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Abbreviations  

AAV Adeno-Associated Virus 

ACTH Adrenocorticotropic hormone, corticotropin 

BMD Bone mineral density 

BMI Body Mass Index 

CAH Congenital Adrenal Hyperplasia 

cIMT Carotid intima media thickeness 

COUP-TFII 

Chicken Ovalbumin Upstream Promotor-Transcription 

Factor-2 

CRF Corticotropin-releasing factor 

CRH Corticotropin-releasing hormone 

CYP21A2 21-hydroxylase  

CYP19A1 Aromatase 

Dex Dexamethasone 

DHEA Dihydroeoiandrostenedione 

DHEAS Dehydroepiandrosterone sulfate 

DELFIA Dissociation-enhanced lanthanide fluoroimmunoassay 

DHT 5-dihydrotestosterone 

DOC  11 deoxycorticosterone 

DSD Differences in Sex development 

ESC Embryonic stem cell 

FSH Follicle stimulating hormone 

GC Gas Chromatography 

HC Hydrocortisone 

HOMA-β Homeostatic model assessment 

HSD3B 3β-hydroxysteroid dehydrogenase 

HSD17B 17β-hydroxyseteroid dehydrogenase 

IPSC inducible Pluripotent Stem Cell 

LC liquid chromatography 

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

LH Luteinizing hormone 

MC2R Adrenocorticotropic hormone receptor 

MLPA Mulitplex ligation-dependent probe amplification 

MR Mineralocorticoid receptor 

MS Mass spectometry 

NC Non classic 

OMM Outer mitochondrial membrane 

PGD Preimplantation genetic diagnosis 

POR P450 oxidoreductase 

RIA Radioimmunoassay 

TARTs Testicular Adrenal Rest Tumors 

SF-1 Steroidogenic factor-1 

SRD5A1 5α-reductase type 1 

StAR Steroidogenic acute regulatory protein 
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SV Simple virilizing 

SW Salt wasting 

TNXB Tenascin-X 

11KT 11- ketotestosterone 

11OHD  11-hydroxylase deficiency 

17OH-Preg 17-hydroxypregnenolone 

17OHD 17-hydroxylase deficiency 

17OHP 17-hydroxyprogesterone 

21OHD 21-hydroxylase deficiency 
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ABSTRACT   88 

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting 89 

cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to 90 

chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the 91 

blocked enzymatic step. The most common form of CAH is caused by steroid 21- hydroxylase 92 

deficiency due to mutations in CYP21A2.  Since the last publication summarizing CAH in 93 

Endocrine Reviews in 2000 there have been numerous new developments. These include more 94 

detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved 95 

diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid 96 

profiling, and improved genotyping methods. Clinical trials of alternative medications and modes 97 

of delivery have been recently completed or are under way. Genetic and cell-based treatments are 98 

being explored. A large body of data concerning long-term outcomes in patients affected by CAH, 99 

including psychosexual well-being, has been enhanced by the establishment of disease 100 

registries.  This review provides the reader with current insights in congenital adrenal hyperplasia 101 

with special attention to these new developments. 102 

  103 
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I. INTRODUCTION 104 

Congenital adrenal hyperplasia (CAH) is an inherited inability to synthesize cortisol. 105 

Approximately 90-99% of cases of CAH are caused by 21-hydroxylase deficiency (21OHD) 106 

caused by mutations in the CYP21A2 gene (1,2); the terms CAH and 21OHD will be used 107 

interchangeably in this article. The literature has historically described classic and nonclassic (NC) 108 

forms of this disorder, although current thinking views CYP21A2 allelic variants and their 109 

phenotypic manifestations as a continuum. The classic form, occurring in 1 in 14,000 to 18,000 110 

based on newborn screening (Table 1), is defined by severely reduced or absent enzyme activity 111 

with impaired cortisol production manifesting clinically in the neonatal period. In the most severe, 112 

salt-wasting (SW) form of classic CAH, there is little or no residual enzymatic activity, resulting 113 

in cortisol and aldosterone deficiency. Lack of negative feedback on the hypothalamic-pituitary-114 

adrenal axis leads to excess adrenal androgen production as elevated precursor steroids are shifted 115 

to the non-affected androgen pathways.  If not promptly treated, infants with this form of CAH 116 

quickly develop potentially fatal “salt-wasting crises” with hyponatremia, hyperkalemia, acidosis 117 

and shock. Those infants who produce slightly more aldosterone are less likely to suffer acute salt-118 

wasting crisis, but such patients still have severe cortisol deficiency and markedly elevated adrenal 119 

androgen production. They are said to have “simple virilizing” (SV) CAH, associated with residual 120 

enzymatic activity of 1 – 5% of normal. All infants affected with classic CAH benefit from 121 

glucocorticoid plus adjunctive mineralocorticoid treatment at least within the first year of life, 122 

when there is relative renal tubular resistance to the salt-retaining effects of aldosterone in early 123 

infancy (28) and low sodium content of infant diets (29).  124 

 Whereas gonadal development is normal, severely increased prenatal adrenal androgen 125 

production leads to virilization of the female external genitalia (30), including variable degrees of 126 
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clitoral enlargement and labial fusion. The genital appearance of affected 46,XX infants is 127 

occasionally indistinguishable from that of male genitals with penis and scrotum but empty of 128 

gonads. Müllerian duct development is normal, except for the formation of a urogenital sinus with 129 

conjoined urethra and vagina. Thus, reproductive potential exists in females despite atypical 130 

external genitalia. Males have normal external genitalia. Wolffian duct development is normal in 131 

males but absent in females, who continue to produce COUP-TFII (Chicken Ovalbumin Upstream 132 

Promoter-Transcription Factor-2), which induces Wolffian duct involution (31). 133 

 Adverse sequelae in CAH patients occur both as a result of adrenal hormone imbalance, and 134 

from chronic glucocorticoid therapy (32). Androgen excess can cause inappropriately rapid 135 

somatic growth, accelerated skeletal maturation and reduced adult height. A systematic review and 136 

meta-analysis for >1000 classic CAH patients found shorter than average stature for mid-parental 137 

heights (-1.03 standard deviations, corresponding to ~7 cm) (33), but many of these children were 138 

diagnosed before the implementation of neonatal screening and did not receive the benefit of early 139 

initiation of treatment.  140 

 Elevated levels of adrenal androgens affect the hypothalamic-pituitary-gonadal axis. Central 141 

precocious puberty is a risk in patients experiencing prolonged periods of poor hormonal control.  142 

Young women with well-controlled CAH usually experience normal menarche (34), but poor 143 

control is associated with acne, female hirsutism, male pattern baldness, altered body habitus, 144 

irregular menses, and sub-normal fertility (35). Males with poor hormonal control may develop 145 

small testes and benign testicular adrenal rest tumors (TARTs) (see section VI.A.1) (36). 146 

 Individuals affected with milder allelic variants (i.e., NC CAH) tend to present to medical 147 

attention after infancy, hence the former term, “late onset” CAH. The associated alleles encode 148 

enzymes with residual activity of 20-50%. Thus, these individuals typically have normal basal 149 
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cortisol and aldosterone production but mildly elevated levels of adrenal androgens; however, 150 

suboptimal cortisol levels after ACTH stimulation are reported in up to 30% of patients (37). 151 

Children may present with symptoms due to elevated adrenal androgens such as premature 152 

adrenarche, acne and accelerated skeletal maturation but many, especially males, are 153 

asymptomatic. Adolescent girls or adult women may present with hirsutism, oligomenorrhea, acne, 154 

and sub-normal fertility (37). Because NC CAH is not the primary target of neonatal screening 155 

and is rarely detected by that strategy, the true prevalence of this milder disorder is unclear. The 156 

estimated prevalence is ~1 in 200 in the Caucasian population (38). 157 

 Since the last publication summarizing CAH in Endocrine Reviews in 2000 (1), there have 158 

been numerous new developments. These include more detailed understanding of steroidogenic 159 

pathways, refinements in neonatal screening, improved diagnostic measurements utilizing high-160 

throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with steroid 161 

profiling, and improved genotyping methods. Clinical trials of alternative medications and modes 162 

of delivery have been recently completed or are under way, with the nearer prospect of genetic and 163 

cell-based treatments and a large body of data concerning long-term outcomes in patients affected 164 

by CAH, including psychosexual well-being, enhanced by the establishment of disease registries. 165 

 Much remains to be learned in several other domains spanning fetal life through adulthood. 166 

Both human and animal studies have illuminated risks of antenatal dexamethasone (Dex) treatment. 167 

Non-invasive prenatal diagnosis of CAH in families with known CYP21A2 pathogenic genotypes 168 

has been accomplished by analysis of circulating free fetal DNA in maternal blood in proof-of-169 

concept studies, but is not yet widely available. Genital reconstructive surgery in affected females 170 

is no longer viewed as an emergency procedure, and indeed the practice of genital surgery in 171 

infancy has been questioned. Shared decision making among parents, patients, surgeons, 172 
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endocrinologists, mental health providers, and support groups has been promoted as model for 173 

optimal care. Benefit-to-risk ratio for no surgery, early or late genital surgery for females with 174 

CAH remains to be determined. Unfortunately, even in advanced societies, medical care for CAH 175 

is neglected, increasing the risk for cardiovascular or metabolic morbidities due to suboptimal 176 

corticosteroid therapy. Methods to improve transition of care from pediatric to adult healthcare, as 177 

well as patient and provider education, are important goals.  178 

 This multi-authored review is the result of a planned European CAH Symposium, which was 179 

postponed due to the Covid-19 pandemic. The large international group of authors contributed 180 

innovative approaches to understanding and managing this condition.  181 

 182 

II. BASIC PRINCIPLES OF STEROID SYNTHESIS AND ADRENAL ENZYMATIC 183 

DEFECTS 184 

A. Physiology and pathophysiology of steroidogenesis 185 

 Steroidogenesis in the adrenal cortex takes place in three concentric zones: the outermost zona 186 

glomerulosa (mineralocorticoid biosynthesis), the zona fasciculata (glucocorticoid biosynthesis), 187 

and the innermost zona reticularis (sex steroid precursor biosynthesis). It entails conversion of 188 

cholesterol to active steroid hormones, and involves many enzymes, co-factors and accessory 189 

proteins (Figure 1). Most of these are expressed in the appropriate zones of the adrenal cortex, 190 

with others expressed in the gonads, placenta and some ‘peripheral’ tissues; these factors and the 191 

conditions caused by their mutations have been studied in detail (39). Mutations have been 192 

described in most of the genes encoding these proteins; those that disrupt cortisol synthesis with 193 

compensatory elevations in ACTH cause CAH, but in common parlance ‘CAH’ refers to 21OHD. 194 

This section describes all enzymatic conversions required to synthesize cortisol. 195 
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  Cholesterol side-chain cleavage 196 

Steroidogenesis is initiated by the conversion of cholesterol to pregnenolone, catalyzed by 197 

the cholesterol side-chain cleavage enzyme, CYP11A1 (P450scc). To initiate steroidogenesis, 198 

cholesterol from cytoplasmic storage depots must reach CYP11A1 on the inner mitochondrial 199 

membrane; this cholesterol influx requires the steroidogenic acute regulatory protein (StAR), 200 

acting on the outer mitochondrial membrane (OMM) (40). The action of StAR requires its 201 

phosphorylation and interaction with some other proteins, but the exact mechanism of StAR’s 202 

action remains under investigation (41,42). Mutations in StAR cause another rare form of CAH, 203 

congenital lipoid adrenal hyperplasia, in which virtually no steroid hormones are made and 46,XY 204 

fetuses are phenotypically female due to impaired testicular steroidogenesis (43,44). CYP11A1 205 

defects were once considered incompatible with term pregnancy; however, more than 30 cases of 206 

such defects have been reported (40). These two conditions are clinically and hormonally 207 

indistinguishable, but lipoid CAH is typically associated with very large adrenals, whereas 208 

CYP11A1 deficiency is not; gene sequencing is needed for definitive diagnosis. Milder ‘non-209 

classical’ forms of these conditions have been reported with intermediate phenotypes (45-48). 210 

CYP11A1 is one of 7 human mitochondrial cytochrome P450 (CYP) enzymes, all of which require 211 

electron donation via ferredoxin and ferredoxin reductase (49). Mutations in ferredoxin have not 212 

been reported, but several patients have been described with ferredoxin reductase mutations that 213 

disrupt synthesis of iron/sulfur centers, causing neuropathic deafness, optic atrophy, 214 

encephalopathy and developmental delay (50-52); impaired steroidogenesis is to be expected but 215 

not yet reported. 216 
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  3β-hydroxysteroid dehydrogenase 217 

Once pregnenolone is produced, it may be converted to progesterone by 3-hydroxysteroid 218 

dehydrogenase (HSD3B, 3β-HSD). There are two human HSD3B genes: HSD3B1 encodes an 219 

isozyme found in the placenta, brain, liver and elsewhere; HSD3B2 encodes one found in the 220 

adrenals and gonads. Both of these isozymes can convert the 5-steroids (pregnenolone, 17-221 

hydroxypregnenolone (17OHPreg), dehydroepiandrosterone (DHEA) and androstenediol) to the 222 

corresponding 4-steroids (progesterone, 17OH-progesterone (17OHP), androstenedione, 223 

testosterone) (53), but the placental/hepatic HSD3B1 has a low Michaelis-Menten constant (Km), 224 

permitting it to act on low concentrations of steroids in the circulation(54), whereas the Km for the 225 

adrenal/gonadal HSD3B2 is 10-fold higher (55), so it acts only on locally produced, intraglandular 226 

steroids. Mutations in HSD3B2 cause a rare form of CAH, characterized by elevated ratios of 5/4 227 

steroids, notably 17OH-Preg/17OH-progesterone (17OHP), that are >8 SD above normal (56,57). 228 

The low Km of hepatic HSD3B1 permits it to convert some of the elevated 17OH-Preg to 17OHP, 229 

engendering false positives in newborn screening programs for 21OHD (58). HSD3B2 deficiency 230 

causes DSD in both sexes: genetic females are mildly virilized because some fetal adrenal DHEA 231 

is converted to testosterone by HSD3B1; genetic males synthesize some androgens by peripheral 232 

conversion of DHEA, but these are insufficient for complete male genital development (59).  233 

 17α-hydroxylase/17,20-lyase 234 

 Pregnenolone can also be converted to 17OH-Preg by 17-hydroxylase (CYP17A1, P450c17). 235 

CYP17A1 catalyzes both 17-hydroxylase and 17,20-lyase activities. The 17-hydroxylase activity 236 

converts pregnenolone to 17OHPreg and progesterone to 17OHP.  The 17,20-lyase activity can 237 

convert 17OH-Preg to DHEA, but very little 17OHP is converted to androstenedione because the 238 

human enzyme catalyzes this reaction poorly (60,61). The activities of CYP17A1 are expressed in 239 
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a zone-specific fashion: the enzyme is absent in the adrenal zona glomerulosa, hence pregnenolone 240 

yields mineralocorticoids; only the 17-hydroxylase activity is found in the zona fasciculata, thus 241 

pregnenolone yields cortisol; both activities are present in the zona reticularis, hence pregnenolone 242 

yields 19-carbon (C19) precursors of sex steroids (Fig. 1). The principal factor regulating 17,20-243 

lyase activity is electron transport from NADPH via cytochrome P450 oxidoreductase (POR) with 244 

the assistance of cytochrome b5 (b5). CYP17A1 mutations causing 17-hydroxylase deficiency 245 

(17OHD) are rare except in Brazil and China. Lack of CYP17A1 prevents sex steroid biosynthesis, 246 

yielding a female phenotype in 46,XY males and sexual infantilism in both sexes; overproduction 247 

of 11-deoxycorticosterone (DOC) in the zona fasciculata typically causes mineralocorticoid 248 

hypertension; cortisol is not produced, but corticosterone substitutes for glucocorticoid 249 

requirements (62). Rare cases of apparently isolated 17,20-lyase deficiency may be attributable to 250 

mutations in CYP17A1, b5 (CYB5 gene) or POR (63-65). 251 

 The enzymology of adrenal 21-hydroxylase (CYP21A2, P450c21, encoded by CYP21A2 252 

within the HLA locus), is discussed in section II.B. 253 

 P450 oxidoreductase  254 

All microsomal cytochrome P450 (CYP) enzymes, including CYP17A1, CYP21A2, CYP19A1 255 

(aromatase, P450aro), as well as the drug-metabolizing CYP enzymes of the liver, require the 256 

activity of POR, a flavoprotein that transfers electrons from NADPH to all microsomal CYP enzymes 257 

(49).  Mutations in POR cause POR deficiency; patients have been described with highly variable 258 

clinical and hormonal findings depending on the underlying mutations (66-72). Most POR mutations 259 

impair CYP17A1, especially 17,20-lyase activity (including the G539R POR variant with a 260 

phenotype simulating isolated 17,20 lyase deficiency)(63,68,73), with CYP21A2 and CYP19A1 261 

being affected variably, depending on the POR mutation. It is difficult to reach definitive conclusions 262 
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about phenotype-genotype correlations with such rare disorders, although there is a suggestion that 263 

compound heterozygotes carrying R457H in trans with null mutations tend to have a more severe 264 

phenotype (72). Findings range from severely affected infants with 46,XX and 46,XY 265 

disorders/differences of sex development (DSD), cortisol deficiency and the Antley-Bixler skeletal 266 

malformation syndrome to mildly affected women who appear to have polycystic ovary syndrome, 267 

or mildly affected men with gonadal insufficiency. The skeletal phenotype probably results from 268 

diminished activity of CYP26B1, a POR-dependent enzyme that degrades retinoic acid (74). POR 269 

mutations also result in clinically relevant disruption of hepatic CYP enzyme activity (75). Patients 270 

with POR deficiency typically have normal electrolytes and mineralocorticoid function, nearly-271 

normal cortisol levels that respond poorly to ACTH stimulation, increased levels of 17OHP that 272 

respond variably to ACTH, and low levels of sex steroids. Impaired CYP21A2 activity may generate 273 

levels of 17OHP detected by newborn screening for 21OHD (66,76).  Atypical genital 274 

development occurs in both sexes, with considerable variability. The 17,20-lyase activity of 275 

CYP17A1 is especially sensitive to disrupted electron transport (77), thus POR defects typically affect 276 

fetal testicular steroidogenesis. Virilization of 46,XX females has two causes.  First, POR deficiency 277 

diverts steroids into the ‘backdoor pathway’ of dihydrotestosterone biosynthesis (Fig. 1), contributing 278 

to the prenatal female virilization (69,78-80).  Second, as placental CYP19 (aromatase) requires POR, 279 

pregnant women carrying a fetus with the POR mutation R457H (but not POR A287P) may 280 

experience virilization during pregnancy (66-68), similarly to women carrying an aromatase-deficient 281 

fetus (81,82). The POR polymorphism A503V, which mildly affects many P450 activities, is found 282 

commonly - from 19% among African Americans to 37% of Chinese Americans (83), but does 283 

not affect the presentation of 21OHD (84). 284 
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 11β-Hydroxylase and aldosterone synthase   285 

  Steroid 11-hydroxylase (CYP11B1, P450c11β) and aldosterone synthase (CYP11B2, 286 

P450c11AS, P450aldo) are closely related enzymes that catalyze the final steps in the synthesis of 287 

glucocorticoids and mineralocorticoids, respectively; they are encoded by duplicated genes (39,85). 288 

Like CYP11A1, these are mitochondrial enzymes that require ferredoxin and ferredoxin reductase to 289 

receive electrons from NADPH. CYP11B1 is expressed abundantly in the zona fasciculata, where it 290 

converts 11-deoxycortisol to cortisol and DOC to corticosterone, and also in the zona reticularis, 291 

where it initiates the 11-oxo-pathway (see later) (86). CYP11B2 expression is less abundant and 292 

confined to the zona glomerulosa where it catalyzes the 11-hydroxylase, 18-hydroxylase and 18-293 

methyloxidase activities needed to convert DOC to aldosterone (87,88).  Mutations in CYP11B1 cause 294 

11-hydroxylase deficiency (11OHD), with deficient cortisol, increased adrenal sex steroids, female 295 

virilization, and increased DOC, causing mineralocorticoid hypertension; 17OHP may be elevated in 296 

the newborn, leading to misdiagnosis of 21OHD (89).  Mutations in CYP11B2 selectively impair 297 

aldosterone synthesis, causing hyponatremia and hyperkalemia with normal cortisol production 298 

(39,90). However, hyponatremia is typically less severe than in 21OHD because of continued DOC 299 

and cortisol secretion.  300 

 17β-hydroxysteroid dehydrogenases 301 

 The synthesis of sex steroids requires the action of one of the 17-hydroxysteroid 302 

dehydrogenases (17HSD, HSD17B). These enzymes differ in their structures, co-factor 303 

requirements, reactions catalyzed and tissue-specific expression (39). Several are important in 304 

steroidogenesis. HSD17B1 is required for the synthesis of ovarian estradiol and placental estrogens 305 

(91-93). No genetic deficiency syndrome for HSD17B1 has been described. HSD17B2 inactivates 306 

estradiol to estrone and testosterone to androstenedione in the placenta, liver, small intestine, prostate, 307 
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secretory endometrium and ovary.  Whereas HSD17B1 is found in placental syncytiotrophoblast cells, 308 

HSD17B2 is expressed in endothelial cells of placental intravillous vessels, consistent with a role in 309 

defending the fetal circulation from transplacental passage of maternal estrogens and androgens. No 310 

deficiency state for 17HSD2 has been reported.  HSD17B3 is the testicular form of 17HSD that 311 

completes the synthesis of testosterone from androstenedione; its mutations cause a form of 46,XY 312 

DSD (94,95). HSD17B5 (AKR1C3, an aldo-keto reductase enzyme), which is also a 3-313 

hydroxysteroid dehydrogenase, reduces androstenedione to testosterone (96) in the ovary and 314 

several non-steroidogenic tissues. AKR1C3 is expressed at low levels in the zona reticularis, 315 

accounting for the small amount of adrenally-produced testosterone (97). HSD17B6, also known 316 

as RoDH for its homology to retinol dehydrogenases (98), is expressed at low levels in the fetal 317 

testes, where it appears to catalyze oxidative 3HSD activities in the alternative or ”backdoor” 318 

pathway to 5-dihydrotestosterone (DHT) synthesis (79,99)(see later). 319 

 Aromatase 320 

Aromatase (CYP19A1) converts 19-carbon androgens to 18-carbon estrogens (100). 321 

Aromatase is abundantly expressed in the ovary, placenta and is slightly expressed in fat, but is 322 

only expressed in the adrenal in certain malignancies. Nevertheless, it is central to the 323 

pathophysiology of fetal development in CAH. The fetus with CAH fetus is only virilized by its 324 

own adrenal androgens; even when maternal testosterone concentrations reach 300 ng/dl in a 325 

mother who herself has CAH, the female fetus is not virilized because placental aromatase 326 

inactivates the androgens from the maternal circulation (101). 327 

B. Enzymology of CYP21A2 328 

 CYP21A2 (P450c21), like CYP17A1, is a microsomal or type II cytochrome P450, which 329 

catalyzes two essential reactions in adrenal steroidogenesis (39). The major substrate of CYP21A2 330 
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is 17OHP, which is converted to 11-deoxycortisol in the zona fasciculata during the biosynthesis 331 

of cortisol. In the zona glomerulosa, CYP21A2 21-hydroxylates progesterone to 11-332 

deoxycorticosterone within the aldosterone pathway. Other hepatic cytochrome P450 enzymes 333 

have some 21-hydroxylase activity with progesterone as a substrate (102), but this activity does 334 

not rescue glucocorticoid deficiency in patients with classic CAH.   335 

 As with other microsomal P450s, CYP21A2 utilizes 2 electrons donated by POR to reduce 336 

molecular oxygen, producing a hydroxylated substrate and water. The enzymology of CYP21A2 337 

is unusual for a cytochrome P450 in that the primary site of oxygenation is a methyl group, which 338 

is a kinetically disfavored site of hydrogen atom abstraction in the reaction cycle. The C-H bond 339 

breaking step is partially rate-limiting, and deuterium substitution at C-21 of progesterone shifts 340 

hydroxylation partially to the 16α-hydrogen (103). The x-ray crystal structures of bovine (104) 341 

and human CYP21A2 (105) with 17OHP bound to the active site explain this activity profile. The 342 

steroid substrate is held perpendicular to the heme ring with the A-ring 3-keto oxygen hydrogen 343 

bonded to arginine-234 (R234) furthest from the reactive iron-oxygen complex, with C-21 344 

dangling just close enough for the reaction to occur. On the side of the active site, valine-359 345 

