sets and one



on state transformations. The invariants for counter dbjec In our framework, we start by defining a two-part invariant

represented by are: for the class:
Po(n) <= n>0 Py(z) <= =zxz=0vz=1
Pr(a) <= 3Jk.a=M.n+k Pr(a) <= a=((n.n)Va= (1)

State invariants are well-known from traditional reasgninTo maintainPr as an “invariant”, the methoch must restrict

methods, while the invariant properties of transformatiorits actions to those satisfying’r, while assumingthat the

might be called “action invariants” or “transition invanig”. ~argumentc does so as well. So, by assumption, the calt to
The recent work on reasoning about state has focused Will either leavex unchanged or set it to. In either case, the

higher-order procedures and higher-order state, in paatic value ofz at the end ofc will be 1. So, the method always

the work of Ahmed, Dreyer and colleagues [3, 6]. This worlerminates.

has brought home the fact that the traditional theory of Rlgo Other examples discussed by Dreyer et al. [6] can be verified

like languages fails to be abstract for higher-order pracest ~ similarly, as long as they fit within our framework — with only

We illustrate the problem with an example from Pitts andiStaground-typed state and no control effects.

[22], which was termed an “awkward example” in their paper. m

. : ) . . PRELIMINARIES
Consider the following class, written in the |1A+ languag8]f2

The programming language we use in this paper is the

C = class : comm — comm language IA+ described in [28], which represents Idealized
local var|int] z; Algol [30] extended with classes.
init z := 0; Recall that Idealized Algol is a call-by-name simply typed
meth {m = Ac.z := 1;¢;tes{z = 1)} lambda calculus with base types supporting imperative pro-
tes{b) £ if b then skip else diverge gramming. These base types include
This class provides a single method of tygamm — comm, val[d] exp|d] comm

i.e., a procedure that takes a command-typed argument (Thi . ., .
is a call-by-name language, where commands can be pas‘é’g‘gre‘S ranges over “data types” such ast andbool.

as arguments, but similar examples can be constructed usina—o,SUpport classes, we use a type cons_truglerso that
call-by-value as well.) The problem is to argue that thﬁlse is the type of classes whose method suite is of §/f8o,

method always terminates. Intuitively, one might expeett th? is the interface type of the class. The language comes with

this should always be the case because the local varialsle a family of predefined_classemr[d] for assignable variables
only available inside the class. However, the intuition o n Of type d, whose type is
a very good guide here because the methods are higher-order. var|d] : cls {get: exp|d], put: val[§] — comm}

When the method o€’ invokes the argument commarg it

is possible forc to alterz. For example, the following client I €ssence, a variable is treated as an object with a “get’
does so: method that reads the state of the variable and “put” method

that changes the state to a given value. User-defined classes
are supported using terms of the form
When the outer call tp.m is executed, it sets to 1 and calls

new C A\p.p.m (p.m skip)

its argument: = p.m skip. Since the argument in turn calls class : 0

p.m, it has the effect of setting to 1. So, the argument that %O?alA_C L

¢ does not have “access” tois not sound: nit 4;
meth M

A more sophisticated argument for the terminationCt$
method notes that the only change that a calléan make tac  whereC is another classy is a locally bound identifier for
is setting it tol. Therefore, at the end of the call ¢épx is still  the “instance variable,”d is a command for initializing the
1, and so the test should succeed. However, as noted by Dreystance variable, and/ is a term of typed serving as the
et al. [6], this cannot be proved by the usual “invariantdetis method suite. For simplicity of exposition, we only conside
reasoning, i.e., by exhibiting relations on states. Irkteme “constant classes” in the main body of the paper, which are
must use relations on state transformations. defined by closed terms of typds 6. See Appendix for a

N treatment of general classes with free identifiers.

Both the state-based and the event-based models have e gully Inst f cl ted i d . t
abstract for second-order Algol types. Translated to ¢fjeented languages, nstances of classes are created in commands using terms
this amounts to saying that they can prove the equivalenagasses whose Of the form

methods take at best value-typed, i.e., state-independegaiments. If the new C )o. B
methods take higher-type arguments, e.g., other procedtinen the full
abstraction results do not apply. whose effect is to create an instance of cl@ssbind it to o

2Note that the system of “Syntactic Control of Interferensetdied in the .
original object-based model [23] prohibits calls suchgas: (p.m skip) and execute a comman@ whereo is allowed to occur as a

because the procedure and the argument interfere. So, the intuiton free identifier. Sopew is a constant of type:
is sound for Syntactic Control of Interference. But it is smund for full
Idealized Algol. new : cls — (§ — comm) — comm



Semantics of Algol-like languages is normally given uswhere W is an op-parametricity graphCPO is a para-
ing a category-theoretic possible world semantics, whieee tmetricity graph of cpo’s (with directed-complete relation
“worlds” represent the shapes of store. Each tgpie inter- as relations) and6] is a PG-functor. For the category of

preted as a functor such PG-functors to be cartesian-closed, there is an additi
op requirement that the PG-functors should factor through the
[6] : W — CPO embedding ofCPO, in CPO:
where W is a category of possible worlds a@PO is the W . CPO, — CPO

category of directed-complete partial orders and contisuo | . . .
functions. So[#](W), for each worldW, is a cpo. Further, which means basically that ea](W) should be gpointed

if f: X — W is a morphism in the category of worlds CP°: each[d](f) should b_e astrict continuous_function, and
representing the idea that is a “future wold” of W, then €ach[¢](R) should be gointed complete relation.

