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Abstract: Traumatic brain injury (TBI) affects millions of people around the world and amongst
other effects, causes cognitive decline, neurodegenerative disease and increased risk of seizures
and sensory disturbances. Excitotoxicity and apoptosis occur after TBI and are mediated through
the N-methyl-D-aspartate (NMDA)-type glutamate receptor. Memantine is effective in blocking
excessive activity of NMDA-type glutamate receptors and reduces the progression of dementia and
may have benefits after TBI. Here, we performed a systematic review of the literature to evaluate
whether memantine is effective in improving outcomes, including cognitive function in patients
with TBI. Our search yielded only 4 randomized control trials (RCTs) that compared the effects of
memantine to placebos, standard treatment protocols or piracetam. A single RCT reported that
serum neuron-specific enolase (NSE) levels were significantly reduced (p = 0.009) in the memantine
compared to the control group, and this coincided with reported significant day-to-day improvements
in Glasgow Coma Scale (GCS) for patients receiving memantine. The remaining RCTs investigated
the effects of memantine on cognitive function using 26 standardized tests for assessing cognition
function. One RCT reported significant improvements in cognitive function across all domains whilst
the other two RCTs, reported that patients in the memantine group underperformed in all cognitive
outcome measures. This review shows that despite laboratory and clinical evidence reporting reduced
serum NSE and improved GCS, supporting the existence of the neuroprotective properties, there
is a lack of reported evidence from RCTs to suggest that memantine directly leads to cognitive
improvements in TBI patients.

Keywords: memantine; cognitive function; neuroprotection; traumatic brain injury; head injury

1. Introduction

In 2016, more than 27 million new cases of traumatic brain injuries (TBIs) were
diagnosed globally, while approximately an equal number of patients were suffering from
the sequelae of older TBIs [1]. Several national studies have established that there is a
significant financial burden related to TBIs due to associated healthcare costs and loss
of earnings/productivity [2,3]. Financial losses for a proportion of TBI patients continue
after their initial hospitalization period, as they suffer from the sequelae of traumatic
brain injury [4]. The sequelae of TBI can include cognitive decline, behavioural changes,
neurodegenerative disease processes, motor deficits, somnolence, hormonal dysfunction,
increased risk of seizures and sensory disturbances [5–8]. Cognitive impairments after TBI
can include disturbances of attention, memory and executive function, resulting in reduced
global cognition, naming, incidental memory, immediate memory, learning and delayed
recall [9–13].
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In this systematic review, we focus on whether an Alzheimer’s disease (AD) medica-
tion, memantine hydrochloride (memantine), produces benefits in TBI patients. TBI can
be divided into three major categories: (i) closed head; (ii) penetrating; and (iii) explosive
blast TBI [14,15]. Closed head TBI typically occurs after blunt impact incurred through
motor vehicle accidents, falls and sporting activities and leads to immediate damage of the
brain vasculature and neurons. Penetrating TBI results from foreign body penetration of
the skull and brain parenchyma causing focal damage, intracranial haemorrhage, edema
and ischemia [14,15]. Explosive blast TBI however, is prevalent in war-related casualties
and compromises brain tissues due to the rapid pressure shock waves generated from
explosions leading to widespread diffuse damage such as neuronal death, axonal injury,
compromised blood–brain barrier and edema [14,15].

Excitotoxicity and apoptosis are two mechanisms of neuronal cell death that occur in
TBI, with the N-methyl-D-aspartate (NMDA)-type glutamate receptors implicated in both
mechanisms [16–22]. With moderate hyperactivity of glutamate receptors, there is an ex-
cessive influx of calcium (Ca2+) which leads to apoptosis (programmed cell death) [16,17].
Whereas, in excitotoxicity, there is a massive release of glutamate resulting in the loss
of Mg2+ within the glutamate receptor’s ion channel [15]. Without the regulating effect
of Mg2+, there is an influx of calcium and sodium, which causes the neuronal cells to
depolarize, swell and lyse (necrosis) [16,17]. With necrosis, there is a release of cellular
contents that leads to neighbouring neuronal dysfunction or neuronal cell death by exci-
totoxicity. Neuronal dysfunction occurs secondary to ischemia caused by the increased
energy demands needed to maintain ion gradients [16,17]. Similarly, activation of NMDA
receptors by glutamate promotes the production of reactive oxygen species (ROS) and
nitric oxide (NO) which further exacerbate secondary cell injury [17–19]. Memantine blocks
excessive activation of NMDA-type glutamate receptors (NMDAR) since it is an uncom-
petitive open channel blocker which binds in the region of Mg2+, but has a higher affinity
than Mg2+ [17–22]. In normal physiological states, the NMDA-type glutamate receptor
is not open long enough to allow memantine to accumulate in its active site. Being an
uncompetitive antagonist, memantine’s efficacy increases as the concentration of glutamate
increases [17–22].

