
 
 

University of Birmingham

Vitamin D-binding protein/GC-globulin
Viloria, Katrina; Hewison, Martin; Hodson, David

DOI:
10.1113/JP280890

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Viloria, K, Hewison, M & Hodson, D 2021, 'Vitamin D-binding protein/GC-globulin: a novel regulator of alpha cell
function and glucagon secretion', Journal of Physiology. https://doi.org/10.1113/JP280890

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1113/JP280890
https://doi.org/10.1113/JP280890
https://birmingham.elsevierpure.com/en/publications/609d0a35-a27e-465b-8d25-19a3ce689ee3


J Physiol 0.0 (2021) pp 1–15 1

Th
e
Jo
u
rn

al
o
f
Ph

ys
io
lo
g
y

SYMPOS IUM REV IEW

Vitamin D binding protein/GC-globulin: a novel regulator
of alpha cell function and glucagon secretion
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Abstract The contribution of glucagon to type 1 and type 2 diabetes has long been known, but the
underlying defects in alpha cell function are not well-described. During both disease states, alpha
cells respond inappropriately to stimuli, leading to dysregulated glucagon secretion, impaired
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glucose tolerance and hypoglycaemia. Themechanisms involved in this dysfunction are complex,
but possibly include changes in alpha cell glucose-sensing, alpha cell de-differentiation, paracrine
feedback, as well as alpha cell mass. However, themolecular underpinnings of alpha cell failure are
still poorly understood. Recent transcriptomic analyses have identified vitaminD binding protein
(DBP), encoded by GC/Gc, as an alpha cell signature gene. DBP is highly localized to the liver
and alpha cells and is virtually absent from other tissues and cell types under non-pathological
conditions. While the vitamin D transportation role of DBP is well characterized in the liver and
circulation, its function in alpha cells remains more enigmatic. Recent work reveals that loss of
DBP leads to smaller and hyperplastic alpha cells, which secrete less glucagon in response to low
glucose concentration, despite vitamin D sufficiency. Alpha cells lacking DBP display impaired
Ca2+ fluxes and Na+ conductance, as well as changes in glucagon granule distribution. Under-
lying these defects is an increase in the ratio of cytoskeletal F-actin to G-actin, highlighting a
novel intracellular actin scavenging role for DBP in islets.

(Received 20 January 2021; accepted after revision 5 March 2021; first published online 15 March 2021)
Corresponding authors M. Hewison and D. J. Hodson: Office 335, IBR Tower, Institute of Metabolism and
Systems Research, University of Birmingham, Edgbaston B15 2TT, UK. Email: m.hewison@bham.ac.uk and
d.hodson@bham.ac.uk

Abstract figure legend The multifunctional vitamin D binding protein (DBP) has a novel role in alpha cell function.
DBP regulates F-actin/G-actin ratios and glucagon granule distribution. Loss of DBP leads to abnormal alpha cell shape,
Ca2+ activity, Na+ conductance and impaired glucagon secretion. Understanding the role of DBP in alpha cells may
further reveal the critical role of alpha cell regulation in the development of diabetes.

Introduction

Glucagon is the major counter-regulatory hormone that
prevents hypoglycaemia by inhibiting insulin secretion
and increasing endogenous glucose production. As the
second most abundant cell type in the islet of Langerhans,
alpha cells are the main source of (pro)glucagon and
work in close cooperation with insulin-secreting beta cells
and somatostatin-secreting delta cells to control glucose
homeostasis. During type 2 diabetes mellitus (T2DM)
(and type 1 diabetes; T1D), alpha cell function becomes
dysregulated, leading to inappropriate glucagon secretion
and exacerbation of blood glucose levels (D’Alessio,
2011), as well as impaired counter-regulatory responses
(McCrimmon & Sherwin, 2010). Indeed, glucagon hyper-
secretion and impaired glucagon counter-regulation have
been proposed to contribute to beta cell failure and T2DM
development (Müller et al. 1970; Reaven et al. 1987;
Dinneen et al. 1995; Larsson & Ahren, 2000; Shah et al.
2000; Unger & Cherrington, 2012).
Recent advances in RNA sequencing of single human

islet cells have revealed novel genes that are specifically
enriched in alpha, beta, and delta cells. Among the top
enriched genes in alpha cells is GC/Gc, which encodes
vitamin D binding protein (DBP), primarily considered to
be the major transporter of vitamin D metabolites in the
circulation (also known as GC-globulin or group-specific
component) (Daiger et al. 1975; Dorrell et al. 2011;
Ackermann et al. 2016; Segerstolpe et al. 2016). However,