[9](f) : [0](W) — [6](X) is a continuous function that The focus of this paperis on def|n|nQQSU|tabIe category (or,
restates values of typé at world IV as values of typd at rather, an op-parametricity grapW. This is where automata-

the future worldX .® Note that the morphisms in the categor)yheore'“Cl'deasI comehln. D;f[nlngl tlhe semgant|6cs itself voslo
of worlds go from future worlds to the current world. Thig"0re or less along the traditional lines [19, 16].
is consistent with an object-oriented view because theréutu IV. TRANSFORMATION MONOIDS

world generally represents targer state than the current o starting point is the notion of transformation monoids
world. It is possible to think of a subtyping relationshigpat comes from algebraic automata theory.
X <: W between the future world and the current world, A semiautomaton(or generically a “state machine”) is

except that there may not be a unique way in whiths a g a|ly represented as a triplé), =, a) where( is a set (of
subtype ofi¥’. The morphism describes the way in whigh «giates7) 33 is a set (of “actions”) : ¥ — Q — Q] is

is a subtype ofV. a function interpreting each action as a state-transfaomat

‘To incorporate relational parametricity, we extend cat®30 fnction. A semiautomaton differs from a normal automaton
with relations so that we formally work ireflexive graph®f i, that it does not specify a start state or final states. It

categories [19, Sec. 7]. Intuitively, this means that wetlud®  jescripes the generic behaviour of a state machine rather th
dimensional categorical structures, where morphisms mccuy particular instance of the machine.

one dimension and relations between categorical objects 0Ca semiautomaton can be viewed asepresentatiorof the

cupy the second dimension, as in the diagram below: free monoidX* by transformations of) (or equivalently, as
f an action of the free monoidX~* on Q). A more abstract
X Y representation can be achieved by moving from free monoids
>* to arbitrary monoidg’, which are still meant to represent
R S “actions.” Since all that matters about the element%'d$ the
/ action they have on the state set, we can as well 7ake be
, , , ; :
— a submonoid of the monoid of transformati =[Q—
X Y b d of th d of transf tidh
A diagram of this form, called a relation-preservation squa @]- This leads to the concept ofteansformation monoid
states the property that the morphisfhand f” map R-related a) Notation: We regard partial functions from to B as
arguments toS-related results. The textual notation for thdotal functions fromA to B, but continue to use the notation
property isf [R — S] f'. f+ A— B forsuch functions. The set of such functigas—

The reflexive graphs we work with are callpdrametricity 5] forms a directed complete partial order (dcpo) under the
graphs [8, 9]. They incorporate additional axioms to Cappothlse order (has sups of directed sets) and is pointasl (h

ture the idea that relations in the vertical dimension inded !€ast element). The: notation is also extended to functions
behave like “relations” in the intuitive sense. The tegp- 2and relations:

parametricity graphs used to describe the structtvé whose (sets) [A—B] = [A— Bj]
dual, W°P, is a parametricity graph. Our possible worlds form (functions) [f—g] = [f — g.]
an op-parametricity graph. (relations) [R—S] = [R—S.]

The term PG-functoris used to denote maps betweekacy| thatg, is the extension of a functiop : B — B’
parametricity graphs. It involves a pair of functors, one fa, 5 strict functionB, — B/, sendingL to L. Likewise,
the category of objects and morphisms, and the other for tgf — SU{(L,1)}. We write the sequential composition of

category of relations anq relatlon—pregervat|on squ&esthe “partial functions” asf - ¢ or as f; g*. Whenz € A, and
overall structure of our interpretation is y € B., we use the notation:

6] : W — CPO o,y], 2 1, ife=Llory=.1
LY = (2,y), otherwise

3In [19, Sec. 3] and [28], a “category-free” presentation lé semantic R Il th idi ith . bi
model is given to make it easier to follow. We do not yet knova isimilar ecall that amonoidis a set with an associative binary

presentation is possible for our model. So, we use a fulgesieal treatment. operation, denoted-", and a unit element for this operation.

4



The set of all (finite) sequences over a Seforms a monoid tion called the “diagonal” operation. We write it asefidx”
¥* with concatenation as the binary operation and the empth the type(Q — T7') — T because it has the effect of
sequence serving as the unit element. This is in fact the freeading” the initial state. It has a straightforward defiom:
monoid generated by the sEt The set of all transformations

T(Q) = [Q — Q] forms a monoid under sequential compo- readx (p) = Az. p(z)(z)

sition “" with the unit being the injectiog : @ — @ . We  The intuition is that given a state-dependent actipn

also write the unit element as nylifor better readability. In read y (p) executes it using the initial state to satisfy the state

addition to being a monoid’(Q) is a pointed cpo (in fact a dependence of.

bounded complete cpo) under the pointwise_ordering with thewwe call a transformation monoidk — (Qx,7Tx) that

least element being the constantlyfunction L. is closed under the Reynolds diagonal operatioReynolds
We use the terntomplete ordered monoitb refer to a  transformation monoidor “rtm” for short). A relation of rtm’s

monoid that is also a pointed cpo, and the multiplication iSja g relation of tm'sR = (Rg, Rr) that is compatible with

strict, continuous function. Aomplete ordered submonojdr
simply a “submonoid” when the context is clear) is a subset
that is not only closed under the unit and multiplication but
also contains the least element and the sup’s of directedAet
morphism of complete ordered monoigs monoid morphism
that is also strict and continuous.

A transformation monoidtm) is a pair(Q,T) where@ is
a set (of “states”) and’ is a submonoid of'(Q)). There is an R
implicit monoid actiona : T — [@ — Q] coming from the
fact thatT is a submonoid of the monoid of transformations
which is a morphism of complete ordered monoids. We deno&
the uncurried function correspondingdddy of : TxQ — Q,
which represents a monoid action.

A relation of tms R : (Q,T) < (Q',T’) is a pair

the Reynolds diagonal operation:

readx [[RQ — RT] — RT] readx/

If X = (Qx,7x) is a transformation monoid that is not
closed under theeadyx operation, then additional elements
can be added t@x so that it becomes closed undendy.
The read closureof 7x is the least set of transformations
(Tx) closed undereadyx. Such a closure is guaranteed
to exist becausel'(Qx) is always read-closed, and read-
¢losure is preserved under intersection by the usual argume
funiversal algebra.