(V359) holds the steroid substrate with hydrophobic interactions in the geometry required for 21-346 

hydroxylation and limits access of other reaction sites, principally the C-16 protons; mutagenesis 347 

of V359 to the smaller amino acids alanine and glycine progressively shifts progesterone 348 

hydroxylation to the 16α-hydrogen (106). The crystal structures also contain a second molecule of 349 

steroid outside the active site where the F-G loop that forms the roof of the active site abuts the α-350 

helical domain (104). Whether this second molecule reflects an intermediate state in substrate 351 

binding or simply a hydrophobic interaction that favors crystal formation is not known. 352 
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 The common mutations that cause 21OHD have been compared to wild-type CYP21A2 as 353 

recombinant native enzymes in transfected mammalian cells (107), vaccinia-infected mammalian 354 

cells (108,109) and yeast (110) or as purified proteins modified for expression in E. coli and 355 

reconstitution in vitro (111). The catalytic activities of the mutants are reduced generally in 356 

proportion to the severity of the deficiency observed in patients with CAH. The studies of purified, 357 

reconstituted enzyme assays enable more detailed kinetic studies, which demonstrate that most 358 

mutations variably impair substrate binding, catalytic efficiency, and thermal stability in some 359 

combination. Extrapolation of these systems to the human adrenal in affected patients should be 360 

considered a good approximation but with limitations. 361 

 When using purified, reconstituted assay systems, investigators must add phospholipid and 362 

purified POR, in addition to the steroid substrate and NADPH. The phospholipid used does not 363 

exactly replicate the endoplasmic reticulum of adrenal cortex cells but does bring together 364 

CYP21A2 and POR in a proteoliposome to enable electron transfer and catalysis. The 365 

phospholipid composition is known to influence the reconstituted activity of CYP17A1 and other 366 

steroidogenic P450 enzymes (112), although CYP21A2 has not been studied well in this regard.  367 

C. New Pathways; New Steroids 368 

 The alternative or “backdoor” pathway to dihydrotestosterone 369 

 In addition to the classic pathway via DHEA, androstenedione, and testosterone, the most 370 

potent endogenous androgen, 5-dihydrotestosterone (DHT), can also be synthesized via an 371 

alternative or “backdoor” pathway that bypasses the classical pathway intermediates (71,79,113-372 

117). This alternative pathway is physiologically active during the major period of human sexual 373 

differentiation in the 6th to 10th week of human fetal development (79) and into the second trimester 374 

(118). To enter the alternative pathway to DHT, progesterone or 17OHP are 5α-reduced by steroid 375 
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5α-reductase type 1 (SRD5A1) to yield 5α-dihydroprogesterone and 17α-376 

hydroxydihydroprogesterone, respectively (for clarity, only the alternative pathway from 17OHP 377 

is shown in Figure 1). These 3-ketosteroids are subsequently 3α-reduced to allopregnanolone and 378 

17α-hydroxyallopregnanolone by isoforms of the AKR1C enzyme family. CYP17A1 converts 379 

allopregnanolone to 17α-hydroxyallopregnanolone and then to androsterone by its 17,20-lyase 380 

activity, serving as its preferred substrate. Androsterone, which is also an inactive metabolite of 381 

androstenedione and testosterone, can then be activated to DHT by sequential 17β-reduction and 382 

3α-oxidase reactions (119) (Figure 1). 383 

    Because excessive 17OHP accumulation is a key characteristic of 21OHD, it is highly likely 384 

that the alternative pathway to DHT is a major contributor to fetal female virilization in 21OHD. 385 

Alternative pathway steroid metabolites can be detected in patients of all ages with 21OHD, most 386 

prominently in the neonate (120). These studies indicate that the high concentrations of 17OHP in 387 

individuals with 21OHD drive dihydrotestosterone production by the alternative pathway. The 388 

alternative pathway intermediate 17α-hydroxydihydroprogesterone (also termed 5α-17-389 

hydroxypregnanolone) can be detected directly by urinary steroid profiling and indicates the 390 

activity of the alternative pathway (120,121). 391 

 The role of 11-oxo-androgens in CAH  392 

 After cleavage of the side chain by 17,20-lyase activity of CYP17A1 in the zona reticularis, 393 

the major 19-carbon product of the human adrenal cortex is dehydroepiandrosterone (DHEA) and 394 

its sulfate ester DHEAS. Whereas the latter is not a precursor to testosterone, DHEA is efficiently 395 

converted to androstenedione and also within the adrenal to lesser amounts of testosterone (122).  396 

Both androstenedione and testosterone are good substrates for CYP11B1. Precursor steroids 397 

accumulate in the adrenals of patients with 21OHD, and CYP17A1 and CYP11B1 activities are 398 
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high owing to chronic ACTH stimulation, hence the system can synthesize large quantities of 399 

11OH-androstenedione, with concentrations exceeding that of androstenedione in both 21OHD 400 

patients and unaffected controls (123). 11-ketotestosterone (11KT) is primarily generated from 401 

circulating 11OH-androstenedione via the sequential action of 11β-HSD type 2 (which converts 402 

the 11β-hydroxyl to a keto group) and AKR1C3 (124). 11KT, which is in fact the major testicular 403 

androgen in teleost fishes (125), is nearly as potent as testosterone in transactivating the human 404 

androgen receptor (126). The intermediate 11-ketoandrostenedione – but not 11OH-405 

androstenedione – is a much better substrate for AKR1C3 than androstenedione itself (127), which 406 

explains why 11KT is the second-most abundant circulating 11-oxo-androgen in both 21OHD 407 

patients and unaffected individuals. In addition, 11KT is a substrate for the 5α-reductases (124), 408 

yielding 11-ketoDHT (11KDHT), which appears to be a more potent androgen than 11KT 409 

(reviewed in (86)), but is not detected in relevant concentrations in circulation.  410 

 In women with 21OHD, 11KT rises roughly proportionately to testosterone (123), reflecting 411 

the adrenal rather than gonadal origin of these androgens. Furthermore, 11-oxo-androgens are poor 412 

substrates for aromatase; whereas 11-oxo-androgens can be converted to 11-oxygenated estrogens, 413 

the latter do not contribute substantially to the circulating estrogen pool  (128).  In contrast, 11KT 414 

is inversely proportional to testosterone in men (123) and in boys Tanner stage 3-5 (129) with 415 

21OHD. This is because men with poor disease control produce more 11OH-androstenedione, 416 

which is preferentially metabolized to 11KT which then suppresses the hypothalamic-pituitary-417 

testicular axis, thereby decreasing testicular secretion of testosterone. In men with good disease 418 

control, 11KT synthesis is low, whereas testicular testosterone synthesis is normal. Hence, a low 419 

11KT/testosterone ratio in a man with 21OHD indicates both good disease control and good 420 

testicular function.  421 
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 It is difficult to evaluate long-term disease control in adults with classic CAH. Assessing 422 

adrenal size, which might be the ultimate assessment, requires cross-sectional imaging with 423 

associated cost and radiation exposure. The 11-oxo-androgens (and 21-deoxycortisol), correlate 424 

better with adrenal size than traditional biomarkers of short-term disease control, such as 425 

androstenedione and 17OHP (129). Elevated 11-oxo-androgens are also predictive of menstrual 426 

irregularity in women and of TARTs in men with CAH (129). In contrast to DHEAS, 427 

androstenedione and testosterone, 11KT does not decline with age in women from 20 to 80-years 428 

old, and 11KT declines very gradually in men over the same age range (130). These data suggest 429 

that 11-oxo-androgens may be useful biomarkers of 21OHD control well into adulthood and in 430 

hypogonadal states. In patients with NC CAH, 11-oxo-androgens are elevated about 2-fold 431 

compared to women with clinical features of androgen excess, although 11-oxo-androgens alone 432 

cannot be used to establish the diagnosis of NC CAH (131). Finally, limited data suggest that 11-433 

oxo-androgens are rather specific for 21OHD and are not elevated in other androgen-excess forms 434 

of CAH such as 11β-hydroxylase deficiency and 3βHSD2 deficiency, because either CYP11B1 435 

activity or intra-adrenal androstenedione production are low, respectively (86,123).  436 

 In summary, androgens are generated in CAH patients via all three major pathways (132). First, 437 

classic pathway androgen synthesis is enhanced through increased conversion of accumulating 438 

17OHP to androstenedione via the 17,20-lyase activity of CYP17A1, an ordinarily minor reaction 439 

compared to the preferred conversion of 17OH-Preg to DHEA (60). Second, the androstenedione 440 

so generated consequently drives increased substrate flow to the 11-oxoandrogen pathway, 441 

through conversion of androstenedione to 11β-hydroxyandrostenedione. Third, while the 442 

alternative pathway to DHT contributes to excess androgen generation in 21OHD, its relative 443 
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contribution appears to be more limited than that of classic and 11-oxo-pathways, as indicated by 444 

in vivo urinary steroid metabolite profiling in CAH patients during glucocorticoid therapy (133). 445 

 Biological activities of steroidal intermediates 446 

Aside from defects in StAR and CYP11A1, in which essentially no steroids are secreted, a 447 

hallmark of inherited enzymatic defects in adrenal steroidogenesis is the accumulation of 448 

‘upstream’ steroids, proximal to the affected enzymatic step, which provide useful diagnostic 449 

markers. In 21OHD, 17OHP, the steroid before 21-hydroxylase, accumulates and is traditionally 450 

used to diagnose 21OHD (1,134,135). Besides 17OHP, several other ‘upstream’ steroids such as 451 

pregnenolone, 17OH-Preg and progesterone, and may also accumulate but are not diagnostically 452 

specific. In the absence of 21-hydroxylase activity, a substantial portion of 17OHP is converted 453 

into 21-deoxycortisol by CYP11B1 (Figure 1).  21-deoxycortisol is a potentially useful marker 454 

for the diagnosis of 21OHD (136). 455 

Some steroids that accumulate in 21OHD, including 21-deoxycortisol, progesterone and 456 

17OHP, may also bind to glucocorticoid or mineralocorticoid receptors and act variously as either 457 

agonists or antagonists. In vitro, 21-deoxycortisol, corticosterone, 17OHP, and progesterone bind 458 

the glucocorticoid receptor with 24-43% of the affinity of cortisol. However, the transactivation 459 

activities of progesterone and 17OHP were only 0.2 to 0.8% of that for cortisol, whereas the 460 

transactivation activity of 21-deoxycortisol was 8.5% and 17% in two different assays (137,138). 461 

By contrast, 17OHP and progesterone inhibit aldosterone-mediated transactivation of the 462 

mineralocorticoid receptor in a dose-dependent fashion, explaining the strong anti-463 

mineralocorticoid effect of 17OHP and progesterone in vitro (139,140). Androstenedione and 464 

testosterone had no effect on mineralocorticoid receptor transactivation (140).  465 
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 The clinical implications of these findings are not yet completely understood.  Some adult 466 

classic CAH patients stop glucocorticoid medication without developing symptoms and signs of 467 

adrenal insufficiency (137,141).  Perhaps elevated levels of other steroids partially compensate for 468 

the low cortisol concentrations (142). Moreover, 21-hydroxylation of progesterone by hepatic 469 

cytochrome P450 enzymes other than CYP21A2 may permit some mineralocorticoid (11-470 

deoxycorticosterone) synthesis (102). Clinical consequences of treatment lapses include androgen 471 

excess in women and TARTs in men, adrenal hyperplasia and/or tumors, as well as the theoretical 472 

risk of adrenal crisis in all patients. 473 

III. GENETICS IN CAH  474 

21OHD is caused by inactivating mutations in the gene coding for adrenal 21-hydroxylase 475 

(CYP21A2, older nomenclature CYP21, CYP21B, P450c21B; GeneID 1589). 476 

 The CYP21 genes and the surrounding genetic region 477 

The CYP21A2 gene encodes the microsomal P450 enzyme, 21-hydroxylase (CYP21A2, 478 

P450c21), a protein of 495 amino acids. CYP21A2 is located in the HLA Class III region on the 479 

short arm of chromosome 6 (6p21.3), approximately 30-kilobases apart from the non-functional 480 

CYP21A1P pseudogene (Figure 2).  CYP21A2 and CYP21A1P both consist of 10 exons and share 481 

high nucleotide homology of about 98% and 96% in exons and introns respectively (143,144). 482 

CYP21A1P and CYP21A2 are arranged in tandem with the C4A and C4B genes encoding the fourth 483 

complement factor (145). There are additional sense and antisense transcripts of unknown 484 

significance near or overlapping the CYP21 genes (146,147). The C4/CYP21 unit is flanked by 485 

the serine-threonine kinase-19 (STK19, RP1) gene on the telomeric side and by the tenascin-X 486 

gene (TNXB, which encodes an extracellular matrix protein on the opposite DNA strand)(148) on 487 

the centromeric side, and their pseudogenes, STK19B and TNXA, forming a 30 kb tandem repeat 488 
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sometimes referred to as an RCCX module (RP-C4-CYP21-TNX) (149).  The STK19, C4 and 489 

CYP21 genes are transcribed in the telomeric to centromeric direction, whereas TNXB is 490 

transcribed from the opposite strand. Most chromosomes have two copies of the module with a 491 

CYP21A1P pseudogene in the telomeric module and a CYP21A2 gene in the centromeric module. 492 

However, this locus shows high structural variability with monomodular, trimodular or even 493 

quadrimodular haplotypes detected (150,151). The TNXA and STK19B pseudogenes were 494 

truncated during the duplication of the ancestral RCCX module. The last exons of TNXA and TNXB 495 

overlap the 3-prime untranslated regions of exon 10 of CYP21A1P and CYP21A2, respectively.  496 

 CYP21A1P is transcribed but its mRNA cannot encode a functional protein owing to at least 497 

10 deleterious mutations  (143,144) including two frameshifts (8 bp deletion in exon 3, 1 bp 498 

insertion in exon 7, a nonsense mutation (p.Gln318stop; Q318X) (152), and a mutation in intron 2 499 

that activates a cryptic splice site and causes an extra 19 nucleotides to be included in the mRNA 500 

(153). Missense mutations in the pseudogene include p.Pro30Leu (P30L) (108), p.Ile172Asn 501 

(I172N) (154), a cluster of missense mutations in exon 6, p.Ile236Asn, Val237Glu, Met239Lys 502 

(I236N, V237E, M239K), p.Val281Leu (V281L) (155) and p.Arg356Trp (R356W). Additionally, 503 

4 single nucleotide differences in the 5’ flanking region of CYP21A1P reduce its transcriptional 504 

activity to 20% of that of CYP21A2 (see section III.B.3)(146). Note that there is a polymorphism 505 

of no functional significance in the hydrophobic leader sequence at the amino terminus of 506 

CYP21A2, consisting of a single amino acid insertion. Consequently, some publications and 507 

databases list mutations with positions incremented by 1; e.g. P31L instead of P30L. 508 
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 CYP21A2 gene expression 509 

 Pattern of CYP21A2 expression 510 

 By immunohistochemistry, CYP21A2 expression is first detected robustly at 50–52 days 511 

postconception within the nascent inner fetal zone. Within the outer definitive zone, CYP21A2, is 512 

more weakly detected and persists up to 14 weeks postconception. All other enzymes required for 513 

cortisol biosynthesis are present as well, and cortisol concentrations within the fetal adrenal are 514 

high during the first trimester (156). From 14 to 22 weeks, CYP21A2 is expressed only in the fetal 515 

and transitional zones, but not the definitive zone, and cortisol secretion is relatively low; definitive 516 

zone expression is detected starting at 23 weeks and continuing through the remainder of gestation, 517 

as cortisol secretion increases (157). Cortisol secretion in the first trimester suppresses DHEA 518 

production and thus minimizes fetal androgen secretion until placental aromatase expression 519 

increases in the second trimester, by which time differentiation of the external genitalia is complete 520 

and cannot be affected by DHEA levels. Cortisol is again required in the third trimester to support 521 

lung maturation, including surfactant production (158). Low expression of CYP21A2 during the 522 

second trimester partially explains the high incidence of false-positives in newborn screens for 523 

CAH in premature infants (see section IV.A)(159). 524 

 In normal adult adrenal glands, CYP21A2 immunoreactivity is detected in all three cortical 525 

layers, particularly the zonae glomerulosa and reticularis, with variegated expression in the zona 526 

fasciculata. The immunoreactivity is more intense in adrenals from patients with Cushing disease 527 

and at sites of regeneration in normal adrenal glands (160). 528 

In addition to the adrenal cortex, CYP21A2 is detected in other tissues by RT-PCR. These 529 

include lymphocytes, which also express an additional 21-hydroxylase activity that is not mediated 530 

by CYP21A2 (161). CYP21A2 is expressed throughout the human heart at levels approximately 531 
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0.1% those in the adrenal cortex. Expression patterns of other steroidogenic enzymes suggest 532 

autocrine or paracrine roles for corticosterone and deoxycorticosterone, but not cortisol or 533 

aldosterone, in the normal adult human heart (162). 534 

 Regulation of CYP21A2 expression 535 

 Cortisol secretion is regulated mainly by ACTH, which acts via the Gα-protein coupled MC2R 536 

receptor to increase activity of adenylyl cyclase and thus increase intracellular levels of cAMP. 537 

This in turn increases activity of protein kinase A. The main effect of corticotropin releasing 538 

hormone (CRH) secreted by the hypothalamus is to increase ACTH secretion by the pituitary gland, 539 

but additionally, it may act directly on adrenocortical cells to increase cortisol secretion, and 540 

expression of CYP21A2 and other steroidogenic enzymes (163). Infection, fever and pyrogens 541 

stimulate the release of interleukins IL-1 and IL-6, promoting secretion of CRH, and stimulate IL-542 

2 and TNF promoting release of ACTH, increasing cortisol secretion during inflammation (164); 543 

IL-6 can also directly stimulate adrenal synthesis and release of cortisol (165). 544 

  In contrast, aldosterone secretion is regulated mainly by angiotensin II, which activates the Gq-545 

protein coupled angiotensin 2 receptor (AT2R) , which acts primarily through the protein kinase 546 

C pathway but also through Ca2+ signaling (166). Additionally, high extracellular potassium levels 547 

trigger voltage sensitive calcium channels that also increase intracellular calcium levels. Calcium 548 

then increases activity of protein kinase C (167). 549 

 Regulation of CYP21A2 expression is consistent with these tropic stimuli. In the H295R human 550 

adrenocortical cell line (168,169) and also in primary cultures of human adrenocortical cells 551 

(169,170), mRNA and/or protein expression of CYP21A2 are induced by increases in cAMP 552 

analogs and by angiotensin II or tetradecanoyl phorbol acetate, which stimulate protein kinase C. 553 

Insulin and IGF-I are additional trophic stimuli (170). Additional hormone and environmental 554 
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factors may regulate CYP21A2 expression. These include orexins, which stimulate secretion of 555 

cortisol (171), and potential endocrine disruptors including brominated flame retardants (172,173) 556 

and organic freshwater contaminants (174). 557 

 Transcriptional control of CYP21A1P and CYP21A2 558 

 The most important CYP21A2 transcript begins 10–11 nucleotides before the initial AUG 559 

codon (143). CYP21A1P is also transcribed specifically in the intact adrenal cortex at a level 10–560 

20% that of CYP21A2 (146). However, the first 2 introns are inconsistently spliced out, and an 561 

uncertain proportion of transcripts include additional exons in the region between the end of 562 

CYP21A1P and the beginning of C4B. Some of these exons may overlap the truncated TNXA gene. 563 

Adrenal transcripts in the same direction as CYP21A2 have also been detected overlapping TNXB; 564 

these are also of uncertain functional significance (175). 565 

 Similarly, CYP21A1P transcripts cannot be detected in primary cultures of human 566 

adrenocortical cells, whereas CYP21A2 is appropriately expressed under the same conditions 567 

(170,176). In cultured mouse Y-1 or human H295 adrenocortical cells, the 5’ flanking region of 568 

human CYP21A2 drives basal expression of reporter constructs at levels 2.5–8 times higher than 569 

the corresponding region of CYP21A1P (176-178). Sequences responsible for this difference have 570 

been localized to the first 176 nucleotides (176) although sequences upstream of this region are 571 

required for full expression. There are only 4 nucleotide differences (-126C>T, -113G>A, -572 

110T>C, and -103A>G) between CYP21A1P and CYP21A2 in this region. The first two listed 573 

affect binding of the Sp1 transcription factor. In patients with 21OHD, gene conversions involving 574 

this region reduce but do not eliminate CYP21A2 expression. In isolation with no additional 575 

mutations present, they can be associated with NC CAH (179). When the gene conversion extends 576 
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to the P30L missense mutation (which is usually a Group C, i.e. nonclassic allele; see section III.D), 577 

it becomes a simple virilizing (Group B) allele (180). 578 

 The most important transcription factor for adrenal-specific expression of CYP21A2 is 579 

steroidogenic factor-1 (SF-1, Ad4BP, NR5A1). This protein is also required for development of 580 

the adrenal gland and gonads (181,182). It interacts with specific DNA elements both within the 581 

proximal promoter and in intron 35 of the linked C4B gene (183). 582 

 Additional relevant transcription factors include nerve growth factor induced-B (NGFI-B, 583 

Nur77, NR4A1)(169,184), and Nur-related factor 1 (NURR1) (NR4A2); they may overlap in their 584 

functions (185). NGFI-B is phosphorylated under basal conditions and dephosphorylated in 585 

response to ACTH, which activates it. Thus it may help to mediate ACTH regulation of CYP21A2 586 

expression. These transcription factors may also be important for mediating gene regulation by 587 

angiotensin II (167). A third closely related transcription factor, neuron-derived orphan receptor 1 588 

(NOR1, NR4A3), is also expressed in the adrenal cortex and may function similarly (186). 589 

 590 

 Molecular genetics of CAH 591 

 Over 90% of mutations causing 21OHD are the consequence of intergenic recombinations 592 

within the 30 kb tandem repeat (Figure 2), promoted by the high recombination rate in the HLA 593 

region along with the nucleotide identity shared across the 30 kb repeat. These include both 594 

deletions generated by unequal meiotic crossing-over during gametogenesis, and gene conversions 595 

between CYP21A2 and the CYP21A1P, generated by either meiotic or mitotic events (187). 596 

Unequal crossovers, owing to misalignment of the 30 kb tandem duplication, can occur with break 597 

points anywhere along the duplicated region. Breakpoints originating in STK19 or C4A lead to a 598 

net deletion of one of the C4 genes and CYP21A1P but leave CYP21A2 unaffected. Such a 599 



 

30 

 

configuration occurs on at least 5% of normal chromosomes (145). Breakpoints originating in 600 

CYP21A1P yield a deletion of C4B and a single chimeric CYP21 gene that has a 5’ end 601 

corresponding to CYP21A1P and a 3’ end corresponding to CYP21A2.  This chimeric gene usually 602 