Memantine was not only neuroprotective in animal models of cerebral and spinal
cord ischemia but also in models of TBI [23–31]. Studies have also shown that blocking
NMDAR function with antagonists such as amantadine, improve cognitive outcomes after
mild TBI [32,33]. Hence, randomized control trials (RCTs) have been carried out to assess
whether memantine has similar benefits in patients with TBI. The aim of the present study
was to systematically review the data from RCTs and evaluate the efficacy of memantine in
improving cognitive function and thus offering neuroprotection in patients with TBI.

2. Materials and Methods
2.1. Literature Search

The Institutional Review Board (IRB) approval was not required because this analysis
was conducted on anonymized published data from the literature. The Preferred Reporting
Items for Systematic reviews and Meta-analysis (PRISMA) statement [34] for systematic
reviews was adhered to in creating this systematic review. When searching for appropriate
RCTs to include for this systematic review Pubmed, Cinahl, Embase (OVID), PsychInfo
(OVID), Cochrane (OVID) and Medline (R) and In-process and other non-indexed citations
(OVID) are the databases that were searched. The terms ‘memantine’, ‘traumatic brain
injury’, ‘head injury’, ’head injuries’ and ‘brain injury’ are the search terms applied to
databases. Searched terms were entered as text words and the search was applied to all
fields, rather than just the title. This was done to ensure that appropriate studies did
not go undiscovered. Boolean operators were used in structuring the search as follows:
((“Memantine” [TEXT]) AND (“Traumatic Brain Injury” [TEXT] OR “Head Injury” [TEXT]
OR “Head Injuries” [TEXT] OR “Brain Injury” [TEXT])). Results from searches were copied
into a Microsoft Excel (Microsoft Corporation, Redmond, WA, USA) spreadsheet.
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2.2. Selection Criteria

Two authors (S.K., and V.D.P.) assessed the title and abstract independently to select
the eligible studies. The selection criteria were developed based on the following:

(1) (patients) target population must solely be adult patients with TBI;
(2) (intervention) memantine as a monotherapy in the therapeutic arm;
(3) (comparator interventions) placebo or standard treatment;
(4) (outcomes) cognitive tests, GCS and serum neuron-specific enolase;
(5) (methods-study design) RCTs;
(6) (time or duration) no specified follow-up time.

2.3. Data Collection

Two researchers independently extracted the following clinical data from selected
studies: Basic characteristics of studies (author, year, blinding, time frame from injury,
the severity of the head injury, study design, treatment regimen and outcome measures,
number of participants and their gender, mechanism of injury where provided and ad-
verse events). Relevant information from each RCT was extracted and placed into these
tables. Articles were then re-read, to extract additional information regarding findings
and limitations.

Data also included whether comparisons were made to a control group, placebo group
or a group receiving another pharmaceutical agent. Description of the individual outcomes
measures were read to reveal score ranges and how a favourable result for each outcome
was defined. Comparisons were then made to determine which group performed relatively
better and what trends appeared. When provided, the p-value was used to determine
which trends were significant. When not provided the p-value was calculated.

2.4. Risk of Bias

Risk of bias was assessed using the revised Cochrane risk-of-bias tool for randomized
trials (RoB 2) [35]. Each study was assessed for risk across the 5 domains by two reviewers
independently (S.K. and Z.A.). Disagreements were settled through discussion. Domains
assessed the potential risk of bias from the randomization process, the effect of assignment
and adherence to the intervention, missing outcome data, measurement of outcome and
selection of reported results. Using the algorithms following each domain, it was then
determined if a study was either low risk, some risk or high risk.