DBP is a multifunctional and pleiotropic protein, and
is also known to bind fatty acids, activate macrophages
and potently scavenge actin released into serum (Van
Baelen et al. 1977; Williams et al. 1988; Bouillon et al.
1992; Yamamoto & Naraparaju, 1996; Kanda et al. 2002).
Although well-characterized polymorphic DBP variants
have been associated with increased risk of developing
diabetes (Malik et al. 2013; Bikle & Schwartz, 2019;
Bouillon et al. 2019), the influence of DBP on alpha (and
other islet) cell function has not been considered beyond
its classical marker role. Recent studies in mouse and
human tissue have demonstrated that DBP/Gc contributes
to normal alpha cell function (Viloria et al. 2020), is
upregulated in de-differentiated beta cells in high fat
diet-fed mice (Kuo et al. 2019; Kuo & Accili, 2020),
and as such plays a hitherto under-appreciated role in
the regulation of both glucagon and insulin secretion.
This symposium review summarises the known functions
of DBP that are relevant for alpha cell function, effects
of global DBP deletion, and how this information can
be potentially leveraged to modify glucagon and insulin
secretion in health and disease.

Alpha cell physiology and regulation

Pancreatic islets control glycaemia through a tightly
coordinated secretion of endocrine hormones (Islam,
2015; Gilon, 2020). The rodent islet mass comprises

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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∼60–80% insulin-secreting beta cells, ∼15–20%
glucagon-secreting alpha cells with less than ∼1% as
somatostatin-secreting delta cells (Brelje et al. 1989;
Brissova et al. 2005). Located at the islet core are beta
cells, surrounded by alpha and delta cells at the outer
periphery or mantle (Steiner et al. 2010). Suggesting
a more intimate paracrine regulation in humans, the
proportion of alpha cells increases up to ∼30–40% of the
total islet mass, and they are more interspersed with beta
cells and delta cells due to a tertiary folding-step (Cabrera
et al. 2006; Bosco et al. 2010).

Hyperglycaemia stimulates beta cells to secrete insulin,
signalling tomuscle tissues for glucose uptake and the liver
to inhibit endogenous glucose production, consequently
lowering glucose levels to normoglycaemia (Edgerton
et al. 2006; Quesada et al. 2008; Fu et al. 2013; Gilon,
2020). As glucose levels continue to decrease and reach
hypoglycaemia, alpha cells begin to secrete glucagon,
stimulating hepatic glycogenolysis and gluconeogenesis,
thus releasing glucose back into the circulation as part
of the counter-regulatory response (Band & Jones, 1980;
Quesada et al. 2008; Unger & Cherrington, 2012; Gilon,
2020). Control of glucagon secretion operates through
both glucose-dependent (endogenous) and -independent
(exogenous) pathways.

Intrinsic regulation of alpha cell function. Alpha cells
express several ion channels that together contribute
to membrane depolarisation, ion influx and exocytosis
(Fig. 1). At low glucose (1 mM), ATP-sensitive K+
channels (KATP channels) are moderately activated (cf.
beta cells), leading to a membrane potential of −60 mV.
This slight depolarisation is sufficient to open T-type
Ca2+ channels, further depolarising the membrane to
−40 mV, which subsequently activates L-type, N-type,
and P/Q-type Ca2+ channels as well as Na+ channels.
Opening of these high voltage-activated Ca2+ channels
allows a large influx ofCa2+ into the cytoplasm, generating
large amplitude action potentials to trigger glucagon
exocytosis (Zhang et al. 2013, 2020). By contrast, rising
blood glucose levels increase ATP/ADP ratios, causing
KATP channels to close. This further depolarisation leads
to partial voltage inactivation of Na+ channels, depressing
action potential peak amplitude, reducing voltage-gated
P/Q-Ca2+ channel activation and thus inhibiting glucagon
secretion (Zhang et al. 2013, 2020) (Fig. 1A). The
KATP channel model of alpha cell regulation remains
debated, however, since opposing effects of KATP channel
blockers (sulfonylureas) on glucagon release have been
reported (Cheng-Xue et al. 2013; Zhang et al. 2013),
including a strong glucagonotropic effect in the absence
of somatostatin input (Lai et al. 2018), amongst other
arguments.

A second model has been suggested to operate
through KATP channel-independent mechanisms via

store-operated Ca2+ channels (SOC) (Liu et al. 2004;
Vieira et al. 2007; Gylfe, 2013) (Fig. 1B). At low glucose,
SOC are open, maintaining a depolarising potential.
As glucose levels rise and ATP/ADP levels increase,
Ca2+ is sequestered into the endoplasmic reticulum via
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA),
causing the closure of SOC and re-polarization of the
alpha cell membrane. This leads to low frequency action
potentials and inhibition of glucagon secretion (Liu
et al. 2004; Vieira et al. 2007; Gylfe, 2013). Glucose
concentrations in the hypoglycaemic range have also
been shown to increase sub-plasma membrane levels
of cAMP (Tengholm & Gylfe, 2017; Yu et al. 2019).
This nucleotide exerts a number of effects on alpha cell
function, including release of Ca2+ from intracellular
stores, increased Ca2+ entry via L-type Ca2+ channels
and protein kinase A- and Epac2-dependent increases in
exocytosis (Gromada et al. 1997; De Marinis et al. 2010;
Tengholm&Gylfe, 2017; Yu et al. 2019). Other hypotheses
also exist for the intrinsic regulation of alpha cell function
and the reader is directed to several excellent reviews for
further information (Quesada et al. 2008; Rorsman et al.
2012; Briant et al. 2016; Hughes et al. 2018; Gilon, 2020).

