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 Quality and Price Setting of High-Tech Goods  

 Yuriy Gorodnichenkoa, Oleksandr Talaverab, Nam Vuc 

 

Abstract: 

This paper investigates the link between product quality and price setting for central processing 

units (CPUs). Using thousands of price quotes from a popular price-comparison website, we 

find that market fundamentals, such as the number of sellers, median price, share of convenient 

prices and level of seller stability, are important factors for explaining price stickiness and price 

dispersion. We demonstrate that calculations of price inflation require conditioning not only 

on CPU quality, but also on market fundamentals to ensure that CPU attributes are priced 

correctly. Failing to do so can result in an understatement of CPU price deflation in the sample 

period.    
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1. Introduction  

The law of one price is the bedrock of many economic models, but the reality often contradicts 

the law: similar (or even identical) goods can be sold at different prices in highly integrated 

markets. One may hope that the law of one price may still hold for prices adjusted for quality 

differences (“price per performance unit”) and other product attributes. This idea is the basis 

of hedonic pricing used to measure inflation for goods with rapid technical change. Indeed, 

since Solow (1960), economists and statistical agencies routinely postulate that vintages of 

capital produced with different technologies should have the same price when these vintages 

are measured in efficiency units. While intuitive, this approach ignores the fact that price 

dispersion may arise for other reasons such as market power, price stickiness, and other 

frictions. Consequently, conventional hedonic pricing may provide a distorted measure of 

inflation.  

To evaluate this hypothesis, we use detailed data on price quotes and performance measures 

for Central Processing Units (CPUs) to study how quality differences and various frictions 

influence measured inflation and technical change. We focus on the CPU market for several 

reasons. First, CPUs have a high rate of quality improvement which helps us to explore the 

effect of quality changes on prices, as many vintages of CPU technology coexist in a given 

period. Second, because CPUs are a key element of many electronic devices, quality 

improvement in CPUs is the major factor which contributes to the increase in the quality of 

other products and services (desktops, laptops, tablets, mobile phones, software, and cloud 

computing); see e.g., Jorgenson et al., 2000; Oliner and Sichel, 2000; Brynjolfsson and Hitt, 

2003. Finally, CPU quality can be accurately measured using CPU performance scores, which 

removes the difficulty of quality measurement encountered by previous studies (see e.g., 

Combris et al., 1997).  

A central ingredient of our analysis is our unique dataset, which includes monthly online prices 

of CPUs in the U.S. The online price quotes are collected from a leading online shopping 

platform. Our data covers the prices of hundreds of CPUs sold across hundreds of online 

retailers between April 2009 and December 2012. The substantial size of our data gives us 

strong statistical power. Finally, for each product, we have CPU performance scores, an 

integral measure of CPU quality.  

Using the dataset, we show that, similar to prices for other products, CPU prices exhibit some 

stickiness even in a highly competitive e-commerce environment, thus suggesting that various 
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pricing frictions and market fundamentals—the number of sellers (a proxy for market 

concentration), median price (a proxy for incentives to search for better prices), share of 

convenient prices (also called price points such $9.99 or $99)—are also important factors for 

explaining price stickiness and price dispersion. We document a variety of stylized facts about 

CPU pricing and contrast various pricing moments for CPUs with the corresponding moments 

for typical goods sold online. Our results suggest that quality differences play an important role 

in accounting for price differences across different CPUs. When we combine market frictions 

and quality differences to explain variation in CPU prices, we find that both types of forces are 

significant predictors of price variation. Using the introduction of new (sometimes 

“breakthrough”) CPU models, we also examine how prices of other models evolve in response 

to these technological shocks. We document that the re-pricing of older, less efficient/powerful 

models is rather modest and sluggish. Finally, we augment standard hedonic-pricing 

regressions to include various measures of market/product fundamentals to investigate how 

these fundamentals can affect measured inflation for quality-adjusted products. The estimates 

suggest that controlling for market/product fundamentals materially influences estimated 

inflation: prices fall at a faster rate than is implied by quality adjustment alone.  

Our work is related to several strands of the literature. The first strand studies the micro 

foundation of price stickiness (see e.g., Klenow and Malin, 2010 for a survey). Our analysis 

complements this strand by focusing on goods with rapid quality improvement and by studying 

the effects of well-measured technological changes on price stickiness and price dispersion.  

The second strand of literature focuses on price dispersion at the micro-level. Existing papers 

often focus on the degree of price dispersion (Lach, 2002; Kaplan et al., 2019; Sheremirov, 

2019). Our study contributes to this literature by exploring the impact of product quality on 

between- and within-product price dispersion, as well as documenting the dynamic properties 

of price dispersion.  

Finally, this study is related to the strand of literature that focuses on constructing hedonic price 

indices (see e.g., Shiratsuka, 1999; Kryvtsov, 2016; Byrne et al., 2020), especially for 

computing devices (e.g., Pakes, 2003; Aizcorbe et al., 2020) and computer components (e.g., 

Byrne et al., 2018). We complement this strand of literature by introducing an improved, direct 

measure of product quality for a larger set of CPUs to construct the quality-adjusted price 

indices. More importantly, we quantify the contribution of non-technological factors to 

correctly measure inflation.  
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2. Data  

2.1. Data collection 

We use a comprehensive dataset of CPU price quotes in the U.S. e-commerce market. Each 

product is uniquely identified by the manufacturer product number (MPN). For instance, MPN 

“BX80601940” uniquely identifies the “Intel Core i7-940 2.93GHz Processor”. Similarly, each 

online seller (e.g., Amazon.com, CostCentral.com, Memory4Less.com, NextWarehouse.com) 

is uniquely identified. Our online price-quotes are gathered from a leading price comparison 

website (PCW) that provides price quotes for the U.S. online market.1 Specifically, at midnight 

on the first day of each month, a python script starts to automatically download webpages with 

price quotes. After that, we extract MPNs, seller IDs and prices for each CPU-Seller. Price 

quotes in our data are “net”, that is, pre taxes and shipping fees. Relative to previous studies 

that typically have one year of data or less (e.g., Lünnemann and Wintr, 2011), we have a 

longer time series covering 45 months. This feature of our data allows us to better exploit 

changes in the quality of CPUs over time.  

We complement these price quote data with information on the performance scores of CPUs. 

In this additional dataset, we uniquely identify each CPU model by its official name. Besides 

performance scores, the data also include the main technical characteristics of the processor 

such as speed, turbo speed, and the number of cores. The data of CPU performance scores are 

provided by PassMark Software, a leading authority in software/hardware performance 

benchmarking and testing. This company is also a Microsoft Partner and Intel Software Partner 

and owns one of the world’s largest CPU benchmark websites. They not only report the final 

scores of CPU performances but also provide all of the test results used to compute the 

performance marks. Furthermore, their testing methods and models to produce the CPU’s 

performance score are published on their website. Therefore, if they change their performance 

measure, we can produce new performance scores and update our data to be comparable with 

new CPU models. Since each CPU model in the latter dataset includes several product versions 

with different MPNs in the former dataset, we manually matched the performance score of a 

CPU model with all of its versions. For example, the CPU model “Intel Core i7-940 2.93GHz 

 
1 Gorodnichenko and Talavera (2017) use the same PCW and they provide more details on the prominence and 

business model of this PCW.  
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Processor” has three versions with the same performance. Its MPNs are: 

“AT80601000921AA”, “BX80601940”, and “BXC80601940”.  

We use performance scores rather than physical characteristics (e.g., clock speed)—as was 

done in previous research—because the nature of technical change can evolve over time and 

some physical characteristics can lose their relevance. For example, Byrne et al. (2018) find 

that the CPU quality index based on chip characteristics is completely flat over 2010-2013, 

while the quality index based on performance scores increased sharply. The main reason is that 

processor producers shifted away from increasing the clock speed due to heat generation. 

Instead, they improved processor performance by placing multiple cores on a chip.2 We 

complement existing literature by using the performance score as an integral measure of quality 

for a large set of CPUs.  

 

2.2. Data filters and data quality 

We applied a series of filters to ensure the consistency of our analysis. Specifically, we dropped 

CPUs that do not have performance scores after merging our two data sources. All used or 

refurbished CPUs were removed from the dataset since their prices are not comparable with 

prices of new CPUs. In addition, to minimize the effects of extreme values in our data, both 

the top and the bottom one percent of the prices were dropped. For time-series analyses, CPUs 

with less than 20 price-quote observations were removed. A CPU is considered as an available 

product in a month if it is offered by at least three sellers in that month. After applying all 

filters, our large sample covers monthly prices of 654 CPUs sold across 142 online retailers in 

the United States from April 2009 to December 2012. We define an observation by its MPN, 

seller ID and month. Our dataset contains 74,306 product-seller-month price quotes. The CPU 

market is dominated by Intel and AMD and therefore the price quotes are effectively for these 

two manufacturers.3  

One may be concerned about the quality of price quotes on PCWs, e.g., the price listed on 

PCWs may be out of date or discrepant from sellers’ actual prices if sellers post lower prices 

on PCWs than on their websites to attract visits of customers. In fact, online merchants are 

 
2 Flamm (2019) provides a review of changes in technology.  
3 In the early 2000s, Intel and AMD tended to review their prices quarterly (Goettler and Gordon, 2011). However, 

at the end of the decade, the frequency of price reductions of Intel products decreased substantially (Byrne et al., 

2018).  
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incentivized to keep updating their latest prices on PCWs as they usually have to pay for clicks 

on those webpages. Therefore, if their prices are not up to date, they will not gain sales and 

will waste their money. Similar to our dataset, Gorodnichenko and Talavera (2017) gathered 

price data from PCWs and find that prices on PCWs and seller websites are highly consistent 

(correlation 0.98). In addition, they find that price data from PCWs are consistent with the 

Bureau of Labour Statistics (BLS) data and are updated rapidly in response to shocks. Hence, 

the price data from the PCWs are of a reasonably high quality. 