Examples of relations
Transformation monoids place an upper bound on the trans-

R = (Rq,Rr) where Rg : Q < Q" is a relation and o mation components of relationgr (which should be in-

Ry : T < T’ is a complete ordered monoid relation (relation,ded in|

compatible with the units, multiplication, least elemeatxd
sup’s of directed sets) such that they are compatible wigh thy,
monoid action, i.e.q [Rr — [Rg — Rg]| . When there is
no cause for confusion, we omit the subscriptsiig and R,
e.g., we may writg [R] ¢ for states and [R] o’ for actions,
using the context to distinguish the uses. The identitytimia
Loy - (Q,T) < (Q,T) is Iig 1) = (Ag,Ar) consisting
of the diagonal relations (equality relations) on stated an
transformations.

Intuitively, the transformations if" represent the actions
executed by commands in the programming language. The
sequential composition™ corresponds to the sequential com-
position in the programming language and the unit transfor-2)
mation nully represents the do-nothing commaskiip. So,
it is reasonable to require that should be closed under
these operations and the relations between worlds should be
compatible with them as well. However, while these opersio
were perhaps adequate for traditional automata theory, the
are not enough to capture the computations in programming
languages. A command in a programming language can read
the information from the initial state and tailor its actidmased
on that information. Such state-dependent actions nee@to b
represented by an operation in the transformation monoids.

Reynolds [30] noticed the problem and proposed an opera-

1)

4Since the transformation components of tm’s are posets,aiso possible
to use the partial ordeE of the transformations as the second component
of identity edges. This choice would lead to a possible wedtegory with
a similar effect to that of Tennent [33].

Ry — Rg)). But there is no lower bound other than

the trivial one:{(jx, s x’), (L, L)}. Reynolds transformation
onoids requireRr to be closed under theead operations,
placing a requirement on what should be includedrin.

It is always permissible to pickRr to be
[Ro — Rg] for any given state relationRg. If

p RQH[RQARQ]} p’ then clearlys [Rq| &
implies  p(s)(s)  [(Rg)L]  p/(s)(s). Hence,
readx (p)(s) [Rg — Rg| readx(p)(s). However,
this choice of R means that we are not using
the additional degree of freedom available in the
transformation components of tm'’s.

For a more interesting example, consider the relation
R: (Int,T(Int)) < (Int,T(Int)) defined by:

n[R|n' < n=n/
a|Rld < a=d A(Vn.a(n)=_LVa(n)>n)

The relation is really a “unary” relation (or “invariant”)
represented in binary form. While the state part of the
invariant is unconstrained, the transformation part state
that the integer value of the state can only increase
during command execution. Such a constraint may be
thought of as a “transition invariant” or “step invariant.”
To check that it preserves thead operation, suppose

p is related to itself byRg — Ry, i.e., for all statesq,
p(n) is related to itself byRr. Thenp(n)(n) is either

L or a larger integer than. So,read(p) is related to
itself by Rr.



3) As a binary version of the above example, consiller
(Int,T(Int)) < (Int,T(Int)) defined by:

n|R

Lt
This relates transformations and a’ whenevera in-
creases the integer state by some amount @nde-
creases the state by the same amé&unt.
As a trivial example, consideR = (Rg, Rr) where
Rq is arbitrary andRy = {(a,d') | a C jx Ad' C
jx: }. Then, assuming [Ro — Rr| p/, ands [Rq] ¢/,
we havep(s) C jx andp’(s’) C jx/, which implies
readx(p) C jX andreadxz(p’) C jX’-

The following result is technical, but it gives some intoiti
for the strength of the read-closed condition.

Lemma 1 (Down-closure) 1) In an rtm (Qx,7x) the
transformation component is down-closed, ieg 7x
anda’ C a impliesa’ € Ty.

2) If R: (Qx,7x) < (Qy,7y) is a relation of rtm’s, the
transformation componeifty is “parallel down-closed,”
e, a [RTH b, (a/,V') C (a,b) anda’ [Rg — T| ¥/
impliesa’ [Rr| v'. (T is the universally true relation.)

n < n>0An"=-n
a <= VYn,n'.a(n) —n~—(a(n')—n')

4)

Morphisms

We will designate some of the relations of rtm’s as “mor-
phisms” so that they can be used to talk about possible worlds
Note that, whenevef : A — A’ is a set-theoretic function,

its function graph is a binary relatiofy) : A < A’. If R :
A — A’ is arelation, we writeR~ : A’ < A for the converse
of R.

A morphism of tm’sf : X — W is a pairf = (¢¢, 1)
where¢; : Qx — Qw is a function andry : Ty — Tx

« the implicit monoid action is preserved:

x [(1)7 = [os) = (6p)]] aw
which can be expressed more directly by writing
Va € Tw.(¢f) 1L oT¢(a) = ao ¢y
« the Reynolds diagonal operation is preserved:
ready [[(¢r) — (77)7] = ()] readw

which can be written equivalently as, for alle (Qw —
Tw),

7f(readw (p)) = readx (7f o p o ¢5)

The knowledgeable reader will be able to verify that these ar
precisely the morphisms considered by Reynolds [30], excep
that he used full transformation monoids whérg is always
T(Qx).

A relation-preservation squaref rtm’s

f=(or,7¢)

(QxaTX) (QW’TW)
(Sq,ST) (Rq, Rr)
(Qx7,Tx") M (Qw, Tw)

exists iff ¢ ¢ [SQ — RQ] ¢p andry [RT — ST} Tpr.

This data constitutes a cpo-enriched reflexive grRAriVI.
(See [9, 19] for the background on reflexive graphs.) The
partial order on morphismg, /' : X — Y is given by:

fEX‘?Y ,f/ — ¢j:¢f/ATf ETJA'/

is a complete ordered monoid morphism such that the pair,

((65), (17)~) is a relation of rtm’s.

X Ox Tx
= b Tf
w Ow Tw

Computationally, the intuition is that, wheX is a future world
of W, it extendsand possiblyconstrainsthe states of the
current world. So, it is possible to recover the state infation
at the level of the current worltl” via the functiong ;. On the

To the best of our knowledge, these kinds of morphisms and
relations between transformation monoids have not beeh stu
ied in algebraic automata theory. The morphisms considered
there generally keep the monoid of actions fixed, whereas our
interest is in varying the monoid as well as the state set.