(but not always (188)) includes CYP21A1P mutations that prevent synthesis of a functional protein, 603 

so it represents a null allele and thus is usually referred to as a CYP21A2 deletion. Occasionally a 604 

breakpoint occurs in the TNX genes, leading to complete deletion of C4B and CYP21A2, and a 605 

TNXB/TNXA chimeric gene (149,150,189). Homozygosity for such a chimera leads to a contiguous 606 

gene syndrome consisting of CAH and Ehlers-Danlos syndrome (190), which is rarely clinically 607 

reported in patients with severe CAH. However, 7-14% of patients with CAH have heterozygous 608 

TNXB mutations (191,192). This extended phenotype has been termed the CAH-X syndrome. 609 

CAH-X is associated with joint hypermobility, chronic arthralgia, joint subluxations, hernias, and 610 

cardiac defects (193,194). Deletions account for approximately 20% of mutant alleles in 21OHD 611 

(189,195-213). CYP21A2 gene duplications are relatively common in some populations (214,215). 612 

Many of these alleles carrying a CYP21A2 gene duplication have a p.Gln318X (Q318X) mutation 613 

in the duplicated CYP21A2 gene next to the TNXB gene, and a wild-type CYP21A2 gene next to 614 

the TNXA pseudogene. Importantly, such alleles are non-disease causing, but can be easily 615 

misinterpreted (214). 616 

 Approximately 70-75% of disease-causing CYP21A2 mutations arise from the transfer of 617 

deleterious mutations from CYP21A1P, i.e, gene conversion (Figure 3). In addition, over 200 618 

pseudogene-independent mutations are listed in the Human Gene Mutation Database (HGMD, 619 

http://www.hgmd.cf.ac.uk) and the Pharmacogene Variation Consortium 620 

(https://www.pharmvar.org/gene/CYP21A2). Most of these rare mutations are sporadic. However, 621 

due to founder effects increased frequencies of some pseudogene-independent mutations are 622 
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observed in some populations. Deletions, the splice site mutation in intron 2 (c.293-13A/C>G) and 623 

p.Ile172Asn (I172N) are the most common mutations in most populations (189,195-213). The 624 

p.Val281Leu (V281L) mutation is by far the most common allele detected in patients with NC 625 

CAH and is highly prevalent in Ashkenazi Jews (155). Novel or rare mutations account for about 626 

3-5% of detected mutations in large cohorts. The vast majority of these rare mutations have been 627 

identified in single families or small populations. Approximately 1-2% of CYP21A2 disease 628 

causing mutations arise de novo.  629 

 630 

 Genotype-phenotype correlation  631 

 In descending order of compromised 21-hydroxylase activity, 4 general groups of CYP21A2 632 

mutations have been established to predict the phenotype (Figure 3) 633 

(195,196,201,203,208,213,216). Deletions, large gene conversions, nonsense mutations, 634 

frameshifts, and missense mutations that totally abolish enzymatic activity are SW classic alleles, 635 

comprising mutation Group 0 (“null”). A single nucleotide mutation that alters splicing of intron 636 

2 (c.293-13A/C>G, “intron 2 G” mutation) (153) is particularly common, comprising 20-25% of 637 

mutant alleles in most populations (Table 2). It has been seen in both SW and SV patients, 638 

suggesting that there is a small amount of normally-spliced mRNA; it is generally considered its 639 

own separate Group A (in the first analysis of this sort (195), Groups 0 and A were referred to as 640 

Groups A1 and A2, respectively). A nonconservative amino-acid substitution, p.Ile172Asn 641 

(I172N)(154) reduces enzymatic activity to <5% of normal and is associated with the SV form of 642 

the disorder (mutation Group B)(107,109,221). Finally, missense mutations such as p.Val281Leu 643 

(V281L) and p.Pro30Leu (P30L) (108) reduce enzyme activity to ~20-50% of normal (mutation 644 

Group C), and are associated with NC CAH. Although enzyme function in vitro appears to be 645 
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similar (111), clinical observations suggest that patients carrying the P30L allele are somewhat 646 

more symptomatic, straddling the border between SV and NC forms of CAH (213,222). As noted 647 

in section III.B.3, in many cases this may be a consequence of gene conversions extending into 648 

the 5’ flanking transcriptional regulatory region, thus impairing gene expression (180).  649 

 CAH due to 21OHD is an autosomal recessive condition. About 65–75% of 21OHD patients 650 

are compound heterozygotes; i.e., they carry different mutations on each allele. In cohort studies, 651 

the clinical phenotype of CAH strongly correlates with the less severely impaired CYP21A2 allele 652 

(Figure 3); 96% of individuals carrying two Group 0 alleles have SW CAH, whereas 97% of those 653 

with at least one Group C allele have NC CAH. The correlation is somewhat less strong for the 654 

groups with enzymatic impairment of intermediate severity (Groups A and B, and the P30L 655 

mutation). To some extent, this reflects the fact that the distinctions between SW and SV CAH, or 656 

SV and NC CAH, are a continuum, and not absolute. For example, many SV CAH patients 657 

nevertheless require mineralocorticoid supplementation early in life and might be classified as SW, 658 

whereas the distinction between the SV and NC forms can be particularly challenging in males. 659 

Without exhaustive sequencing, it is difficult to rule out the existence of additional mutations in 660 

introns or flanking regions that might affect mRNA processing or gene expression; as noted in 661 

section III.B.3, one transcriptional control region is several kilobases away from CYP21A2, in the 662 

C4B gene (183). Data correlating genotype with intermediate phenotypes are limited and often are 663 

not presented in a way that permits meta-analysis. In both American (195,223) and German (201) 664 

data, median (interquartile range) Prader virilization scores (Figure 4) for females in Groups 0, A, 665 

B and C are 4 (3-5), 4 (3-5), 3 (2-4) and 0 (0-2) respectively. (201). A similar correlation of severity 666 

with genotype is seen when evaluating genital appearance in adult women (224). No factors 667 

modulating androgen effects have been demonstrated to influence the degree of virilization 668 
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associated with each genotype group. Basal levels of 17OHP are also correlated with genotype 669 

(195,200,201,225), with different studies reporting mean levels (in ng/dl) in Groups 0/A, B and C 670 

of 23-41,000, 10-18,000, and 3-8000, respectively. However, there is substantial overlap in values 671 

between genotype groups. Adult height and mean hydrocortisone doses are also influenced by 672 

genotype (226). There are limited data directly correlating psychosexual functioning with 673 

genotype (224,225), but gender dysphoria does tend to be most severe in women with SW CAH, 674 

which in turn is highly correlated with group 0 and A genotypes (227). Long-term health outcomes 675 

in adults do not correlate well with the genotype (212). However, girls and women with more 676 

severe CYP21A2 genotypes appear to have an increased risk for psychiatric conditions (228) and 677 

variations of the complement component C4 may influence the risk of psychopathology (229). In 678 

summary, genotype-phenotype correlations are strong but not absolute, and clinical management 679 

should be based on clinical and hormonal data. 680 

 By analyzing the CYP21A2 crystal structure, novel insights into the underlying molecular 681 

pathology have been gained (105,230). Null and other severely deleterious mutations commonly 682 

disrupt heme and/or substrate binding domains, the anchoring of the protein to the membrane, or 683 

impair protein stability. Mutations categorized as group B partially impair membrane anchoring 684 

or affect conserved hydrophobic clusters within the protein. Milder mutations (group C) result in 685 

less severe alterations, often interfering with electron transfer from POR, salt-bridge and 686 

hydrogen-bonding networks, and non-conserved hydrophobic clusters (105). However, other 687 

factors potentially influence enzymatic activity including mRNA expression, splicing and stability, 688 

and protein stability. 689 
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IV. DIAGNOSTICS  690 

A. Neonatal screening  691 

 Benefits 692 

 Neonatal screening for classic CAH was introduced to prevent morbidity and mortality due to 693 

adrenal crisis. Currently, all 50 states in the US, 35 other countries, and portions of 17 additional 694 

countries screen for CAH (231,232). Results of these screens indicate that the incidence of classic 695 

CAH in most populations is approximately 1:14,000 to 1:18,000. Table 1 summarizes data since 696 

2008; data reviewed 1997-2004 are similar (233-235). Although newborn screening for CAH is 697 

now performed in an increasing number of countries, protocols and reported outcomes vary widely 698 

(236). 699 

 Screening markedly reduces the time to diagnosis of infants with classic CAH (89,237-239), 700 

consequently reducing morbidity and mortality. Diagnosis is more likely to be delayed in males 701 

owing to the lack of genital ambiguity. Thus, a relative paucity of males in a patient population 702 

may be taken as indirect evidence of unreported deaths from salt-wasting crises. Females do 703 

outnumber males in some (12,240,241) although not all (242) retrospective studies in which CAH 704 

was clinically diagnosed without neonatal screening. Moreover, there is a greater preponderance 705 

of severe genotypes in screened infants than in those ascertained prior to screening, again 706 

suggesting extra deaths of severely affected infants prior to screening (2,243). Nevertheless, infant 707 

deaths from CAH are now rare (0-4%) in advanced economies even without screening (244,245). 708 

Infants ascertained through screening have less severe hyponatremia and shorter 709 

hospitalizations (238,242,246,247). The delay before correct sex assignment of severely virilized 710 

females is also markedly reduced (233). Moreover, males with SV CAH, and (mildly) virilized 711 

females, may otherwise not be diagnosed until later in childhood, at which time height may already 712 
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be compromised. Although not an aim of screening, children with NC CAH are occasionally 713 

diagnosed. In some cases, the consequent close monitoring and, if necessary, treatment may 714 

improve adult height.   715 

 Initial screening methodology  716 

 First-tier screens for CAH due to 21OHD employ immunoassays to measure 17OHP in dried 717 

blood spots on the same filter paper (“Guthrie”) cards used for other newborn screening tests 718 

(238,248,249). Radioimmunoassay (RIA) was the first method developed (250), but automated 719 

time-resolved dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA) has almost 720 

completely supplanted other immunoassays (251).   721 

 The main drawback to screening is that false positive rates are high, leading to substantial costs 722 

for evaluation and increasing parental concern. Several factors limit accuracy of these tests. First, 723 

premature, sick, or stressed infants tend to have higher levels of 17OHP than term infants; as 724 

studied by high-performance liquid chromatography, preterm infants have a functional deficiency 725 

of several adrenal steroidogenic enzymes with a nadir in function at 29 weeks of gestation (159).  726 

This “adrenal prematurity” can generate many false positives unless screening programs use higher 727 

screening cut-offs for preterm infants. For example, in 26 years of operation of the Swedish 728 

screening program, the positive predictive value for full-term infants was 25%, whereas it was 729 

only 1.4% for preterm infants, and it correlated very strongly with gestational age (252).  There 730 

are no universally accepted standards for stratifying infants. Most laboratories use a series of birth 731 

weight-adjusted cut-offs (253,254) but actual gestational age, or both, might be preferable, because 732 

gestational age correlates much better with 17OHP levels (27,255).  733 

 Second, 17OHP levels are normally high after birth, decreasing rapidly during the first few 734 

postnatal days in healthy infants. In contrast, 17OHP levels increase with time in infants with 735 
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21OHD. Thus, diagnostic accuracy is poor in the first 2 days, and screening a second sample 736 

several days later improves both sensitivity and positive predictive value with the risk of delaying 737 

treatment (89,249,256). Moreover, a comparison of one-screen versus two-screen state programs 738 

found a higher incidence of 21OHD when a second screen was employed (257). It has been 739 

suggested that preterm infants should have additional samples rescreened at 2 and 4 weeks of age, 740 

most practical in a hospitalized population where potential salt-wasting can be monitored (254).  741 

 Multiple courses of antenatal corticosteroids might reduce 17OHP levels and thus potentially 742 

increase the likelihood of false negative screens. Studies have reported inconsistent effects of 743 

antenatal corticosteroid administration in practice (258,259). Testing of later samples should 744 

minimize this problem, but the delay may increase the risk of salt-wasting crisis. 745 

 Female infants have lower mean circulating 17OHP levels than males, slightly reducing 746 

screening sensitivity (260). Because almost all females with SW CAH are virilized, most of them 747 

are diagnosed based on clinical symptoms, and therefore the reduced sensitivity is not usually 748 

problematic. However, even severely virilized girls can be missed as virilization is not always 749 

noticed at physical examination (2,22,261,262). Finally, immunoassays may lack specificity; this 750 

is discussed in Section IV.B.  751 

 Second-Tier Screening  752 

 Because 21OHD is a rare disease, the positive predictive value of neonatal screening is low, 753 

even though the specificity and sensitivity of the tests are very high (232). The positive predictive 754 

value might be improved with a second-tier screen.  755 

a) Biochemical Second Screens 756 

Direct biochemical analysis of steroids in blood samples using LC-MS/MS can obviate the 757 

specificity problems of immunoassays (263-265) and both heel stick blood samples (266) and urine 758 
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samples (267,268) can also be analyzed by mass spectrometric methods. Measuring 21-759 

deoxycortisol instead of 17OHP may improve diagnostic accuracy (136). Measuring steroid ratios 760 

further improves the screening specificity of LC-MS/MS. Such ratios have included 761 

(17OHP+androstenedione)/cortisol (263,269,270), 17OHP/11-deoxycortisol (271), and 762 

(17OHP+21-deoxycortisol)/cortisol(265). Some (272,273) but not all (254) laboratories have 763 

reported markedly superior results with these approaches, with one recent report claiming a 764 

positive predictive value of 71% (270). A recent statistical approach using principal component 765 

analysis of six steroid levels (17OHP, both first and second-tier, 11-deoxycortisol, 766 

androstenedione, 21-deoxycortisol and cortisol) achieved a positive predictive value of 67% (274). 767 

Consistency of results might be improved by mandating participation in national proficiency 768 

testing programs (275). However, caution should be exercised in developing reference ranges for 769 

assays using dried blood spots that have been stored for prolonged periods at room temperature, 770 

because cortisol and 11-deoxycortisol are not stable past 4 weeks of such storage (276). 771 

b) Molecular Genetic Second Screens.  772 

 CYP21A2 mutations can be detected in DNA extracted from the same dried blood spots used 773 

for hormonal screening (see Section IV.A.2). Because >90% of mutant alleles carry one or more 774 

of a discrete number of mutations, we can assume with >99% confidence that samples that carry 775 

none of these mutations are unaffected. Several studies of genotyping of samples from screening 776 

programs have suggested that this is a potentially useful adjunct to hormonal measurements (277-777 

282), but there has been no large-scale study of its efficacy as a second-tier screen in actual use.  778 

 779 
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B. Biochemical evaluation 780 

 Determining levels of steroid hormones and their precursors is a mainstay of diagnosis and 781 

management of CAH. Currently, the determination of steroid hormones rests on analytical 782 

techniques either based on the principle of immunoassay or on chromatographic methods coupled 783 

to mass spectrometry (283).  784 

 The specificity of the antibody is crucial for the reliability of an immunoassay. Inefficient 785 

discrimination between the analyte and structurally closely related substances will lead to cross 786 

reactivity with consequent overestimation of the amount of analyte. The overestimation of 17OHP 787 

in serum or plasma of premature infants, neonates or young infants by immunoassay techniques 788 

used in screening procedures or clinical routine with the consecutive risk of over-diagnosing 789 

21OHD, presents a typical and important example of this phenomenon (284). Cross-reactivity has 790 

been documented with 17-OH pregnenolone sulfate, a steroid originating in extremely high 791 

amounts from the fetal zone of the fetal adrenal (285), and 15β-hydroxylated compounds 792 

apparently generated by gut bacteria and resorbed through the entero-hepatic circulation (286). 793 

There may be additional substances in dried blood spots that interfere with immunoassays (matrix 794 

effect)(287). The DELFIA was reformulated in late 2009 to make it less sensitive to cross-reacting 795 

compounds in premature infants (288). This modification improved the positive predictive value 796 

from 0.4% to 3.7% for the first screen (249). The specificity of immunoassays may be further 797 

improved with organic extraction to remove cross-reacting substances, such as steroid sulfates. 798 

Additional preparative steps such as extraction, chromatographic pre-purification or dilution can 799 

help to circumvent matrix effects.  800 

 Currently, mass spectrometry represents the most versatile and exact of all analytical 801 

techniques for steroids. Initial separation by liquid chromatography (LC) or gas chromatography 802 
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(GC) can consistently improve specificity, and it also permits multi-component analysis, i.e. the 803 

simultaneous determination of multiple analytes in a single run. This development laid the 804 

foundation for the field of metabolomics, which presents the unbiased and systematic study of 805 

small molecules present in a biological sample. If mass spectrometry records all ions of a particular 806 

mass range, this is called an “untargeted” mode. If operated in “targeted” mode, mass spectrometry 807 

only records preselected ions (283).  808 

 Of all separation techniques, GC provides the best resolution of steroids. In combination with 809 

MS as the detection method, GC-MS presents a robust analytical tool, unsurpassed in determining 810 

simultaneously a multitude of steroids including precursors or metabolites of progestins, 811 

glucocorticoids, mineralocorticoids (all C21-steroids), androgens (C19-steroids) and estrogens (C18-812 

steroids) (289,290). GC-MS is particularly useful for urinary steroid metabolome analysis, but it 813 

can also be applied to the analysis of blood or tissues (291) or be used as a gold standard in quality 814 

assurance (292). As over two-thirds of steroid hormones and their metabolites are excreted into 815 

urine, the measurement of these urinary steroids provides an integrated picture of a patient’s steroid 816 

hormonal status (steroidal fingerprint) and has enormous diagnostic power. Adrenal enzyme 817 

defects show unique metabolic patterns (disease signatures, metabotypes) (293). Usually, a spot 818 

urine sample is sufficient for diagnosing an adrenal enzyme defect (268,294,295). Timed samples 819 

(e.g. 24-hr urine) provide additional information on hormonal production rates via determination 820 

of steroid excretion rates (296,297).  This information aids the diagnosis of hormonal 821 

overproduction syndromes, e.g. Cushing syndrome or tumors, as well as in assessing compliance 822 

with hormonal therapy in CAH (298,299). Moreover, this approach has been used to dissect the 823 

contribution of the three androgen biosynthesis pathways discussed in Section II.C (133,300,301). 824 

Unbiased systems biology approaches allow for clustering and describing various metabotypes 825 
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(302), reclassifying hitherto uncharacterized conditions (303) or improving metabolic monitoring 826 

of 21OHD (304,305).  827 

 LC-MS is a more recent technique than GC-MS (303). Tandem MS (MS/MS) provides an extra 828 

level of filtering, thus improving the relatively poor separation properties of LC. Simple work up 829 

procedures and short run times permit much greater throughput than with GC-MS (283). Currently, 830 

determination of most clinically relevant steroid hormones in plasma or serum can be carried out 831 

by LC-MS/MS. It is the technique of choice for determining conjugated steroids (306). However, 832 

factors such as relatively low chromatographic resolution and lower ionization fraction, compared 833 

with electron impact in GC-MS, can impair the specificity of LC-MS/MS. Thus, GC-MS and LC-834 

MS/MS should be considered complementary techniques. 835 

 Whatever analytical method is used, thorough method validation is a sine qua non. Important 836 

aspects of method validation comprise assessment of sensitivity, precision, reproducibility, 837 

accuracy, limits of quantification and detection, recovery, stability, carryover and matrix effects.  838 

Recommendations have been published for the hormonal diagnosis of steroid related disorders 839 

(307).    840 

 841 

C. Molecular genetic testing for CYP21A2 gene mutations 842 

 Southern blot analysis was originally the gold standard for the detection of CYP21A2 gene 843 

deletions but is no longer used clinically because it requires relatively large amounts of high-844 

quality DNA, is labor intensive, and time consuming. Moreover, CYP21A1P duplications and 845 

certain other rearrangements at this locus may impede the detection of CYP21A2 gene deletions or 846 

duplications (308). The most widely used current approach for gene dosage determination is 847 

multiplex ligation-dependent probe amplification (MLPA). MLPA requires only small amounts of 848 
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DNA for detection of gene deletions, rearrangements and fusion genes (212,309-311). However, 849 

complex rearrangements can lead to challenges interpreting the correct genotype. The design of 850 

CYP21A2-specific primers for PCR-based amplification is crucial to avoid amplification of the 851 

pseudogene and allele dropout by non-amplifying PCR fragments. This represents a challenge due 852 

to the high number of polymorphisms within CYP21A2 and the high sequence identity with its 853 

CYP21AP1 pseudogene. A variety of targeted molecular genetic strategies for detecting the 854 

common mutations have been published and are established in diagnostic laboratories. However, 855 

direct sequencing of the amplified PCR products combined with a method for the detection of gene 856 

deletions and chimeric genes are the only available strategies that allow for the detection of close 857 

to 100% of CYP21A2 mutated alleles. If possible, carrier testing should be performed in the parents 858 

to set phase (i.e., confirm the parental origin of each mutation), which is required to determine 859 

compound heterozygosity, distinguish hemizygosity from homozygosity in the index case, and 860 

estimate the recurrence risk. 861 

 862 

D.  Prenatal diagnosis    863 

  Prenatal diagnosis can be performed when both parents are carriers of CYP21A2 mutations; 864 

most often this situation arises when they have a previous child with 21OHD. The possible 865 

methods for prenatal diagnosis have increased over the past decades. However, methods involving 866 

invasive sampling should only be performed if the results will lead to changes in approach or 867 

treatment (312). 868 

Analysis of fetal hormones in amniotic fluid was the initial method available for prenatal 869 

diagnosis (313-315). Fetal cells obtained this way were originally used for HLA typing to 870 

determine the inheritance of maternal and paternal haplotypes (CYP21A2 is located in the HLA 871 
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complex)(316) but can also be used for genetic analysis, although cells must first be cultured, a 872 

time-consuming process. 873 

 Chorionic villus sampling to obtain fetal DNA can be performed as early as gestational week 874 

10-11, as compared to week 12-14 for amniocentesis (317). This method is available in many 875 

countries and centers today. Both amniocentesis and chorionic villus sampling are associated with 876 

a small but increased risk of fetal loss (318).  877 

 Non-invasive methods 878 

 Cell-free fetal DNA can be isolated from maternal plasma (319). Unlike fetal cells, it 879 

disappears from the maternal circulation shortly after delivery (319,320) and therefore does not 880 

confound prenatal genetic investigations in subsequent pregnancies (321,322). Prenatal sex typing 881 

(SRY detection) can be performed using PCR amplification of cell-free fetal DNA as early as week 882 

6–9 (323) and may be useful in decisions regarding prenatal treatment with dexamethasone to 883 

minimize treatment of male fetuses (see section  V.C) (324). Next generation sequencing of cell-884 

free fetal DNA can ascertain mutations, but it is challenging to detect CYP21A2 mutations in this 885 

manner because the vast majority of such mutations are already present in the CYP21A1P 886 

pseudogene. Instead, targeted massive parallel sequencing of cell-free fetal DNA in maternal 887 

plasma can identify SNPs flanking CYP21A2 that are specific for the mother, father, and proband 888 

(previous child), thus constructing haplotype blocks to determine the maternal and paternal alleles 889 

inherited by the fetus (325). The technique is promising but costly; it requires specific resources 890 

and personnel and is not yet available as part of routine clinical care. 891 

  Preimplantation genetic diagnosis 892 

 Preimplantation genetic diagnosis (PGD) is available in many countries for families at risk of 893 

having a child with a severe genetic condition including 21OHD. PGD requires an in vitro 894 
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fertilization approach and enables implantation only of embryos without the specific genetic 895 

disorder. It may present ethical challenges beyond the scope of this review (326). The preferred 896 

approach to obtain DNA for PGD is a biopsy at day 5-6 from the trophectoderm of the blastocyst 897 

when it comprises about 120 cells. The inner cell mass that will develop into the fetus, from which 898 