 

2.3. Notation and aggregation  

We use 𝑃ist to denote the price of CPU i sold by seller 𝑠 at month 𝑡. Qi denotes the performance 

score of CPU i. We denote the set of all CPUs, sellers and time as 𝒞 = {1, … , 𝐶} , 𝒮 = {1,… , 𝑆}, 

𝒯 = {1, … , 𝑇}. For example, 𝒞st is the total number of CPUs, which are offered by seller s at 

time t, while 𝒮it represents the total number of sellers that sell CPU i at time t. We will use 

lower-case letters to denote logs of corresponding variables; e.g., 𝑝𝑖𝑠𝑡 ≡ log(𝑃𝑖𝑠𝑡). Bars denote 

average values; e.g., �̅�𝑖𝑡 is the average log price of CPU i across all sellers at time t. 

We aggregate statistics for a given moment 𝑚 (frequency of price changes, size of price 

changes, price dispersion, etc.) as follows:  

�̅� = 
1

𝐶
∑

1

𝑆
∑ 𝑚𝑖𝑠𝑠𝑖 . (1) 

To highlight the differences in the price per unit of performance, we compute the quality-

adjusted price 𝑃𝑖𝑠𝑡
𝑎𝑑𝑗

≡ 𝑃𝑖𝑠𝑡 × (𝑄(50)/𝑄𝑖) where 𝑄(50) is the median performance score between 

all CPU models. 

 

3. Basic facts 

This section describes the evolution of the CPU market over the sample period. We will use 

institutional details to study how quality improvement affects CPU pricing.   

3.1. CPU generations over the last decade  

The concept of CPU generations was introduced after Intel released its CPU core i series in 

Nehalem microarchitecture family, which is also known as the first generation. The major 

difference between CPU generations is the differences in their microarchitecture, which is 
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reflected by the semiconductor manufacturing process (also called “technology node” or 

“process technology”). The “process technology” is designated by the process’s minimum 

feature size that is indicated by the size in nanometres. This size refers to the average half-pitch 

(half the distance between identical features) of a memory cell (Hoefflinger, 2011). The smaller 

the process’s minimum feature size, the more powerful and the more efficient in energy 

consumption the processor. Chip companies were able to shrink the size of their 

microprocessor and improve the CPU performance, mainly because of the innovation in the 

semiconductor industry.  

Figure 1 shows that Intel was the pioneer of microprocessor technology in our sample period 

from 2009 to 2012. The first generation of the Intel Core processors (Nehalem) was released 

in November 2008 and uses the 45 nanometres (nm) process, the second-generation processors 

(Sandy Bridge) and the third-generation processors (Ivy Bridge) use 32 nm and 22 nm, 

respectively. Meanwhile, AMD was struggling in the technology race with Intel. AMD released 

its first-generation CPUs (Bulldozer family) using 32 nm technology 9 months after the release 

of the Sandy Bridge processors. The second-generation CPUs of AMD (Piledriver family), 

which were released five months after Intel released Ivy Bridge CPUs, were still based on the 

32 nm technology. 

Table 1 shows that there is variation in performance scores across CPUs within a generation, 

because manufacturers can tweak various attributes and features depending on market demand. 

As a result, CPUs in a later generation are not always better than CPUs from earlier generations. 

However, newer generations do tend to have better performance on average. For example, 

CPUs in the Nehalem generation have, on average, more than 100% improvement in 

performance scores relative to older CPUs. CPUs in the Ivy Bridge generation have, on average, 

30% higher scores than CPUs in the Nehalem and Sandy Bridge generations, but the Sandy 

Bridge generation was roughly comparable to the Nehalem family. On average, a new 

generation improves performance scores on the order of 50%.  

Panel A of Figure 2 shows the number of CPU models of each generation over time following 

a new CPU generation release. The number of available new generation CPU models gradually 

increases, while old generation CPU models leave the market. It implies that processor 

producers do not release all models of a generation when they introduce new technology. 

Instead, they often release a few new models first, then launch more models using that new 

microarchitecture and stop selling old generation products.  
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To adopt the technological upgrades in the market from processor manufacturers and consumer 

demand, sellers respond by updating the list of CPUs that they are offering. Panels B and C of 

Figure 2 clearly show a rapid increase in the number of sellers that offer new generation 

processors and in the number of new-generation models offered by a seller, respectively. As a 

result, the number of observations of new technology CPUs dramatically rose after their 

releases. These facts suggest that the change in performance scores of CPUs offered by sellers, 

which is caused by the entry of new CPUs and the exit of old CPUs, should be able to reflect 

the technological upgrades in the market.  

 

3.2. Price distribution and performance 

Table 2 shows the average price of each percentile of the distribution over products (�̅�𝑖), the 

mean and the standard deviation of the average log price (�̅�𝑖) within the sample. Overall, the 

median CPU in our data costs $190.43 and 25% of the CPUs are priced under $99.95; CPUs 

that are more expensive than $334.93 account for the top 25% of highest prices of the sample. 

When we adjust prices for performance scores, we observe that price dispersion (measured as 

the standard deviation of log prices) falls by 6 log points from 0.90 to 0.84.  

To further explore the relationship between prices and performance, we compute log deviations 

for prices and performance scores from the median CPU in a given month and present a 

binscatter plot in Figure 3. Each bin (point in the figure) corresponds to one percent of the 

sample. The lowess smoother (bandwidth set to 0.1) plots the non-parametric fit. The figure 

shows that better-performing CPUs command higher prices. However, the relationship is non-

linear (concave) as the curve is flatter on the right-hand side of the price distribution, 

demonstrating that consumers have to spend increasingly more money to achieve a given gain 

in performance. 

To compare the price per performance unit of CPUs in different quality standards or price 

levels, we divide our sample into four quartile groups of CPUs based on their performance 

scores. Panel A of Figure 4 shows the distribution of average CPU prices (�̅�𝑖) by quartile. The 

estimated kernel densities suggest that high-performance CPUs are sold at higher prices and 

the peaks of estimated densities are shifted to the right as we move from the first performance 

quartile (lowest performance) to the fourth performance quartile (highest performance). Panel 

B of Figure 4 shows the corresponding distribution of CPU prices adjusted for quality, i.e., the 
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average price per performance unit of CPUs (�̅�𝑖
𝑎𝑑𝑗

). Note that the distance between 

distributions is discernibly attenuated and therefore some (but not all) of the observed price 

dispersion is accounted for by differences in CPU productivity.  

Finally, we split our sample by CPU generation (described in the previous section). Panel C of 

Figure 4 presents the distribution of average prices �̅�𝑖 within a CPU generation, while Panel D 

presents the corresponding results for quality-adjusted prices �̅�𝑖
𝑎𝑑𝑗

. The price per unit of 

performance for AMD processors was generally lower than the price for Intel processors. This 

discount could reflect the fact that AMD was often catching up with Intel and thus AMD had 

to offer discounts to compete with the dominance of Intel in the CPU market (see e.g., Goettler 

and Gordon, 2011). In addition, we observe that the technical improvement used in later CPU 

generations benefits customers by reducing the price per unit of performance. However, the 

difference in the average price per performance unit between a CPU generation and its next-

generation is usually small. 

 

3.3. Dynamics of CPU prices 

Panel A of Figure 5 shows that the price level in the CPU market (�̅�𝑡) slightly increased as the 

new-generation CPUs were released at higher prices, but the quality-adjusted prices (�̅�𝑡
𝑎𝑑𝑗

) 

dropped quickly due to the significant improvement in CPU performance, which is consistent 

with earlier studies (e.g., Byrne et al., 2017; Byrne et al., 2018).  

Panel B of Figure 5 illustrates the dynamics of the median price of each generation. The median 

prices of AMD generations were often lower than prices for Intel counterparts. We also see 

that CPU producers usually set higher prices for new generation processors and the median 

prices tend to gradually decrease over time.4 However, the median prices of Intel Core 2 and 

Intel Nehalem CPUs were consistently higher than the median prices of new generations and 

remained stable for most of our sample period. This can be explained by the large demand for 

those two processor generations in our sample period. Since those old CPUs were popular for 

a long time without major changes to the processor architecture, the old systems, which are not 

compatible with new processor generations, were also popular. Thus, a large number of 

customers might choose to purchase an old-generation processor rather than upgrading the 

 
4 Nehalem prices dropped sharply in early 2010 when Intel introduced a new model in the Nehalem family.  
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whole system, while the supply of these old models is limited as Intel stopped producing them. 

This could lead to a high price level of Core 2 and Nehalem CPUs.5 We observe similar patterns 

when we examine the dynamics of prices adjusted for quality (Panel C of Figure 5).  

4. Pricing facts for CPU e-commerce 

In this section, we document the basic facts about price setting for CPUs in the online retail 

market. Specifically, we focus on the frequency of price changes, size of price changes, and 

within-CPU price dispersion. To compute these moments, we follow Gorodnichenko, 

Sheremirov and Talavera (2018) and provide pertinent definitions and notation in Appendix B. 

We then relate each of these moments to market fundamentals and contrast these moments with 

the corresponding moments for typical goods sold online, which generally have a lower rate of 

technical change. Note that one should expect to find smaller pricing frictions in online markets 

than in conventional “bricks-and-mortar” markets because e-commerce has small nominal 

price change costs (“menu costs”), small search costs, and small costs of monitoring 

competitors’ prices (Ellison and Ellison, 2005).6 Thus, online price quotes increase our chances 

of detecting the rapid repricing of CPU models in response to technological advances.  

 

4.1. Frequency and size of price changes 

Following previous studies, we determine the frequency of price adjustment as the proportion 

of non-zero price changes to the total number of price changes observed within our dataset 

(e.g., Bils and Klenow, 2004; Klenow and Kryvtsov, 2008; Nakamura and Steinsson, 2008; 

Eichenbaum et al., 2011). Specifically, we consider a price change that is smaller than 0.1% as 

a zero-price change, that is, the price is treated as fixed if the deviation from the price in the 

previous month is very small. 