Extrinsic regulation of alpha cell function. Paracrine
mechanisms activated at high glucose levels contribute
to glucagon inhibition. Alpha cells express the insulin
and somatostatin receptors, which following activation by
neighbouring beta cells and delta cells, suppress glucagon
secretion, decreasing blood glucose levels and post-
prandial plasma glucagon (Kumar et al. 1999; Yoshimoto
et al. 1999; Gromada et al. 2001; Diao et al. 2005; Dunning
et al. 2005). Other beta cell secretagogues including zinc,
amylin, GABA and 5-HT have been demonstrated to
inhibit glucagon secretion to varying degrees (Rorsman
et al. 1989; Wendt et al. 2004; Diao et al. 2005; Gedulin
et al. 2006; Gyulkhandanyan et al. 2008; Quesada et al.
2008; Almaca et al. 2016; Hughes et al. 2018). Conversely,
glucagon is a potent stimulator of insulin secretion.
Recent studies have shown that intra-islet glucagon levels
are sufficient to stimulate insulin secretion from human
islets under low (2.7–7 mM) and high (10 mM) glucose
conditions (Rodriguez-Diaz et al. 2018; Capozzi et al.
2019), whereas mouse islets respond only in the pre-
sence of high glucose (Capozzi et al. 2019; Zhu et al.
2019). Nonetheless, these data further indicate that alpha
cell regulation during normo- and hyper-glycaemia is
also essential and warrants further investigation. Finally,
the parasympathetic nervous system is a strong driver
of glucagon release, largely via both cholinergic and
non-cholinergic mechanisms (Thorens, 2011).

Gut-derived incretins. Intestinal glucagon-like peptide-1
(GLP-1) and gastric inhibitory polypeptide (GIP) exert
glucagonostatic and glucagonotropic effects, respectively

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Figure 1. Major models of alpha cell stimulus–secretion coupling
Glucose enters alpha cells through GLUT1 and GLUT3 (encoded by Slc2a1/SLC2A1 and Slc2a3/SLC2A3,
respectively). Two models are proposed to then couple glucose to alpha cell electrical activity and secretion. A,
in the first model, KATP -dependent pathways regulate Ca2+ influxes. At low glucose, adequate ATP/ADP levels
maintain a membrane potential that opens T-type Ca2+ channels. Further depolarization opens Na+ channels and
other voltage-dependent Ca2+ channels such as L, N and P/Q type. Increased Ca2+ influx generates strong action
potentials that trigger glucagon exocytosis. At high glucose, the resulting increase in ATP/ADP levels shuts off KATP
channels, leading to the closure of Na+ channels and partial depolarization. This generates low amplitude action
potentials, thereby inactivating high voltage Ca2+ channels, preventing large Ca2+ influxes and reducing glucagon
secretion. B, a second model of glucose-dependent alpha cell regulation operates through store operated Ca2+
channel (SOC)-dependent pathways. At low glucose, SOC are open, allowing Ca2+ entry and glucagon secretion.
However, at high glucose, Ca2+ is incorporated into the endoplasmic reticulum via sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA). This results in the closure of SOC, thereby generating a repolarizing membrane potential
and low frequency action potentials, shutting off Ca2+ influxes and glucagon secretion.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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(Meier & Nauck, 2005; Parker et al. 2009; Hare et al. 2010;
El & Campbell, 2020). Moreover, clinically-approved
GLP-1 receptor (GLP-1R) agonists suppress glucagon
secretion whilst augmenting insulin release in a
GLP-1R-dependent manner (Juhl et al. 2002; Degn
et al. 2004; Drucker, 2018). Since GLP-1R is largely absent
from alpha cells, such effects of GLP-1R agonists are likely
to be indirect via other islet cell types, although electro-
physiological studies have shown direct effects of GLP-1
itself (De Marinis et al. 2010), possibly via degradation
products acting via the glucagon receptor (Guida et al.
2020).