2.5. Statisitical Analysis

When available p-values along with mean values of the raw data and standard devia-
tions were used to determine when changes in outcome became significant. When p-values
were not provided, the given mean and standard deviations from the therapeutic and
control arm were processed with an online GraphPad tool [36] to calculate the Welch’s
t-test value and the two-tailed p-value for each outcome measure. Welch’s t-test and the
two-tailed p-value were used because the variances between both arms of the RCT were
different. Results formed are based on reported significant changes demonstrated across
included RCTs, unless specified otherwise. Upon reviewing data available by our clin-
ical statisticians, A.A. and B.K., it was deemed that the homogeneity of outcomes was
insufficient to produce a meta-analysis.

3. Results
3.1. Study Selection

The search yielded 627 results across the 6 databases. Of the 627 studies, 28 were
RCTs and of these 28 RCTs, 22 were excluded on the basis that the target population was
not exclusively TBI patients. A further RCT was excluded as its intervention was not a
monotherapy of memantine. Of the five articles, one was excluded as it was a conference
abstract of an RCT and the full paper was unavailable. Figure 1 gives an overview of
the search.
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Figure 1. Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) flow chart
detailing the specific of the systematic review.

3.2. Study Characteristics

Of the included studies, all were RCTs with the intervention in their therapeutic arms
being memantine offered as a monotherapy, and with a target population that is exclusively
TBI patients. Outcome measures assessed by the included RCTs were aimed at assessing
either neuroprotection or cognitive functions. The onset of treatment from TBI event, the
severity of TBI, sample size, study design, drug regimen and outcome measures differed
across the RCTs. Both Tables 1 and 2 give an overview of the study characteristics.
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Table 1. Characteristics of the included studies.

Study Study Year Blinding Time from TBI Event Severity of TBI Study Design Drug Regimen Outcome Measures

Mokhtari et al. [37] 2017
• Investigator
• Care provider Within 24 h Moderate TBI RCT—parallel group Memantine 30 mg

twice daily for 7 days

Serum Neurons Specific
Enolase
GCS

Litvinenko et al.
[38] 2010 No Mention of

Blinding

>6 Months
Average is 2.5 Years
95% ranged from 1.5 to
3.4 years

73% Severe TBI
22% Moderate TBI
5% Mild TBI

RCT—parallel group
Control received
piracetam

Memantine titrated
up to 10 mg twice
daily over 4 weeks.
Piracetam 2.4 g per
day

Mattis Dementia Scale
MMSE
S-test
FAB
HAM-D
Clock drawing

Rupright &
Johnstone [39] 2013

• Participant
• Investigator
• Outcome

Assessor
More than 1 year Mild or Moderate

TBI

RCT—cluster group
with cross over
design
Control received
placebo

Titrated up to 20 mg.
Duration is 12 weeks,
followed by 4 weeks
washout then cross
over

Verbal Memory (HVLT-R
TRLS, HVLT-R DRS)
Visual Memory (BVMT-R
TRS, BVMT-R DRS)
Processing speed (TMT-A)
Attention (TMT-B)
Memory and Processing
speed (SDMT-W, SDMT-O)

Hammond [40] 2017

• Participant
• Care Provider
• Investigator
• Outcome

Assessor

Within 48 h Severe TBI
RCT—parallel group
Control received
placebo

(Days 1 to 3 and
Days 21 to 168) 10
mg twice daily
(Days 3 to 21) 20 mg
twice daily

Verbal Memory CVLT-II
LD FR, CVLT-II T1-5 FR)
Visual Memory (BVMT-R
DR, BVMT-R Learning)
Attention (TMT-B)
Attention, cognitive
flexibility and processing
speed (S1)
Impulse Control (BRIEF
Inhibit)
Anger (TBI-QOL Anger)

Traumatic brain injury (TBI), randomized control trial (RCT), Glasgow Coma Scale (GCS), mini mental state exam(MMSE), rrontal assessment battery(FAB), Hamilton depression rating score(HAM-D), Hopkin
verbal learning test-revised (HVLT-R), brief visuospatial memory test—revised (BVMT-R), TMT (trail making test (TMT), symbol digit modality test—written/ oral (SDMT-W/O), total recall (learning) score
(TR(L)S), delayed recall (score) (DR(S)), California verbal learning test (CVLT-II), long delay (LD), free recall (FR), trails 1 to 5 (T1–5), stroop interference (SI), behaviour rating inventory of executive function
(BRIEF), and quality of life (QOL).
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Table 2. Study year, demographics, mechanism of injury, blinding and adverse events.