Table 3 reports that the median of the frequency of regular price adjustments is 39.4% per 

month (that is, 39.4% of prices are changed from one month to the next) and the implied 

 
5 CPU producers changed their life-cycle pricing strategy and stopped reducing the price of old models. 
6 Because we do not have sales flag as in scanner data, we follow previous studies (e.g., Chahrour, 2011) to 

identify temporary sales with a “sales filter”, which is the ˅-shape or ˄-shape in price changes. Specifically, we 

consider an increase or decrease in price as temporary price changes if the price returns to its previous price level 

within one month. The mean frequency of sales across CPUs is 1.88% and the median size of sales across CPUs 

is 2.28%. Because sales are not prevalent for CPUs, we report statistics only for “regular” prices (that is, prices 

without sales) to preserve space. Moments for posted prices (that is, prices with sales) are available upon request. 
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duration of a typical price spell is two months.7 These moments are broadly similar to what can 

be observed for a representative basket of goods sold online. However, in contrast to typical 

goods in e-commerce, CPUs have a more pronounced bias towards price decreases relative to 

price increases. Specifically, the frequency of price decreases is 22.4% per month for CPUs 

and 15.6% per month for a typical product sold online. Meanwhile, the corresponding figures 

for price increases are 15.2% and 13.9%. This pattern is consistent with a faster technical 

change in the CPU market which forces CPU sellers to mark down their prices more often.  

We observe a similar pattern for the average absolute log price change (|𝛥𝑝𝑖𝑠𝑡|). The average 

change for all price adjustments is similar for CPUs (8.1%) and typical goods (10.9%) but there 

is a clear asymmetry in the size once we condition on the direction of price change. The average 

size of price decreases for CPUs is 9.2% while the average size of price increases is only 5.6%. 

In contrast, the size of price changes for typical goods is roughly symmetric: 11.8% for price 

increases and 10.3% for price decreases.  

More generally, these results suggest that, relative to the conventional markets, the frequency 

of price changes is high and the size of typical price changes is small—facts consistent with 

easy/cheap nominal price adjustment—however there remains discernible price stickiness 

which can be rationalized by market/product characteristics. To further explore this conjecture, 

we regress pricing moments on six variables: (1) number of sellers that sell product i; (2) quality 

of product i; (3) the median price of product i; (4) share of price points, which is the percentage 

of price quotes that end at 9, 95 or 99 for product i (e.g., $199, $349, $495); (5) the stability of 

sellers for product i is the ratio of the number of sellers offering product i in a given month to 

the number of sellers ever selling this product in the quarter, which covers the given month; 

and (6) CPU producer, which is a dummy variable that equals 1 if it is an Intel CPU and equals 

zero otherwise. The first variable proxies for market competition (e.g., Ginsburgh and Michel, 

1988; Martin, 1993). The second variable captures the characteristics of goods. The third is a 

proxy for the returns of buyers’ searches (e.g., Head et al., 2010). The fourth reflects the level 

of inattention to prices when choosing between products (e.g., Knotek, 2011). The fifth variable 

(stability of sellers) is a proxy for the turnover of sellers (e.g., Gust, Leduc, and Vigfusson, 

2010). The last variable aims to capture the special role of Intel in this CPU market. 

 
7 If 𝑓�̅� is the average frequency of price adjustment for CPU 𝑖, the mean implied duration is given by �̅�𝑖 =

−[log(1 − 𝑓�̅�)]
−1

. 
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Table 4 reports the results of regression for the frequency and size of price adjustments as 

outcome variables. All variables are measured at the product level. For instance, the frequency 

of price changes at the product-level for a specific product is computed as follows: First, the 

frequency of price adjustments for each seller offering that product is calculated. Then, the data 

is collapsed to product-level by taking the raw average across sellers to use as a dependent 

variable and the regression is estimated with no weights.  

We find that all explanatory variables have some predictive power. First, a market with more 

sellers should have a higher (lower) frequency of positive (negative) price changes, and a 

smaller size of adjustment. Second, the quality of goods in the market is positively associated 

with the degree of price flexibility (higher frequency and smaller size of price adjustments). 

This is because a high-quality product often has lower search costs due to higher advertising 

expenses and higher returns on searches for customers.8 We also find that a more powerful 

processor has price increases less often and price decreases more often. This can be explained 

by the observed quality premium, which provides more room for sellers to adjust prices. Third, 

for products with low- and moderate-prices, price changes occur more often and are larger in 

size when the median price across sellers of a product increases. This result is consistent with 

Head et al. (2010), documenting that higher returns on searches would put more pressure on 

the seller to adjust prices. Nevertheless, given the estimated nonlinearity, very expensive CPUs 

tend to have fewer and smaller price changes. Fourth, a product which has a high proportion 

of price points has a lower frequency of price changes, particularly positive price changes. This 

result is consistent with Levy et al. (2011), who find that prices ending with 9 have a lower 

frequency of price changes. Fifth, an increase in the degree of seller stability, which implies 

that it is more difficult for new sellers to enter the market, is associated with a decrease in the 

frequency of price changes, particularly, the frequency of negative price changes. Lastly, Intel 

processors tend to change prices more frequently than AMD products.  

 

4.2. Price dispersion across sellers 

Hedonic pricing of different vintages largely focuses on explaining variations in prices across 

vintages, rather than within-vintage price dispersion. However, price dispersion across sellers 

within a product can help us to directly measure potential “mispricing” and frictions in the 

 
8 For the negative relationship between customer search and price stickiness level, see i.e., Ellison and Ellison 

(2009). 
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market because the quality of the product is held constant. Indeed, if there is dramatic within-

product price dispersion, one may be less sanguine about using hedonic regressions to price 

properties of products since the market does not eliminate arbitrage opportunities.  

 

4.2.1. Intra-month dispersion across sellers 

We use several measures of within-CPU price dispersion, which capture different aspects of 

price variation: the coefficient of variation (CV; the ratio of standard deviation to the mean), 

standard deviation of the monthly log prices, the log difference of the average and the lowest 

price (the value of information (VI)), interquartile range (IQR), range (the log difference 

between the lowest and highest price), and gap (the difference between the two lowest log 

prices). We calculate the measure of price dispersion between sellers for an identified CPU in 

a month, then collapse our data to product level by taking the raw average over time.  

One might argue that the observed price dispersion is caused by the differences in the shopping 

experience that customers have with different sellers (see e.g., Stigler, 1961). This difference 

is not likely to be significant when customers are shopping online as consumers only deal 

directly with a seller after completing the transaction. To further alleviate this potential 

problem, we purge “shopping experience” from prices using the following regression: 

𝑙𝑜𝑔𝑝𝑖𝑠𝑡 = 𝛼𝑖 + 𝛾𝑠 + 𝜀𝑖𝑠𝑡   (2) 

where 𝛼𝑖 and 𝛾𝑠 control for product and seller fixed effects, respectively. The fixed effects can 

capture the differences in reputation, delivery conditions, and return costs between CPU 

retailers. Thus, the dispersion of the residuals (𝜀𝑖𝑠𝑡) gives us the price dispersion net of sellers’ 

heterogeneity in, for example, shipping costs and return policies, which are likely to remain 

unchanged over a short period of time (see e.g., Nakamura and Steinsson, 2008).  

We report price dispersion for 𝑃𝑖𝑠𝑡 and 𝜀𝑖𝑠𝑡 in Panel A of Table 5. CV (row 1) for 𝑃𝑖𝑠𝑡 is 0.22, 

thus suggesting considerable heterogeneity in prices, even for a fixed CPU. The standard 

deviation of log prices (row 2) is also relatively high at 0.23. Seller fixed effects account for 

around 20% of the variation in actual CPU prices in the U.S. online market (see row (7)) and 

the residual price dispersion is 0.18. The within-product dispersion for CPUs is generally 

similar to the within-product dispersion for goods typically sold online (column 2 of the Table). 
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4.2.2. Price dispersion across sellers over CPU lifetime 

The price dispersion across sellers of a product may depend on the stage of the product lifetime. 

Dispersion is expected to be higher at the release time of a product and then gradually decreases 

as customers increase their awareness of the pricing strategy of sellers and sellers collect 

information about their competitors’ prices. In a stationary setting (i.e., the set of products is 

fixed), lifetime price dispersion is not important. However, when there is a turnover of 

products, one may observe the dispersion of prices in a cross-section simply because we have 

a mix of “new” products that have large price dispersion and “old” products that have low price 

dispersion. If price dispersion declines over the lifetime of a product, one may expect that 

hedonic pricing of attributes works well because the law of one price may hold for established 

products.  

To study this aspect of price dispersion, we calculate the average price dispersion across CPUs 

for month j after their introduction. Following Gorodnichenko et al. (2018), we identify the 

time of product introduction by taking the time that the product appeared in the data. CPUs 

which enter within the first quarter are excluded, as we cannot know whether the CPU was 

released previously or it returned after being temporarily unavailable. Following this, the 

measure of price dispersion over a CPU lifetime is computed as follows: We generate the time 

variable for each processor as the number of months since the month that the processor 

appeared in the dataset to replace the calendar months. Then we use the cross-sectional price 

dispersion of each processor and the new time variable to compute the average price dispersion 

across CPUs for j month after their release month.  

We find little evidence of price convergence across sellers offering a CPU over the product 

lifetime. Figure 6 shows that, since the time that a product is released, price dispersion increases 

slowly over the first two years from around 0.14 to nearly 0.20. This dynamic is likely to be 

explained by evolution in the depth of the market, because the number of sellers stays relatively 

constant over a product’s lifetime. Interestingly, price dispersion also increases over the 

lifetime of goods typically sold online but the profile of the increase is flatter.  

 

4.2.3. Spatial vs. temporal price dispersion 

Understanding the nature of price dispersion can show us how persistent mispricing can be, as 

well as how one can select outlets to correctly price product attributes. The existing literature 
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on price dispersion posits two main types of price dispersion: spatial and temporal. Spatial 

dispersion refers to the situation in which some sellers persistently charge higher prices for 

their product because they have, for example, a better location (see e.g., Baye et al., 2010). In 

contrast, temporal dispersion refers to the situation in which sellers do not consistently charge 

lower/higher prices for their product because over time buyers learn sellers’ pricing behaviour 

and identify the seller who offers the best price (see e.g., Varian, 1980; Sheremirov, 2019). 

Appendix Table A4 provides examples for spatial and temporal price dispersion. The form of 

price dispersion affects whether or not one can use outlets for sampling prices interchangeably. 

Specifically, if price dispersion is temporal, the identity of the seller is less important because 

one can recover the average price in the market by following this seller. In contrast, if price 

dispersion is spatial, the identity of the seller is important for measuring the level of prices in 

the market. 