Alpha cells in diabetes

Loss of glucagon control. Alpha cell glucose-sensing
is compromised in T2DM and impaired glucagon
secretion is proposed to exacerbate hyperglycaemia
(Unger & Cherrington, 2012; Gromada et al. 2018;
Gilon, 2020), which may then further impair beta cell
function. Persistent hyperglucagonaemia in the fasting
and postprandial states is commonly observed in diabetes,
indicating loss of alpha cell inhibition at hyperglycaemic
states (Müller et al. 1970). It has been suggested that
hyperglucagonaemia is due to alpha cells developing
resistance to insulin and hyperglycaemia (Unger &
Cherrington, 2012; Yosten, 2018), alongside dysregulated
somatostatin, GIP andGLP-1 input/signalling (Lund et al.
2014; Yosten, 2018; Kellard et al. 2020). Furthermore, the
aberrantly high glucose levels may stimulate increased
glucagon secretion, exacerbating hyperglycaemia (Salehi
et al. 2006). Recent studies in human alpha cells show that
both glucose (intrinsic) and paracrine (extrinsic) signals
interact to regulate exocytosis of glucagon granules, and
this interaction becomes dysfunctional during T2DM
(Omar-Hmeadi et al. 2020). On the other hand, hypo-
glycaemia unawareness is commonly observed in T1D
and T2DM, with impaired alpha cell stimulation at low
glucose leading to loss of glucagon counter-regulation
and increased risk of hypoglycaemia (Bolli, 2003; UK
Hypoglycaemia Study Group, 2007; Yosten, 2018).

Changes in alpha cell mass and morphology. Changes
in alpha cell mass have been reported during diabetes,
with studies in both T1D and T2DM showing an increase
in alpha cell mass (Rahier et al. 1983; Clark et al. 1988;
Plesner et al. 2014) while others have reported decreases
(Pechhold et al. 2009; Bru-Tari et al. 2019) or no changes
at all (Stefan et al. 1982; Sakuraba et al. 2002; Henquin
& Rahier, 2011; Campbell-Thompson et al. 2016). It is
important to note, however, that findings may depend on
age and disease stage, as well as imaging or quantification
techniques used. Nonetheless, changes in alpha cell mass
are likely to occur early in disease progression, as shown

in mouse experiments where increased alpha cell mass
and hypertrophy were observed prior to frank diabetes
onset induced by streptozotocin (Plesner et al. 2014). Since
alpha cells persist during T1D and T2DM, restoration of
their function represents a viable therapeutic target.

Vitamin D binding protein

Vitamin D transport. Initially isolated in 1959 from
the liver, GC was found to be a polymorphic serum
protein (Hirschfeld et al. 1960). It was not until 1979
that GC was shown to bind vitamin D and was
also referred to as DBP (Daiger et al. 1975). Sub-
sequent studies indicated that DBP was structurally
related to albumin and α-fetoprotein, with the GC
gene being a member of the albumin/α-fetoprotein gene
family on chromosome 4 (Harper & Dugaiczyk, 1983;
Cooke et al. 1986). In common with other steroid-like
molecules, the active, hormonal form of vitamin D,
1,25-dihydroxyvitamin D (1,25(OH)2D), and its pre-
cursor, 25-hydroxyvitamin D (25(OH)D), can circulate
through low-affinity binding to common serum proteins
such as albumin. Although less abundant than albumin,
high affinity binding to DBP means that this is the major
serum transporter of vitamin D metabolites (Fig. 2A).
The major circulating form of vitamin D, 25(OH)D,
shows the highest binding affinity for DBP resulting in
85% of 25(OH)D being bound to DBP and only 15%
to albumin, leaving less than 1% unbound in circulation
(Bikle & Schwartz, 2019; Bouillon et al. 2019). Binding
of 25(OH)D is fundamental to vitamin D endocrinology
with facilitated endocytic uptake of 25(OH)D–DBP
via the megalin–cubilin complex being essential for
renal synthesis of 1,25(OH)2D in the proximal tubules
(Nykjaer et al. 1999). Outside the kidneys, a wide range
of tissues are known to express megalin–cubilin and
are therefore also able to acquire DBP-bound vitamin
D metabolites via endocytic uptake (Lundgren et al.
1997). Nevertheless, expression of megalin–cubilin is not
universal and so othermechanisms are required for uptake
of 25(OH)D and 1,25(OH)2D by many target cells. The
free hormone hypothesis describes the unbound hormone
as the bioavailable fraction for cell uptake (Mendel,
1989; Hammond, 2002; Chun et al. 2014). Lipophilic
in nature, unbound vitamin D metabolites can freely
diffuse through the plasma membrane to reach intra-
cellular targets such as the vitamin D-activating enzyme
25-OHD-1 α-hydroxlyase (CYP27B1) or the nuclear
vitamin D receptor (VDR) for 1,25(OH)2D. Hormone
carrier proteins such asDBP therefore play a crucial role in
controlling the amount of circulating hormone available
for cell uptake by either megalin/cubilin-dependent or
megalin-independent mechanisms (Bikle & Schwartz,
2019; Bouillon et al. 2019).