5-10 cells are required, can then be separated from the trophectoderm (312).  If the first polar body 899 

of the oocyte is used in PGD, the procedure is performed before fertilization occurs, and the 900 

analysis offers the unique possibility of pre-conceptional diagnosis. The disadvantage for 901 

autosomal recessive disorders is that only the oocyte is assessed and the paternal allele is not 902 

included in the assessment. The rate of fetal anomalies is not increased with PGD, rather it is 903 

thought that if damage occurs during the procedure it is lethal to the embryo (327). 904 

 905 

V. MANAGEMENT 906 

A. Hormonal treatment of classic CAH   907 

 Treatment of classic CAH is intended to replace both glucocorticoid and if necessary, 908 

mineralocorticoid hormones to prevent adrenal and salt-wasting crisis and to reduce excessive 909 

corticotropin driving adrenal androgen secretion (134). Clinical goals are normal growth and 910 

development and pubertal maturation from birth to adolescence, and prevention of adrenal crisis, 911 

virilization, and other long-term complications discussed below (134,328,329). The levels of 912 

evidence for management guidelines are detailed in The Endocrine Society’s Clinical Practice 913 

Guideline published in 2018 (134) and are not repeated here. There are no large-scale prospective 914 

randomized trials for any therapies discussed here. As such the evidence is generally of low or 915 

moderate quality and rests to some extent on expert opinion, values and preferences. 916 

Glucocorticoid replacement in CAH faces three particular challenges. First, it aims to replace 917 
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cortisol, but current treatment strategies cannot completely mimic the circadian rhythm of cortisol 918 

with a typical early morning rise of cortisol leading to a peak concentration at 6-8 AM and a nadir 919 

at midnight (330). Second, it aims to mimic the adaptation to stress (331). These distinctive 920 

features of physiological cortisol biosynthesis could only be closely mimicked by an infusion 921 

pump (332,333) which, however, is neither practical nor cost-effective and thus not routinely 922 

available. Third, it aims to restore negative feedback on pituitary ACTH drive thereby controlling 923 

adrenal androgen excess (334). Normalizing ACTH levels in CAH patients requires 924 

supraphysiological glucocorticoid doses compared to the mere replacement doses of cortisol 925 

required in other forms of adrenal insufficiency. Treatment in classic CAH therefore constantly 926 

struggles to prevent overtreatment with multiple adverse side effects on growth and on metabolic, 927 

cardiovascular and bone health, or undertreatment, which carries risks life-threatening adrenal 928 

crises and virilization or, in children, accelerated skeletal maturation with consequently reduced 929 

adult height. Both over- and undertreatment also affect reproductive function in both sexes. 930 

 931 

 Treatment in the neonatal period and early infancy 932 

 In growing children with classic CAH, the preferred glucocorticoid is the synthetic form of 933 

cortisol, hydrocortisone (HC), because its shorter half-life minimizes the adverse side effects 934 

typical of longer-acting, more potent glucocorticoids, especially growth suppression (134). As 935 

cortisone must be converted to cortisol for bioactivity (335,336) and differences in conversion 936 

rates may influence drug effectiveness, cortisone acetate is not recommended (337,338). HC 937 

should be given in 3 to 4 divided doses totaling 10-15 mg/m2 daily (Table 3), a supraphysiological 938 

dose under which many patients show satisfactory control of adrenal androgen production. 939 

Although there are data to suggest that 4 daily doses are preferable (339), this may not be practical 940 

for many patients or their families. Data remain inconclusive regarding morning versus evening 941 
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dose-weighting (340,341). The total dosage should be individualized based on adequate 942 

monitoring (see below) and may need to be increased for short periods in certain circumstances; 943 

such increased needs are described below. Therefore, all children with CAH should be under the 944 

care of a pediatric endocrinologist (342). 945 

 In the neonatal period, some clinicians exceed the recommended glucocorticoid dose in order 946 

to reduce elevated androgen levels as quickly as possible.  If this treatment strategy is adopted, 947 

more frequent monitoring is necessary to rapidly reduce the dose when target levels of monitored 948 

steroids are achieved, to avoid adverse effects of high doses of glucocorticoids (343). After a few 949 

months, maintenance daily totals of about 3-4 mg HC divided in 3 doses (i.e., 1-2 mg three times 950 

daily) are usually sufficient. Infants have low sensitivity to androgens, and completely suppressed 951 

adrenal androgens should not be the main goal in the first year of life. Commercial HC tablets, 952 

which may be extemporaneously crushed and mixed into food or suspended, are preferred as there 953 

have been reports of variable dose accuracies in compounded preparations (344,345). A 954 

suspension would be preferable for small children, but the commercial suspension was withdrawn 955 

20 years ago owing to unreliable therapeutic effects, although in some countries reliable solutions 956 

are now available (346). An immediate-release granule formulation of hydrocortisone (Infacort®/ 957 

Alkindi®, Diurnal Ltd.) available in 0.5, 1, 2 and 5 mg preparations has been approved for use in 958 

the EU and USA (347,348). 959 

 Mineralocorticoid replacement is achieved with fludrocortisone. Monitoring is discussed in 960 

section V.A.5. Subclinical or overt aldosterone deficiency is present in all forms of classic CAH 961 

(349,350). Therefore, fludrocortisone is given to all newborns with classic CAH detected in 962 

neonatal screening programs even before hyponatremia develops. Due to relative 963 

mineralocorticoid resistance and the anti-mineralocorticoid effects of elevated 17OHP in this 964 



 

46 

 

period, neonates and young infants require higher fludrocortisone doses than older children, 965 

typically 100-200 µg/day but occasionally more, divided in 1-2 oral doses. However, this treatment 966 

requires frequent monitoring of electrolytes, plasma renin and blood pressure and tapering the 967 

fludrocortisone dose in order to avoid iatrogenic hypertension. Because of a lower glomerular 968 

filtration rate, immature renal tubules and the low sodium concentration in breast milk and infant 969 

formula, infants often require additional supplemental sodium chloride to maintain sodium balance. 970 

The recommended dosage is approximately 1-2 g (4-8 mEq/kg/d) NaCl given in divided doses 971 

ideally using a standard saline solution (351) or crushed, aliquoted sodium chloride tablets. In 972 

patients receiving high doses of fludrocortisone, NaCl supplementation may not be needed (352). 973 

Moreover, 0.1 mg of fludrocortisone has the glucocorticoid potency of ~1 mg of hydrocortisone, 974 

so high fludrocortisone doses may permit (or require) a reduction of the hydrocortisone dose in 975 

young children. 976 

 Treatment during childhood 977 

  Children younger than 18 months should be monitored at least every 3 months, while older 978 

children should be monitored every 4-6 months or more frequently after a change in dosing. The 979 

suggested target 17OHP range is 100-1200 ng/dl (3-36 nmol/l) when measured in the early 980 

morning before medication (337,338), and/or age-appropriate androstenedione levels. Attempts to 981 

normalize 17OHP levels should be avoided because of the risk of HC overdosing causing 982 

iatrogenic Cushing syndrome. Because prepubertal children normally have low circulating sex 983 

steroid levels, adequate androgen suppression is important to achieve normal growth and puberty. 984 

Table 3 provides suggested dosing guidelines (134). HC dosing requirements may vary and 985 

depend on differences in HC absorption and half-life (353). Long-acting glucocorticoids should 986 

be avoided in growing children except for short intervals when necessary to restore hormonal 987 
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control, or if HC is unavailable (Table 4). If used, care must be taken to avoid overdosing, which 988 

will suppress growth (354-356), and the dose should be decreased as quickly as possible once 989 

hormonal control is achieved. 990 

 Aldosterone deficiency is described in up to 75- 90% of all classic CAH patients, now viewed 991 

as a continuum of phenotypes rather than strict divisions between SV and SW disease. In classic 992 

CAH after infancy, fludrocortisone is usually given in doses ranging between 50-200 µg. 993 

Fludrocortisone has a biological half-life of approximately 18 – 36 hours. Therefore, low doses 994 

can be administered once a day, although doses above 0.1 mg may still be divided to be given 995 

twice daily. In hot and humid weather conditions, some endocrinologists suggest a seasonal 996 

increase in fludrocortisone, although increased salt intake may suffice. In contrast to 997 

glucocorticoid treatment fludrocortisone does not need to be increased during illness (Section 998 

V.A.6) 999 

 Treatment during puberty and adolescence 1000 

 Puberty is often associated with difficult hormonal control, even if the replacement dose seems 1001 

adequate and there is good adherence to the medication regimen. During puberty, the 1002 

pharmacokinetics of HC may be altered by increased clearance due to decreased activity of 11β-1003 

HSD1. Therefore, higher glucocorticoid doses are necessary during puberty (357). However, as 1004 

adult height of patients with CAH correlates negatively with the glucocorticoid  dose administered 1005 

in early puberty (356), HC doses exceeding 17 mg/m2 per day should be used with care. Treatment 1006 

should be continued with the lowest effective dose to achieve treatment goals, prioritizing height 1007 

attainment over arbitrary steroid measurements. At or near the completion of growth, long-acting 1008 

glucocorticoids might be considered but are not preferred.  1009 
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 Management of CAH during adolescence and the transition from pediatric to adult health care 1010 

is challenging (358). CAH patients may have poorer health, beginning in adolescence and 1011 

persisting into adulthood, highlighting the importance of this period in patient care (359). Multi-1012 

disciplinary transition clinics involving pediatric and adult endocrinologists, gynecologists, 1013 

urologists and psychologists may promote good medical adherence among adults with CAH (134). 1014 

Uninterrupted glucocorticoid and mineralocorticoid administration at the transition from 1015 

adolescence to adulthood is required to prevent increased morbidity and mortality, particularly 1016 

from adrenal crises. Treatment regimens should be reassessed and adapted to the recommendations 1017 

for adult CAH patients. Importantly, mineralocorticoid requirements, which change from birth to 1018 

adolescence, should be reassessed in adolescence/young adulthood to avoid mineralocorticoid 1019 

over- and under-replacement (360). Transition, however, is more than just prescribing steroid 1020 

replacement for primary adrenal insufficiency and must address sex- and gender-specific issues 1021 

(361,362). In females, obesity and hyperandrogenism are common problems leading to menstrual 1022 

irregularities and hirsutism (359). Gynecologic evaluation should be offered to all adolescents with 1023 

CAH at transition, particularly in cases of blocked menstrual flow, planned penetrative vaginal 1024 

intercourse or desired pregnancy (134,363). Boys should have a testicular ultrasound upon 1025 

completion of puberty and regular examination for TARTs (359.). All patients should be aware of 1026 

the risk of reduced fertility with poor medical adherence (134). Psychosexual and genetic 1027 

counseling of the adolescent patient are strongly recommended during transition (364). 1028 

 Treatment of adults  1029 

 1030 
 Treatment of adults with classic CAH aims to replace the missing cortisol and aldosterone, and 1031 

ameliorate adrenal androgen excess (334). Optimal hormone replacement theoretically should 1032 

enable normal quality of life and life expectancy. However, this aim is not always achieved, and 1033 
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adults with classic CAH suffer from multiple disease-associated comorbidities (365-367), reduced 1034 

health-related quality of life (360) and increased mortality (368).   1035 

 The decision of which preparation to use for glucocorticoid treatment in adults with classic 1036 

CAH is based on the clinical experience of the individual physician and on the needs of each 1037 

patient (Table 4). In general, the lowest possible doses should be prescribed that minimize risk of 1038 

adrenal crises and control androgen excess. HC is associated with better bone mineral density and 1039 

better metabolic and cardiovascular outcome than dexamethasone in both sexes; prednisolone and 1040 

prednisone have adverse effect profiles intermediate between HC and dexamethasone (366,369). 1041 

Therefore, immediate-release HC remains the preferred option for glucocorticoid treatment in 1042 

adulthood. Due to its short half-life of 4-6 hours, however, it needs to be taken 3-4 times per day 1043 

and requires reliable adherence.  1044 

 When patient adherence to a three times daily regimen is difficult, a twice daily regimen with 1045 

prednisolone or prednisone (e.g. 1-5 mg per dose, for a total daily dose of 20-25% of the previous 1046 

hydrocortisone dose) might be used instead (360,370,371). Prednisolone/prednisone also has been 1047 

used for fertility induction when it might be more effective and can be continued throughout 1048 

pregnancy (372). Dexamethasone (Dex) also effectively helps to establish regular menstrual cycles, 1049 

but it is long-acting and associated with more adverse metabolic side effects (373).  In contrast to 1050 

prednisolone, prednisone or HC, dexamethasone traverses the placenta and therefore should be 1051 

avoided during pregnancy (the use of Dex for prenatal treatment of a possibly affected fetus is 1052 

discussed in Section V.C)(134,374-377). Due to its strong adrenal-suppressive effect, Dex is 1053 

preferred in the treatment of TARTs (378,379). For this purpose, it needs to be given in 1054 

supraphysiological doses, and should be given for short duration to avoid adverse metabolic effects 1055 

such as weight gain, striae, edema and glucose intolerance.  1056 
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 Sustained-release HC preparations have been developed as an alternative to longer-acting 1057 

synthetic corticosteroids such as prednisone/prednisolone or dexamethasone. A modified-release 1058 

HC formulation Plenadren® (Shire Services BVBA, Belgium), is approved in Europe for 1059 

treatment of adrenal insufficiency in adults. When given once daily to patients with primary 1060 

adrenal insufficiency, it significantly improves metabolic variables such as body weight, body 1061 

mass index (BMI) and HbA1c, compared to conventional hydrocortisone replacement of the same 1062 

daily dose (380,381). However, data on its use in CAH patients are lacking. Clinical experience 1063 

shows that once daily hydrocortisone therapy fails to control early morning rise of ACTH with 1064 

subsequent excess of adrenal androgens in CAH, requiring an additional glucocorticoid dose in 1065 

the evening. Excessive nighttime glucocorticoid administration has potential adverse metabolic 1066 

consequences (371,382). Another modified-release preparation (Chronocort®, Diurnal, UK) 1067 

addressing this CAH-specific challenge is currently under regulatory review for the treatment of 1068 

CAH. It exerts a delayed (4 hours following intake) and sustained action (383). If taken at 2300 1069 

(11 PM), the delayed release mimics the overnight rise and following morning peak of cortisol 1070 

(383,384). A second dose is given in the morning (7 AM) ensuring cortisol supply during the day. 1071 

A phase III trial including 122 patients with classic CAH revealed superior hormonal control 1072 

during the early morning and early afternoon compared to patients receiving standard 1073 

glucocorticoid therapy (338,385).  1074 

 Monitoring  1075 

 Regular follow-up should include measurement of height, weight, blood pressure and physical 1076 

examination. In children, special attention should be paid to accelerated or reduced height velocity, 1077 

rapid weight gain, skin and mucosal hyperpigmentation, signs of virilization, pubic hair onset, 1078 

development of apocrine odor and signs of central precocious puberty such as breast development 1079 
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or testicular enlargement. Medical history concerning symptoms of salt craving, phases of unusual 1080 

fatigue during the day, irregular menstrual cycles in girls and skin hyperpigmentation point to the 1081 

need for medication titration (Table 5). 1082 

Laboratory monitoring traditionally relies on consistently timed serum 17OHP, 1083 

androstenedione and plasma renin levels, whereas ACTH measurements are superfluous (Table 1084 

6). Plasma renin activity and direct renin levels are extremely variable and should be used along 1085 

with standing blood pressure and electrolytes to titrate mineralocorticoid dosing (134,386). Other 1086 

hormonal monitoring approaches have been suggested but are not yet used routinely. Adrenal-1087 

specific metabolites such as 21-deoxycortisol (387) and 11-oxygenated androgens (86) may 1088 

provide more direct evidence for adrenal androgen production in CAH. Steroids can be measured 1089 

in blood, urine (268,305), saliva (388) and dried filter-paper blood samples (389,390) and fluctuate 1090 

with both the circadian rhythm and the timing of glucocorticoid intake (298,391-393).  1091 

 Regular bone age X-rays in growing children beyond 2 years of age are helpful to detect 1092 

unwanted bone age advancement as a result of cumulative exposure to excess adrenal androgens. 1093 

The clinician should be alert to signs of central precocious puberty (e.g., testicular enlargement in 1094 

boys, breast development in girls) because elevated adrenal androgens may activate the 1095 

hypothalamic-pituitary-gonadal axis (134). The decision to adjust HC and fludrocortisone doses 1096 

should consider clinical symptomatology and should not solely rely on laboratory data. Monitoring 1097 

for reproductive complications are discussed below including reduced fertility in females (section 1098 

0), and TARTs in males (see section VI.A.1).  1099 

 Management of adrenal emergency in CAH 1100 

 The overwhelming majority of patients with CAH survive into adulthood, but with shortened 1101 

life expectancy. Adrenal crises were responsible for 42% of deaths in 588 patients with CAH in a 1102 
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Swedish population-based study; those with the SW form were especially at risk, as they had the 1103 

lowest cortisol and aldosterone reserves (368). In a retrospective matched-cohort study in the UK, 1104 

all-cause mortality rates were higher in patients with CAH, with a mean age at death of 54.8 years 1105 

versus 72.8 years in controls (394). The incidence of adrenal crisis in adults with adrenal 1106 

insufficiency is estimated to be 5–10 crises/100 patient years with a mortality rate of 0.5/100 1107 

patient years (395). Studies of children report similar findings. Two German studies estimated the 1108 

incidence of adrenal crisis after the neonatal period to be 4.9-6.5 adrenal crises/100 patient years 1109 

(396,397). In an American series, 55/155 children with SW CAH were hospitalized a total of 105 1110 

times over a 14-year period (398). In an Australian population-based study of children and 1111 

adolescents with CAH, both hospital admission and the risk of adrenal crisis decreased with age 1112 

(399). A large multicenter international study of 518 children from low-middle income as well as 1113 

high income countries reported an adrenal crisis rate of 2.6/100 patient years (400). 1114 

 Adrenal crisis is most often triggered by infectious illness (397,401,402). A population-based 1115 

retrospective cohort study (drug prescriptions and clinical diagnoses) in the UK reported increased 1116 

rates of infectious illnesses in patients with CAH (401).  Gastrointestinal illnesses and upper 1117 

respiratory tract illnesses are the most common precipitants of adrenal crises in both children and 1118 

adults (397,398,401,402). Socioeconomic factors influence risk; in the USA, patients with 1119 

government insurance (reflecting low family income) were twice as likely to be hospitalized as 1120 

patients with commercial insurance (398). Pre-school children, adolescents, males and those with 1121 

SW CAH, were more likely to experience sick days requiring stress dosing. Patients treated with 1122 

higher glucocorticoid doses were less likely to suffer illness requiring stress dosing. The frequency 1123 

of adrenal crises has decreased over time, perhaps due to greater awareness of this risk during sick 1124 

days. None of the adrenal crises reported in a multicenter study were fatal (400). 1125 
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 Hypoglycemia can occur unexpectedly (396), may be associated with seizures, and can 1126 

occasionally result in permanent neurologic sequelae, especially in children (402,403). Patients 1127 

with SW CAH have adrenomedullary dysfunction with epinephrine deficiency (404) and this 1128 

contributes to the risk of hypoglycemia especially in young children. 1129 

 Protocols for the prevention and treatment of adrenal crisis are based on expert opinion and 1130 

clinical experience (134,405,406).  “Sick day rules” aim to prevent acute deterioration and a life-1131 

threatening adrenal crisis. However, the definition and reporting of sick days is more variable than 1132 

that of adrenal crises, with evidence of systematic variation between centers (400). Adverse 1133 

outcomes in children are related more to hypoglycemia than to electrolyte disturbances 1134 

(396,402,407); thus, frequent intake of carbohydrates is important (402). Oral stress doses (2-3 1135 

times usual doses) of glucocorticoid cannot always prevent the progression to adrenal crisis and 1136 

the occurrence of hypoglycemia (407,408).  Increased HC doses are suggested with infectious 1137 

illnesses (Table 7). Hydrocortisone sodium succinate for intramuscular injection should be 1138 

prescribed with instructions for home use if oral medication is not tolerated during episodes of 1139 

major stress (e.g., febrile illness with vomiting), especially for patients residing far from medical 1140 

facilities. Once brought to emergency care, intravenous HC and isotonic fluids should be given. 1141 

Continuous intravenous infusion of hydrocortisone sodium succinate might have a theoretical 1142 

advantage over intermittent bolus administration because of lower variability and avoidance of 1143 

regular troughs in plasma cortisol levels (385,410), but these two approaches have not been 1144 

compared directly and clinical outcomes are likely similar. Stress dosing is indicated for pregnant 1145 

women in active labor, similar to that used in major surgical stress (405). Stress dosing is not 1146 

recommended for everyday mental and emotional stress, minor illness or before routine exercise 1147 

(134,405,406). Serum cortisol did not exceed 10µg/dL (276 nmol/L) in healthy children 1148 
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undergoing minor surgical procedures; therefore, stress dosing for minor procedures (e.g. brief 1149 

medical or dental procedures performed under local anesthetic with or without light sedation) 1150 

should be individualized (249,411).  1151 

Approximately one-third of patients with NC CAH have mild but clinically silent cortisol 1152 

impairment (412,413) and the risk of adrenal crisis is unknown. Adrenal crisis has only been 1153 

reported in NC CAH patients receiving glucocorticoid therapy in the setting of iatrogenic tertiary 1154 

hypothalamic-pituitary-adrenal axis suppression (134,402). Thus, stress dosing for the prevention 1155 

of adrenal crisis is recommended for glucocorticoid-treated patients with NC CAH. The Endocrine 1156 

Society Clinical Practice Guideline (134) suggests HC stress dosing in the case of severe illness, 1157 

major surgery, major trauma or childbirth for untreated individuals with a suboptimal ACTH test 1158 

(in adults, cortisol below 14-18 µg/dL, <400–500 nmol/l).  1159 

 In general, prevention of adrenal crisis in patients with known adrenal insufficiency is best 1160 

accomplished through repeated structured patient education regarding “sick day rules” (414,415). 1161 

All patients should wear medical alert identification tags or have an emergency card (and/or 1162 

emergency information on their mobile phones) indicating adrenal insufficiency. A medical card 1163 

developed by the European Society of Endocrinology is downloadable and includes guidance for 1164 

healthcare providers as well (https://adrenals.eu/emergency-card/). A UK version including a QR 1165 

code rapidly linking emergency personnel to instructions on adrenal crisis treatment is available 1166 

(https://www.endocrinology.org/media/3652/steroid-nhs-card.jpg). 1167 

 1168 

B. Treatment of NC CAH   1169 

 In NC CAH the estimated residual enzymatic activity of CYP21A2 is about 20 – 50% based 1170 

on in vitro or in silico studies, resulting in a generally mild but highly variable phenotype 1171 

https://adrenals.eu/emergency-card/
https://www.endocrinology.org/media/3652/steroid-nhs-card.jpg
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(212,217,416). In contrast to classic CAH, no general guidelines exist for the management and 1172 

follow-up of these patients and the overall evidence of recommendations for NC CAH is low 1173 

(134,342,417-419). Decisions about starting treatment should be individualized and based mainly 1174 

on clinical symptoms; the Endocrine Society guidelines do not recommend routine treatment with 1175 

glucocorticoid in asymptomatic individuals (134). The general treatment goals in children are to 1176 

maintain normal growth and pubertal development and to minimize risk of therapies; children 1177 

should be regularly monitored clinically for height, weight, signs of androgen excess, puberty and 1178 

bone age advancement (420).  1179 

 When glucocorticoid treatment is required, HC is preferred, as with classic CAH. Patients 1180 

receiving glucocorticoid therapy require stress-dosing per guidelines (see Section V.A.6). 1181 