Following the method developed by Lach (2002), we assign the price of a product offered by 

a seller (“price line”) to a quartile of the price distribution across all sellers of that product in a 

given month, then analyze movements across quartiles of that price line over time. For 

example, the price of retailer s for CPU i in month t is 𝑃𝑖𝑠𝑡 and three cut-off points for product 

i in month t are 𝑄𝑖𝑡
(1), 𝑄𝑖𝑡

(2), 𝑄𝑖𝑡
(3)

. Then, a seller with the price for product i such that 𝑄𝑖𝑡
(1)

<

𝑃𝑖𝑠𝑡 < 𝑄𝑖𝑡
(2)

 is in the second quartile of the cross-sectional distribution in month t, while a seller 

with the price 𝑃𝑖𝑠𝑡 > 𝑄𝑖𝑡
(3)

 is in the fourth quartile (i.e., the price for CPU i is higher than 75% 

of prices offered by all sellers for CPU i in month t). Following this step, we construct the 

fraction of time that 𝑃𝑖𝑠𝑡 spends in each quartile and the average fractions across CPUs.  

If sellers do not consistently set their price lower/higher than prices of other sellers and instead 

charge high prices at times and low prices at other times (i.e., temporal price dispersion), the 

probability of a given price line remaining in each quartile of the price distribution should be 

similar and near to 25%. If sellers consistently charge lower or higher prices (i.e., spatial 

dispersion), 𝑃𝑖𝑠𝑡 would spend more time in one of the quartiles. We find evidence consistent 

with spatial price dispersion in our data.9 Rows (12)-(15) of Panel B in Table 5 show that 20.9% 

of price lines spend more than 95% of the time in one quartile of the cross-sectional 

distribution. Furthermore, 9.8% of price lines almost always stay in the lowest quartile and 

7.3% of price lines almost always stay in the highest quartile. In addition, rows (8)-(11) in the 

 
9 Because the results for “raw” prices and residual prices (i.e., 𝜀𝑖𝑠𝑡 , prices net of seller fixed effects) are similar, 

we only reported results using “raw” prices. 
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table show that from 37.2% to 50.1% of price lines spend almost no time in a given quartile. 

For example, 42.6% of price lines rarely stay in the cheapest quartile and 50.1% of price lines 

rarely stay in the most expensive quartile.10 These results are broadly similar to the 

corresponding moments for a representative basket of goods sold online (column 2).  

The last row in Table 5 presents another useful metric: the average standard deviation across 

price lines of the fractions of time spent in a particular quartile. The average standard deviation 

equal to 0 implies perfect temporal price dispersion, while the value of √3 4⁄  (≈ 0.43) implies 

perfect spatial price dispersion. In fact, the average standard deviation is 0.29, which is closer 

to 0.43. For comparison, this metric stands at 0.31 for a typical product sold online.  

 

4.2.4. Predictors of within-product price dispersion 

Economists generally rationalize price dispersion with three forces: search costs, price 

stickiness, and price discrimination.11 To assess the role of these forces to explain within-

product price dispersion for CPUs, we estimate the following regression: 

𝜎𝑖 = 𝛽0 + 𝛽1 × log(𝑄𝑖) + 𝜸 ×�̅�𝑖 + 𝑒𝑟𝑟𝑜𝑟𝑖  (3) 

where𝜎𝑖 is the average of monthly within-CPU standard deviation of the log prices for CPU 𝑖, 

𝑄𝑖 is the performance score of CPU 𝑖, �̅� is a vector of market/product characteristics of CPU i 

such as the average number of sellers for CPU 𝑖, share of price points (proportion of pricing 

points ending with 9 or 95-99), stability of sellers’ pool, Intel indicator variable, and price 

stickiness measures (frequency and size of price changes). 

Table 6 reports the results for the regression of standard deviation of log price in column (1). 

We find that CPU performance is negatively correlated with price dispersion. On the other 

hand, median price, frequency and size of regular price adjustments are positively associated 

with price dispersion. The results are similar between the regression of posted prices and 

residual prices after removing seller fixed effects (column 2).  

 

4.3. Taking stock 

 
10 Furthermore, Appendix Figure A1 plots the distribution of these fractions over observed price lines to provide 

a clear picture of the existence of the spatial dispersion. 
11 See Gorodnichenko, Sheremirov and Talavera (2018) for a discussion. 
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Our results suggest that price setting in the online market for CPUs is consistent with 

discernible frictions due to price stickiness and market structure. While there are clear signs of 

fast technical change in CPU prices (e.g., price decreases are larger and more frequent than 

price increases), CPU prices tend to have spells as long as spells for other goods sold online, 

despite the fact that CPUs have faster technical change than many other goods sold online. 

Within-product price dispersion tends to have properties largely similar to those for a typical 

product in e-commerce: dispersion is large and “spatial”. Furthermore, price dispersion and 

stickiness can be explained by market structure (e.g., number of sellers) and product 

characteristics (e.g., product prices which influence incentives to search for better prices). 

These facts point to two important observations. First, market/pricing frictions can materially 

affect price differentials across CPUs. Second, the selection of outlets may be important for 

the quality of hedonic calculations, that is, price quotes from some outlets may result in 

overstating (or understating) the value of attributes and hence distort estimates of inflation in 

prices adjusted for quality differences.  

 

5. Technological changes and CPU pricing  

Previous sections document that CPU pricing depends not only on CPU performance but also 

on a variety of market fundamentals.12 Furthermore, the pricing of CPU performance can vary 

with market/product characteristics. In other words, we may be unable to use CPU-A’s price 

to benchmark CPU-B’s price by performance alone because the unit of performance may be 

priced differently for CPUs A and B due to differences in market power, price stickiness, etc. 

As a result, when CPU prices are compared, we need to hold constant, not only CPU 

performance, but also market structure.  

To build intution for this point, let us suppose we need to compare an exiting CPU model (call 

it CPU A) in period 𝑡 to an entering CPU model (call it CPU B) in period 𝑡 + 1. The prices for 

A and B may be different because B is more powerful than A or because the seller (or producer) 

of A has a different market power relative to the seller of B. To have the correct measure of 

inflation, we need to take two actions. First, we need to construct the price that the seller of A 

would have charged if it sold B. Once this price is constructed we can adjust that price for 

quality differences between A and B. The hedonic regressions adjust for the second step of this 

 
12 With a slight abuse of terminology, we equate markets with products. In other words, the set of sellers for a 

given product is treated as a market.   
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process, but they do not adjust for the first step of the process because they implicitly assume 

that sellers are interchangeable (e.g., the law of one price holds).   

In this section, we investigate how between-CPU price dispersion can be rationalized by 

differences in CPU performance, as well as market fundamentals. To this end, we first examine 

the evolution of CPU prices in response to the introduction of new CPU models. We then 

attempt to predict average CPU prices (across sellers) in a regression context. Finally, we use 

hedonic regressions to estimate inflation for CPUs, holding performance and market 

fundamentals constant.  

 

5.1. Pricing moments and technology shocks 

As discussed above, there were several breakthroughs in CPU technology: January 2011 when 

Intel introduced Sandy Bridge CPUs (the second generation of Intel Core processors) using 32 

nm technology nodes; October 2011 when AMD released Bulldozer family 15h (the first 

generation) using its 32 nm process technology; April 2012 when Ivy Bridge processors (the 

third generation of the Intel Core processors; the 22 nm process) were released, September 

2012 when AMD released Piledriver family 15h (the second generation, which had some 

improvements but still used the same module 32-nm design with Bulldozer). One may expect 

major re-pricing of CPUs around the time when new generations become available. Indeed, if 

a new generation of processors improves performance by 50% on average, prices for existing 

models could decline by as much as 50%.  

Panel A and B of Figure 7 illustrate the monthly frequency and average absolute size of positive 

and negative price adjustments throughout these shocks. Panel A of the figure uses the full 

sample, while Panel B uses the data that is restricted to the older generations (namely AMD 

K10, Intel Core 2, and Intel Nehalem). The release of a new CPU generation generally 

decreases the frequency and size of positive price changes and increases the frequency and size 

of negative price changes (Panel A). These effects are more visible for older CPUs (Panel B). 

However, it is clear that these price changes fall short of a major (50% or so) repricing for 

existing CPUs. Furthermore, price adjustment is gradual in the data, while theory predicts 

instantaneous adjustment. 

Panel C of Figure 7 paints a similar picture: the introduction of new technologies does not lead 

to large, rapid changes in the distribution of prices for existing CPUs. For example, the 
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dispersion of CPU prices in a given month stays roughly constant, irrespective of whether we 

look at the total price variation (i.e., between-product and within-product variation; black line 

in the figures) or between-CPU price variation (blue line) or whether we use raw prices (solid 

line) or quality-adjusted prices (dashed line).  

  

5.2. Predictors of between-product price variation 

Hedonic pricing implicitly assumes that the only systematic source of price differences across 

goods (“vintages”) are attributes that are valuable to consumers (e.g., processor clock speed, 

energy consumption, etc.). Our analysis of within-product price variation suggests that 

market/product characteristics can account for some part of price differentials across sellers for 

a given product, that is, if the quality of the product is held fixed. These findings suggest that 

pricing of product attributes can also depend on market fundamentals. If this is indeed the case, 

then hedonic pricing may provide a distorted assessment of what portion of price variation is 

due to changes in attributes and what portion is purely due to inflation. Intuitively, if attributes 

are priced differently across two markets (CPUs), we should be cautious when using one of the 

markets to price goods in the other market. Specifically, to compute inflation, we should hold 

constant, not only product attributes, but also market fundamentals (that is, the pricing scheme 

for the attributes). 