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Other DBP substrates. Though less studied than
vitamin D transport, DBP binds to many other sub-
strates such as monomeric G-actin and fatty acids (Van
Baelen et al. 1977; Williams et al. 1988; Bouillon et al.
1992), and a deglycosylated form of DBP can act as a
macrophage-activator factor (maf) (Yamamoto et al.
1991, 1996; Yamamoto & Kumashiro, 1993; Yamamoto
& Naraparaju, 1996). Related to the albumin family
of proteins, DBP is composed of 460 amino acids in

rodents and 458 amino acids in humans, with three
main domains consisting of α-helices (Law & Dugaiczyk,
1981; Verboven et al. 2002). Domain I contains the
vitamin D binding region while G-actin binding occurs
between domains II–III, suggesting that actin does not
compete with vitamin D binding (Haddad et al. 1992;
Head et al. 2002) (Fig. 2B). With higher affinity for
G-actin (Kd = 10 nM) than other actin-binding proteins
such as gelsolin (Kd = 50 nM), DBP binding blocks the

Figure 2. Vitamin D-binding protein has multiple functions in the circulation and cells
A, vitamin D-binding protein (DBP) binds to vitamin D with high affinity and is the major serum transporter of
vitamin D metabolites. As such, DBP plays a central role in regulating circulating free vitamin D levels. B, structurally
related to the albumin family, DBP has 3 main domains consisting of α-helices. Domain I contains the vitamin
D-binding region while domains II–III contains G-actin and fatty acid binding regions. C, DBP binds to G-actin,
preventing polymerization of F-actin. Operating in concert with gelsolin, DBP plays a role in actin scavenging in
serum to prevent fibrosis. D, DBP transports fatty acids. Binding to unsaturated fatty acids may alter DBP binding
to vitamin D. E, DBP activates macrophages (DBP–maf complex) and plays a role in regulating inflammation. F,
DBP–maf stimulates osteoclasts and regulates bone remodelling.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 0.0 Vitamin D-binding protein as an alpha cell regulator 7

fast growing end of actin monomers, effectively pre-
venting actin from repolymerizing (Mc Leod et al. 1989;
Vasconcellos & Lind, 1993) (Fig. 2C). For this reason,
DBP is amongst the most potent actin scavengers in the
body.

DBP also binds tomono-unsaturated, poly-unsaturated
and saturated fats (Calvo & Ena, 1989; Ena et al. 1989;
Bouillon et al. 1992; Swamy & Ray, 2008), although
with lower affinity (Ka = 105−106 M−1) than albumin
(Ka = 107–108 M−1) (van der Vusse, 2009) (Fig. 2D). Little
is known about the role of DBP in fatty acid transport,
but it is suggested that mono and poly-unsaturated fatty
acid binding may alter DBP configuration and modify
binding to 25(OH)D and 1,25(OH)2D (Williams et al.
1988; Ena et al. 1989; Bouillon et al. 1992). A ∼58 kDa
protein, DBP may be deglycosylated to form complexes
with macrophages (Fig. 2E). The DBP–maf complex
activates macrophages and related cells such as osteoclasts
(Fig. 2F) and thus plays a role in inflammation and bone
remodelling (Yamamoto et al. 1991, 1994; Schneider et al.
1995; Nykjaer et al. 1999). Additionally, DBP–maf has
been of interest in cancer research and has been shown
to inhibit pancreatic tumour growth with antiangiogenic
and pro-apoptotic functions (Kisker et al. 2003).

DBP polymorphisms

To date, more than 124 DBP variant alleles have
been described in humans (Chalk & Kodicek, 1961;
Van Baelen et al. 1977; Cleve & Constans, 1988;
Speeckaert et al. 2006; Bikle & Schwartz, 2019; Bouillon
et al. 2019). DBP variants were first characterised by
varying electrophoretic mobility and were therefore
initially referred to group-specific component. Three
major codominant alleles have been identified, GC1f and
GC1s located at the rs7041 GC locus and GC2 at the
rs4588 GC locus. The two subtypes of GC1 differ in
their charge, with GC1f running electrophoretically faster
than GC1s (Speeckaert et al. 2006; Bikle & Schwartz,
2019; Bouillon et al. 2019). DBP polymorphisms are
major determinants of the genetic variability in serum
25(OH)D concentrations (Wang et al. 2010), and also
show distinct patterns of expression in different racial
groups (Bouillon, 2017). Polymorphisms in DBP have
been associated with multiple chronic diseases such as
cancer, chronic obstructive pulmonary disease, asthma,
thyroid autoimmunity, liver and inflammatory bowel
diseases, diabetes as well as susceptibility to infectious
diseases includingHIV, rheumatoid fever and tuberculosis
(Speeckaert et al. 2006; Malik et al. 2013). The exact role
of DBP and its variants in the pathophysiology of these
diseases has yet to be defined as it is unclear whether
genetic variations inDBP impact its ability to bind vitamin
D, fatty acids, or G-actin.