Study Demographics and Mechanism of Injury (MOI) Adverse Events

Therapeutic Arm Control Arm Therapeutic Arm Control Arm

Mokhtari et al. [37]

22 People

• 21 (95.45%) Males
• 1 (4.55%) Female

19 People

• 18 (94.74%) Males
• 1 (5.26%) Female No mention of adverse events No mention of adverse events

MOI MOI
3 fall1
8 motor vehicle accident

3 fall
16 motor vehicle accident

Litvinenko et al. [38]

• 20 People
• 14 (70.00%) Males
• 6 (30.00%) Females

• 21 People
• 15 (71.43%) Males
• 6 (28.57%) Females 1 patient developed anxiety 2 patients developed anxiety

No mention of MOI No mention of MOI

Rupright and Johnstone [39]

Cross over design # Upper respiratory tract infection (27%)
# Headache (18%)
# Nausea & Vomiting (18%)
# Haematuria (9%)

# Upper respiratory tract infection (27%)
# Headache (18%)
# Stomach cramps (9%)
# Anxiety (9%)
# Urinal urgency (9%)
# Sore Throat (9%)

• 11 People
• 9 (81.82%) Males
• 2 (18.18%) Females

No mention of MOI

Hammond [40]

At Initial enrolment

• 5 People
• 5 (100%) Males
• 0 Females

After withdrawals removed

- 3 People
- 3 Males

No mention of MOI

At Initial enrolment

• 6 People
• 4 (66.67%) Males
• 2 (33.33%) Females

After withdrawals removed

- 4 people

Either
4 Males, 0 Females or
3 Males, 1 Females or
2 Males, 2 Females
No mention of MOI

# Pneumonia (60%)
# Dehydration (60%)
# Neurostorming (60%)
# Vomiting (40%)
# Headache (40%)
# Seizures (20%)
# Haematuria (9.09%)

# Pneumonia (60%)
# Neurostorming (33%)
# Headache (33%)
# Fall (33%)
# Anxiety (9%)
# Depression (9%)
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3.3. Results of Individual Studies

It is noted that the all the RCTs [37–40] are underpowered and therefore, where
p-values are provided and seem to show significant findings, there remains a possibility
that findings discovered are the result of chance. Equally, significant findings may go
undiscovered for the same reason. RCTs included in this study are being treated as
exploratory RCTs, and their results ought to be interpreted with caution.

The RCT by Mokhtari et al. [37] investigated the neuroprotective effects of memantine
in TBI patients who had presented to the hospital, where this trial was taking place, within
24 h of their injury. The RCT demonstrated that from day 0 to day 7 serum neuron-
specific enolase, an enzyme released following neuron damage, was significantly reduced
(p = 0.009) in the memantine group compared to the control group. This change in neuron-
specific enolase was correlated to a significant day to day improvement in the Glasgow
Coma Scale scores of TBI patients (p = 0.02).

The RCT by Litvinenko et al. [38] utilized the Mattis dementia scale to assess cognitive
function in both the memantine group and the control group. Domains of the Mattis
dementia scale includes attention, initiation/perseveration, praxis, conceptualization and
memory. The control group received piracetam instead of memantine. It was reported that
the memantine group saw significant (p < 0.05) and sustained improvements across all
domains of the Mattis dementia scale except praxis. The earliest significant improvement
occurred in the domains of conceptualization and memory, and by the 24th week of the
trial, the greatest improvements were in these two domains (p < 0.01). In the control group,
sustained significant improvements were not reported in any domain. In the memantine
group, subjective improvement of symptoms was reported by 75% of participants, com-
pared to 57% of participants in the control groups. Participants in the memantine group
demonstrated significant improvements in their performances on the mini-mental state
exam, frontal assessment battery, s-test and clock drawing. Such an improvement did not
occur in the control group.

The RCT by Rupright and Johnstone [39] reported no significant improvement in any
of the outcome measures. The outcome measures aimed to assess verbal memory, visual
memory, speed of processing and attention. When comparing mean baseline scores to
those recorded at week 12 of the trial, the placebo group outperformed the memantine
group in the following outcomes; the revised Hopkin verbal learning tests for total recall
learning and delayed recall, the revised brief visuospatial memory tests for both total recall
and delayed recall, and both the written and oral symbol digit modality tests. Trail making
tests A and B showed better mean scores in the memantine group compared to the placebo
group, although this improvement was not significant. Trial making tests A and B assess
the speed of processing and attention, respectively.