Mineralocorticoid supplementation with fludrocortisone is not required. 1182 

 Growth  1183 

 In contrast to untreated children with SV CAH, children with NC CAH may not have increased 1184 

growth velocity although bone age maturation can be accelerated, potentially leading to reduced 1185 

adult height (421,422). However, most studies describe nearly normal adult height in NC CAH 1186 

patients (417,423-425). Glucocorticoid treatment should be reserved for patients who suffer from 1187 

androgen excess, although criteria for deciding when symptomatology warrants treatment are not 1188 

well defined. Supraphysiological dosages of glucocorticoids similar to those used to treat classic 1189 

CAH patients may be necessary to suppress adrenal androgen production (426). Treatment will 1190 

suppress the hypothalamic-pituitary-adrenal axis requiring stress dosing in case of illness. In many 1191 

cases glucocorticoid treatment may be discontinued after reaching adult height, if the individual is 1192 

otherwise asymptomatic (134). Adverse effects such as excess weight gain may make continued 1193 

glucocorticoid treatment less desirable. 1194 
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 1195 

 Puberty 1196 

 Children with NC CAH can present with signs of increased adrenal androgen production such 1197 

as premature pubarche, acne, mild hirsutism and menstrual disturbances that can progress over 1198 

time (427), but in contrast to classic CAH, central precocious puberty is infrequently observed 1199 

(37). Glucocorticoids can lower adrenal androgen concentrations ameliorating signs of 1200 

hyperandrogenism, but prolonged glucocorticoid treatment may have long term adverse effects. 1201 

Alternative treatment options in adolescent and young adult females to induce menstrual cycles 1202 

and improve acne and hirsutism include oral contraceptives containing progestins with low 1203 

androgenic activity such as desogestrel (428). Antiandrogens can be considered as an add-on for 1204 

patient-important hirsutism that persists despite oral contraceptives (see the next section).  1205 

  1206 

 NC CAH in adult women  1207 

 Most patients diagnosed with NC CAH are females suffering from mild adrenal androgen 1208 

excess without clinically relevant deficiencies of gluco- and mineralocorticoids (134,429). Typical 1209 

symptoms in affected women are hirsutism, oligo- and amenorrhea, acne, alopecia and sub- or 1210 

infertility (427). Sometimes the diagnosis is made within the course of evaluation for adrenal 1211 

incidentalomas (430-432). The main treatment goal is to reduce adrenal androgens and symptoms 1212 

of androgen excess. Clinical studies comparing different treatment approaches in adults with NC 1213 

CAH are lacking; treatment should only be started in symptomatic patients desiring treatment 1214 

(134). The risks, benefits and effectiveness of various treatment options should be discussed. 1215 

Fertility and childbearing in women with NC CAH are discussed in section VI.B).  1216 
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 Additional treatments for signs of androgen excess 1217 

 Hirsutism is the most prevalent symptom in women with NC CAH, but also the most difficult 1218 

to treat (433). Clinical experience suggests that a combination of oral contraceptives, topical 1219 

eflornithine and cosmetic treatment (shaving, chemical depilatories, plucking, tweezing, threading, 1220 

waxing or epilation therapy, electrolysis and intense pulsed light) might be the most effective 1221 

treatment approach (434). For the treatment of acne and androgenic alopecia a dermatologist 1222 

should be consulted. 1223 

 Oral contraceptives act on the production, transport (increase of sex hormone binding globulin) 1224 

and action of androgens. Anti-androgenic oral contraceptives containing cyproterone acetate, 1225 

chlormadinone acetate, dienogest, or drospirenone effectively reduce androgenic symptoms. If 1226 

hirsutism is the leading symptom, oral contraceptives are the preferred treatment (134). One 1227 

randomized study in 30 women with NC CAH found cyproterone acetate to be more effective than 1228 

hydrocortisone for isolated hirsutism (435).  1229 

 Spironolactone, flutamide and finasteride can be used to treat hirsutism (433), acne and 1230 

androgenic alopecia (436) but are teratogenic and not approved for this use. Eflornithine 1231 

hydrochloride cream is used as topical therapy for facial hirsutism (433). It prevents hair growth 1232 

by inhibiting the anagen phase of hair production. Eflornithine irreversibly binds to ornithine 1233 

decarboxylase and thus prevents the natural substrate, ornithine, from accessing the active site. It 1234 

is most effective when combined with physical means of hair removal, such as topical lasers.   1235 

 Treatment of adult men with NC CAH 1236 

As androgen production in the testis far outweighs adrenal androgen production, men generally 1237 

do not experience symptoms of androgen excess requiring treatment, and therefore remain 1238 

undiagnosed. In rare cases, severe acne, reduced fertility or adrenal incidentaloma lead to the 1239 
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diagnosis of NC CAH in men (429). TARTs are rare in men with NC CAH (437-439).  Therefore, 1240 

routine scrotal ultrasound is not recommended in NC CAH males.   1241 

 1242 

C. Prenatal treatment  1243 

 Purpose 1244 

Since the mid-1980’s, prenatal treatment with high doses of Dex has been proposed for to pregnant 1245 

women with a fetus at risk for classic CAH using a treatment protocol of 20 µg/kg/day, maximum 1246 

1.5 mg/day, with the aim of preventing prenatal virilization of the external genitalia in affected 1247 

girls (313,317,440). The treatment is effective in ameliorating virilization of the external genitalia 1248 

if started by gestational week 6-7 (441); in most centers this is before a fetal diagnosis can be made 1249 

(see section IV.D). If prenatal diagnosis, most often by chorionic villus biopsy obtained in week 1250 

10-11, shows that the fetus is a girl with classic CAH, the treatment is continued until term, but 1251 

otherwise stopped. The treatment is controversial due to safety concerns (442). Risk-benefit 1252 

assessments must consider that, on average, 8 pregnancies at risk for CAH must be treated for 1253 

every affected female who might benefit from the treatment (443-446). Endocrine societies and 1254 

others have stated that the treatment is experimental and should only be performed in centers taking 1255 

part in long-term research studies of these treated pregnancies (134,328,375,377,447). 1256 

  Fetal safety 1257 

 There have not been randomized studies of prenatal dexamethasone (Dex) treatment, and so 1258 

all discussions of adverse effects are based on animal or retrospective data. Dex is a pluripotent 1259 

gene regulator and its introduction at a critical stage of embryonic development may impact much 1260 

more than the developing hypothalamic-pituitary-adrenal axis. Numerous studies (Table 8) have 1261 

delineated adverse outcomes affecting brain, cardiovascular, renal, reproductive, thyroid and 1262 
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metabolic functions in non-human mammalian species exposed to glucocorticoids in utero 1263 

(reviewed in (375)).   1264 

 With respect to human teratogenicity, systematic review and meta-analysis found an odds ratio 1265 

of 1.41 (95% confidence interval 1.14-1.74) for cleft lip and palate in case-control series of infants 1266 

whose mothers were treated with glucocorticoids in the first trimester (468). Even when exposed 1267 

later in gestation, multiple doses of antenatal steroids for preterm labor increased the number of 1268 

infants with birth weight < 10th percentile and the risk for cerebral palsy (469). Among pregnancies 1269 

at risk for CAH, prenatally Dex-treated newborns have lower, but nominally normal, birth weights 1270 

compared to untreated controls (470); the decrease averages ~400 g (471). Other adverse events 1271 

including failure to thrive, stroke-like events and midline defects have been observed in both short-1272 

term and full-term treated cases at risk for CAH (472-474).  1273 

Prenatal Dex treatment has shown inconsistent long-term effects on cognition and behavior 1274 

(Table 9).  One study showed no cognitive differences but increased shyness and emotionality in 1275 

treated children (475). A larger follow-up study from the same group of 126 non-CAH and 48 with 1276 

CAH short-term exposed children and 8 girls with CAH treated until term did not show any effects 1277 

on motor, cognitive, and social development or scholastic competence using parental 1278 

questionnaires (476).  In a later report including two different age groups (5-12 and 11-24 years) 1279 

using neuropsychological testing, there were no significant findings in children without CAH (480). 1280 

Swedish studies of healthy non-CAH children exposed to Dex only during the first trimester have 1281 

shown negative effects on cognition, especially verbal working memory (477); a sexually 1282 

dimorphic effect with a more pronounced negative effect on working memory and executive 1283 

function was observed in the girls (483). A follow-up with a second neuropsychological testing in 1284 
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a subgroup of the cohort as adults showed less pronounced effects indicating a possibility for 1285 

compensatory mechanisms over time (485).  1286 

 In two cohorts of girls with CAH treated throughout gestation, neurocognitive outcomes were 1287 

negatively affected for mental processing and spatial memory (480) and broad deficits were found 1288 

in most measures of cognition  (488). In contrast, a Polish study reported better cognitive results 1289 

in general in 9 girls with CAH who were treated throughout pregnancy, but 8 unaffected girls who 1290 

had been treated with Dex had worse results than controls (481).  1291 

 Possible imprinting effects of prenatal exposure to Dex have only begun to be explored. 1292 

Differences in DNA methylation in peripheral CD4+ T-cells seemed to be related to sex (485). Of 1293 

particular interest were methylation effects of the genes BDNF and FKBP5, relevant for the 1294 

development of the central nervous system, and NR3C1 encoding the glucocorticoid receptor. 1295 

There were also associations between DNA methylation and performance on cognitive tasks.  1296 

 Moreover, first trimester Dex exposure of non-CAH fetuses is associated with differences in 1297 

brain morphology (489). MRI studies in adults showed enlargement of the amygdala, increased 1298 

left superior frontal gyrus, and widespread white matter changes. The pathophysiology behind the 1299 

observed neuropsychological effects of early Dex exposure are largely unknown. Infants 1300 

prenatally exposed to betamethasone have altered responses of the HPA axis and a higher 1301 

incidence of mental and behavioral disorders (490,491). 1302 

Negative effects on glucose and lipid metabolism in childhood and in young adulthood have 1303 

been reported in individuals without CAH but exposed to Dex during the first trimester. Lower 1304 

insulin secretion, followed by lower glucagon secretion was reported in a French study (486). A 1305 

lower HOMA-β was reported in the Swedish cohort, significant in girls but not in boys. Plasma 1306 

glucose levels were higher in the younger treated group with no sex difference. In older adolescents 1307 
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and young adults, total cholesterol and LDL cholesterol were higher in the treated individuals 1308 

(487). It is unknown if this implies an increased risk of developing metabolic syndrome later in 1309 

life. 1310 

 In order to minimize the exposure to Dex, efforts have been made to develop diagnostic 1311 

techniques using cell free fetal DNA in maternal blood samples, but these are not yet routinely 1312 

available (see section IV.D)(325). Dose adjustments, with lower doses during the later phases of 1313 

pregnancy, have been discussed (158) but such studies have not been reported. 1314 

D.  New medical strategies (Figure 5) 1315 

 The treatment goals for classic CAH include both hormonal replacement and reducing adrenal 1316 

androgen production. Glucocorticoid therapy is used to achieve both goals, but normalizing 1317 

adrenal androgen production requires supraphysiologic doses that are higher than required to 1318 

replace the cortisol deficiency, contributing to comorbidities. Modified and delayed-release HC 1319 

formulations were discussed in Section V.A.4 (492). Continuous subcutaneous delivery of HC is 1320 

also suitable for mimicking physiologic cortisol secretion patterns and is useful in patients with 1321 

rapid cortisol metabolism or impaired gut absorption (493), but this approach is less practical than 1322 

oral drugs for widespread chronic use. 1323 

 Alternatively, medications that lower androgen production and/or action can be added to 1324 

physiologic glucocorticoid therapy, similar to doses used to treat primary adrenal insufficiency. 1325 

The combination of testolactone (an aromatase inhibitor) and flutamide (an androgen receptor 1326 

antagonist) with 8 mg/m2/d HC normalized growth and bone maturation in a 2-year randomized 1327 

trial of 28 children (494). A long-term study of this combination to determine the efficacy of this 1328 

regimen on improving adult height will soon be completed (NCT00001521). Abiraterone acetate 1329 

is a potent CYP17A1 inhibitor used to treat prostate cancer (495) When added to HC 20 mg/d, 6 1330 



 

62 

 

days of treatment with 100-250 mg/d of abiraterone acetate normalized androstenedione in 6 adult 1331 

women (496) with parallel reductions in testosterone, androgen metabolites, and 11-oxo-1332 

androgens (497). Abiraterone acetate therapy can cause DOC accumulation and consequent 1333 

hypertension and/or hypokalemia in patients with prostate cancer via CYP21A2-mediated 21-1334 

hydroxylation of intra-adrenal progesterone (497), however, this conversion cannot occur in 1335 

patients with classic CAH (497). Abiraterone acetate is likely to be most useful in prepubertal 1336 

children with classic CAH to suppress androgens and estrogens until the anticipated age of puberty, 1337 

and a phase I trial testing this approach is underway (NCT02574910). Abiraterone acetate 1338 

monotherapy might cause DOC accumulation in patients with NC CAH if not combined with 1339 

glucocorticoid therapy or a mineralocorticoid receptor antagonist. Moreover, its use in pubertal 1340 

girls would require concomitant estrogen treatment, for example with oral contraceptive pills. 1341 

Third-generation anti-androgens such as enzalutamide, apalutamide, and darolutamide have not 1342 

been tested in CAH patients but also might be useful treatments in women of reproductive age 1343 

willing to use contraception. 1344 

 Agents that reduce the ACTH-mediated drive for androgen production are possible approaches. 1345 

The binding of corticotropin-releasing hormone to its type 1 receptor (CRHR1) is a major input to 1346 

corticotropes, raising intracellular cyclic AMP and stimulating ACTH secretion. A single-dose, 1347 

fixed-sequence study of 8 women given 300 or 600 mg of the CRHR1 antagonist NBI77860 at 1348 

2200 (10 PM) showed significant reductions in ACTH and 17OHP over the ensuing 16 hours 1349 

relative to a control period during which glucocorticoid treatment was withheld (498). The CRHR1 1350 

antagonists tildacerfont and crinecerfont were tested in 14-day continuous-dosing trials 1351 

(NCT03257462 and NCT04045145, respectively), and tildacerfont therapy was extended in a 3-1352 

month trial (NCT03687242). Peer-reviewed results are unavailable as yet. Additional trials are 1353 
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required to further assess the long-term benefits of these treatments. Theoretically, an anti-ACTH 1354 

antibody (499) or an antagonist of the melanocortin type 2 receptor (MC2R, the ACTH receptor) 1355 

(500) might also reduce adrenal androgen synthesis in patients with classic CAH, but these 1356 

approaches have only been tested in preclinical models (501). It should be kept in mind that most 1357 

of these approaches do not eliminate the need to treat with, and monitor adequacy of, 1358 

glucocorticoid replacement, albeit perhaps in lower doses. 1359 

 Unilateral or bilateral adrenalectomy has been suggested as an approach to long-term 1360 

management of classic CAH to limit adrenal androgens (502). A recent meta-analysis of 48 CAH 1361 

cases, 34 (71%) described symptomatic improvement after bilateral adrenalectomy but with 34 1362 

cases (10%) reporting short-term and 13 cases (27%) long-term adverse outcomes, including an 1363 

increased risk of adrenal crisis (503). The subsequent development of adrenal rest tumors due to 1364 

elevated ACTH levels even in women has been reported (504,505), which defeats the purpose and 1365 

allows the recrudescence of androgen excess. Consequently, this approach has fallen out of favor 1366 

(134). Adrenolytic therapy with mitotane has been reported in men with TARTs as an approach to 1367 

restore fertility (506), but long-term outcomes have not been published. The adrenolytic drug 1368 

nevanimibe was testing in a dose-escalation study of 14-day treatment periods interrupted with 14-1369 

day placebo periods, up to 1000 mg twice daily (507). The median 17OHP was consistently lower 1370 

in treatment periods and rose during placebo periods, consistent with a reversible effect on 1371 

steroidogenesis, but only 20% met the primary endpoint (17OHP ≤2x upper limit of normal). A 1372 

study using longer treatment periods in order to achieve greater and more sustained reductions in 1373 

adrenal-derived androgens was initiated (NCT03669549) but terminated after an interim analysis 1374 

(https://clinicaltrials.gov/ct2/show/NCT03669549, accessed 22 Dec 2020). Thus current data do 1375 

not support the approach of “medical adrenalectomy”. 1376 

https://clinicaltrials.gov/ct2/show/NCT03669549
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Growth hormone has been used to improve height in children with CAH (508-510). Growth 1377 

hormone treatment for a mean duration of 5.6 years achieved nearly-adult height in 34 children 1378 

with CAH (12 NC-CAH patients). In some of the patients, GnRH analogue was also used to delay 1379 

puberty (509). Controlled studies in larger groups of patients are lacking. Therefore, growth 1380 

hormone, with or without GnRH analogue therapy, cannot be generally recommended as 1381 

adjunctive therapy.    1382 

 1383 

E. Novel cell- and gene- based therapies 1384 

 Potential cell-based therapies for CAH 1385 

 Cellular reprogramming is the process whereby a fully differentiated, specialized cell type is 1386 

forced to acquire a different phenotype that it would not reach under normal physiological 1387 

conditions. Somatic cells can be induced to de-differentiate to an Embryonic Stem Cell (ESC)-like 1388 

phenotype by forcing the expression of specific transcription factors; these cells, termed Inducible 1389 

Pluripotent Stem Cells (iPSCs), are donor-specific and phenotypically highly similar to ESCs 1390 

(511). An example of cell therapy used ESCs- and  iPSCs-derived pancreatic beta cells for potential 1391 

treatment for type 1 diabetes (512).  1392 

 An alternative strategy for reprogramming somatic cells without an intermediate state (iPSCs) 1393 

is through lineage-conversion (also known as direct reprogramming or transdifferentiation), which 1394 

entails the forced expression of lineage-determining transcription factors (513). Various 1395 

human and mouse cell types have been used for lineage conversion to an adrenocortical phenotype 1396 

(514). Adrenocortical-like cells have also been established from cells derived from human skin, 1397 

blood and urine cells in humans using a combination of steroidogenic factor-1 (SF-1, NR5A1) 1398 

expression (through lentiviral delivery) and activation of Protein Kinase-A (PKA) and GnRH 1399 
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pathways (515). These reprogrammed cells displayed ultrastructural features resembling steroid-1400 

secreting cells (such as larger mitochondria with a densely packed inner mitochondrial membrane), 1401 

de novo expressed steroidogenic enzymes and secreted steroid hormones in response to 1402 

physiologic (such as ACTH) and pharmacologic (such as non-degradable cyclic AMP-dependent 1403 

PKA activators) stimuli. They are also viable when transplanted into the mouse kidney capsule or 1404 

intra-adrenally. Importantly, the hypocortisolism observed in cells reprogrammed from epithelial 1405 

cells recovered from the urine of patients with CAH (due to mutations in CYP21A2, STAR, 1406 

HSD3B2 and CYP11A1) was rescued by expressing the wild-type version of the defective enzyme. 1407 

These studies model CAH in a dish to test personalized interventions. In the future, one could 1408 

attempt to apply gene-editing on cells reprogrammed from patients to achieve normal 1409 

steroidogenesis. The same approach could be employed in vivo, through delivery of gene-editing 1410 

tools to the adrenal with viral vectors. Other, as yet untested, methodologies include establishment 1411 

of adrenocortical-like cells from iPSCs and adrenocortical organoids capable of self-renewal. 1412 

 Potential gene-based therapies for CAH 1413 

  Gene therapy using Adeno-Associated Viruses (AAVs) is an alternative option, tested in an 1414 

animal model of 21OHD. The active murine gene is named Cyp21a1, while the duplicated 1415 

pseudogene is Cyp21a2-p. Mice bearing a deletion of approximately 80 kilobases of chromosome 1416 

17 (516), including the Cyp21 locus showed perinatal lethality, elevated ACTH, cortical 1417 

hyperplasia with lack of proper zonation, accumulation of steroid precursors and both 1418 

glucocorticoid and mineralocorticoid deficiency (517). Intra-adrenal injection of AAVs carrying 1419 

human CYP21A2 reverted the CAH-like phenotype for 40 days. A drawback of AAVs is their 1420 

induction of an inflammatory response, but adrenals of mice treated with gene therapy did not 1421 

show active inflammation, possibly due to high intra-adrenal levels of glucocorticoids. (517). 1422 
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Restoration of adrenocortical function in Cyp21a1-null mice was also achieved through AAV-1423 

mediated delivery of murine Cyp21a1 to the thigh muscles, suggesting that functional 21-1424 

hydroxylase enzymatic activity does not have to be confined in the adrenal (518). Intravenous 1425 

injections of AAVrh10-CAG-human CYP21A2-HA vector endowed with adrenocortical tropism 1426 

efficiently restored near-normal adrenal function; cells in the zona fasciculata, but not in the zona 1427 

glomerulosa or capsule, were efficiently transduced two weeks after a single AAV injection, and 1428 

this was concomitant with a reduction of progesterone and ACTH levels (519). However, the 1429 

restoration of proper steroidogenesis was only transient. A likely explanation of such phenomenon 1430 

lies within the biology of the gland; through the use of specific transgenic mouse model (lineage 1431 

tracing) we now know that the adrenal cortex undergoes a self-renewal process, and key paracrine 1432 

effectors supporting a dynamic centripetal streaming of adrenocortical cells have been identified 1433 

(520). Adrenocortical self-renewal relies on the differentiation of at least two cell populations of 1434 

progenitor cells, located in capsular (expressing the transcription factor Gli1) and subcapsular 1435 

compartments (secreting the morphogen Sonic Hedgehog, Shh). These two cell populations are 1436 

able to differentiate and become fully mature steroidogenic cells forming the distinct histological 1437 

and functional layers of the zona glomerulosa and zona fasciculata. If Cyp21--AAVs are not able 1438 

to transduce adrenocortical stem/progenitor cells, as suggested from the studies cited above, newly 1439 

formed steroidogenic cells will therefore be Cyp21a1-deficient and mice revert to a CAH 1440 

phenotype. In the future, it will be important to determine AAVs serotypes that are able to 1441 

efficiently transduce stem/progenitor cells in order to offer a long-term curative solution.  1442 

 In considering the applicability of animal models for gene therapy of 21OHD, it must be kept 1443 

in mind that mice do not express Cyp17a1 in their adrenal glands and consequently cannot 1444 

synthesize sex steroid precursors in the adrenals. Thus, mice cannot be used to model the efficacy 1445 
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of suppression of adrenal androgen secretion with gene therapy. Moreover, enzyme kinetics 1446 

suggest that extra-adrenal expression of CYP21A2 using gene therapy is likely to produce 1447 

adequate amounts of cortisol only with very high levels of precursor steroids, which means that 1448 

this approach will be of limited utility in controlling adrenal androgen secretion in humans. 1449 

 1450 

F. Psychological risk factors, surveillance, and intervention 1451 

 Historically, psychological studies in CAH have emphasized the role of prenatal androgens on 1452 

gender development (i.e., gender identity, gender role, and sexual orientation) and other domains 1453 

exhibiting sex-related variability (e.g., cognitive abilities) (521-524). Most studies only concern 1454 

females with classic CAH, as only they provide opportunities to test hormonal hypotheses of 1455 

gender development (525). However, this emphasis may promote the belief that atypical gender 1456 

behavior or non-heterosexual attractions are causes for clinical concern to the extent that they are 1457 

linked to the pathophysiology of CAH. Historically it has been assumed that men with CAH 1458 

require little attention directed to their mental health because prenatal androgen exposure is typical 1459 

of males. 1460 

 1461 
 Advances in therapeutics contribute to a disease-specific (“categorical”) approach to care 1462 

(526,527). In CAH, this approach has facilitated a fuller understanding of its genetics and 1463 

pathophysiology and refinement of medical and surgical interventions (134,528). A disease-1464 

specific approach also emphasizes the psychosexual aspects of CAH in affected females (522). 1465 