DBP variation and diabetes risk. GC gene variants may
affect circulating DBP serum levels as well as vitamin D
binding affinity, thus influencing the risk of developing
vitamin D deficiency. Individuals harbouring the GC2
variant, for example, were found to have 5–10% lower
serum levels of vitamin D versus those with the GC1
variant (Bouillon et al. 1980; Lauridsen et al. 2001;
Bouillon, 2017). Furthermore, the GC2 variant was shown
to have the least affinity for 25(OH)D, followed by
GC1s, with GC1f showing the highest affinity (Arnaud &
Constans, 1993). However, these findings were challenged
by other studies showing no such difference in vitamin
D affinity between the variants (Bouillon et al. 1980;
Boutin et al. 1989). Several studies have shown differences
between the association of DBP polymorphisms with
glucose tolerance and diabetes incidence. GC1s-2 and
Gc1s-1s were associated with higher fasting plasma
insulin compared to Gc1f in a Japanese andDogrib Indian
cohort (Szathmary, 1987; Hirai et al. 2000). However, no
such association was detected in Hispanic or Caucasian
participants (Baier et al. 1998; Klupa et al. 1999). By
contrast, although no association with fasting plasma
glucose or insulin was found in Pima Indians, GC1f was
found to have the highest postprandial glucose (Baier
et al. 1998). However, in a study of Japanese individuals,
participants with diabetes were more likely to carry the
heterozygous GC1s-2 variant (Hirai et al. 1998), but no
strong differences in variant expression were observed
between healthy and T1D or T2DM in Pima Indians or
in Caucasians (Baier et al. 1998; Klupa et al. 1999). Non-
etheless, reduced serum DBP levels have been associated
to T1D (Blanton et al. 2011), and additionally DBP has in
fact been classified as an autoantigen, activating T cells
in non-obese diabetic mice (Kodama et al. 2016). Most
recently, large-scale Mendelian randomisation studies of
European and Chinese adults have shown an association
between GC and T2DM. However, the study included
other vitaminD-related single nucleotide polymorphisms,
which were used to link serumDBP levels with genetically
determined variation in 25(OH)D status and T2DM (Lu
et al. 2018). Thus, GC gene variants are present and might
be linked to T2DM, but there is no way at present of
knowing how this relates to DBP tissue expression and
actin binding.
Suggesting that DBP action and variation may have

a wider impact than simple vitamin D transport are
reports from DBP-null mice. Mice lacking DBP possess
markedly decreased serum vitamin D, but do not display
any signs of vitamin D-related diseases or vitamin
D deficiency. DBP-null mice show normal bone and
immune phenotypes, providing evidence that the low
levels of 25(OH)D and 1,25(OH)2D that circulate either
free or bound to albumin are able to fulfil most of the
functions of vitamin D. In support of this, DBP-null
mice only show symptoms of vitamin D deficiency when

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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placed on a diet low in vitaminD (Safadi et al. 1999).More
recently, the first human with homozygous GC deletion
was described, also showing reduced serum 25(OH)D and
1,25(OH)2D with no signs of deficiency (Henderson et al.
2019). Together, these studies show that deletion of DBP
depletes vitaminD levels, but enough bioavailable vitamin
D is retained to exert biological effects (Safadi et al. 1999).
Investigations on the implications of DBP in diabetes
should therefore consider non-vitamin D binding roles of
DBP. Indeed, following detailed whole body assessment of
DBP-null mice (∼500 animals per genotype), significant
changes were only detected in metabolic homeostasis,
including decreased fed glucose, increased circulating
alanine transaminase and decreases in cholesterol,
high-density lipoprotein cholesterol and triglyceride
(https://www.mousephenotype.org/data/genes/MGI:
95669#phenotypesTab). These data point to changes in
glucagon release, liver function, adipose function and
alpha cell–liver communication.

DBP as an alpha cell regulator

Gene tissue-expression patterns show that GC is pre-
dominantly expressed in the liver, with pancreatic islets
being the only other organ/tissue to have significant
expression of GC. Subsequent cell type-specific RNA
sequencing identified the GC transcript among the alpha
cell enriched genes expressed in human islet cells (Dorrell
et al. 2011; Ackermann et al. 2016; Segerstolpe et al.
2016). Resembling other known alpha cell markers such
as ARX, DPP4, and GCG, the GC gene was found to
contain cell type-specific open chromatin regions at its
promoter, indicating that GC is an alpha cell signature
gene (Ackermann et al. 2016). Despite the known (potent)
biological functions of DBP, an effect on alpha cell physio-
logy has only recently been examined. Using DBP-null
mice, we were able to show that loss of DBP results
in major alpha cell impairments (Viloria et al. 2020)
(Fig. 3). Mice with DBP deletion displayed reductions
in insulin- and low glucose-stimulated glucagon release.
Mechanistically, fewer alpha cells responded to low
glucose with Ca2+ rises, although those that were
responsive displayed increased Ca2+ amplitude. This
compensatory response was reflected at the level of Na+
channel function, with DBP-null alpha cells showing
increased Na+ currents and an increased slope factor
for Na+ channel inactivation (Fig. 3A). However, when
recordings were subjected to mathematical prediction
models (Briant et al. 2017), alpha cells lacking DBP
displayed an electrophysiological fingerprint that more
closely resembled a delta cell-like signature.
Also suggesting a role for DBP in maintaining alpha