To explore the quantitative importance of this point, we estimate the following regression: 

�̅�𝑖𝑡 = 𝛽0 + 𝛽1 × log(𝑄𝑖) + 𝜸 × 𝑿𝑖𝑡 +𝝍 × 𝑿𝑖𝑡 × log(𝑄𝑖) + 𝑒𝑟𝑟𝑜𝑟𝑖𝑡  (3) 

where �̅�𝑖𝑡 is the average price (across sellers) of CPU 𝑖 in month 𝑡, 𝑄𝑖 is the performance score 

of CPU 𝑖, 𝑿 is a vector of market/product characteristics such as a CPU’s market concentration, 

average price (proxy for returns on search), price stickiness, stability of sellers, share of price 

points and product brand. Coefficient 𝛽1 measures the sensitivity of CPU prices to its 

performance. Coefficient vector 𝜸 may be interpreted as measuring markups and other 

distortions in the market for a given CPU. Coefficient vector 𝝍 captures differences in pricing 

of the relevant attribute (here the performance scores) across markets (i.e. how a given market 

characteristic alters the price of the attribute). Standard hedonic regressions impose 𝝍 = 0 and 

often 𝜸 = 0. Note that while the quality (performance) of a CPU is fixed when the CPU is 

introduced, market fundamentals can evolve as we can have, for example, the entry or exit of 

sellers.  
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We find (column (1) of Table 7) that the elasticity of CPU price with respect to its performance 

score is 0.5 and performance alone can account for approximately 30% of the variation in prices 

across CPU models. Market characteristics (column (2)) are also statistically significant 

predictors of CPU prices, but these predictors can account for only 6.3% of price variation and 

the interpretation of estimated coefficients can be counterintuitive (e.g., as the number of sellers 

increases (more competition), CPU prices increase), which underscores the predictive rather 

than causal nature of specification (3). Once we condition on CPU quality and market 

characteristics (column (3)), the counterintuitive estimates are not an issue. For example, 

increased competition (more sellers, less stable pool of sellers) is associated with lower prices. 

Notice that the elasticity of CPU prices with respect to performance increases to 0.6. It can also 

be seen that Intel appears to charge a 48% premium over AMD. The R2 of the fitted model 

increases to 0.39.  

Finally, column (4) reports the results when we allow for the interaction of CPU performance 

and market fundamentals. All interactions are statistically significant and this further improves 

the fit of the model (R2 increases to 0.41). The economic intuition underlying the estimated 

coefficients is also potentially of interest. For example, the positive estimate of the interaction 

of performance and Intel dummy suggests that Intel can charge higher prices for high-

performance CPUs, i.e., the segment of the market where Intel likely faces less competition 

from AMD. These results suggest that the comparison of prices for different technologies 

should involve, not only physical properties of the compared technologies, but also the 

characteristics of the markets in which these technologies are priced.  

  

5.3. Adjustment of prices following technology shocks 

The previous section documents that product attributes and market fundamentals are important 

for pricing CPUs. However, specification (3) does not allow us to assess how quickly CPUs 

are repriced in response to the entry of new models or the exit of old models. One may expect 

that an entry for a new, more powerful CPU should lead to price cuts for existing CPU models, 

but how quickly these cuts happen depends on a number of elements, such as how competitive 

the markets are and how sticky prices are. To formally explore this insight, we estimate the 

following specification:  

 𝑚𝑖𝑡 = 𝛼𝑖 + 𝝃 × 𝑿𝑖𝑡 + 𝛽1 × 𝑈𝑝𝑔𝑟𝑎𝑑𝑒𝑖𝑡 + 𝛽2 × 𝐷𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒 
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+𝝍1 × 𝑈𝑝𝑔𝑟𝑎𝑑𝑒𝑖𝑡 × 𝑿𝑖𝑡 +𝝍2 × 𝐷𝑜𝑤𝑛𝑔𝑟𝑎𝑑𝑒𝑖𝑡 × 𝑿𝑖𝑡 + 𝑒𝑟𝑟𝑜𝑟𝑖𝑡  (4) 

where 𝑚𝑖𝑡 is a pricing moment for CPU 𝑖 in month 𝑡 (frequency of price changes across sellers 

of CPU 𝑖 in month 𝑡, size of price changes across sellers of CPU 𝑖 in month 𝑡), 𝑿 is a vector of 

market characteristics and 𝛼𝑖 are CPU fixed effects. Indicator variable “Upgrade” equals one 

if the product i jumps to a higher performance quartile at time t compared to time 𝑡 − 1 and 

equals zero otherwise. For instance, when the number of products entering the market with 

lower performance scores than product i and/or the number of products exiting the market with 

better quality than the product i are sufficient, the product i will jump to a higher quality 

quartile. Indicator variable “Downgrade” equals one if the product i falls to a lower 

performance quartile at time t compared to the previous period and zero otherwise. We report 

estimated coefficients in Table 8.13  

Consistent with time-series evidence presented in section 5.1, we find that upgrading or 

downgrading a given CPU relative to other CPUs available in the market changes the 

probability and size of a price change only marginally. For example, coefficients on 

Upgrade/Downgrade separately and coefficients on interactions with product/market 

characteristics are generally not significant statistically.  

The estimated insensitivity of CPU prices to changes in relative performance position is 

consistent with several explanations. First, prices may be very sticky and so they exhibit little 

response to the introduction of new models. Given how quickly online prices change, this 

hypothesis alone should not be able to account for the observed insensitivity.  

Second, new models are priced in such a way that the price of a new CPU does not disrupt the 

pricing of existing models. For example, if the price per performance unit is fixed, a more 

powerful model can command a higher absolute price, but it would not mean that existing 

models are mispriced because they charge the same quality-adjusted price. As discussed above, 

even when we compare CPU prices per performance unit, there remains considerable price 

dispersion and performance alone accounts for only 30% of the observed price variation across 

CPUs. Thus, this hypothesis is also unlikely to be the exclusive explanation.  

Third, CPU manufacturers may segment CPU markets. For example, two average CPUs may 

not be combined to produce one powerful CPU. In a similar spirit, new CPUs may be 

incompatible with other equipment (e.g., motherboards) thus limiting substitutability of CPUs. 

 
13 Results for alternative specifications are reported in Appendix Tables 2 and 3.  
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AMD and Intel processors are not fully compatible either. Furthermore, chip manufactures may 

require retail sellers to enforce differential pricings so that AMD/Intel can maximize profits. 

Such market segmentation can thus limit arbitrage and create potential mispricing (i.e., quality-

adjusted prices will not be the same across CPUs). Consistent with this hypothesis, we observe 

that Intel charges systematically higher prices.  

Finally, when a new model (or technology) is released, there could be some uncertainty about 

the quality of the new release and sellers may be reluctant to re-price “old and tried” models 

before new releases are thoroughly benchmarked. This demonstrates why benchmarking firms 

such as Passmark have experienced a high level of success. While we cannot test this 

hypothesis directly, we conjecture that uncertainty should be dispelled relatively quickly and 

therefore this hypothesis is unlikely to be a major factor. 

In any case, our evidence is consistent with considerable pricing frictions that can limit the 

consistent pricing of CPU attributes across markets, thus posing a potential threat to hedonic 

pricing of CPUs.  

 

6. Inflation in CPU prices 

Quality improvement has long been a major challenge for measuring inflation, especially for 

goods with rapid technological advancements. Hedonic regression is a popular approach for 

ensuring the correct prices for upgrades of product attribute trends (see e.g., Gordon and 

Griliches, 1997; Shiratsuka, 1999; Bils, 2009). However, this approach ignores the fact that 

prices are also affected by other factors, such as market and product characteristics.14 

We follow the common approach in the existing literature (see e.g., Byrne et al., 2018; Aizcorbe 

et al., 2020) and run the hedonic regression for each pair of consecutive years in our sample. 

More specifically, we include product characteristics and market fundamentals as control 

variables. Our focus is on the quality-adjusted price movement which is reflected by the 

coefficient of the year dummy for each time period. We show that hedonic adjustment may be 

incomplete if pricing of product attributes varies across products. Thus, one should control, not 

only for product attributes, but also for market fundamentals.  

 
14 For a related issue in the context of international economics, see e.g., Mallick and Marques (2016) for the 

impact of income level in importers’ and exporters’ countries as well as product quality on export prices. 
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To assess how market fundamentals can affect measures of CPU price inflation, we estimate 

the following specification for each pair of consecutive years (i.e., 𝜏 = {2009-2010, 2010-

2011, 2011-2012}) in our sample:  

�̅�𝑖𝑡 = 𝛽0
(𝜏) + 𝛽1

(𝜏) × 𝐷2 + 𝛽2
(𝜏) × log𝑄𝑖 + 𝜸(𝜏) × 𝑿𝑖𝑡 +𝝍(𝜏) × log𝑄𝑖 × 𝑿𝑖𝑡 + 𝑒𝑟𝑟𝑜𝑟𝑖𝑡 (5) 

where �̅�𝑖𝑡is average price of CPU 𝑖 observed in month 𝑡, 𝐷2𝑡 is a dummy variable that equals 

1 if the observation is in the 2nd year of the 2-year period. Vector 𝑿 includes market 

fundamentals such as 𝑆𝑖𝑡 (the median price across sellers), 𝑆𝑃𝑃𝑖𝑡 (number of sellers) and 𝑆𝑡𝑎𝑏𝑖𝑡 

(seller stability), and 𝐼𝑛𝑡𝑒𝑙𝑖 (an indicator variable equal to 1 if processor 𝑖 is produced by Intel). 

Note that we allow coefficients to vary for each two-year sample 𝜏. We run the regression at 

the product-month level. Table 9 reports �̂�1
(𝜏)

 for various 𝜏 which measure inflation in CPU 

prices from one year to the next.  

When we do not control for product quality or market fundamentals (column 1), we find that 

inflation was ≈25% in 2010 followed by mild deflation in 2011 and 2012. However, rising 

prices could largely reflect rapid improvement in CPU performance. Indeed, after controlling 

for performance scores (column 2), the price of CPUs (i.e., quality-adjusted prices) fall by just 

over 4% in 2010 and by another 11.4% in 2011, but increased by 5.2% in 2012. The cumulative 

deflation over the sample period is 10.4%. Controlling for changes in the market structure alone 

(column 3) is not enough to capture quality improvements and implied inflation could be in 

double digits. Controlling for product quality and market fundamentals, column 4 demonstrates 

inflation estimates similar to those when we control only for quality (column 2) but the 

magnitudes and timing of inflation are different. For example, measured inflation in 2010 is 

3.7% while the timing of deflation is 10.6% in 2011 and 4.3% in 2012. As a result, the 

cumulative deflation is only 11.2%. Finally, when we allow for the interaction of market 

fundamentals and product quality (that is, for differences in how CPU performance scores are 

priced across markets), we find that cumulative deflation is 16.2% which is considerably larger 

than the deflation estimated with quality adjustment alone. It should also be noted that the 

profile of inflation dynamics is steeper than in column (2).  