Lemma 2 RTM is a cpo-enriched op-parametricity graph,
i.e., it is relational, op-fibred and satisfies the identiondi-
tion.

RTM is evidently relational. For op-fibration, we need a
strongest post-edgR|f, f’] for every R, f and f’ as in the

other hand, the actions possible in the current world caetinSituation shown below:

to be possible in the future world, which is modelled by the

function 7; going in theoppositedirection.
The condition that({¢/), (r;)~) is a relation of rtm’s
amounts to the following properties:

77 is a morphism of complete ordered monoids, i.e., it is
a strict, continuous function that preserves the unit and

the composition.

5We use~ to denote the Kleene equality: either both the sides_arer
both are defined and they are equal.

Y f X
R RIS, 1]
\4
Y’ X'
f/

We define it as the pair

R[fa f/] = (RQ[¢.f’¢f’]7 [vaTf’]RT)



Diagrammatically:

of T

Qy —— Ox

Rq

Qyr — QOx
f/ ’Tj/

The first component is the strongest post-edg&eém which

form as sets of states, and the object-based models [16, 28],
where stores are viewed as full-blown objects. Compared to
the state-based models, we have more “activity” repregente
transformation monoids. The allowed state transformatame
part of the descriptions. Compared to the object-based Isode
we have less “activity.” Only the state transformation aspe
of the objects are retained in the description.

Nevertheless, the intuitions to be used for understandieg t
transformation monoids are similar to those of the objectell
model. A morphismf : X — W may be thought of as a way

is nothing but the “direct image™:
, , , of constructing @V -typed object from anX -typed object. In
Rqlos: by ] = { (z,2") [ Iy, y [Ro] v/ A doing so, all the states diV should be representable in the
¢r(y) =z Aoy (y) ="} X-typed store. Moreover, all the state transformations eded
and the second component is the weakest pre-edge in fpelV should be allowed on th&-typed store. For example,
reflexive graph of complete ordered monoids which is nothifgt X be a store representing a single integer variable and let
but the “inverse image”: W be a store representing a counter object. Therllows
, , all possible transformations of the integer state, wheféas
[rp, 7B = { (b,0') | 7(b) [Rer] 74 (0') } needs only the transformations corresponding to increimgnt
m the counter. Since the latter is a subset of the former, we hav

An op-parametricity graph hassaibsumptiomap whereby & morphismX — W (a state change restriction morphism),
each morphismf : Y — X is “subsumed” by a relation but there is no morphism in the opposite direction.
(f): Y « X. This is given by(f) = Iy[idy, f]. In the case These intuitions come into the fore in trying to define “prod-

of RTM, this gives((¢f,75)) = ((65), (T5)7). ucts” of transformation monoids. Supposé = (Qx,Tx)
andY = (Qy,7y) are rtm’s denoting two separate stores
Examples of morphisms

of locations (along with allowed transformations). We wbul

1) The expansion of a full transformation monoid like to define a product rtmX = Y that corresponds to
(Q,T(Q)) with additional state components representdtieir combined store. There are two separate ways of doing
by a setZ, and leading to a larger worl@) x Z, T(Q x this, depending on what transformations are allowed on the
Z)), is represented by a morphismZ = (¢,7) : combined store. The “independent product’, denated Y,
(QxZ, T(Qx2Z))— (Q, T(Q)).Here,p: QxZ — @Q allows the two parts of the store to be used independently,
is the projection of th&) component, and : T(Q) —  with no transfer of information between them. The “deperiden
T(Q x Z) is given by product”, denoted{ =Y, allows information to be transferred

m(a)(q,2) = [alq), 2]1 = (alg) = L — L; (alq),2)) between them.

_ ) o ~ Independent product
E;f e;an:glsir'se;r?rzg '[riO]I"c?tmr?]oI:]c;% Z?:?c/mtoar:/(jertn;\ye Given transformations € 7x andb € 7y, we use the
x4 Preserv implict ! ! hotationa ® b for the transformation i (Qx x Qy) defined
Reynolds diagonal. by:
2) A state change restrictiomorphism for a tm Qx, 7x) ' _
restricts the state transformations to a submordicc (a®@b)(z,y) = la(x), b(y)]L
Tx. The morphismf = (¢,7) : (Qx,Tx) — (Qx,T’) Let7Tx ® Ty denote the monoid of all transformations of the
is given by¢ = idg, andr the injection ofT” in Tx. form a ® b. Then, the independent product &f andY is
3) A passivity restrictionmorphism is an extreme case ofdefined as
state change rest.riction morphism that prohibits all state X®Y =(Qx x Oy, Ty ® Ty)
changespx = (idoy,7) : (Qx,7x) — (2Lx,0x) . . , ,
where 0y is the complete ordered monoid containind N€ corres/pondlng action on relat|9ns T@SX - X and
the unit transformatiorjo, and all its approximations. © *Y <Y 10 R®S: X ®Y < X' @ Y’ given by:
Note that “state set restriction” and “state change comsga ~ Rr ® St = {(a®b, a' @ V') | a [Rr] ' AD [Sr] V' }
morphisms found in the Tennent's category of worlds [33] do B ® S = (Rq X Sq, Rr ® St)
not have any counterparts RTM. The Ry ® St relation is well-defined even thoughw b does
not uniquely determine andb.

) o _ The independent product has projectidas)xy : X ®
Now that we have the basic definitions of transformatiofr _, X and () .y : X ® Y — X. For example,

monoids, we would like to present the intuition that they

model stores of locations viewed as a rudimentary form of(M)x.y = E}Wl' Qx xﬁQY = Qx, i Tx 2 Tx®Ty)
objects. This view point fits somewhere in between the state- whereui(a) = a @ joy

based models [17, 19], where stores are viewed in a stdtiGs easy to see thdir;)xy [R® S — R] (m1)x7 v

V. MODELING STORES



Dependent product means that’(X) is a pointed cpo for each rtnX, F(f) is

The dependent product « Y is defined by: a strict coptinuou; function for each morphisfnof rtm’s_
and F(R) is a pointed complete relation for each relation
Tx xTy = the read-closure ofx ® 7y R of rtm’s. Such functors form a catego(RTM) with
X+Y = (Qx xQy, Tx xTy) parametric transformations as morphisms.