Yet, a substantial body of evidence suggests that successful developmental trajectories in people 1466 

with chronic medical conditions are influenced as much by the psychosocial environment, supports, 1467 

and organization of healthcare delivery as by the specific nature of the person’s medical condition 1468 

(526,527). A more generic (or “noncategorical”) approach emphasizes the effects of repeated 1469 
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hospitalizations on the person’s psychosocial adaptation, irrespective of whether the 1470 

hospitalizations were for asthma or CAH. Relatively neglected topics in CAH are those routinely 1471 

addressed in more prevalent conditions, including effects on parenting and family, factors 1472 

influencing adherence to the medical regimen, frequent doctor visits, impact on the person’s body- 1473 

and self-image, and transition from pediatric to adult healthcare (Table 10).   1474 

 Generic (or noncategorical) factors  1475 

 Parental reactions to learning that their child has a serious and chronic medical condition – 1476 

expressed as shock, panic, worry, and sometimes feelings of guilt – are common generic stressors 1477 

(593). The mental health of patients with CAH is another example; although most studies focus 1478 

on females, increased psychiatric symptomatology in both sexes mirrors observations for a wide 1479 

range of chronic medical conditions (547,594-597).  1480 

 CAH-specific (or categorical) factors 1481 

 Patient reactions to repeated genital examinations potentially threaten mental health and well-1482 

being (598). Apart from the effects of prenatal androgens on female reproductive anatomy, the 1483 

influence of early androgen exposure on brain and gender development garners significant 1484 

attention. Prenatal exposure to testosterone increases the expression of behaviors and interests 1485 

more typical of males than females. The largest differences between females with CAH and 1486 

unaffected females are observed for childhood toy preferences and adolescent and adult hobbies 1487 

and interests. The majority of girls and women with CAH experience a female binary gender 1488 

identity (578), yet there is evidence that the strength of that identity may be reduced (577,599). 1489 

Although the sexual orientation of women with CAH is less likely to be exclusively heterosexual 1490 

than is true for unaffected women, the majority are heterosexual (227,600). Though prenatal 1491 
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androgen exposure may play a role in the development of these outcomes, its influence is much 1492 

smaller than effects on gender-role behavior (523,596,599,601). 1493 

 Psychological assessment and interventions 1494 

 In the general pediatric population, the base rate for having a psychiatric disorder at any time 1495 

is about 20% (602), and is similar in European adults (603,604), yet many with mental health 1496 

problems are neither identified nor referred for specialized treatment (605,606). Specialists treating 1497 

patients with CAH should consider that many of their patients (and/or their caregivers) may be 1498 

struggling with mental health problems which can impact the effectiveness of medical care 1499 

provided. Consequently, regular screening of patient (and family) for risk and resilience factors 1500 

are indicated along with evaluating the developmental, behavioral, emotional, social, and 1501 

educational status of the patient as part of ongoing clinical care. Pediatric assessments should also 1502 

encompass self-perceptions of domain-specific competencies, body image, and experiences of 1503 

gender typicality and contentedness (607). Comparable surveillance in adulthood is recommended 1504 

(360). Psychosocial screening should be both general (psychiatric symptoms, coping with illness) 1505 

and specific (negative body image related to challenges of endocrine management, anticipated or 1506 

experienced stigma, distress over non-heterosexual interests or behaviors, avoidance of potential 1507 

romantic relationships as maladaptive coping strategy, sexual dysfunction potentially related to 1508 

genital surgery, and fertility concerns). Adult healthcare providers need to be comfortable in 1509 

assessing these topics and refer to knowledgeable specialists who understand the psychological 1510 

issues in CAH. A recommendation to connect with peer support can also be extremely useful 1511 

although careful consideration of where to direct patients is warranted (580). There is specific 1512 

guidance for clinicians regarding the psychological aspects of CAH that warrant evaluation and 1513 

possible intervention (524). 1514 
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 Because optimal care in CAH involves multiple subspecialties, it is recommended that clinical 1515 

services be comprehensive and integrated (342,608,609), but inclusion of medical psychologists 1516 

in interdisciplinary healthcare teams for CAH is inconsistent. There are no mental health 1517 

interventions specifically designed for CAH. Psychoeducational counseling that includes detailed 1518 

discussion of CAH with the patient and caregivers should be provided in an iterative and 1519 

developmentally-sensitive manner. For girls with genital virilization, such counseling necessarily 1520 

involves education regarding the process of sex development and the influence of excess 1521 

androgens on genital growth. A recent Cochrane review of psychological interventions for parents 1522 

of youth with chronic illness provides clinicians with evidence-based strategies for managing 1523 

parenting challenges and enhancing psychosocial adaptation in both the parent and the child (610). 1524 

Interventions to promote treatment adherence in other chronic conditions should be transferable to 1525 

CAH (611). Although preparation for and assessment of readiness for transition from pediatric to 1526 

adult care (612,613) does not guarantee physical health and well-being in adulthood, reports of 1527 

major morbidities in adult patients with CAH (360) warrant continued efforts to improve outcomes. 1528 

 1529 

G. Urogenital surgery 1530 

 Decisions concerning feminizing surgery 1531 

 Most girls with classic CAH are born with virilized external genitalia. Virilization may consist 1532 

of fusion of the outer labia, a single opening of a common urogenital sinus, a recessed vagina that 1533 

enters into the common channel and clitoromegaly. The degree of virilization is variable, and is 1534 

influenced by the severity of the enzymatic defect. To indicate the severity of virilization the Prader 1535 

classification, or similar scales, may be used (Figure 4). These anatomical variations affect the 1536 
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decisions regarding surgery: the timing, one or two-stage surgery, the technique and the 1537 

extensiveness of the procedure and risk for complications (614). 1538 

 Feminizing surgery is often performed in early infancy/childhood in order to provide a female 1539 

appearance of the genitalia in childhood, and to enable sexual intercourse in adult life. This 1540 

complex surgery may lead to short- and long-term complications. Early surgery for girls with CAH 1541 

has become controversial. Many surgeons prefer complete surgical repair at an early age because 1542 

of good elasticity of the tissue, prevention of possible hydrometrocolpos and reduction of parents’ 1543 

distress (615). However, concerns have been raised regarding body integrity and the inability of 1544 

children to provide informed consent for early surgery. Unsatisfactory outcomes regarding genital 1545 

sensation and sexual function, and greater acceptance of gender non-binary status have led some 1546 

to advocate that surgery be postponed until patients can express their gender and wishes (616). 1547 

However, the effects of growing up with atypical genitalia on mental health or on sexual 1548 

satisfaction are unknown and may vary in different cultures. The majority of patients and their 1549 

parents in an American survey endorsed early reconstructive surgery (617). Families should be 1550 

informed about surgical options including avoiding or delaying surgery. There should be a shared 1551 

decision-making process including the family, endocrinologist, surgeon and mental health 1552 

professionals, and the surgery should be performed by an experienced surgeon (134,581,618,619).  1553 

 Surgical techniques, outcomes and complications 1554 

 Feminizing genitoplasty involves clitoroplasty, opening of the vaginal introitus and labioplasty. 1555 

When the patient has a high urethra-vaginal confluence, vaginoplasty may be postponed to later in 1556 

life. Surgical techniques have been adjusted for best preservation of clitoral sensitivity and least 1557 

vaginal stenosis (620). However, functional results of the current techniques can only be evaluated 1558 

after many years. 1559 
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 In tandem with the Endocrine Society’s 2018 Guideline, a systematic review and meta-analysis 1560 

found no data to support one approach over another (528). The data included 29 observational 1561 

studies (1,178 CAH women, mean age at the time of surgery 2.7 ± 4.7 years, mostly classic CAH). 1562 

After an average follow-up of 10.3 years, the majority who underwent surgery had a female gender 1563 

identity (88.7%) and were heterosexual (76.2%). Women who underwent surgery reported a lower 1564 

than optimal Female Sexual Function Index Score of 25.13 out of a maximum possible score of 1565 

36, with 26 being the threshold accepted for risk for sexual dysfunction (621). Many patients 1566 

reported impairment of clitoral sensitivity (622,623), uncomfortable vaginal penetrative 1567 

intercourse, and low frequency of intercourse (21). The majority of patients (79.4%) and treating 1568 

healthcare professionals (71.8%) were satisfied with the surgical outcomes. The most common 1569 

clinical finding was vaginal stenosis, whereas other surgical complications, such as fistulas, 1570 

urinary incontinence and urinary tract infections, were less common (624). Data on quality of life 1571 

were sparse and inconclusive. To date there are no systematic prospective studies documenting 1572 

outcomes in girls and women with CAH who did not undergo urogenital reconstruction; until 1573 

recently most non-operated girls have been those who were only mildly virilized. Reoperations are 1574 

usually much less extensive surgical procedures than the initial genitoplasty. Most consist of 1575 

widening the vaginal introitus; clitoroplasty has also been performed.  1576 

 There are no studies comparing different techniques of feminizing surgery nor studies 1577 

comparing early versus late surgery (528). The Endocrine Society’s Guideline (134) cites 1578 

urogenital mobilization with or without neurovascular-sparing clitoroplasty as the techniques now 1579 

preferred by many surgeons. No evidence-based guidelines for surgical management exist, and 1580 

further long-term follow-up studies are needed.  1581 

 1582 
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VI. LONG TERM SEQUELAE 1583 

A. Gonadal function in males  1584 

 In men with CAH, gonadal and reproductive function are often impaired due to primary 1585 

gonadal failure from TARTs and/or secondary gonadal failure due to suppressed hypothalamic-1586 

pituitary-gonadal axis as a consequence of high adrenal androgen concentrations 1587 

(378,437,438,625). 1588 

 Testicular adrenal rest tumors (TARTs) 1589 

 TARTs are benign testicular tumors typically found in males with classic CAH (378,437). 1590 

TARTs have histological similarities to adrenocortical cells and are believed to originate from 1591 

aberrant adrenal like cells in the testes but the etiology is not yet fully understood (378). TARTs 1592 

are usually bilateral (70-100% of the cases) and painless (129,437,438,626-631), but discomfort 1593 

can occur, especially in patients with extensive tumors (632). TARTs less than 2 cm diameter are 1594 

difficult to detect by palpation (437). Both ultrasound and MRI can be used to detect/confirm 1595 

TARTs with similar sensitivity down to a few millimeters, but ultrasound costs less (439,630,633). 1596 

The reported prevalence of TARTs in CAH ranges from 14% to 86% (437,634), with an average 1597 

of 25% in adolescents, and 46% in men (378). TARTs are found occasionally in patients with NC 1598 

CAH (437,439). They occur not only in 21OHD but also in 11β-hydroxylase and 3β-1599 

hydroxysteroid dehydrogenase type 2 deficiencies (635,636).  1600 

 Elevated ACTH concentrations may play an important role in the development of TARTs. 1601 

Suppression of ACTH secretion by increased doses of glucocorticoid can decrease the size of 1602 

TARTs in some cases and may restore fertility (637-639). However, TARTs also occur in well-1603 

controlled patients and only a few studies have found a clear association between hormonal control, 1604 
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and TARTs (437,640,641). Moreover, there seems to be no correlation between TARTs and 1605 

bilateral adrenalectomy, a condition that usually leads to high ACTH concentrations (642,643). 1606 

 It is important to discriminate Leydig cell tumors from TARTs, due to the malignant potential 1607 

of Leydig cell tumors, but this cannot be done by either palpation or imaging  (632,644). TARTs 1608 

are usually bilateral whereas Leydig cell tumors are mostly unilateral and often produce estrogens 1609 

(378). TART size may decrease in some cases after intensified glucocorticoid dosing 1610 

(588,632,637-639). Additionally, characteristic histologic structures called Reinke crystalloids can 1611 

sometimes be found in Leydig cell tumors but never in TARTs (378,632,633).. Furthermore, 1612 

Leydig cell tumors are very rare in CAH while TARTs are very common.  1613 

 The central location of TARTs in the testes may result in mechanical obstruction of the 1614 

seminiferous tubules with azoospermia and irreversible peritubular fibrosis (645). Moreover, the 1615 

paracrine effects of steroids produced by TARTs may destroy the surrounding Sertoli or germ cells 1616 

(378). Testis sparing surgery has been described in TARTs but usually does not improve gonadal 1617 

function, probably owing to irreversible damage to the testis (637). Regular testicular ultrasound 1618 

is recommended (every 2-5 years if TARTs are small and stable) and if an increased TART burden 1619 

is found, glucocorticoid therapy should be optimized and cryopreservation of sperm offered (437). 1620 

 Secondary gonadal failure  1621 

 Poor hormonal control in CAH results in increased risk of hypogonadotropic hypogonadism 1622 

(437,626), because high levels of adrenal androgen precursors will be aromatized to estrogens and 1623 

suppress the hypothalamic-pituitary-gonadal axis. Steroids produced by TARTs can also suppress 1624 

gonadotropin secretion (438). Even though most males with CAH and secondary gonadal failure 1625 

will compensate for reduced testicular testosterone production with increased adrenal testosterone, 1626 

low testosterone levels are found in some patients (438,646). Overtreatment with glucocorticoids 1627 
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in men with CAH may also induce gonadal failure (589); optimizing glucocorticoid therapy will 1628 

usually reverse this. 1629 

 Paternity 1630 

There are few controlled studies of fertility in men with CAH. In a Finnish study of 29 young 1631 

men with classic CAH a child rate of 0.07 children per adult male was reported, which was 1632 

significantly lower than the 0.34 in the entire Finnish male population with a similar age 1633 

distribution (647). In a similar Swedish study of 30 men with CAH the child rate was 0.9 compared 1634 

to 1.8 in the entire age-matched Swedish population (437). Of 30 US men with CAH only 7% had 1635 

fathered children (638), and of 22 German men with CAH, 23% had children (589). Of 65 British 1636 

men with CAH, 25% had become fathers, two after fertility treatment, but only 37% had tried to 1637 

become fathers (360). Finally, of 219 French men with classic CAH, 24% had children (11% after 1638 

IVF), and this fertility rate was lower than the national reference population (626). Men with CAH 1639 

seem to be less sexually active than matched controls (368). However, of 221 Swedish men with 1640 

CAH and 22,100 matched controls, only those born before neonatal screening had a reduced child 1641 

rate (odds ratio 0.5, i.e. half as likely to have fathered a child), suggesting that fertility may not be 1642 

reduced for most men with CAH in the future.  Men with NC CAH had a normal child rate and of 1643 

those who, irrespective of genotype or phenotype, had succeeded in having children, the number 1644 

of offspring was similar to controls (590). Men with CAH adopted children more often (odds ratio 1645 

2.9) (590).  1646 

 1647 

B. Reproductive function in women 1648 

 CAH affects gonadal function and fertility in women. In general, there is an association 1649 

between the severity of the CAH phenotype and the level of gonadal dysfunction and fertility(625).  1650 
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 Pubertal development 1651 

 Age of menarche is normal in well-controlled girls, with no difference between SW, SV and 1652 

NC CAH (34,356,372,425,648). However, when glucocorticoid therapy is withheld or inadequate, 1653 

menarche is delayed (649). Irregular menstrual patterns in CAH are associated with other 1654 

hyperandrogenic signs such as acne and hirsutism and signs of insulin resistance. This clinical 1655 

picture closely resembles polycystic ovary syndrome (429). Sonographic findings of polycystic 1656 

ovarian appearance have been reported in adult women with CAH (about 20-50%) and in a 1657 

minority of adolescent patients (650-654). Breast development can be impaired in case of 1658 

inadequate androgen control (649,655). The European multicenter dsd-LIFE study showed that 1659 

only 68% of adults with CAH had reached Tanner stage B5 compared to 90% in women without 1660 

DSD (656).   1661 

 Fertility 1662 

 Compared to age-matched controls, women with CAH have fewer pregnancies and children. 1663 

In a Finnish study, the mean child rate was 0.34 versus 0.91 in the general Finnish female 1664 

population, and was lower in SW compared to non-SW women (657). In a Swedish study, the 1665 

number of pregnancies was 50% lower compared to age-matched controls (372); 16 of 19 women 1666 

who attempted pregnancy succeeded in becoming pregnant and there was a clear relationship 1667 

between more severe genotypes and fewer children. Of 106 CAH patients in the UK, 25 considered 1668 

motherhood and 23 had actively attempted conception, of whom 21 achieved 34 pregnancies (591). 1669 

The pregnancy rate in this subgroup was similar to that in the normal UK population (95%), and 1670 

similar in the SW (88.9%) and non-SW (92.9%) subgroups. However, women with SW were less 1671 

likely to seek motherhood. More recently, the dsd-LIFE study reported that only 14.7% of 221 1672 

CAH women had one or more children without assisted reproduction techniques (ART), and 1.9% 1673 
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with ART (658). In a recent Swedish epidemiological study using the national CAH registry, 272 1674 

females with CAH (aged 14 years or above) were compared to 27,200 matched controls (659). 1675 

Only 25.4% of women with CAH had given birth compared to 45.8% of controls. Furthermore, 1676 

mothers with CAH were older and had fewer children.  1677 

All studies have emphasized that the major cause for low child rates is that women with CAH 1678 

are less likely to seek motherhood. Women with the SW phenotype show the lowest interest in 1679 

motherhood. This may be caused by the effects of prenatal androgen exposure on gender role 1680 

behavior, including reduced interest in infants (592,660), the lack of a partner, dissatisfaction with 1681 

genital appearance, decreased sexual satisfaction, and urogenital and sexual dysfunction as a result 1682 

of corrective surgery (365). When patients attempt pregnancy, the success rate seems to have 1683 

increased in the last twenty years, as a result of various factors, including increased understanding 1684 

of the effect of androgen and progesterone levels, and the level of mineralocorticoid substitution 1685 

(35).  1686 

 Optimizing fertility in women 1687 

 A large review of case reports of women with classic CAH included 159 pregnancies since 1688 

1999. In 84 pregnancies the mode of conception was reported, and 62/84 pregnancies were 1689 

spontaneous (365). When pregnancy is attempted and especially when spontaneous conception 1690 

fails, the first approach is to optimize glucocorticoid therapy, aiming at normal androgen and 1691 

follicular-phase progesterone levels (591,661,662). Second, optimizing mineralocorticoid 1692 

treatment appears to improve fertility SW and SV patients (365,591,663), but the exact mechanism 1693 

remains unknown.  1694 

If needed, and especially when the above approaches are unsuccessful, assisted reproduction 1695 

techniques can be used for ovulation induction and conception (664,665).  1696 
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 Most (53-68%) women with NC CAH conceive spontaneously without any treatment 1697 

(650,666). Of 190 women with NC CAH, 95 wanted pregnancy and 187 pregnancies occurred in 1698 

85 women. Of these pregnancies, 99 occurred before the diagnosis of NC CAH (96/99 1699 

spontaneous), and 88 (47%) after the diagnosis (11/88 spontaneous) (650). Therefore, in case of 1700 

subfertility (or recurrent miscarriages) there is a clear indication for temporary glucocorticoid 1701 

treatment in NC CAH (37,134). Glucocorticoid treatment shortens the time to pregnancy from 1702 

about one year to less than six months (667). If conception cannot be achieved with glucocorticoids, 1703 

ovulation induction is usually successful. The course of pregnancy is usually uneventful; however, 1704 

the miscarriage rate in women with NC CAH is substantially higher (25%) than in the general 1705 

population (6%) in some (650,666) but not all (667) studies.  The miscarriage rate can be reduced 1706 

to normal in women treated with low to moderate doses of HC (650), prednisolone or prednisone 1707 

(666) prior to and during pregnancy.  1708 

 1709 

 Pregnancy outcome 1710 

 Pregnancy outcome is good in women with CAH (365). Placental aromatase activity protects 1711 

the fetus from maternal androgens (101). Gestational diabetes has been described relatively 1712 

frequently (372,659). Adjustments in glucocorticoid (and fludrocortisone) dose are usually 1713 

necessary, especially in the third trimester (134), similar to pregnancies in women with primary 1714 

adrenal insufficiency (668,669). In the offspring, the rate for small-for-gestational-age seems to be 1715 

increased in some (365), but not all (659) studies, and no other problems are seen at follow-up 1716 

(670). 1717 

 1718 
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C. Cardiovascular and metabolic morbidity 1719 

 Metabolic consequences 1720 

 The prevalence of overweight and obesity are greater in adults with CAH in the UK (360) and 1721 

Sweden (671) but similar to the general population in the US (217) and France (626,672). 1722 

Increased abdominal adiposity, with a higher proportion of pro-inflammatory visceral adipose 1723 

tissue compared to subcutaneous adipose tissue, was present in adolescents and young adults with 1724 

CAH compared to age-, sex- and BMI-matched controls (673). Metabolic syndrome was observed 1725 

in nearly 20% of adults in the NIH’s cross-sectional study cohort (217), associated with older age 1726 

but not with androgens, glucocorticoid type, or dose. The Endocrine Society’s systematic review 1727 

of relevant literature published through early 2016 included 20 observational studies (14 1728 

longitudinal, 6 cross-sectional) with a moderate to high risk of bias (674). The average dose of 1729 

glucocorticoids (in hydrocortisone equivalents) was 9-26.5 mg/m2/day. In the meta-analysis (416 1730 

patients, 14 months-63 years old), compared to controls, individuals with CAH had increased 1731 

values for the homeostatic model assessment of insulin resistance (HOMA-IR; weighted mean 1732 

difference [WMD] 0.49; 95% CI 0.02-0.96), however, no differences were noted in fasting blood 1733 

glucose, insulin level, glucose or insulin level after 2-hour glucose load, or serum lipids.   1734 

 Blood pressure 1735 

 Some studies report normal resting (217,626,675) and 24-hour blood pressure profiles (676) 1736 

whereas others report a slight increase of either diurnal or both diurnal and nocturnal systolic blood 1737 

pressure, compared to matched controls even in childhood (677,678). There are minimal data on 1738 

the prevalence of hypertension in adults with CAH (679,680), with inconsistent results in 1739 

individual studies conducted in different locales (626,671,681). The systematic review and meta-1740 

analysis (674) found that individuals with CAH had modestly increased systolic blood pressure 1741 
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(WMD 4.44 mm Hg; 95% CI 3.26-5.63 mm Hg) and diastolic blood pressure (WMD 2.35 mm Hg; 1742 

95% CI 0.49-4.20 mm Hg). The authors were unable to draw conclusions regarding the effects of 1743 

several important variables such as sex, glucocorticoid type and dose, fludrocortisone dose, and 1744 

genotype, and bias in the individual reports was moderate to high. 1745 

 Cardiovascular consequences 1746 

 Cardiovascular morbidity and mortality are difficult to assess in CAH, as few of the studied 1747 

patients are older than 50 years (682). Results for carotid intima media thickness (cIMT), a 1748 

surrogate marker of cardiac dysfunction, vary in existing studies (677,678,683), without 1749 

correlation between cIMT and cumulative glucocorticoid doses or androgen levels (683). A 1750 

systematic review and meta-analysis showed slight but significantly greater carotid intima 1751 

thickness (WMD 0.08 mm; 95% CI 0.01-0.15 mm) (674). In adolescent and adult CAH patients, 1752 

normal left ventricular morphology has been reported (677,684), but mild diastolic 1753 

dysfunction and impaired exercise performance were shown. Recently, a French group reported 1754 

the complex interactions between gonadotropins and steroid hormones on the duration of 1755 

ventricular repolarization. QT interval duration was shorter in women with CAH than in control 1756 

women (685). A Swedish study analyzed cardiovascular and metabolic morbidity in CAH patients, 1757 

finding increases in both cardiovascular and metabolic disorders including higher frequencies of 1758 

hypertension, dyslipidemia and atrial fibrillation (671). Obesity was consistently increased in all 1759 

subgroups while diabetes was increased in females, SV and NC phenotypes and those above 40 1760 

years of age. However, the non-obese patients were similarly affected by hypertension and diabetes 1761 

as the entire CAH cohort. This study also found an increased frequency of venous thromboembolic 1762 

events, which should be studied further to determine if, as reported in both Cushing syndrome and 1763 
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glucocorticoid use, there is a higher risk of venous thromboembolism due to hypercoagulability 1764 

that should prompt a lower threshold for thrombosis prophylaxis in this population. 1765 