The RCT by Hammond [40] also reported no significant improvement in outcomes.
Outcomes aimed to measure verbal memory, visuospatial memory, attention, cognitive
flexibility, processing speed, impulse control and anger. This RCT had only 3 participants
in the therapeutic arm. The trial provided no baseline measurements, only providing a
single result, at the end of the 24-week trial, under each outcome for each arm of the trial.

3.4. Synthesis of Results

In 3 of the 4 RCTs [38–40], all of which assess the effects of memantine on the cognitive
function of TBI patients, a total of 70 participants were enrolled. A total of 34 individuals
are in the therapeutic arms with the following split; 26 (76.47%) males and 8 (23.53%)
females. Similarly, there are 36 participants in the control arms of these RCTs, with at least
26 (72.22%) males, 8 females (22.22%) and 2 individuals for whom there is a lack of data to
determine their gender. All the participants are above the age of 18, and approximately
53% of participants had sustained a severe TBI in their lifetime. The time from TBI to
treatment varied from 24 h to 3.4 years and most patients in the trial had severe or moderate
TBI [37–40].
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In the therapeutic arms of these RCTs [38–40], the mean scores belonging to 20 of
the 34 participants, all enrolled in the RCT by Litvinenko et al. [38], indicated sustained
improvements in memory, attention, initiation/perseveration and conceptualization. The
combined mean scores of the remaining 14 participants showed no significant improve-
ment in any of the standardized tests used to assess aspects of cognition. When these
14 participants were compared to their respective control groups, which received placebos
in lieu of memantine, it was noted that the control group outperformed the memantine
groups in the domains of verbal memory, visual memory, cognitive flexibility, processing
speed, impulse control and anger. It is only in the domain of attention that the 14 partici-
pants had better scores than the placebo groups. Although the difference was not reported
as significant, it was reproduced across two separate RCTs [39,40].

Across the RCTs [38–40] assessing cognitive function, participants in the therapeutic
arms received doses of memantine that were titrated to a daily total of 20 mg. Duration of
treatment regimens ranged from 1 month to 5.5 months.

When assessing neuroprotective properties of memantine in TBI patients 22 individu-
als were placed in the therapeutic arm, while 19 people were in the control arm. Each arm
of this RCT [37] had a single female participant. All participants had sustained a moderate
TBI up to 24 h before being enrolled in this trial. There was a significant reduction of
neuron-specific enolase (NSE) in the group receiving memantine, which may indicate
a neuroprotective effect in these patients. This also coincided with a significant day to
day improvement in GCS score. Between all 4 RCTs assessed in this systematic review,
111 TBI patients were included and 56 were treated with memantine. Up to 42 of these
52 patients demonstrated significant favourable outcomes. However, not one of these
individuals were followed up beyond the time-frame of the RCT. Therefore, we do not
know if the improvements lead to sustained benefits and a significant reduction in the
frequency/severity of the sequelae of TBI.

Where RCTs reported adverse events, groups receiving memantine were reported to
have exclusively had the following adverse events: nausea, vomiting, hematuria and dehy-
dration. Several adverse events were common between both the therapeutic and control
arms. These include: respiratory tract infections, neurostorming, headaches, insomnia,
depression and anxiety. There is no significant difference in the frequency of those adverse
events common to both the therapeutic and control arms.

3.5. Risk of Bias within Studies

Using the Cochrane RoB2 cribsheet [35], the four RCTs were assessed across 5 domains
for the potential risk of introducing bias (Figure 2). All papers were deemed low risk. How-
ever, when using the RoB2 tool it was noted that across the 4 RCTs there was no information
regarding missing outcome data nor any information on the randomization process beyond
statements within trials mentioning that the participants were randomly allocated.