While 7x © Ty represents an independent product of theheorem 3 If C is an op-parametricity graph, le(C)
two stores, its read-closure adds transformations of the fogenote the category of PG-functo@® — CPO that factor

A(z,y).a(z,y) @ b(z,y), allowing transfer of information hrough the embedding : CPO, — CPO. ThenC(C) is
between the two stores. cartesian closed.

The corresponding relational actidtx S : X xY — X’'xY’ ) o
is a bit involved. The state set component is the expected ofg0dUCts are given pointwisef” x G)(X) = F(X) x G(X)

(RxS)o = Rox Sg. The transformation component is define@nd (£ x G)(R) = F(R) x G(R). Exponents are given as
as follows: in presheaf categoriesF = G)(X) = Vn.z_x[F(Z) —

G(Z)], whereV denotes the “parametric limit” (irCPO)
indexed by morphismg leading to X [9]. Explicitly, the
parametric limit consists of families of the formit, €
[F(Z) = G(Z)]}n.z—x that are parametric in the sense that

t[(R*S)r] t
Ve, 2y, y'. (x,y) [R*S} (a,y) =
(Ja € Qx,ad € Qx/, be Qy, b € Qy.

a [R] a' A b [S] 6" A h [S—Ix] i = t, [F(S)— G(S)] t. Since F and G
t/(x’ly) N (a ®/b)(x/ y) A ) are PG-functors, such families are automatically nat@hllf
(@ y') = (o' @V ) (2", y")) can be verified that it is a pointed cpo under the component-

This says essentially thatandt’ can be decomposed aspb ~ Wise ordering. The relatiols_. z[F(S) — G(S)] relates two
anda’ @ b’ respectively. However, the choice of the witnessd@milies {tx}5:z—x and {t, }r.z . x: iff, for all relations
a, @/, b andb’ can depend on the initial states. The witnessés: Z < Z' and all, i/ of appropriate types:

are not uniform across all states. Note thatnd b depend / /
h|S— R|h =1, |[F(S G(9)| t},
only onz andy whereas:’ andd’ depend only orx’ andy’. [5— ] w [F(8) — GS)]
We can make this explicit by writing,, a;,y, etc. instead u
of simple variables:, a'. C(C) also extends to a parametricity graph, which is a fact

The projectiongm)xy : X *Y — X and(ma)xy : X » used in interpretingoolymorphic Algol-like languages [10].
Y — Y are defined similar to those of independent productdowever, we will not need this extension for the present
) . purposes.

Terminal object All types of IA+ can be interpreted i¢(RTM). The in-
The terminal object inRTM, representing the “empty terpretation is shown in Fig. 2. To avoid excessive braokgti
store,” is1 = (1,04), where0; = {ji, L}. The unique we use names like @M etc. for semantic functors, instead
morphism!y : X — 1is!x = (lg,,ny) Wherer, sends of the usual notation of semantic brackefgomm] etc.)
j1 10 jo, and L to L. These morphisms are parametric ifWWe also identify the names of data typéswith the sets of

X,ie,ifR: X « X', then!y [R — Il] Ixr. values denoted by them. For brevity, we omit td[0] types
The terminal object is the unit for both forms of productsand record types, which can be handled in a straightforward
A1 AandAx1 2 A. manner. Note that variables are interpreted as objectsgeith
and put methods as described in Sec. lll, except that we are
VI. SEMANTICS now representing it as a pair of methods instead of a record of

The reflexive graphCPO consists of directed-completemethods. The product and exponential constructions are fro
partial orders as objects, continuous functions as momm)is Theorem 3. The interpretation of classes ¢ F') involves a
and directed-complete relations as edges. It is a paramethidden world for the data representation (an rtm) along with
ity graph. The weakest pre-edd¢, f'|R is the pre-image an initial state in that world and an implementation of the
{(z,2") | f(z) [R] f'(z')} which is easily seen to be amethod suite in the world. Recall that we are only treating
directed-complete relation. Note that the “graph” of a mofconstant classes” with no free identifiers. Such a classdoe
phismf: A — A’ (in the formal sense) iff, ida/]14-, which not depend on the non-local store, and therefanes F')(R)
is nothing but the graph of the continuous functipn is the identity relation.

The reflexive graplCPO | consists of pointed cpo’s (cpo’s The notationdz T'(Z) stands for the “parametric colimit,”
with least elements) as objects, strict continuous funstias which is a quotient of [, 7'(Z) under the transitive closure
morphisms and complete relations that relate least elesvaent of the similarity relation “~”, which is defined by the rule:
edges. (A “complete” relation is a directed-complete iefat ) p / ;o
that also relates the least elements.) It is also a paranitgtri S:1Z =2 Na [T(S)] o/ = (Z,a) ~ (Z',d)
graph. The equivalence class 0¥, a) under~* is denoted by|Z, a)

We will be interested in PG-functofs : RTM° — CPO and we call such an entity a “package.” The relatipnl’(S)
that factor through the embedding: CPO, — CPO. That relates two package$Z, a) and (Z’, o) iff there exists a



ComMm(X) = Tx ComMM(R) = Ry
Exps(X) = [Qx — ] Exps(R) = [Rg — As]
VAR;(X) = ExpPs(X) x [0 — CoOMM(X)] VARs;(R) = EXPs(R) x [As — COMM(R)]
(FxG)X) = F(X)xGX) (FxG)(R) = F(R)xG(R)
(F=G)(X) = Vnz-xI[F(Z)— G(Z)] (F'=G)(R) = Vs_gr[F(S)— G(9)]
(CLSF)(X) = 3z(Qz)L X F(Z) (CLsF)(R) = Iicsry(x)