These estimates suggest that conventional hedonic regressions may provide distorted estimates 

of inflation, because these regressions do not control for changes in market fundamentals or 

take into account how pricing of product attributes can vary across markets.  
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7. Conclusion  

While the quality of goods is often used to explain price differentials across goods, the 

measurement, as well as the pricing of quality, is a major challenge. This challenge is 

particularly apparent for goods which undergo rapid technological advances, which can cloud 

even high-frequency variation in inflation. Statistical agencies have to wrestle with many 

thorny issues in this context, but hedonic pricing has proven to be a popular approach for 

separating inflation from quality improvements. We advance this extremely important tool by 

examining how market fundamentals and pricing of product attributes (“quality”) can interact 

and thus potentially affect measured inflation.  

Specifically, we couple data on CPU performance (a direct, integral measure of product 

quality) with a large dataset of CPU price quotes to quantify the role of the quality of goods 

and market fundamentals in the observed price variation. We document a number of factors 

consistent with price rigidities and mispricing (i.e., violations of the law of one price for raw 

prices or quality-adjusted prices) in the retail CPU market when we focus on measures of price 

stickiness and within-product price dispersion. Furthermore, we can relate the observed 

frictions (price stickiness, dispersion of prices) to market fundamentals (e.g., the number of 

sellers which proxies market concentration). This evidence suggests that one may not expect 

retailers to necessarily provide competitive pricing of CPUs and, in general, the source of price 

quotes (i.e., the identity of a seller) can be consequential for estimates of inflation.    

Building on this insight, we demonstrate that prices for different CPUs depend, not only on 

CPU performance, but also on market fundamentals. Specifically, pricing of CPU attributes 

varies across products, thus making the comparison of prices across CPUs more nuanced than 

commonly postulated by hedonic pricing. We show that failure to account for market 

fundamentals can result in materially understated deflation of CPU prices in our sample period.   

There is much work ahead in this area. For example, future research can gain further insights 

into the interaction of quality and market fundamentals for other goods by studying a broader 

spectrum of industries. Longer time series can also provide more variation in order to better 

isolate the effect of technological advances and inflation on prices.   
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Figure 1. CPU generations and release dates. 
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Figure 2. CPU Market Composition. 

Note: In panel A-D, each line shows the monthly number of CPU models, number of sellers, number of CPUs models per seller, and number of price quotes of a CPU generation. 

In all panel, each grey dashed vertical line marks the release month of the corresponding CPU generation. The label of each line includes information of producer, name, and 

released year of the CPU generation. For example, Intel-Nehalem-08 is Nehalem CPU generation that is produced by Intel and was first released in 2008.   
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Figure 3. Prices and Performances, Log Deviation from the Median-CPU. 

 

Notes: In this figure, the dots are data points averaged within bins based on percentiles of the log-

deviation of price. Lowess smoother is computed with a 0.1 bandwidth. 
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Figure 4. Quality-Adjusted Price Distribution. 

 
Note: Panel A and B illustrate the distribution of price and quality-adjusted price for each quality quartile, respectively. Panel C and D illustrate the distribution of price and 

quality-adjusted price for each CPU generation, respectively. 
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Figure 5. Dynamics of Price and Quality-Adjusted Price. 

  

  

Note: In Panel A, the dashed blue line shows the monthly median log price. The black solid line shows the monthly 

median log quality-adjusted price. In panel B, each line shows the monthly median log price of a CPU generation. In 

panel C, each line shows the monthly median log quality-adjusted price of a CPU generation. In all panel, each grey 

dashed vertical line marks the release month of the corresponding CPU generation. 
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Figure 6. Average Price Dispersion over CPU life. 

  

 

Note: The figure plots the non-weighted average (over CPUs) of the coefficient of variation for posted prices against 

the month passed since the product introduction. CPUs introduced during the first quarter are removed to account for 

truncated observations, and only CPUs with more than a year of life duration are considered. The red, dashed line 

reports the evolution of within-product price dispersion for a typical good sold online (Gorodnichenko et al., 2018). 

The blue, solid line shows the average number of sellers over product lifetime.  
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Figure 7. Pricing moments and technology shocks. 

 
Note: Panel A and B shows the monthly frequency and absolute size of positive and negative price adjustments for the whole sample and for sample of old models, respectively. In Panel A and B, the vertical axis on 
the left is the frequency of price changes (%), and the vertical axis on the right is the size of price changes (log points). Panel C shows the monthly total variation and between-CPU variation of raw prices and quality-
adjusted prices. In Panel C, the vertical axis on the left is the standard deviation of prices (log points). In all cases, each grey dashed vertical line marks the release month of the corresponding CPU generation.
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 Table 1. Descriptive Statistics for Performance. 

 Mean SD  Percentiles 

  5% 25% 50% 75% 95% 

 (1) (2)  (3) (4) (5) (6) (7) 

All CPUs  2905   2632    237  867  2049   4185  8473  

 

Panel A: Intel CPU Generations 

      

C2  2079   997    1048   1327  1731  2671  4167  

Nehalem  4809   2017   2573   3220  4823   5700  8819  

Sandy Bridge  4804   3034   1894   2422  3701   6308  12626  

Ivy Bridge  6123   1836   3372   4321  6269   7007  9412  

 

Panel B: AMD CPU Generations 

      

K10  2788   1034    1607   2000  2662   3379  4901 

Bulldozer  5541  1313   4061   4169  5376   6593   7622  

Piledriver  4936   2261   2005   3991  4492   6383   8950 
Note: Column (1) and (2) present the mean and standard deviation of the log performance score of a 

CPU (𝑞𝑖); column (3)-(7) present the mean performance score for each percentile of the CPU’s 

performance score (�̅�𝑖). 
 

 

Table 2. Descriptive Statistics for Prices, USD. 

 Log Price   Price Percentiles 

 Mean SD  5% 25% 50% 75% 95% 

 (1) (2)  (3) (4) (5) (6) (7) 

No quality adjustment, 𝑃 5.23 0.90  53.33 99.95 190.43 334.93 1106.91 

Quality adjusted, 𝑃𝑎𝑑𝑗  5.37 0.84  65.02 111.28 211.79 413.55 1019.73 

Representative sample of 

goods sold online 

3.37 1.53  4.00 11.00 25.00 71.00 474.00 

Note: Column (1) and (2) present the mean and standard deviation of the average log price for a CPU 

(�̅�𝑖); column (3)-(7) present the mean price for each percentile of the CPU’s price (�̅�𝑖). 
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Table 3. Monthly Frequency and Size of Price Changes. 

 CPUs Representative sample 

of goods sold online  

 (1) (2) 

All price changes    

Median Frequency, %  39.37 40.12 

Implied Duration, Months  2.00 2.54 

Median Absolute Size, Log Points  8.10 10.90 

   

Price increases    

Median Frequency, %   15.15 13.87 

Median Absolute Size, Log Points   5.57 11.80 

   

Prices decreases    

Median Frequency, %   22.38 15.64 

Median Absolute Size, Log Points   9.20 10.30 
Note: Column (1) shows the raw frequency and size of price adjustments. Column (2) shows the 

corresponding moments for a representative sample of goods sold online in the U.S. (Gorodnichenko 

et al., 2018), converted to a monthly frequency. All results are for regular prices (i.e., excluding sales).  
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Table 4. Predictor of regular-price stickiness. 

Predictors 

Frequency of price change,  

percent 

 Absolute Size of Price Changes,  

log points 

All price 

changes 

Price 

increases  

Price 

decreases 

 All price 

changes 

Price 

increases  

Price 

decreases 

(1) (2) (3)  (4) (5) (6) 

Ln Number of Sellers  -0.000  0.002***  -0.002**   -0.004***  -0.004***  -0.005***  

  (0.001)   (0.001)   (0.001)   (0.001)  (0.001)  (0.001) 

Ln Performance Scores  0.021*  -0.014**  0.035***   -0.030***  -0.033***  -0.030***  

  (0.012)   (0.006)   (0.010)   (0.007)  (0.009)  (0.007) 

Ln Median Price  0.210***  0.099***  0.112**   0.119***  0.155***  0.084*  

  (0.068)   (0.036)   (0.055)   (0.041)  (0.054)  (0.043) 

Ln Median Price Squared  -0.021***  -0.008***  -0.012**   -0.009**  -0.013***  -0.007*  

  (0.006)   (0.003)   (0.005)   (0.004)  (0.005)  (0.004) 

Share of Price Points  -0.081***  -0.078***  -0.003   0.084***  0.114***  0.074***  

  (0.031)   (0.016)   (0.025)   (0.020)  (0.027)  (0.021) 

Stability of Sellers  -0.473***  -0.066  -0.406***   -0.003  -0.013  -0.055  

  (0.100)   (0.053)   (0.081)   (0.057)  (0.075)  (0.060) 

Intel CPU  0.054***  0.032***  0.022*   -0.005  -0.015  0.025***  

  (0.016)   (0.008)   (0.013)   (0.009)  (0.012)  (0.009) 

R2 0.385 0.362 0.303  0.451 0.354 0.450 

N 608 608 608  607 572 585 
Note: This table shows the regression results of the frequency of price changes in column (1), frequency of positive price changes in column (2), frequency of negative price 

changes in column (3), absolute size of price changes in column (4), absolute size of positive price changes in column (5), and absolute size of negative price changes in column 

(6) for regular prices on the set of dependent variables above. Time fixed effects and the constant are included in all regressions but not reported. All variables are unweighted 

and measured at product level. Robust standard errors are in parentheses. *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level.   
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Table 5. within-CPU Dispersion of Regular-Price across Sellers. 