cell morphology, deletion of DBP in mice resulted in
smaller and hyperplastic alpha cells (Fig. 3B). Immuno-

histochemical analysis of DBP in pancreata from human
donors revealed an increase in DBP with age, in parallel
with glucagon expression, suggesting that DBP might
become relatively more important as alpha cells fully
mature. These changes were unlikely to be associated with
alpha cell de-differentiation, however, since expression
levels of Arx, Pax6, Pou3f4, and Irx2 were similar in
DBP–/– and DBP+/+ islets. In pancreata from donors
with late-onset T1D, DBP was decreased, and this
was associated with decreased glucagon expression and
reduced cell size (Viloria et al. 2020). Thus, loss of DBP
leads to impaired alpha cell morphology, function and
glucagon release and may represent a marker of late-onset
T1D. It is important, however, to consider these results
in light of potential effects of the liver on alpha cells
(e.g. via amino acids) (Wewer Albrechtsen et al. 2019),
as well as the indirect nature of DBP–T1D correlations
(i.e. changes in DBP might be a consequence of rather
than the cause of T1D). Future studies will be required
using both alpha cell- and liver-specific DBP deletion
models.

DBP as a novel intracellular (and extracellular) actin
regulator

Actin-related functions of DBP have largely been explored
in the circulation and in the extracellular space where
its primary role is to clear actin monomers released by
apoptotic cells. The actin-scavenging systemoperates with
gelsolin as the primary F-actin depolymerising agent.
The resulting G-actin monomers are sequestered by DBP
with high affinity, inhibiting repolymerisation of fibrils
and thus preventing fibrosis and potential obstruction of
vasculature (Mc Leod et al. 1989; Vasconcellos & Lind,
1993; Speeckaert et al. 2006; Bikle & Schwartz, 2019;
Bouillon et al. 2019). The use of DBP and gelsolin to
scavenge actin is currently patented for therapeutic use
in respiratory diseases (Stossel et al. 1995), but practically
nothing is known about whether DBP is able to bind actin
within the cell. Due to the endogenous expression of DBP,
alpha cells thus provide a unique opportunity to under-
stand the contribution of cytoplasmic actin scavenging to
cell function.
Using phalloidin to stain F-actin fibrils, loss of DBP

was found to increase the density of polymerised F-actin
fibrils, with a concomitant decrease in G-actin mono-
mer abundance (Viloria et al. 2020) (Fig. 3B). Suggesting
that these changes in F-actin and G-actin are associated
with changes in actin-dependent processes, distribution
and size of glucagon granules were found to be altered in
DBP-null alpha cells. Thus, it appears that DBPmay assist
dynamic actin remodelling in alpha cells, similarly to that
described for neural cell adhesion molecule (NCAM) and
ephrin type-A receptor 4 (Olofsson et al. 2009; Hutchens
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& Piston, 2015; Hughes et al. 2018). DBP may plausibly
sequester G actin monomers near granules, restricting
supply of monomers and controlling the F-actin/G-actin
ratio for fibril polymerisation and secretory regulation,
as well as ion channel function. The fact that alpha cells
express their own specialised supply of an actin binding
protein, in addition to actin remodelling proteins, further
supports the importance of cytoskeletal re-arrangement
in alpha cell function (Olofsson et al. 2009; Hutchens &
Piston, 2015; Hughes et al. 2018).

We propose that changes in the F-actin cytoskeleton
lead to many of the reported defects in DBP-null alpha
cells. Indeed, assembly of polymerised actin filaments is a
fundamental process involved in cell morphology (Pollard
& Cooper, 2009), and F-actin has been shown to influence
the trafficking of various ion channels present in beta cells
through the action of actin-binding partners including
Rab GTPases, SNARE proteins and tubulin (Sasaki et al.
2014). Notably, F-actin has also been shown to directly
interact with ion channels, gating their activity (Shin et al.

Figure 3. Vitamin D-binding protein regulates alpha cell function
A, global deletion of vitamin D-binding protein (DBP) leads to impairments in alpha cell function, including changes
in Ca2+ spiking activity and Na+ conductance, which result in decreased glucagon secretion. B, loss of DBP results
in smaller and hyperplastic alpha cells. Changes in cell shape are associated with altered F-actin/G-actin ratios, and
decreased size and distribution of glucagon granules.