 Thus, CAH may be associated with higher cardiovascular risk (686,687). Increased 1766 

cardiovascular mortality has been reported in CAH in Sweden, second only to adrenal crisis as a 1767 

cause of death (368). Data on cardiac events are sparse, and most of the literature has focused on 1768 

surrogate outcomes, rather than episodes of acute myocardial infarction, heart failure or death.  1769 

Some subgroups of patients seem to be more affected by cardiovascular risk factors. Regular 1770 

follow-up is needed, along with lifestyle interventions, to limit weight gain, prevent obesity, and 1771 

screen for diabetes (especially gestational diabetes), and dyslipidemia. Close monitoring of 1772 

glucocorticoid and mineralocorticoid doses is important. Further prospective studies on larger 1773 

cohorts are necessary to clarify the mechanisms leading to metabolic and cardiovascular 1774 

abnormalities, and to understand the respective roles of adrenal sex hormones, lifelong 1775 

glucocorticoid and mineralocorticoid treatment (366), and the impact of genetic background, such 1776 

as glucocorticoid receptor gene polymorphisms, and other loci contributing to adverse cardio-1777 

metabolic risk profiles (688).  1778 

 Neurological aspects 1779 

  Early hormonal alterations affect the development of mammalian neural circuits. Widespread 1780 

expression of androgen and glucocorticoid receptors in the brain suggest that fetal and postnatal 1781 

imbalances in androgen and glucocorticoid exposure characteristic of CAH might influence brain 1782 

development and function, with the potential to impact mental health (689). Compared to controls, 1783 

patients with classic CAH have higher prevalence of anxiety, depression, alcohol misuse, 1784 

suicidality and adjustment disorders (394,547,597)(also see section V.F). Males diagnosed beyond 1785 
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the neonatal period and women with the most severe null genotype are especially at risk for mental 1786 

health issues (547,594,597). 1787 

 Neuroimaging studies in patients with CAH have revealed alterations in brain structure and 1788 

function. In a functional MRI study of 14 adolescents with classic CAH compared to age-matched 1789 

controls, girls with CAH showed a similar pattern of amygdala activation to control boys, 1790 

suggesting an androgen effect on amygdala function in girls with CAH (690). Glucocorticoid 1791 

therapy has been implicated in the development of white matter hyperintensities which reflect 1792 

reduction of white matter structural integrity (691). White matter hyperintensities are found in 1793 

patients with CAH, but are an uncommon finding in healthy adults aged < 45 years (692,693). 1794 

Glucocorticoid therapy in CAH has been reported to affect working memory and digit span scores; 1795 

patients on higher glucocorticoid doses have worse performance (691). Memory impairment is 1796 

similarly found among patients with Cushing disease and Cushing syndrome (694). 1797 

 Structural differences in gray matter morphometry in the medial temporal lobe were found in 1798 

a cross-sectional MRI study of 27 adolescents with CAH (695). Young people with classic CAH 1799 

had smaller regional volumes in the prefrontal cortex, amygdala and hippocampus and overall 1800 

smaller brain volumes compared to age-matched controls. In a study of 37 young adults with CAH, 1801 

alterations in grey matter structure, including the middle frontal gyrus and the parietal and superior 1802 

occipital cortex were found in CAH patients compared to controls (696). These regions play a role 1803 

in visuospatial working memory and patients performed worse in visuospatial working memory 1804 

tasks.   1805 

 All of the neuroimaging studies are hindered by small sample size (689). Decreased brain 1806 

volume has been observed in patients compared to controls in multiple studies and this needs to 1807 

be accounted for when evaluating individual brain regions. Moreover, sex matching is essential 1808 
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since human male/female differences have been found in total brain volume (697), gray matter 1809 

brain volume in specific regions (698) and brain connectivity (699); sexual dimorphism of the 1810 

brain has also been found during childhood (700)(reviewed in (689)). In CAH, there are multiple 1811 

hormonal imbalances including in utero glucocorticoid deficiency and androgen excess, postnatal 1812 

androgen excess and iatrogenic glucocorticoid excess, and epinephrine deficiency, all possibly 1813 

occurring during different developmental periods and with varying potential impact on neural 1814 

circuits.   1815 

  Bone  1816 

Since patients with CAH are on lifelong glucocorticoid supplementation, reduced bone 1817 

mineral density (BMD) and osteoporosis are potential long-term outcomes. Epidemiological and 1818 

other studies have demonstrated that glucocorticoids cause secondary osteoporosis and increase 1819 

fracture risk (701,702). Both direct and indirect effects by glucocorticoids on bone result in initial 1820 

increased resorption and later deceased bone formation leading to micro-architectural distortion 1821 

and fracture risk (703). Moreover, glucocorticoids may cause secondary hyperparathyroidism by 1822 

decreasing intestinal calcium absorption and increasing renal calcium excretion. Despite the 1823 

known negative effects of glucocorticoids on BMD, studies with patients with CAH have reported 1824 

inconsistent finding. A few studies have reported normal (704-709) or even high BMD (710), but 1825 

most have shown low BMD at all or at least some sites (209,217,360,646,711-722). These 1826 

differences may be due to both glucocorticoid and androgen exposure, since androgens stimulate 1827 

osteoblast proliferation and differentiation in both genders (723). Adrenal androgens, including 1828 

DHEAS, affect bone metabolism throughout life, especially during adrenarche, with effects mainly 1829 

on cortical bone (724). Thus, late diagnosis and/or poor hormonal control may improve BMD due 1830 

to high androgen concentrations (646,718). Moreover, different glucocorticoid regimens may 1831 
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affect BMD differently; hydrocortisone seems to affect BMD less than longer acting 1832 

glucocorticoids, especially dexamethasone (369). A recent meta-analysis comparing patients with 1833 

CAH and matched controls found slightly decreased BMD in patients with CAH (725). 1834 

Furthermore, adult women with CAH had more fractures than matched controls (718) whereas 1835 

men with CAH did not (646). Patients with classic CAH had more nontraumatic fractures than 1836 

those with NC CAH (724). However, osteoporosis-related fractures typically occur after 50 years 1837 

of age and very few older patients have been included in studies of BMD and fractures. BMD 1838 

screening is recommended by the Endocrine Society in adults with CAH and a prolonged period 1839 

of higher-than-average glucocorticoid dosing, or in patients who have had a nontraumatic fracture 1840 

(134). Others have also suggested screening any patient upon transfer to adult care and every 2-5 1841 

years thereafter (682). 1842 

 Adrenal tumors 1843 

Approximately 20-30% of adult patients with CAH have adrenal masses (726). Almost a quarter 1844 

of these are benign adrenal myelolipomas, which generally occur in patients with a history of poor 1845 

hormonal control, suggesting that persistent ACTH stimulation may play a role in pathogenesis 1846 

(628,726,727). There is no evidence that adrenocortical carcinoma, a rare malignancy with poor 1847 

prognosis, is more prevalent in CAH. Adrenocortical carcinomas can be distinguished from benign 1848 

adrenal masses by their characteristic steroid profile as assessed with mass spectrometry-based 1849 

methods (728).  1850 

VII. CAH IN DEVELOPING COUNTRIES – CHALLENGES AND LIMITATIONS 1851 

CAH management in developing countries is challenging. Newborn screening for CAH is not 1852 

available in many developing countries (729,730), delaying diagnosis and increasing mortality, 1853 

particularly in boys who lack atypical genitalia (731,732). Pediatric endocrinologists are scarce 1854 
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(560,730,733), and late referral to specialized centers may delay diagnosis and treatment. 1855 

Hormonal assays for diagnosis and follow-up have limited availability and are expensive (730,733). 1856 

Needed medications may be available only on the black market (137,556,733). Delayed diagnosis 1857 

(557,734), emotional (731), and gender assignment problems (732,735) negatively influence 1858 

quality of life (560,736).  1859 

There are also socio-economic and cultural issues (733). Myths and misconceptions about 1860 

ambiguous genitalia in certain communities may lead to discrimination against patients and 1861 

families (556,560). Gender reassignments in late-identified patients may be met with resistance or 1862 

refusal because of social stigma and cultural pressure (730). Moreover, many developing countries 1863 

also face poverty and insufficient basic medical knowledge (556,733). These issues imply the need 1864 

for better primary health care education. Educational materials in the local language may increase 1865 

understanding of CAH among families and communities. Clinical guidelines for developing 1866 

countries are needed, along with advocacy to encourage government policy to improve access to 1867 

essential medications and implementation of newborn screening. 1868 

 1869 

VIII. FUTURE DIRECTIONS 1870 

A. Basic science  1871 

As discussed previously, there has been much recent progress in adrenal steroidogenesis 1872 

as regards the alternative “backdoor” pathway to androgens and the importance of 11-oxo-1873 

androgens. Other unanswered questions in steroidogenesis remain (summarized in (42)). Areas 1874 

requiring further study include more detailed understandings of how StAR imports cholesterol to 1875 

the mitochondria inner membrane, and how the 17,20-lyase activity of CYP17A1 is regulated. 1876 

Secretion of androgens and androgen precursors by the fetal adrenal gland is a key component of 1877 
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the pathophysiology of CAH, yet regulation of fetal adrenal growth and postnatal involution of the 1878 

fetal zone are poorly understood, and teleologically it is unclear why primate adrenal glands 1879 

normally secrete DHEA and androgens either prenatally or at adrenarche. Steroid synthesizing 1880 

enzymes, including CYP21A2, are found in nonglandular tissues, but the functional significance 1881 

of extraglandular steroidogenesis remains uncertain. 1882 

 1883 

B. Clinical management  1884 

Given the relative rarity of CAH, national and international registries are valuable in developing 1885 

and testing best practices throughout the lifespan (737). Whereas it may be unrealistic to expect 1886 

that every clinical site caring for CAH patients possesses a comprehensive, multidisciplinary team, 1887 

networks of expert centers can ensure access to specialty care when necessary. Criteria defining a 1888 

comprehensive expert level of care for CAH have been published (342,738). Surveys show that 1889 

patient satisfaction, provider training, research and quality improvement activities vary among 1890 

medical centers (739,740); thus, there is a need for clinical benchmarks in management. Real world 1891 

data including patient and family satisfaction, as well as peer-observation of clinical care can help 1892 

develop guidelines and decision-support tools. By providing robust data on epidemiology, patients’ 1893 

characteristics and current standard of care, registries have the potential to shape health care policy 1894 

and, by engaging with patients, increase stakeholder involvement and improve the patient-centered 1895 

experience (741). One example of outcomes from the I-CAH Registry has been to define acute 1896 

adverse events associated with adrenal insufficiency including sick day episodes, adrenal crises 1897 

and hospitalizations among CAH patients (401). The challenge for rare disease registries is to 1898 

ensure that the data represent the widest range of patients, and that the data are findable, accessible, 1899 

interoperable and reusable (FAIR) within a rigorous framework of data governance, integrated 1900 
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with other data sources through multiomics technology (742). With anticipated therapeutic 1901 

advances over the next decade, the use of registries for measuring therapeutic effectiveness, as 1902 

well as maintaining clinician and patient engagement, will become imperative (401). Given the 1903 

relative rarity of CAH, national and international registries are valuable in developing and testing 1904 

best practices throughout the lifespan (737). As it may be unrealistic to expect that every clinical 1905 

site caring for CAH patients possesses a comprehensive, multidisciplinary team, networks of 1906 

expert centers can ensure access to specialty care when necessary. Criteria defining a 1907 

comprehensive expert level of care for CAH have been published (342,738). Surveys show that 1908 

patient satisfaction, provider training, research and quality improvement activities vary among 1909 

medical centers (739,740), thus there is a need for clinical benchmarks in disease management. 1910 

(401,741). Other areas that could benefit from large-scale collaborative data collection include 1911 

prenatal and neonatal diagnosis and treatment. With recent data pointing to potential serious 1912 

adverse outcomes, long-term follow-up studies should closely monitor both CAH patients and 1913 

unaffected siblings subjected to prenatal Dex treatment. As discussed in section IV.A, the 1914 

suboptimal positive predictive value for immunoassay in many newborn screening programs 1915 

mandates further studies to determine the most cost effective strategies to improve screening 1916 

sensitivity and specificity. Clinical trials for novel drug targets and potential gene therapy are in 1917 

progress or planned that should provide additional treatment options. At the same time, more 1918 

widespread availability of mass spectrometry-based assays for new steroid biomarkers, e.g., 11-1919 

oxo-androgens, may improve monitoring and titrating existing medication regimens.  1920 

 Long-term management should emphasize the importance of a smooth transition from pediatric 1921 

to adult medical care, with continued emphasis on risk assessment for adverse reproductive, 1922 

psychosexual, cardiovascular, metabolic and musculoskeletal outcomes. To this end, 1923 
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implementation of telemedicine services have lately been recognized as a valuable resource in 1924 

managing patients living in remote areas or lacking access to specialty centers. 1925 

 Much discourse and debate has centered on whether and when surgical intervention ought to 1926 

be considered. A systematic review and meta-analysis found scant sound evidence to favor early 1927 

surgery, delayed surgery or no surgery (528). More work is needed to develop evidence-based 1928 

guidelines for surgical treatment of CAH, including ideal timing of surgery, surgical technique, 1929 

risk of incontinence, risk of additional surgery (such as repair of vaginal stenosis at puberty), risk 1930 

of loss of sexual function, and extent of clitoral surgery. Given that the likelihood of performing 1931 

randomized controlled trials in this area is minimal, long-term surveillance using commonly 1932 

agreed and routinely collected clinical and patient reported outcome measures should be prioritized. 1933 

 Not least among desired goals is for mental health professionals in collaboration with other 1934 

specialists to develop and validate quality of life instruments specific to CAH. In summary, based 1935 

on what has been learned from collective clinical and basic research, the outlook is optimistic for 1936 

improved modes of  CAH treatment and consequently better quality of life. 1937 
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Figure 1. Adrenal steroidogenesis. Enzymes are boxed with dotted lines extending to arrows 4160 

denoting each enzymatic conversion; two enzymes, CYP11B2 and CYP17, catalyze several 4161 

successive enzymatic conversions. Accessory proteins required for activity of cytochrome P450 4162 

enzymes are shown next to each such enzyme: POR, P450 oxidoreductase, required by CYP 4163 

enzymes in the endoplasmic reticulum; FDXR/FDX1, ferredoxin reductase and ferredoxin, 4164 

required by mitochondrial CYP enzymes. Cytochrome B5 (CYP5A) is required for full 17,20-4165 

lyase activity of CYP17A1. There are two 11β-hydroxysteroid dehydrogenase isozymes; 4166 

HSD11B1, expressed mainly in the liver, catalyzes reduction (e.g., cortisone to cortisol), whereas 4167 

HSD11B2, expressed mainly in the kidney, catalyzes oxidation (e.g., cortisol to cortisone). The 4168 

steps affected by 21OHD, including steroids secreted in increased amounts in this disease, are 4169 

denoted by red lines and red lettering. Steps taking place only in the adrenal glands are in unshaded 4170 

boxes; steps taking place partly or predominantly outside the adrenal cortex are denoted by shaded 4171 

boxes. Planar structures of cholesterol, aldosterone, cortisol and testosterone are illustrated; the 4172 

position of the 11-oxo (11-keto) group in 11-ketotestosterone is illustrated in green. Colored 4173 

rectangles indicate the following: grey, early steps of steroidogenesis common to all zones of the 4174 

cortex; orange, steps in the zona glomerulosa leading to aldosterone; blue, steps in the zona 4175 

fasciculata leading to cortisol; magenta; steps in the zona reticularis and extra-adrenal tissues 4176 

leading to androgens; purple, the “backdoor” or alternative pathway from 17-OH progesterone to 4177 

dihydrotestosterone (for clarity, the alternative pathway from progesterone is not shown); green, 4178 

conversions leading to 11-oxo androgens.  4179 

 4180 

Figure 2. Genetics of the CYP21 genes. A, the genetic region on chromosome 6p21.3, using data 4181 

from the Human Genome database (http://genome.ucsc.edu/). The location of this region is 4182 
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indicated on a schematic of the entire chromosome. A scale is marked every 10 kb, with positions 4183 

in the genome assembly numbered every 0.1 Mb. Genes transcribed in the telomeric-to- 4184 

centromeric direction (left to right) are on the strand denoted by a right-facing arrow: SKIV2L, 4185 

Ski2 like RNA helicase; STK19, serine/threonine kinase 19; C4A, complement component C4A; 4186 

CYP21A1P, cytochrome P450 family 21 subfamily A member 1 (21-hydroxylase) pseudogene; 4187 

STK19B, serine/threonine kinase 19 pseudogene; C4B, complement component C4B, CYP21A2, 4188 

cytochrome P450 family 21 subfamily A member 2 (21-hydroxylase). Genes transcribed from the 4189 

opposite strand (right to left in the figure) are immediately below: ATF6B, activating transcription 4190 

factor 6 beta; TNXB, tenascin XB; ; TNXA, tenascin XA pseudogene;  DXO, Decapping and 4191 

exoribonuclease protein. ZA and ZB are adrenal-specific noncoding transcripts overlapping the 4192 

C4 genes in the sense direction (146,147); additional transcripts exist but are not shown. The 30 4193 

kb duplication of part of STK19, all of C4, all of CYP21, and part of TNX (a so-called RCCX 4194 

module) is indicated. 4195 

 4196 

B, an illustration of unequal meiotic crossing-over generating a deletion representing a salt-wasting 4197 

21-hydroxylase deficiency allele. The other chromosome has 3 copies of the RCCX tandem and is 4198 

not associated with disease. The scale is expanded from Figure 1A. For clarity, only the C4 and 4199 

CYP21 genes are illustrated. 4200 

 4201 

Figure 3. A, Structure of the CYP21 genes. Exons are numbered. Mutations affecting enzymatic 4202 

function that are normally present in the CYP21A1P pseudogene are shown. They are positioned 4203 

vertically to show the severity of CAH they cause when transferred to CYP21A2 in gene 4204 

conversion events. These are grouped into 4 mutation groups (0, A-C) and are associated with 4205 
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particular forms of CAH, as indicated. B, associations between mutation groups and forms of CAH. 4206 

These are displayed in tabular form on the left and as histograms on the right. 4207 

 4208 

Figure 4. Genital development. Top, Differentiation of male and female reproductive systems are 4209 

illustrated in schematic cross-section (not to scale). Bottom, the Prader scale of genital virilization. 4210 

 4211 

Figure 5. New therapeutic approaches target different aspects of the pathophysiology of CAH. 4212 

Circadian cortisol replacement with a modified-release glucocorticoid or subcutaneous 4213 

hydrocortisone infusion aim to control corticotropin-driven hyperandrogenism by replacing 4214 

cortisol in a physiological manner. Other approaches to reduce androgen production without 4215 

chronic supraphysiological glucocorticoid exposure include corticotropin-releasing hormone 4216 

receptor-1 antagonists, adrenocorticotropic hormone (corticotropin, ACTH) antibodies, 4217 

adrenocorticotropic hormone receptor (MC2R) antagonists, adrenolytic agents, adrenalectomy, 4218 

and pharmacological inhibition of steroidogenic enzymes or steroid receptors in the adrenal or 4219 

peripheral tissues. Since CAH owing to 21OHD is a monogenic disorder, gene therapy with cell-4220 

based and gene-editing technologies may be able to restore defective steroidogenesis. CRH 4221 

denotes corticotropin-releasing hormone (sometimes referred to as corticotropin-releasing factor 4222 

[CRF]).  From New England Journal of Medicine, Merke DP, Auchus RJ, Congenital Adrenal 4223 

Hyperplasia Due to 21-Hydroxylase Deficiency, Volume 83, Page 1258. Copyright © (2020) 4224 

Massachusetts Medical Society. Reprinted with permission. 4225 
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Table 1. Incidence of CAH in different countries 

Country Complete 

national 

data? 

Sample size 1/Incidence PPV (term infants 

or overall) 

Reference 

Argentina (Buenos 

Aires) 

No 80,436 8,937 50 (3) 

Australia* Yes  18,034 N/A (4) 

Australia (New 

South Wales) 

No 185,854 15 488 1.8 (4) 

Australia  (Western 

Australia)* 

No 550,153 14,869 N/A (5) 

Brazil No 748,350 14,967  (6) 

Brazil (Goias state) No 82,603 10,325 28.6 (7) 

Brazil (Minas 

Gerais state) 

No 159,415 19,927 2.1 (8) 

Brazil (Rio Grande 

do Sul state) 

No 108,409 13,551 1.6 (9) 

China No 30,000 6,084  (10) 

China (Beijing) No 44,360 7,393 3.0 (11) 

Croatia Yes 532,942 14,403  (12) 

Cuba Yes 621,303 15,931 0.3 (13) 

Czech Republic Yes 888,891 12,520 1.6 (14) 

France Yes 6,012,798 15,699 2.3 (15) 

Germany (Bavaria) No 1,420,102 12,457 5 (16) 

India No 55,627 6,334  (17) 

Israel Yes 1,378,132 16,910 16.5 (18) 

Japan (Sapporo) No 498,147 20,756 8 (19) 

Japan (Tokyo) No 2,105,108 21,264 25.8 (20) 

Netherlands Yes 2,235,931 17,468 24.7 (21) 

New Zealand Yes 1,175,988 26,727  (22) 

Sweden Yes 2,737,932 14,260 25.1 (2) 

Turkey No 241,083 15,067 1.9 (23) 

United Arab 

Emirates 
Yes 750,365 9,030  

(24) 

United Kingdom* Yes  18,248 N/A (25) 

Uruguay Yes 190,053 15,800  (26) 

 

Data are from studies published in 2008 and later; Earlier studies are summarized by (27) and (2). 

Data are from newborn screening except those marked (*) which are from national case registries. 

PPV, positive predictive value. 
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Table 2. Allele frequencies in various regions 

 North America 

South 

America Europe China Total 

References (195,208,213,217) (200,218) (197,203,212,219) (216,220)  

Allele      

Deletion/ 

conversion 21.1% 11.1% 28.8% 21.9% 21.5% 

P30L*  2.4% 1.0% 1.2% 1.1% 1.8% 

I2G  23.1% 20.6% 26.7% 33.8% 25.3% 

E3Δ8bp  2.3% 0.9% 2.4% 0.3% 1.8% 

I172N  9.0% 9.4% 15.6% 15.1% 11.4% 

E6 2.2% 1.8% 2.4% 1.9% 2.1% 

V281L * 22.2% 24.5% 6.2% 1.4% 15.7% 

Q318X  3.6% 6.5% 3.5% 5.3% 4.2% 

R356W 3.8% 4.8% 4.3% 6.6% 4.5% 

Other 10% 10% 8.9% 12.4% 10.2% 

      

Alleles 

analyzed 3527 1094 1338 1142 7101 

 

Gene conversion mutations occur with similar frequencies in most populations (Table 2).  