Fig. 2. Interpretation of IA+ types

relationS: Z — Z’ such thata [T'(S)] o’. These notions are we have[M]x [(Hmi [0:](R)) — [[9]](R)i [M]x. To the

discussed in detail in our prior work [25, 28]. extent that IA+ Is a simply typed lambda calculus, this is
To complete the definition, we need to specify the actiostandard [9, 19]. We show the basic constructs:

of the functors on morphisms and show that they constitute

PG-functors. The action on morphisms can be uniquely re- [2]x (u) = u(z)

constructed from the action on edges becausé, i¢ a PG- [Az: 0. M]x(u) =

functor, thenF'({f)) = (F(f)), i.e., F({f)) is the graph of a Ah: Z — X \d: [0](2). [M] z(ul% [z — d])

strict-continuous function. There is evidently at most sneh [MN]x(u) = [M]x(u)idx: X — X]([N]x(u))

function. We exhibit these functions for the functors irweal

in the interpretation of IA+:

o ComM(f) = 7, which is strict and continuous by

The parametet. may be thought of as an “environment” that
provides values for the free identifiers, specifically in ¢finen

definition.

o ExpPs(f) = [¢y — ids] sends an expression valuatio
e € Exps(X) to eo ¢y € Exps(Y), which is evidently

strict and continuous.

and continuity.

e (F=G)(f: X'—>X) sends a family {¢,
[F(Z) — G(Z))}hz—x to the corresponding
family {t(..5)}n.z—x/, which is evidently strict

and continuous.

e (CLS F)(f: X' — X) is just the identity morphis

id(cLs Fy(X)-

Using these functor actions, we can upgrade any valod
type 6 at world X to a future worldY. When the morphism
f:Y — X is clear from the context, we often use the short-
hand notationi] 2 [6](f)(d) to denote such upgrading.

Interpretation of terms
The meaning of a termi/ with typing:

x1:01,...,00 : 0, - M:0
is a parametric transformation of type

[M] = (I, [6:1) — €]

This means that, for each world (rtnd), [M]x is a contin-

world X . The meaning of a lambda abstraction of type- ¢’

ds in ([0] = 0")(X), which consists of families of the form

{th}n.z—x. Here, we are using notatiomA\h : Z — X"
borrowed from the polymorphic lambda calculus to express th

(F x G)(f) = F(f) x G(f), which preserves strictness” Parameter. Note that the body of the abstraction is intéegdre

in the future worldZ and the environment is upgraded to this
world. Parametricity inZ is crucial for capturing the fact that
[M]z does not directly access any information of the future
world. In the interpretation of function application ternmee

are again using the polymorphic lambda calculus notation to

m Pass in theh parameter, viz.idx : X — X.

The interpretation of class definitions is given by:

[class: 6 local C z init A meth M]x(u) =
(2, ([A]2(u0))" (20), [M] z(uo))
where (Z, zo{,m|> = [[}C]]X(u)
Ug =\ —1m

This says that the package for the class opened and a new
package for the class term is created using it. We are depgndi
on the fact that the class definition is a closed term. So, the
only free identifier inA and M is .

The interpretation of thamew construct for creating class
instances is:

[new C P]x(u) =
(As. [, z0]1) - [Plx (w)[(m1) x, 2] (m12*7) - (A(s, 2). )

uous function of typg] [, [6:](X)) — [#](X) such that all where(Z, zo,m) = [C]x ()
relations are preserved, i.e., for any relatiin: X < X', T
The interpretation extends the current woKdo X xZ, where

°We are glossing over some detail here because construaiiigits of 7 is a store for the internal state of the class, and executes
cpo’s is a nontrivial exercise [14]. We prefer the altenmtsolution outlined

in [25], where CPO's are coupled with partial equivalendatiens to define the body qf thenew opere}tor P) in the _eXtended store. This
more manageable colimits. execution is bracketed with an allocation and deallocatibn



equal: Exps x EXPs — EXPpgoo; equaler, ea) = As. (A(d1,dz2). d1 = da2)* [e1(s),e2(s)] L
cond” : EXP o0 X EXPs x EXPs — EXP;s cond; (e, e1,e2) = As. (M. v — e1(s); ea(s))*(e(s))
skip: 1 — ComMmm skipy (*) = nullx
seq: COMM x CoMM — COMM seqy(a,b) =a-b
cond” : EXPpoo; x COMM x COMM — CoMM  condy (e, a, b) = readx As. (\v.v — a; b)*(e(s))
deref: VAR; — EXP; derefy (e,a) = ¢
assign: VARs x Exps — COMM assign; ((d,a),e) = readx As.a*(e(s))
var[d] : 1 — CLS VAR; var[d] x (x) = {V,inits, mkvar)
whereV = (§,7(5)) mkvar= (An.n, Ak. An.k)
newvar: (VAR; = COMM) — COMM newvar (p) = (As. (s, inits)) - p[m1](mkvarty*V) - (A(s,n). s)
Fig. 3. Primitive operators of 1A+
the class instance, so that the overall command is still én tExample equivalences
world X Example 6 We can define two classes for counter objects as

follows:”
The interpretations of the primitives (constants) of IA+ is
shown in Fig. 3. (Recall that the notatigi extends a function
f:A— BtothetypeA, — B,.)

counter, = class : exp[int] X comm
local var[int] z

init x := 0;
meth (derefz, x .=z + 1)
The primitive var[d] requires some explanation. Variables counters = class : exp[int] X comm
are treated in Idealized Algol as “objects” with methods local var[int] =
for reading and writing their values (of typesxgs; and init z := 0;
0 — CoMMm respectively). We use the shorthandR¢ = meth (—(derefz), z:=2 — 1)

ExpPs x (6 — Comm) for the type of variables. In the world

= (4,T(0)), we can define a valumkvarthat uses the states
of the worldV to construct the two methods. The constaitt 37 (Qz)1 X (EXPr: x COMM)(Z)
represents some global value that is presumed to be use
the initial value for variables of typé.