Row  

CPUs 

Representative 

sample of 

goods sold 

online 

  (1) (2) 

 Panel A. Measures of price dispersion 

(1) Coefficient of Variation (CV) 0.22 0.21 

(2) Std(log price) 0.23 0.24 

(3) Value of information (VI) 0.25 0.24 

(4) Interquartile range (IQR) 0.32 0.35 

(5) Range 0.47 0.41 

(6) Gap 0.22 0.28 

(7) Std(ε) 0.18 0.21 

    

 Panel B. Spatial versus Temporal Price Dispersion 

Less than 5% of the time in a given quartile 

(8) 1st Quartile   0.42 0.43 

(9) 2nd Quartile   0.39 0.46 

(10) 3rd Quartile   0.37 0.44 

(11) 4th Quartile   0.50 0.60 

    

More than 95% of the time in a given quartile 

(12) 1st Quartile   0.10  0.16 

(13) 2nd Quartile   0.014  0.044 

(14) 3rd Quartile   0.024 0.057 

(15) 4th Quartile   0.073  0.065 

    

(16) Mean SD of Time in Each Quartile  0.29 0.31 
 

Note: Row (1) – (7) in Panel A report the average dispersion of regular prices measured with: the coefficient of variance 

(CV), which is computed as the standard deviation divided to the mean; std(log p), which is the standard deviation of 

the log price; value of information (VI), which is computed as the log difference between the average and the minimum 

price; interquartile range (IQR) equal to the log difference between the 75th and 25th percentile; range is the log difference 

between the highest and lowest price; gap is the log difference between the two lowest prices; and std(ε), in which ε is 

the error term in the regression of log p on good and seller fixed effects; respectively, for CPU online-market in the US. 

Furthermore, for each price line, we calculate the proportion of time that the price line stays in each quartile of the cross-

seller price distribution. In Panel B, row (8) – (11) and (12) – (15) report the proportion of price lines that almost never 

(less than 5% of the time) or almost always (more than 95% of the time) fall into a given quartile, respectively. The 

bottom line shows the average (across price lines) standard deviation of the proportion of time spent in each quartile. 

Under perfectly temporal dispersion, this measure is 0, while under perfectly spatial dispersion, it is approximately 0.43. 

Column (2) shows the corresponding statistics for a representative sample of goods sold online (Gorodnichenko et al., 

2018) for the U.S. 
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Table 6. Predictors of within-CPU Regular-Price Dispersion (at Product Level). 

  

Predictors  

Dependent variable:  

average within-product price dispersion 

log price, 𝜎𝑖(𝑝𝑖) 

 
log price net of 

seller fixed 

effects, 𝜎𝑖(𝜀) 
(1) 

 
(2) 

Ln Number of Sellers   -0.003**  
 

 -0.001  

   (0.001)  
 

 (0.001) 

Ln Performance Scores   -0.089***  
 

 -0.078***  

   (0.019)  
 

 (0.014) 

Ln Median Price   0.059***  
 

 0.056***  

   (0.015)  
 

 (0.011) 

Share of Price Points   0.024  
 

 -0.024  

   (0.052)  
 

 (0.040) 

Frequency of Regular Price Changes, %   0.215***  
 

 0.122**  

   (0.069)  
 

 (0.053) 

Size of Regular Price Changes, Log Points   0.009***  
 

 0.008***  

   (0.001)  
 

 (0.001) 

Seller Stability   0.212  
 

 0.117  

   (0.137)  
 

 (0.104) 

Intel CPU  0.005  
 

 -0.006   
 (0.021)  

 
 (0.016) 

R²   0.524  
 

 0.555 

N   496  
 

 496 
Note: This table shows the results of the regression of the standard deviation of log price in column (1), and the 

regression results after removing seller fixed effects in column (2) on the set of dependent variables above. Time fixed 

effects and the constant are included in all regressions but not reported. All the reported variables in this table are 

unweighted and measured at product level. Robust standard errors are in parentheses. *Significant at 10% level; 

**Significant at 5% level; ***Significant at 1% level.   
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Table 7. Predictors of between-CPU price variation. 

Predictors 
Dependent variable: �̅�𝑖𝑡, average CPU (log) price  

(1) (2) (3) (4) 

Ln Performance scores  0.496***   0.613***   0.477***  

  (0.007)   (0.009)  (0.041) 

Ln Number of Seller   0.153***   -0.185***   -1.136***  

   (0.009)  (0.009)  (0.067) 

Share of Price Points   -0.190***   -0.143***   0.650***  

   (0.034)  (0.028)  (0.195) 

Stability of sellers   -0.193***   0.327***   1.422***  

   (0.041)  (0.034)  (0.290) 

Intel CPUs   0.303***   0.475***   -0.837***  

   (0.020)  (0.018)  (0.177) 

Ln Seller × Ln performance      0.123***  

      (0.008) 

SPP × Ln performance      -0.107***  

      (0.026) 

Seller Stability × Ln performance      -0.154***  

      (0.037) 

Intel × Ln performance      0.165***  

      (0.023) 

R2  0.313   0.063   0.390   0.409  

N  9590  9590  9590  9590 
Note: The regression reported in column (1) uses only quality measure as independent variables. The regression reported 

in column (2) uses market/product characteristics as independent variables. The regression reported in column (3) uses 

quality measure and market/product characteristics as independent variables. The regression reported in column (4) uses 

quality measure, market/product characteristics, and interaction terms between quality and market/product 

characteristics as independent variables. In all panels, the dependent variable is ln(price). All the reported variables in 

this table are unweighted and measured at product-month level. The constant is included in all regressions but not 

reported. Robust standard errors are in parentheses. *Significant at 10% level; **Significant at 5% level; ***Significant 

at 1% level. 
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Table 8. Price adjustment in response to technological change. 

Predictors 
Frequency of price change, percent  Absolute Size of Price Changes, log points 

All price changes Price increases  Price decreases  All price changes Price increases  Price decreases 
(1) (2) (3)  (4) (5) (6) 

Ln Number of Seller   0.002  0.002  0.000   -0.033***  -0.022***  -0.036***  
   (0.006)   (0.005)   (0.006)   (0.003)  (0.004)  (0.004) 
Ln Median Price   0.657***  0.380***  0.277***   -0.054  0.093  -0.085  
   (0.076)   (0.055)   (0.067)   (0.065)  (0.109)  (0.074) 
Ln Median Price Squared   -0.069***  -0.029***  -0.040***   -0.002  -0.007  -0.003  
   (0.007)   (0.005)   (0.006)   (0.006)  (0.010)  (0.007) 
Share of Price Points   -0.134***  -0.078***  -0.056***   0.019**  0.012  0.019*  
   (0.013)   (0.010)   (0.011)   (0.009)  (0.013)  (0.010) 
Stability of Sellers   -0.030*  -0.039***  0.009   0.036***  0.018  0.047***  
   (0.017)   (0.013)   (0.015)   (0.011)  (0.014)  (0.013) 
Upgrading   0.075  0.015  0.061   -0.901*  -0.628  -1.343**  
   (0.629)   (0.347)   (0.525)   (0.463)  (0.653)  (0.554) 
Downgrading   0.016  0.067  -0.051   0.049  -0.083  0.127  
   (0.277)   (0.202)   (0.264)   (0.186)  (0.195)  (0.228) 
Ln Number of Seller × Upgrading   -0.007  0.014  -0.021   0.007  -0.019  0.007  
   (0.029)   (0.015)   (0.026)   (0.016)  (0.027)  (0.018) 
Ln Number of Seller × Downgrading   -0.054***  -0.022***  -0.032***   -0.015***  -0.018**  -0.014**  
   (0.009)   (0.007)   (0.009)   (0.005)  (0.008)  (0.006) 
Ln Median Price × Upgrading   -0.002  -0.002  0.000   0.419**  0.313  0.605***  
   (0.237)   (0.134)   (0.199)   (0.192)  (0.278)  (0.232) 
Ln Median Price × Downgrading   0.005  0.001  0.004   0.016  0.042  -0.003  
   (0.103)   (0.076)   (0.099)   (0.065)  (0.066)  (0.080) 
Ln Median Price Squared × Upgrading   0.001  -0.002  0.003   -0.043**  -0.035  -0.061***  
   (0.022)   (0.013)   (0.019)   (0.019)  (0.029)  (0.023) 
Ln Median Price Squared × Downgrading   0.002  0.000  0.001   -0.003  -0.004  -0.002  
   (0.010)   (0.007)   (0.009)   (0.006)  (0.006)  (0.007) 
Share of Price Points × Upgrading   -0.034  0.012  -0.046   -0.094  -0.087  -0.057  
   (0.072)   (0.036)   (0.063)   (0.073)  (0.086)  (0.077) 
Share of Price Points × Downgrading   0.061*  0.025  0.037   0.009  0.055  -0.020  
   (0.033)   (0.024)   (0.029)   (0.025)  (0.036)  (0.029) 
Stability of Sellers × Upgrading   -0.106  -0.034  -0.072   -0.118*  0.038  -0.149**  
   (0.136)   (0.066)   (0.115)   (0.070)  (0.074)  (0.073) 
Stability of Sellers × Downgrading   0.086*  -0.030  0.116**   -0.017  0.025  -0.024  
   (0.052)   (0.043)   (0.050)   (0.035)  (0.044)  (0.044) 
R2   0.285   0.143   0.217    0.324   0.324   0.348 
N   14448   14448   14448    8498   5216   6744 

Note: This table shows the regression results of the frequency of price changes in column (1), frequency of positive price changes in column (2), frequency of negative price changes in column (3), absolute size of price changes in column (4), 
absolute size of positive price changes in column (5), and absolute size of negative price changes in column (6) for regular prices on the set of dependent variables above. The regression is at product-month level and includes product fixed 
effects. All variables are unweighted and measured at product-month level. The constant is included in all regressions but not reported. Robust standard errors are in parentheses. *Significant at 10% level; **Significant at 5% level; 
***Significant at 1% level. 
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Table 9. Inflation in CPU prices, 2009 – 2012. 

Year  
Inflation 

(1) (2) (3) (4) (5) 

2010  0.253***   -0.042   0.136***   0.037   0.033  

  (0.035)   (0.028)   (0.036)   (0.027)   (0.027)  

2011  -0.032   -0.114***   -0.023   -0.106***   -0.132***  

  (0.027)   (0.022)   (0.027)   (0.021)   (0.021)  

2012  -0.016   0.052***   0.061***   -0.043**   -0.063***  

  (0.021)  (0.018)  (0.022)  (0.019)  (0.019) 

Memorandum: cumulative inflation 20.5% -10.4% 17.4% -11.2% -16.2% 

Controls      

Performance scores No Yes  No Yes Yes 

Market/product characteristics  No No Yes Yes Yes 

Interactions included No No No No Yes 
 

Note: In this table, the dependent variable is �̅�𝑖𝑡. The regression is run separately for each overlapping two-year period between 2009 and 2012. All the reported 

variables in this table are unweighted and measured at product-month level. The constant is included in all regressions but not reported. Robust standard errors 

are in parentheses. *Significant at 10% level; **Significant at 5% level; ***Significant at 1% level. 
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Appendix Table A.1. Monthly Frequency and Size of Sales. 