3.6. Risk of Bias across Studies

When provided, demographic data only pertained to participants in the initial en-
rolment, and thereby was not specific to those participants who partook in the complete
trial. The RCT by Litvinenko et al. [38] did not divulge information on funding, while the
RCT by Mokhtari et al. [37] made no mention of adverse events. The RCT by Rupright and
Johnstone [39] was partly funded by a pharmaceutical company (Forest Laboratories) that
produces and sells memantine.
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4. Discussion

In this systematic review, we identified four RCTs that met our inclusion/exclusion
criteria related to the use of memantine in TBI and its potential benefits on outcomes,
including cognitive functions. Due to the heterogeneity within studies related to parameters
including the timing of TBI to treatment and the inclusion of all forms of TBI, meta-analysis
was deemed not possible and hence the four RCTs were qualitatively analysed. Our
results demonstrate that in TBI, one study reported reduced serum NSE levels by day 7 and
marked improvements in their GCS scores on day 3 of the study. In addition, only one study
demonstrated significant improvements in cognitive outcomes across 26 standardized tests
for cognitive performance, whilst two studies demonstrated that patients in the memantine
group underperformed in all cognitive tests.

Across the RCTs, there were 28 outcome measures, which assessed the severity of
TBI, the extent of neuronal damage, memory, cognitive flexibility, information processing,
attention, conceptualization, initiation, perseverance, praxis, impulse control, depression
and anger. A single RCT by Mokhtari et al. [37] presented the neuroprotective effects of
memantine in TBI patients with a significant reduction of NSE and significant day to day
improvement in the Glasgow Coma Scale (GCS). NSE is a commonly used as a biomarker
of TBI since NSE is abundant in neuronal tissues, and structural damage of these cells cause
NSE leakage into the extracellular space and into the bloodstream [41–43]. Elevated NSE
levels indicate the degree of brain cell damage and correlate with unfavourable outcomes
and clinical complications in neuro-intensive care units [44–50]. However, NSE levels are
not 100% specific since extracranial tissues can also contribute to total serum levels if the
patient suffers from severe multi-trauma or even haemolysis [51,52]. Although NSE levels
correlate with mild cognitive impairment in conditions such as diabetic retinopathy and
post-operative cognitive dysfunction after cardiac surgery [53,54], no relationship to NSE
levels and cognitive decline have been reported in TBI [55].

The severity of TBI is defined by the duration of loss of consciousness (LOC), altered
mental state (i.e., confusion) or post-traumatic amnesia (PTA) and graded according to
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the GCS [56]. GCS is a 3- to 15-point scale used to assess the level of consciousness and
neurological functioning and is scored on motor, verbal and eye-opening responses. In
a recent study, moderate TBI patients with an initial GCS score of 9–10 exhibited greater
cognitive dysfunction, compared to those with GCS scores of 11–12 [57]. Cognitive out-
comes from TBI not only depend on duration of LOC and PTA but also on the degree of
diffuse axonal injury, as well as evidence of brain stem dysfunction at the time of injury
and the presence and size of focal hemispheric injury [58]. Since memantine increased GCS
scores and higher GCS scores relate to improved LOC, an indirect effect of memantine on
cognitive dysfunction may be surmised. Hence, increasing initial GCS score may reduce
cognitive decline in TBI patients. Despite the fact that the study by Mokhtari et al. [37]
was underpowered, the p-value for the reduction in serum NSE in the therapeutic arm
was low (p = 0.009), which is promising. This study did not follow up participants after
their trial period which was only 7 days, so it is difficult to establish whether NSE levels
would remain lower in the treated group and whether positive effects on increasing GCS
would be sustained. Furthermore, no placebo was used in the control group and so a large
multicentre trial, using placebo in the comparative arm would be beneficial to confirm
these findings.

All assessments demonstrating significant improvements in cognitive function were
from a single RCT by Litvinenko et al. [38], the source of funding for which was not declared.
Two other RCTs were carried out in America looking into cognitive improvements in TBI
patients from memantine, both these studies used placebos in the control group and
employed double/triple blinding. One of these RCTs, was funded by a pharmaceutical
company which produced and sold memantine [39]. However, both American RCTs [39,40]
did not show significant improvements in cognitive function in the memantine groups.
Although the American RCTs had a superior study design, they also had less than half the
sample size than in the RCT by Litvinenko et al. [38]. Clearly, this is an area where further
well-controlled, suitably powered studies are required to clear up these discrepancies.