Their meanings should be semantic values of type:

S . :
dI'ﬁle meaning of the classunter; is as follows:
« The storeZ; for the object is given by

To give additional insight, we also show a primitive called Qz, = Int .
newvar, which is nothing buhew var[§]. Given any world Tz, = read-closure of L} U {inc(k) |k >0}
X, we have the expanded worl®@ x V' with projections where in¢k) = An.n + k

1: X%V = X andm : X «V — V and mkvaty Y =
VAR;(ma)(mkvar) € VARs(X % V). This variable object
is provided as the argument t@ The remaining steps of
newvary are the allocation and the deallocation of the local
variable. meth = ((An.n), inc(1))

Note that7, is a monoid with the unit element ().
o The initial value is0.
« The method suite ifEXP,; x COMM)(Z;) is the pair:

The meaning of the clas®unters is similar:
o The future world isZ; = X x K5 where K5 is given by

Lemma 4 All the combinators of Idealized Algol are para- Qz, = Int

metric transformations. Tz, = read-closure of L} U {dedk)|k>0}
where de¢k) = An.n — k

Theorem 5 The meaning of every IA+ term; : 61,..., 2, 7Since the class is defined using a variable object, the sémdefinition
theta, = M : 6 is a parametric transformation of typestates the meaning in terms of the wond for the internal state of the
(H [[91,]]) _ [[9]] counter, which includes the full transformation mondid 7°(6)). However,
i the meaning of the class is an abstract “package,” unique bphavioral
equivalence. So, we can cut down the transformation comytooé the
) . o world to just those transformations directly used in thesglaia behavioral
This completes the semantic definition of IA+. equivalence.
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« The initial value is0. The meaning of the class; is similar:
« The method suite iIREXP,; x COMM)(Z5) is the pair:

QZ2 = Int
meth = ((An. —n), deq1)) Tz, = read-closure of L, nullz,}
initQ =0
To demonstrate that the two classes are equal in the paiametr meth = Ag: Y — Zs. Ac: COMM(Y'). ¢

colimit, we can exhibit a relation? : Z; < Z; thatis 14 gemonstrate that the two classes are equal, we exhibit a
preserved by the initialization and the method suite. Tr}‘élationS . 71 < Z5 given by:

relation isS : Z, < Zs, given by:
Sq = {(n,0)|n=0}
Sq = {(n,—n)|n=>0} Sy = {(L, D), (nullz, nullz,), (put(1), nullz,)}

= {(L,L inc(k), dedk)) | k >
St {4 L)} U (inc(k), dedk)) [k =0} The preservation properties to be verified are:

init; [(SQ)L] init
0 [(SQ)L} 0 meth [(COMM = COMM)(S)} meth,
meth {(EXPIM x CoMM)(S)| meth

The preservation properties to be verified are:

Note that (Comm = Comm)S = Vp_.sCOMM(R) —
It is easy to verify them once we note thalPOMM(R) = Vr_s Rr — Rr. So,_the_r.elationship to be
(EXP1nt x COMM)(S) = [So — Apme] X St proved between the two method suites is:
Vg1: Y1 — Z1.Vga: Yo — Zo. g1 [R — 5] go =
VCl,Cg. 5] [RT] Co —
meth[g1](c1) [Rr] meth[g](cz)

C1 = class : comm — comm Since putl) [Sr] null, we have put)ty} [Rr] nullf}?.
local var(int] z; Sincec; [Rr| ¢, by assumption, the state i (the value of

init 2 := 0; x) is 1, as argued above. Therefore ch@gkhas the effect of
meth Ac.z := 1;¢;tes{(z = 1)

Example 7 (Pitts and Stark “awkward” example)
Consider the following classes:

nullz, . Hence, we have the required property. ]
(5 = class : comm — comm
local var[int] x; Example 8 (Dreyer, Neis and Birkedal) Consider the fol-
init z := 0; lowing classes:

meth Ac.c
C1 = class : comm — comm

wheretest{b) = if b then skip else diverge. !o.cal var[int] z;
A relation S between the internal states of the claségs init z := 0;
andC, has two components, a relati¢h, between their state meth Ac.z:=0;¢;2 = L ¢jteslz = 1)
sets and a relatiors; between their state transformations, ~ ¢2 = class : comm — comm
The transformation componef relates the transformations local varlint] z;
null and putl) of C; to the null transformation of’,. Since init z := 0;
the ¢ arguments to the methods are assumed to be related by meth Ac.c;c
St, we can conclude that the call toin C'; executes some wheretes(b) = if b then skip else diverge.

combination of null and p(t) actions, with the result that ~ This example is similar to the “awkward” example, except

is 1 after the call. that we have two calls to in the method ofC;, interspersed
We show the detailed proof. The meanings of the classeg different assignments te. The differences from the above
should be semantic values of type: example are as follows:
dz ((QZ)J_ XVgv_z COMM(Y) — COMM(Y)) 7z, = read-closure Oi{lv nullz, , pUI(O)v pUt(l)}
meth = Ag:Y — Z;. Ac: Comm(Y).
The meaning of the class; is as follows: put(O)T’Z/] c- put(l)T’Z/1 c- checKl)T’Z/]
Tz, = read-closure of L, nullz,}
Qz, = Int — meth = Ag:Y — Zs. Ac: COMM(Y).c- ¢
i, g oosue ot putl) St = (1,1, (il null,), (put), nully,)
meih =Ag: Y — Z;. Ae: Comm(Y). It is worth noting that the relatiorby : 7z, <« 7z, is the
put(1)1y, - c- check1)1y, sameas that in the awkward example.

We verify the simulation property
where putk) = An.k and checkk) = read A\n.n = k —
null; T. meth [(COMM = CommMm)(S)| meth
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as in the previous example, which involves the condition: including Specification Logic [31, 33], Separation Logig{r

Vo1 Vi — Z0.¥gs: Yo — Za. g [R—» S} g =5 guarantee and Deny-guarantee reasoning techniques [5, 34]
1- 11 1- 2. 12 2- 41 2

\V/Cl,CQ. c1 [RT] Cy —
meth [g1](c1) [Rr] meth[go](c2)
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APPENDIX

Proof of Lemma 1

If a € 7x anda’ C a, there is a_functiom’ : Ox — Tx
given byp’ = \z. d/(z) # L — a; L. It is easy to see that
a’ =readx(p’).