© 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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2012; Sasaki et al. 2014). Providing evidence for a role
of DBP in ion channel function in alpha cells, treatment
with latrunculin to depolymerise F-actin restored Ca2+
responses to low glucose in DBP-null islets (Viloria et al.
2020). While glucagon was not measured in these specific
experiments, inhibition of actin polymerisation restored
glucagon secretion in NCAM-null islets in which F-actin
distribution is also perturbed (Olofsson et al. 2009).
Given thatDBP is an important regulator of ion channel

activity and exocytosis, why is the gene not expressed
in other neuro(endocrine) cell types that also rely on
cytoskeletal remodelling for secretion? One explanation
is that other neuro(endocrine) cell types might be able
to acquire DBP via megalin-mediated endocytic inter-
nalisation, as recently shown in trophoblasts (Ganguly
et al. 2021). Another explanation is that the actin
scavenger gelsolin is glucose-dependent, at least in beta
cells where its actions are needed for glucose-stimulated
insulin secretion (Tomas et al. 2006). As such alpha
cells might have evolved endogenously expressed actin
remodelling mechanisms that respond to low glucose.
Of note, DBP is present in glucagon granules in human

alpha cells (Viloria et al. 2020), suggesting that it might
be released in a regulated manner. As well as acting
directly on actin filaments near to the plasma membrane,
we speculate that DBP is released into the extracellular
space with glucagon in response to low glucose, from
where it might exert paracrine effects on neighbouring
cell populations, as well as autocrine effects on the alpha
cell itself. Further experiments are, however, required to
ascertain whether DBP is secreted by islets into culture
media and whether DBP can be transported into alpha
cells (e.g. via megalin).

Other islet targets for DBP

In healthy rodent islets, Gc/DBP gene and protein
expression is virtually absent in beta cells, as expected
for an alpha cell signature gene. However, recent studies
have shown that, during metabolic stress, Gc gene
expression levels are upregulated in purified beta cells
(Kuo et al. 2019). Suggesting that Gc might be a
de-differentiation marker, the gene was upregulated in
beta cells from db/db mice. Notably, deletion of Gc
in high fat diet-fed mice prevented upregulation of
Aldh1a3, improved glucose-stimulated insulin secretion
and improved glucose tolerance and insulin sensitivity
assessed using euglycaemic hyperinsulinaemic clamp
(Kuo et al. 2019; Kuo & Accili, 2020). Thus, while
inhibition of DBP expression is an attractive target
to improve glucose tolerance during metabolic stress,
it is also important to consider the role of DBP in
the maintenance of alpha cell function. Whether these
results are associated with the beta cell de-differentiation

seen in T2DM is not known, but it will be interesting
to confirm findings in human samples. DBP is also
expressed in delta cells, confirmed using both RNA-seq
(Adriaenssens et al. 2016) and immunohistochemistry
(Viloria et al. 2020), although its downstream functions
are unknown. Cell-specific manipulation of DBP in
the islet compartment will therefore be integral to any
approaches targetingDBP as a diabetes treatment, perhaps
using molecular addresses specific to alpha cells. It
is also noteworthy that, although beta cells do not
normally expressGc/GC/DBP, they express the 25-OHD-1
α-hydroxlyase (CYP27B1) enzyme and are able to convert
25(OH)D to 1,25(OH)2D (Bland et al. 2004), raising the
question as to whether exogenous DBP plays a role in the
delivery of 25(OH)D to beta cells.

Concluding remarks

Glucagon plays an important role in counteracting
insulin action, increasing endogenous glucose production
and balancing glucose levels. While growing evidence
has shown the benefits of managing glucagon levels
in diabetes, there is still much to uncover regarding
regulation of alpha cell function. With several suggested
models of glucagon control, it is evident that the regulation
of alpha cell function is a complex phenomenon. To
fully uncover potential targets for maintaining glucagon
secretion during metabolic stress, it is thus imperative to
study critical alpha cell regulators. Positioning DBP as
an important contributor to glucagon release are studies
showing expression of this protein localised to alpha
cells and the liver in healthy animals/humans, as well as
the presence of impaired alpha cell morphology, ionic
fluxes, electrical conductance and glucagon secretion in
DBP-null animals. While DBP is primarily known for
its vitamin D-binding properties, vitamin D metabolites
account for only a small amount of DBP binding capacity,
indicating that its other substrates such as actin and fatty
acids might contribute to its multifunctional role. Further
studies are now warranted to understand how DBP levels
change in alpha cells during metabolic stress, whether
DBP can be supplemented specifically in alpha cells to
restore function, and more widely, how the actin cyto-
skeleton contributes to glucagon secretion. Key to this
will be the use of conditional deletion or overexpression
models, targeted delivery of DBP and confirmation of
DBP function in isolated human islets.
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