 One-month Two-sided Sales Filter  

 Mean Frequency SD Frequency Median Size 

 (1) (2) (3) 

CPU 1.88 3.64 2.28 

Representative sample of 

goods sold online 

7.82 16.54 10.5 

Note: Column (1) shows the monthly average of sales frequency across CPUs (%). Column (2) reports 

the standard deviation of sales frequency across CPUs. Column (3) shows the absolute size of sales for 

the median CPU, in which the absolute size of sales equal to the gap between the log of sales price and 

the log of regular price (multiple by 100). Column (4) shows the number of CPUs. A sales is identified 

by using the one-month, two-sided sales filter. The second row shows the corresponding moments for 

a representative sample of goods sold online (Gorodnichenko et al., 2018) for the U.S., converted to a 

monthly frequency.
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Appendix Table A.2. Price adjustment in response to technological change, alternative specification. 

 Frequency 

of Price 

Changes, % 

Frequency of 

Positive 

Changes, % 

Frequency of 

Negative 

Changes, % 

Absolute Size of 

Price Changes, 

Log Points 

Absolute Size of 

Positive Changes, 

Log Points 

Absolute Size of 

Negative Changes, 

Log Points 

Predictors  (1) (2) (3) (4) (5) (6) 

Ln Number of Seller   -0.013**  0.001  -0.014**  -0.034***  -0.024***  -0.036***  

   (0.006)   (0.005)   (0.006)  (0.003)  (0.004)  (0.004) 

Ln Median Price   0.634***  0.349***  0.284***  -0.081  0.081  -0.109  

   (0.076)   (0.054)   (0.067)  (0.064)  (0.106)  (0.073) 

Ln Median Price Squared   -0.068***  -0.026***  -0.041***  0.000  -0.006  -0.001  

   (0.007)   (0.005)   (0.006)  (0.006)  (0.010)  (0.007) 

Share of Price Points   -0.124***  -0.072***  -0.051***  0.024***  0.021*  0.021**  

   (0.013)   (0.009)   (0.011)  (0.009)  (0.012)  (0.010) 

Stability of Sellers   -0.036**  -0.053***  0.017  0.035***  0.024*  0.042***  

   (0.017)   (0.013)   (0.015)  (0.011)  (0.013)  (0.013) 

Ln Number of Higher CPU Enter   -0.012***  0.004  -0.017***  0.012***  0.008***  0.011***  

   (0.004)   (0.003)   (0.003)  (0.002)  (0.002)  (0.002) 

Ln Number of Lower CPU Enter   0.057***  0.033***  0.024***  -0.004  -0.002  -0.001  

   (0.005)   (0.003)   (0.004)  (0.003)  (0.003)  (0.004) 

Ln Number of Higher CPU Exit   -0.014***  0.011***  -0.025***  0.008***  0.001  0.012***  

   (0.005)   (0.004)   (0.005)  (0.003)  (0.003)  (0.004) 

Ln Number of Lower CPU Exit   0.011***  0.011***  -0.000  0.003  0.005**  -0.000  

   (0.004)   (0.003)   (0.004)  (0.002)  (0.002)  (0.003) 

R2   0.280   0.146   0.214   0.323   0.322   0.347 

N   14448   14448   14448   8498   5216   6744 
Note: This table shows the regression results of the frequency of price changes in column (1), frequency of positive price changes in column (2), frequency of 

negative price changes in column (3), absolute size of price changes in column (4), absolute size of positive price changes in column (5), and absolute size of 

negative price changes in column (6) for regular prices on the set of dependent variables above. Product fixed effects and the constant are included in all 

regressions but not reported. All variables are unweighted and measured at product-month level. Robust standard errors are in parentheses. *Significant at 10% 

level; **Significant at 5% level; ***Significant at 1% level.  
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Appendix Table A.3. Price adjustment in response to technological change, alternative specification. 

 Frequency of 

Price Changes, 

% 

Frequency of 

Positive 

Changes, % 

Frequency of 

Negative 

Changes, % 

Absolute Size of 

Price Changes, 

Log Points 

Absolute Size of 

Positive Changes, 

Log Points 

Absolute Size of 

Negative 

Changes, Log 

Points 

Predictors (1) (2) (3) (4) (5) (6) 

Ln Number of Seller  -0.005  -0.000  -0.004  -0.035***  -0.025***  -0.038***  

  (0.006)   (0.005)   (0.006)  (0.003)  (0.004)  (0.004) 

Ln Median Price  0.656***  0.381***  0.275***  -0.060  0.098  -0.093  

  (0.075)   (0.055)   (0.067)  (0.064)  (0.106)  (0.073) 

Ln Median Price Squared  -0.069***  -0.029***  -0.040***  -0.002  -0.007  -0.002  

  (0.007)   (0.005)   (0.006)  (0.006)  (0.010)  (0.007) 

Share of Price Points  -0.126***  -0.075***  -0.052***  0.021**  0.021*  0.017  

  (0.013)   (0.009)   (0.011)  (0.009)  (0.012)  (0.010) 

Stability of Sellers  -0.021  -0.042***  0.021  0.035***  0.023*  0.044***  

  (0.017)   (0.013)   (0.015)  (0.011)  (0.013)  (0.012) 

Upgrading  -0.013  -0.053***  0.039*  0.000  0.028  -0.009  

  (0.024)   (0.012)   (0.021)  (0.015)  (0.020)  (0.017) 

Downgrading  0.131***  0.045***  0.086***  0.023***  0.017***  0.023***  

  (0.010)   (0.008)   (0.009)  (0.006)  (0.006)  (0.006) 

R2  0.282   0.142   0.215   0.322   0.321   0.345 

N  14448   14448   14448   8498   5216   6744 
Note: This table shows the regression results of the frequency of price changes in column (1), frequency of positive price changes in column (2), frequency of 

negative price changes in column (3), absolute size of price changes in column (4), absolute size of positive price changes in column (5), and absolute size of 

negative price changes in column (6) for regular prices on the set of dependent variables above. Product fixed effects and the constant are included in all 

regressions but not reported. All variables are unweighted and measured at product-month level. Robust standard errors are in parentheses. *Significant at 10% 

level; **Significant at 5% level; ***Significant at 1% level.  
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Appendix Table A.4. Fictitous examples of temporal and spatial price dispersion across 

stores. 

 Period 

 0 1 2 3 4 5 6 7 8 

Panel A. Temporal price dispersion          

Price for Seller A  1 2 1 2 2 1 2 1 1 

Price for Seller B 2 1 2 1 1 1 1 2 2 

          

Panel B. Spatial price dispersion          

Price for Seller A  1 1 1 1 1 1 1 1 1 

Price for Seller B 2 2 2 2 2 2 2 2 2 
 

Notes: Panel A shows that which store charges the high price varies over time (temporal price 

dispersion), while Panel B shows that which store charges the high price is stable over time (spatial 

price dispersion). We do our analysis of spatial vs. temporal price dispersion to establish whether one 

can use outlets for sampling prices interchangeably. Specifically, if price dispersion is temporal, the 

identity of the seller is less importance because on average one can recover the average price in the 

market by following this seller. In contrast, if price dispersion is spatial, the identity of the seller is 

important for measuring the level of prices in the market.
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Appendix Figure A1. Fraction of Price Lines in each Quartile of the CPU Price Distribution.  

 

Note: For each monthly product–seller price quote, the portion that the price quote stayed in each of the 4 quartiles of 

cross-seller price distribution is calculated. The figure illustrates the distribution across price quotes. 
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A. Frequency of Price Changes 

Following previous studies, we determine the frequency of price adjustment as the proportion of non-zero 

price changes to the total number of price changes observed within our dataset. Particularly, we consider a 

price change that is smaller than 0.1% as a zero-price change, which means it is not counted as a non-zero 

price change. In other words, if we use 𝜑𝑖𝑠𝑡 = 𝕀{𝑆𝑖𝑠,𝑡 > 0}𝕀{𝑆𝑖𝑠,𝑡−1 > 0}to identify a price adjustment that 

is observed (for both zero and non-zero price changes); the number of observed price adjustment per CPU-

seller quote is∏𝑖𝑠 =∑𝑡𝜑𝑖𝑠𝑡; the conditional function of a non-zero change is 𝜒𝑖𝑠𝑡 = 𝕀{|𝛥 𝑙𝑜𝑔 𝑃𝑖𝑠𝑡| >

0.001}. Hence, the formula of the frequency of price adjustments of CPU i sold by seller s is: 

𝑓𝑖𝑠 =
∑𝑡𝜒𝑖𝑠𝑡

∏𝑖𝑠
  (3) 

After that, we collapse the result to CPU-level by computing the raw average frequency (𝑓�̅�) for each CPU, 

which has more than two observations, as follow:  

𝑓�̅� =
1

∑𝑠∈𝒮𝑖
𝕀{∏𝑖𝑠>2}

∑ 𝑓𝑖𝑠𝕀{∏𝑖𝑠 > 2}
𝑠∈𝒮𝑖

   (4) 

Then, we compute the no weights average (𝑓)̅ and between-CPU weights average(𝑓𝑏̅̅ ̅) for both posted and 

regular price changes frequency, which is reported in Table 4, as below: 

𝑓̅ = ∑
1

𝐶𝑖∈𝐶 ∑ 𝑓𝑖𝑠𝕀{∏𝑖𝑠 > 2}
𝑠∈𝒮𝑖

∗
1

∑𝑠∈𝒮𝑖
𝕀{∏𝑖𝑠>2}

  (5) 

Lastly, we compute the implied duration of price spell as: 

𝑑�̅� = −
1

ln(1−𝑓�̅�)
  (6) 

B. Size of Price Changes 

Using the same symbols in the notation part, our formula to calculate the average absolute size of price 

adjustment for CPU i is: 

|𝛥 𝑙𝑜𝑔 𝑃𝑖|̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 
1

∑𝑠∈𝒮𝑖∑𝑡𝜒𝑖𝑠𝑡
∑𝑠∈𝒮𝑖

∑𝑡|𝛥 𝑙𝑜𝑔 𝑃𝑖𝑠𝑡| . 𝜒𝑖𝑠𝑡    (7) 

 