*P30L and V281L are found mainly in patients with nonclassic CAH and therefore their allele 

frequencies depend on the proportions of nonclassic patients included in each study. 
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Table 3. Maintenance therapy in patients with CAH classic CAH 

Drug Recommended total daily dose Divided dosing frequency 

(times daily) 

Children   

Hydrocortisone 10-15 mg/m2 3-4  

Fludrocortisone 0.05-0.2 mg 1-2  

Sodium chloride supplements 1-2 g (17-24 mEq/day) in infancy Several  

   

Adults   

Glucocorticoids   

   Hydrocortisone 15-25 mg 2-3 

   Prednisone 5-7.5 mg 2 

   Prednisolone 4-6 mg  2 

   Methylprednisolone 4-6 mg 2 

   Modified-release        

hydrocortisone (Plenadren®)  

15-25 mg *no published data in CAH 

patients, clinical experience 

shows that in addition to the 

morning dose a second GC dose 

is required in the evening 

   Modified- and delayed-release                      

hydrocortisone (Chronocort®)a   

15-25 mg 2 (2/3 of dose at 2300 and 1/3 of 

dose at 0700)a 

   Dexamethasoneb 0.25-0.5 mg  1 

   

Fludrocortisone 0.05-0.2 mg 1 

 

a Not yet launched, currently only available within the extension phase of the phase III study.  

b Avoid if possible or limit to a short time. Adapted from Speiser et al. (134). 
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Table 4. Indications for different glucocorticoid (GC) preparations 

Steroid Clinical indication Pros Cons 

Hydrocortisone Preferred option for GC 

replacement. 

Best long-term outcome 

with regard to metabolic, 

cardiovascular and bone 

health.  

Short half-life. 

Needs to be given 

three times daily. 

Adrenal androgen 

suppression 

overnight may 

escape. 

Prednisolone 

(Prednisone) 

Might be a preferred 

option for regulation of 

menstrual cycles or 

fertility induction, or 

if patient adherence is 

poor with thrice daily 

HC. 

Longer half-life, twice 

daily regimen. 

Potentially better patient 

adherence compared to 

three times daily 

regimen. 

Potential higher 

rate of adverse 

effects on 

metabolic, 

cardiovascular and 

bone health 

compared to HC.  

Dexamethasone Fertility induction 

TART treatment 

 

Strong adrenal 

suppressive effect, 

longest half-life, once 

daily regimen often 

possible. 

 

Highest rate of 

adverse effects on 

metabolism, bone 

health. 

Traverses placenta 

barrier. 
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Table 5. Biochemical monitoring of glucocorticoid replacement in children and 

adults  

Sample   Variable Goals and Comments*  

Serum 

  

 Androstenedione  Normal values for sex and age  
(often useful to assess together with testosterone in 

males)  

Testosterone  Normal values for sex and age  
(assess in the context of gonadotropins and 

androstenedione)  

Sex hormone-binding globulin  For calculation of free and bioavailable 

testosterone  

DHEAS  Low to suppressed, not a good marker of 

disease control, but can be used to check for 

compliance/adherence   

17OHP  Normal values indicate overtreatment, aim 

at ULN to 400-1200 ng/dl  

(12-36 nmol/l)  

ACTH Not a useful parameter for disease  control; 

normal values indicate overtreatment 

Androstenedione/Testosterone 

ratio  

Healthy woman: <2  

Women with CAH: >4 indicates 

testosterone mainly of adrenal origin   

Healthy Males: <0.2  

Men with CAH: >0.5 indicates testosterone 

mainly of adrenal origin   

Men with CAH: >1.0 + LH, FSH 

suppressed indicates testosterone only of 

adrenal origin due to poor disease control    

Progesterone (Females)  Goal is <2 nmol/l (<0.6 ng/ml) in follicular 

phase for women trying to conceive   

11-oxygenated C19 steroids  

(11-ketotestosterone,  

11-hydroxytestosterone,  

11-hydroxyandrostenedione,  

11-ketoandrostenedione)   

Translational method; not yet established 

in clinical care 

Saliva 

 

Androstenedione  Normal values for sex and age  

17OHP  Up to ~3 times upper normal limit  

Urine GC-MS urinary steroid 

metabolome analysis (C21-, C19-, 

C18-steroids) 

Translational method; not yet established 

in clinical care 

 

*These goals are derived from clinical experience and based on expert opinion as there are no established 

optimal biomarkers nor target values for treatment monitoring.  
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Table 6. Monitoring glucocorticoid replacement by history and clinical/technical 

examination (generally every 4 – 6 months in adults, every 3 – 4 months in children >18 

months old) 

Parameter Goals and Comments 

History   

Symptoms of adrenal insufficiency (fatigue, 

headache, nausea, abdominal pain, postural 

dizziness, frequent stress dosing)  

No signs of adrenal insufficiency  

Adrenal crisis prevention Well-educated and equipped patient with 

knowledge of sick day rules, and possession of 

steroid emergency card and injection kit; 

medical alert identification worn at all times. 

Menstrual cycle  Regular menstrual cycles 

Libido, erections  (males) Normal  

Sexual health (females) Pain-free intercourse 

Physical examination  

Height (children) Linear growth within target range 

Pubertal development/Tanner stage (children 

and adolescents) 

Normal pubertal development 

Blood pressure Within age- and sex-dependent reference range  

BMI Within age- and sex-dependent reference range  

Cushingoid features, Striae distensae No clinical signs of hypercortisolism 

Gynecological assessment only if indicated 

 

 

Imaging  

Bone age yearly (children >2 years old 

/adolescents) 

Bone age within 2 SD 

Scrotal ultrasound every 2 – 5 years 

Ovarian ultrasound only indicated in 

unexplained hyperandrogenism 

No gonadal masses 

Bone mineral density every 3 – 5 years (adults 

treated with high GC doses) 

Within age- and sex-dependent reference range 

Others  

Semen analysis if indicated i.e presence of 

TARTs  (males) 

Normal results (WHO guideline)  

Genetic assessment and counselling Confirmation diagnosis CAH; counselling for 

family planning 
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Table 7. Suggested Management and Glucocorticoid Stress Dosing for patients with 

Adrenal Insufficiency due to Congenital Adrenal Hyperplasia (395,398,399,402) 

Clinical Scenario Glucocorticoid Management Additional considerations 

At home   

Major illness or 

high-grade fever (> 

39°C children) 

Children: Three times the usual dose 

of hydrocortisone divided into 4 doses 

(given every 6 hours). 

 

Adults: 20 mg of hydrocortisone orally 

3 times daily in addition to usual 

glucocorticoid or triple usual 

glucocorticoid. 

 

 

Drink regularly and increase 

fluid* intake for concentrated 

(dark) urine.  

 

Eat regularly simple and 

complex carbohydrates. 15 g 

(children) or 30 g (adults.)  

 

Adults with severe infections 

should divide dose every 6 

hours. 

Gastroenteritis with 

diarrhea ± vomiting 

(with or without 

fever) 

Children: Three times the usual dose 

of hydrocortisone divided into 4 doses 

(given every 6 hours); 

Adults: 10-20 mg of hydrocortisone 3 

to 4 times daily in addition to usual 

glucocorticoid or double or triple usual 

glucocorticoid; Dose depends on 

severity of diarrhea. 

 

Repeat oral dose if vomiting occurs 

within 1 hour of medication.  If 

vomiting reoccurs, parenteral 

hydrocortisone 100 mg (children 50-

100 mg/m2).  

 

 

Consider early parenteral 

hydrocortisone. 

 

If unable to tolerate fluids, call 

emergency services for 

evaluation following 

glucocorticoid injection. 

 

Return to usual dose within 1-2 

days of recovery with return to 

usual diet. 

Minor illness or 

low-grade fever 

(>38°C in children) 

Children: two to three times the usual 

dose of hydrocortisone divided into 3-

4 doses (given every 6-8 hours). 

 

Adults: 10 mg of hydrocortisone orally 

3 times daily in addition to usual 

glucocorticoid, or double usual 

glucocorticoid.  

 

 

Drink regularly and increase 

fluid* intake for concentrated 

(dark) urine.  

 

Eat regularly simple and 

complex carbohydrates. 15 g 

(children) or 30 g (adults).  

 

Return to usual dose within 1 

day of recovery. 
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Exhausting physical 

exercise  

Add one usual dose (children) or 10 

mg hydrocortisone (adults) 30 to 60 

minutes before exercise.  

For unusual activities beyond 

normal routines.  Not for 

routine use.  

 

Can repeat dose(s) if extended 

time period of strenuous 

exercise (e.g., marathon) 

   

Procedures   

Major Surgery Hydrocortisone intravenous bolus 50-

100 mg (children 50-100 mg/m2) 

followed by continuous intravenous 

hydrocortisone infusion 100-200 mg 

(children 100 mg/m2) over 24 hours. 

Alternatively, divided doses every 6 

hours, intravenous hydrocortisone 

100-200 mg/day (children 100 

mg/m2/day) 

Taper over 2-3 days with return 

to usual dose 

Short Surgeries 

 

Hydrocortisone intramuscularly or 

intravenous bolus 50-100 mg (children 

50 mg/m2) just before general 

anesthesia. Alternatively, give triple 

the usual morning dose before oral 

intake is held. 

Rapid return to oral regimen  

Labor and Delivery As for surgical procedures  

Bowel procedures 

requiring overnight 

laxative 

Double or triple usual glucocorticoid 

dose prior to laxative and repeat every 

6 hours if oral medication tolerable 

and allowed. Alternatively, 

hydrocortisone 50-100 mg (children 

50 mg/m2) intramuscularly with 

laxative 

 

Hydrocortisone 50 mg (children 50 

mg/m2) intramuscularly or intravenous 

prior to procedure 

 

Dental surgery Extra morning dose 1 hour prior to 

surgery 

Can repeat dose depending on 

recovery 

 

No additional doses for routine 

dental procedures 



Minor procedures 

with no sedation 

No adjustment needed  

Acute emergency Rapid infusion of Intravenous fluids: 

1000 ml of 0.9% sodium chloride 

(children 20mL/kg normal saline, 

repeat up to 60 mL/kg) during the first 

60 minutes, further fluid 

administration guided by individual 

patient needs  

Hydrocortisone bolus 100 mg 

(children 50-100 mg/m2) followed by 

continuous intravenous infusion 200 

mg over 24 hours or 50 mg every 6 

hours (children 50-100 mg/m2/day 

divided every 6 hours). Reduce to 100 

mg (children 50 mg/m2/day) over 24 

hours the following day. 

 

For hypoglycemia: dextrose 0.5-1g/kg 

dextrose or 2-4 ml/kg of D25W 

(maximum single dose 25 g) infused 

slowly at rate of 2 to 3 mL/min.  

Alternatively, 5-10 mL/kg of D10W 

for children < 12yrs old 

Measurement of glucose and 

electrolytes 

 

Cardiac monitoring 

 

Consider antibiotics 

Rapid hydrocortisone tapering 

and switch to oral regimen 

depending on clinical status 

 *electrolyte-and sugar-containing fluids recommended. If hydrocortisone sodium 

succinate is unavailable, another parenteral glucocorticoid, such as dexamethasone, 

methylprednisolone, or prednisolone may be used in equivalent doses. Fludrocortisone 

replacement is not required if hydrocortisone doses exceed 50 mg every 24 hours but is 

generally administered, in those normally on fludrocortisone, when oral hydrocortisone is 

started. 



 

 

Table 8. Animal models of prenatal glucocorticoid exposure 

Animal Medication/Dosing 1 Outcome Reference 

Mouse NK1R antagonists  

30 – 300 mg/kg/day2  

9% cleft palate in higher dosage (448) 

Rat  Dex 0.1 mg/kg/day  

during the whole 

pregnancy 

Lower body weight and kidney size, 

postnatal hypertension, albuminuria, 

sodium retention, and decreased 

glomerular filtration 

(449) 

Spiny 

mouse 

Mini osmotic pump 

with dex 125 mcg/kg 

Decreased the number of nephrons and 

altered expression of genes involved in 

nephron development in the spiny 

mouse 

(450) 

Rat Dex Impaired thyroid development with 

fewer follicular cells and C cells 

(451) 

Rat Carbenoxolone3 12.5 

mg/day 

Lower birth weight and increased blood 

pressure  

(452) 

Rat Dex 100 mcg/kg/day 

sc  in late pregnancy 

Glucose intolerance, 25% increase in 

hepatic expression of glucocorticoid 

receptor  

(453) 

Rat Dex 100 mcg/kg/day 

sc in late pregnancy 

Lower birth weight, fatty acid 

esterification and triglyceride synthesis  

(454) 

 

Rodents Dex 50-120-200 

mcg/kg/day 

Impaired glucose tolerance, 

hyperinsulinism  increased blood 

pressure, reduced postnatal growth at 1 

year of age despite normal birth weight 

(455) 

Rat Carbenoxolone 12.5 

mg/day 

Reduced birth weight (456)   

11 β HSD 

mutant 

mouse 

None Mice lacking Hsd11b2 had lower 

birthweights and increased anxiety 

compared to wild type littermates 

(457) 

Sheep Betamethasone  

0.5 mg/kg during 3 

days 

Retardation of fetal brain development (458) 

Sheep Single or repeated 

betamethasone 

injections 

Reduced brain weight (459) 
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Sheep Repeated 

betamethasone 

injections 

Reduced neuronal myelinization (460) 

Rhesus 

macaque 

Dex 0.5 or 5 or 10 

mg/kg or repeated 

injections 

Decreased numbers of pyramidal 

neurons in the  hippocampal CA regions 

(461) 

Neural 

stem cells 

of newborn 

rat  

Dex in vitro Impairment of neuron and 

oligodendrocyte size and differentiation  

(462) 

Fetal 

guinea pig 

Betamethasone 1 

mg/kg for 4 days 

Changes in GR DNA binding and DNA 

methylation in the fetal hippocampus 

(463) 

Guinea pig Betamethasone 1 

mg/kg for 4 days 

Reduced locomotor activity; effect on 

programming  HPA axis and 

hippocampal glucocorticoid feedback  

(464) 

Spiny 

mouse 

125 mcg/kg Dex sc for 

60 hours using mini 

pump 

Reduction of adrenal steroidogenesis, 

decrease in plasma DHEA 

reduced adrenal expression of 

steroidogenic enzymes in adulthood  

(465) 

Guinea pig Betamethasone 1 

mg/kg for 4 days  

Altered DNA methylation underlies 

both the long-term effects of 

glucocorticoids and of maternal stress 

on the fetus 

(466) 

 

 

1 Note that the doses given to animals exceed the typical doses given in pregnancies at risk for 

CAH. 

2NK1R antagonists modulate the hypothalamic-pituitary-adrenal axis leading to increased 

corticosterone secretion. 

3Carbenoxolone is a glycerrhetinic acid derivative with a steroid-like structure. It inhibits placental 

Hsd11b2 activity, thereby increasing fetal exposure to maternal glucocorticoids (467). 

 

 



 

 

Table 9.  Studies of human prenatal exposure to glucocorticoids 

Study group Results    

Dex 

exposed 

Controls Age at study Questionnaire findings Psychological tests Laboratory  and 

MRI 

Reference 

First trimester exposure only1    

26 total 

3 with 

CAH 

14 total 

3 with CAH 

6 mo-5.5 Yrs 

Mean 

2.5+1.3 yrs  

NS overall development 

Dex treated higher shyness, 

emotionality, lower 

sociability (EAS), 

internalizing (CBCL) 

(parental Q) 

  (475) 

174 total 

48 with 

CAH 

313 total 

195 with 

CAH 

1-12 yrs 

3 diff age 

groups 

 

No developmental 

differences 

NS CBCL school scale 

(parental Q) 

  (476) 

22 total 

10 F 

7 M 

and 

5 M  with 

CAH  

35 total 

 all healthy 

 

7-17 yrs 

 

Median 11 

yrs 

NS CBCL school scale 

(parental Q) 

Poorer scholastic 

competence (self- 

reported) 

NS IQ, but 

Poorer working memory 

(WISC-III)  

 

NS learning, memory 

(NEPSY) 

 

 

 

(477) 

Same study  

Population 

NS behavior (CBCL), or 

shyness (SPAI-CP). 

Higher scores sociability 

(EAS) (parental) 

more social anxiety (self-

reported  

Q)  

  (478) 
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Same 

study 

population 

  M reported more neutral 

behavior KI-GRB (self 

reported Q) 

F, NS 

  (479) 

Study 1 

67 total 

51non-

CAH (35 

F, 16 M) 

8 M CAH 

(8 F full 

term Dex) 

 

Study 2 

7 total 

(1 CAH F 

Full term 

Dex) 

 

 

73  total 

31 F 

16 M 

15 CAH F 

11 CAH M  

 

 

 

13 total 

2 F 

1 M 

4 CAH F 

6 CAH M 

 

Study 1 

5-12 yrs 

 

 

 

 

 

 

 

 

Study 2 

11-24 yrs 

 Study 1 

Few significant findings  

K-ABC Sequential 

Processing positive for 

M alone p=0.095 

 

 

 

 

 

Study 2 

Non-CAH F performed 

significantly less well on 

Faces & Places  

M, NSerence. 

 

 

 

 

(480) 

 

 

9 F 8 non-CAH 

9 CAH 

non-DEX  

 

All F 

Mean 12 yrs 

But CAH 

untreated 16 

yrs  

NS psychopathology 

(CBCL) (parental Q) 

Lower scores in non-

CAH Dex treated F 

(WAIS-R-PL, WISC-R) 

 (481) 

34 total 

16 F 

18 M 

66 total 

36 F 

30 M 

 

7-17 yrs 

Mean age 

10.5 yrs 

 

 

 Poorer working memory 

(WISC-III) 

Sex difference with 

larger neg effects in F for 

executive functions and 

psychometric 

intelligence 

(WISC-III, WMS-III) 

 (482) 



34 

15 F 

19 M 

67 total 

36 F 

31 M 

 

7-17 yrs 

Mean age 

10.5 yrs 

 

 

CBCL, SPAI-R and EAS 

(parental Q) 

SASC-R (self reported Q)) 

NS. Generally well 

adjusted. 

 (483) 

     

     

23 Adults 

12 F 

11 M 

 

 

Population 

controls 

31 F  

27 M 

 

16-24 yrs 

Mean age 

20-21 

 

 No significant 

neuropsychological 

changes; no increase in 

anxiety, depression or 

autistic traits. 

 (484) 

29 total 

12 F 

17 M 

37 total 

18 F  

19 M  

Mean age  

16.5-17 yrs 

 Methylation in BDNF, 

FKBP5, and NR3C1 

genes were associated 

with the performance on 

WAIS 

 

Altered DNA 

methylation in 

peripheral CD4+ 

T-cells 

 

(485) 

16 total 

9 F 

7 M 

15 total 

8 F 

7 M  

 

Mean  

24 yrs 

  Lower insulin 

secretion by 17%-

22%. 

Lower glucagon 

 

(486) 

40 total 

18 F 

22 M 

75 total 

35 F  

40 M 

Mean age 

16.3+6.2 

 

Age groups 

Young<16 

Older >16 

 

 

  HOMA-β 

index, lower  

β-cell function in 

younger F. 

Glucose level, 

higher in younger 

age group 

 

(487) 



Higher cholesterol, 

and LDL in older 

age group 

 

19 total 

9 F  

10 M 

43 total 

26 F 

17 M 

16-26 yrs   MRI 

Alterations in brain 

structure 

Enlarged 

amygdala, surface 

area and volume of 

left sup frontal 

gyrus, widespread 

white matter 

changes 

(483) 

Girls with CAH, Dex-treated until term    

4 

 

   1 not able to perform 

neuropsychological 

testing 

Generally low IQ 

 (477) 

Study 1 

8 

 

Study 2 

1 

Study 1 

15 CAH 

girls 

 

Study 2 

4 CAH F 

Study 1 

5-12 yrs 

 

Study 2 

11-24 yrs 

 Performed more poorly 

on K-ABC Mental 

Processing Composite 

(p=0.09) 

 

Performed (marginally) 

less well on Hand 

Movements (subtest 

Sequential Processing) 

and Spatial Memory 

(Simultaneous 

Processing). 

  

(480) 

9 8 non-CAH Mean 12 yrs NS psychopathology 

(CBCL) (parental Q) 

Higher scores IQ in Dex 

treated F. 

 (481) 



9 CAH 

untreated 

and CAH 

untreated 16 

yrs  

Lower in non-CAH Dex 

treated F (WAIS-R-PL, 

WISC-R) 

4 25 F CAH  Diff in self-perceived 

deficits in 

executive function (B-

DEFS-SF) 

Broad deficits in most 

measures of cognition in 

Dex treated F (WAIS-IV, 

WMS-III) 

 (488) 

 

1 The earlier studies reported results from mixed cohorts, short-term treated boys and girls without CAH and boys with CAH, while 

more recent studies have assessed individuals with and without CAH, males and females, separately. 

 

Abbreviations 

NS, not significantly different; Dex, dexamethasone; CAH, congenital adrenal hyperplasia; CBCL, Child Behavior Checklist; EAS 

Temperament Survey for Children; WISC-III, Wechsler Intelligence Scales for Children; NEPSY, Developmental Neuropsychological 

Assessment; SPPC, Self-Perception SPAI-C-P, Social Phobia and Anxiety Inventory for Children – Parent Report; K-ABC, Kaufman 

Assessment Battery for Children; WAIS, Wechsler Adult Intelligence Scale; WMS, Wechsler Memory Scale; KI-GRB, The Karolinska 

Inventory of Gender Role Behavior; B-DEFS-SF, Barkley Deficit in Executive Functioning Scale – Short Form. 

HOMA-β  homeostasis model assessment of beta cell function; LDL, low density lipoprotein; MRI magnetic resonance imaging. 

 

 



Table 10. Selected generic and CAH-specific risk factors for mental health, 

psychosocial/psychosexual adaptation and well-being. 

A. Generic (noncategorical) 
Illustrative 

studies 

Males and Females  

Challenges to parenting with … (529) 

… accompanying caregiver psychological distress (530,531) 

… negative emotional spillover effects from parent to child (532-534) 

… perceived child vulnerability and overprotectiveness (535,536) 

Burdens of clinic visits and adherence to sometimes complex and changing 

treatment regimens; emergency room visits and hospitalizations 
(537-539) 

Threats to body-image and self-esteem  (540,541) 

Higher rates of missed school and peer victimization  (542,543) 

Academic challenges (544) 

Problems of psychosocial adaptation (i.e., increased psychological 

symptomatology in youth and adults compared to healthy comparison groups 
(542,545-547) 

Systemic weaknesses in the process of transitioning from pediatric to adult care (548-550) 

Career barriers for people with chronic illness 

 
(551) 

B.                                       CAH-specific (categorical)  

Female-specific  

Early reactions to newborn with atypical genitalia (experiences in medical 

environment) 
(549,552) 

Stigma (anticipated or experienced) stemming from atypical genitalia and its 

modulation by culture  
(553-563) 

Tension between person-first (i.e., CAH as a medical condition) versus identity-

first (intersex and LGBT advocacy); and related human rights perspectives  
(564-566) 

Secrecy (562,567-570) 
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Genital examinations and medical photography  (550,571) 

Gender of rearing in Prader V cases  (134,572-574) 

Genital surgery decision making and … (575) 

… consequences for sexual function (528) 

… outcomes of postponing surgery (576) 

Gender identity  (577-579) 

Effects on social support (580,581) 

Model of care (342) 

Males and Females  

Terminology (582-584) 

Early puberty/attenuated adult height; growth hormone therapy (33,509) 

Neurocognitive sequelae (488,585,586) 

… prenatal dexamethasone (374,482,489) 

… hyponatremic episodes (587) 

Fertility problems (testicular adrenal rest tumors in males; low levels of 

fecundity in females) 
(588-592) 



Essential points: 

 Congenital adrenal hyperplasia (CAH) is  most often caused by deficiency of steroid 21 

hydroxylase encoded by CYP21A2. 

 Allelic variants are associated with a spectrum of phenotypes. 

 CAH in its severe, classic form includes cortisol and aldosterone deficiencies, as well as 

androgen excess. 

 Newer concepts in steroid biosynthesis, hormonal and genetic diagnostic tools, and novel 

therapeutics have expanded our understanding of CAH. 

 Long term sequelae of this disease have been reported in detail and strategies are being 

developed to improve quality of life for these patients. 

Essential Points