Assumea [R] b, (a',V') C (a

,b) anda’ [Rg — T] b'. The

last of these means that, for all y such thatz [Rq| v, we

have (¢/(z) =
In other words,a’(z) = L <« ¥V (y) =

LAV(Y) = L)V (@(2) # LAV(@) # L).

1. Given the

assumptions, we can constryét: 9y — 7x andq’ : Qy —
Ty as above, giving’’ = readx(p’) andb’ = ready (¢'). If

z [Rg| y thend'(z) =
P’ (z) [R] ¢'(y). Hencep' [Rq — Rr| ¢ anda’ [R] V.

1 < ¥ (y) = L, which implies
]

Proof of Lemma 4
We show selected cases. For the assignment operation, let Which are related by by assumption that andd’ are

(d,a) [VARs(R)] (d',a’

) ande [ExpPs(R)] ¢’. Then
(As.a*(e(s))) [Rg — Rr] (As'.a(e'(s)))

(readx As.a*(e(s))) [Rr] (readx: As’.a’*(e'(s')))

The second step follows from the fact that the relations
compatible with the diagonal operation.

Consider the newvar combinator. L& : X < X’ be a
relation of rtm’s and assume [(VAR; = COMM)(R)] p'.

1)

2)

3)

4)

5)

The relation (VAR = CoMM)(R) is
Vs r VAR(S) — Comm(S). In the particular
case used in the combinatorS is instantiated
to R x Iy X xV « X' xV. So, we obtain
p[(ﬂ—l)X,V] [VAR(R*I\/) — COMM(R*I\/)}
pl(m)x v].

We argue that mkvaf® and mkvaty are related by
VARs(R * Iy). Firstly, A(s,n).n and \(s’,n').n' are
related by EpPs(R*Iy ), i.e.,RgxAs — A;. Secondly,
Ak A(s,n). (s, k) and AK'. (s, n'). (s, k") are related
by As — COMM(R Iy ), i.e., As — Ry Aps). Note
that A(s,n). (s, k) can be expressed as nul® (An. k)
in Tx = T(4). nullx and null, are related byZx and
An. k is related to itself byArs).

Therefore, p[(m) x.v](mkvar|iy)

pl(m1)x v (mkvarl ).

The relation ©MM(R * Iy) is Rr x (Iy)r where
(Iv)r [As — As]. So, the instances
pl(my)](mkvary) and #' = p[(m)](mkvarlyy’) are
related by Ry x [As — As]. So, for anys € Qyx,

{COMM(R*IV)}

s’ € Qx/, andn € ¢, there existasy, al,,, b, such
that as, [R| al,, t(s,n) = (asn @ bn)(s,n) and
¢(s',n) = (aly, @ by)(s',m).

In particular, the above statement holds for= 0.
So, unlesshy(0) = L, (t- (A(s,n).9))(s,0) = aso(s)
and (¢’ - (A\(s',n).s"))(s",0) = al,y(s"). In other words,
newvar (p)(s) = aso(s) and newvag.(p')(s’)
al.y(s"). If, on the other handy (0) = L, both the func-
tions evaluate tal. Hence, we can write newva(p)
as (readx As.bg(0) = L — L; ay), and similarly for
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newvar (p’). These two transformations are related by
Rr.
The case of corfdillustrates how expression evaluations are
embedded in commands. Again, Bt: X «— X’ be a relation
of rtm’s and assume [ExP;(R)] ¢/, a [COMM(R)] o’ and
b [CoMM(R)] . To show that cong(e,a,b) [COMM(R)]
condy, (¢, a/, 1), we need to show that= (\s.(\k. k # 0 —
a; b)*(e(s))) andp’ = (As’. (A\K'. k" £ 0 — d; V)*(e/'(8)))
are related byRy — Rr. So, consider the action of the
functions on states and s’ such thats [R] s’
1) Since BPs(R) = [R — As], we havee(s) [As, ]
¢(s), e e(s) = (s).
2) If e(s) = €'(s') = L thenp(s) = Lz, andp/(s') =
L7, which are related?r since it is a pointed relation.
3) If e(s) = €'(s’) = 0 thenp(s) = b andp'(s’) =V,

related by ®MM(R) = Rr. The case ok(s) =
being non-zero is similar.

All the other combinators can be similarly verified to be
parametric. [ ]

e'(s')

Afeatment of general classes

In the main body of the paper, we restricted attention
to “constant classes” that have no free identifiers. Classes
with free identifiers are quite useful, e.g., for definingteds
classes. Here, we treat the general case. The interpretatio
the generatls types is as follows:

(CLSF)(X) = Vgy—x3Inz-y

[Qy = Qz| X F(Z) x [Qz — Qy]
(CLSF)(R) = VpﬂRHSHP

[Po — Sq] x F(S) x [Sq — Fq]

The meaning of a class at world provides a way of creating
instances at all future worldg, and such creation leads to a
further future worldZ. In addition to the method suite, of type
F(Z), we have allocation and deallocation operations, which
are both irregular state transformations.

The notation3,,.z_.x T(Z) stands for an indexed “para-
metric colimit.” It is a quotient of[[,., T'(Z) under the
transitive closure of the “similarity” relatior- defined by the
rule:

h[S—Ix|W Na|T(S)|d = (ha)~ (N d)

The equivalence class 0k, a) under~* is denoted by(h, a).
The functor action on morphisms i&CLSF)(f: X' — X)
sends a family{¢,},v—.x to the corresponding family

{tntey—x.
The interpretation ohew for such classes is:
[new C P]x(u) =1i-[P]x(u)[h](m)-d
where (h,i,m,d) = [C]x (u)[idx: X — X]

It makes use of the expansion morphism and the allocation
and deallocation opertions rather directly.