The exact dose of memantine varied slightly across the studies assessing cognitive
function [38–40]. For the most part, all three RCTs used a total daily dose of 20 mg of
memantine in their therapeutic arm, with 2 of the RCTs titrating to 10 mg twice daily as
the dose and frequency of choice. One study used 20 mg twice daily for 19 of the 168 days
of the treatment course [40]. Across the RCTs, there was no mention of improvements in
cognitive function associated with as higher dose of memantine. The available raw data
did not measure for the effect of dose of memantine/placebo effects on cognitive function.

The duration of therapy varied from 7 to 168 days across the 4 RCTs. RCTs employing
a longer course of memantine therapy did not report significant improvement in cognitive
function, and across most outcome measures, cognitive function scores were lower in
assessments taken closer to the end of the drug course. Duration from injury also ranged
from 48 h to 20 years amongst RCTs assessing cognitive function, with no clear benefit
demonstrated when treatment with memantine was started earlier following TBI. Although
in the RCT where TBI patients were treated within 48 h from the onset of TBI, only severe
TBI patients were included. It is entirely possible that within this patient population there
was little scope for improvements to occur.

The severity of TBI requirements across included RCT differed vastly, with the first
RCT including only moderate TBI patients, the second RCT including all three severities, the
third RCT excluding severe TBI patients and the final RCT selecting for severe TBI patients
only. Clearly, different severities of TBI would affect the severity of cognitive decline and
also the potential to recover. Closed (non-penetrating) versus open (penetrating) head
injuries will also necessitate different interventions and treatments as well as different
time points for intervention and hence a mixture of these patients in RCTs may confound
eventual outcomes. In addition, the time from TBI event to treatment will also significantly
affect the potential benefits of treatment. For example, memantine might be more effective
in the acute stages after TBI in inhibiting current flow through the NMDA receptor, as a
result of excessive activation by e.g., glutamate, whilst in chronic stages, memantine may
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not have any effects since glutamate levels may be lower. Memantine may contribute to
cognitive improvements in TBI by decreasing the synaptic ‘noise’ resulting from excessive
NMDA receptor activation [59], inhibition of β-amyloid mediated toxicity [60–63] and
readjustment of the balance between inhibition and excitation on neuronal networks in
the CNS [64]. Moreover, 2 of the studies used some cognitive tests that were common to
both studies [39,40] whilst the study reporting improvements in cognitive function used
different cognitive tests [38]. This presents problems in comparing the apparent recovery
as each test measures different types of cognitive functions. It is possible that memantine
positively affected performance in the cognitive tests used by Litvinenko et al. [38] but
had no effect on those used by Rupright and Johnstone [39] and Hamond [40]. Future
trials assessing cognitive improvement in TBI patients would need to consider all of these
important points as well as benefit from using standardized and sensitive tools for assessing
cognitive outcomes after TBI.

Groups receiving memantine were reported to have exclusively had the following
adverse events across RCTs reporting these events; nausea, vomiting, hematuria and
dehydration. Since the target population is the same across included RCTs, several adverse
events were common between both the therapeutic and control arms. These include:
respiratory tract infections, neurostorming, headaches, insomnia, depression and anxiety.
There is no significant difference in the frequency of those adverse events common to
both the therapeutic and control arms of reviewed RCTs. This is a potential indicator that
memantine has not inferred protection to TBI patients in the various therapeutic arms,
although it is noted that the total number of participants enrolled in the trials were too few
to draw concrete conclusions.

Limitations

The leading limitation of this article is that there was an inadequate number of RCTs
(only 4 studies) and all RCTs included small sample sizes, rendering them underpowered.
None of the articles reported alpha values, presumably for the reason that their sample sizes
were too small. For this reason, a meta-analysis was not possible. Other limitations included
variable time frames from TBI to treatment (48 h to 20+ years), differing severities of TBI
(mild, moderate or severe) were often grouped together, demographic data when provided
did not relate to the participants from whom results were generated and RCTs assessing
cognitive function used different outcome measures that prevented meta-analysis from
being carried out. In the future, investigators should pay more attention to performing high-
quality, adequately-powered RCTs to test the effectiveness of memantine in TBI outcomes.

5. Conclusions

In part, the results from our systematic review support the existence of memantine’s
neuroprotective properties in TBI patients. However, there is insufficient evidence of
cognitive improvements occurring as a direct result of this intervention in the target
population. Based on the mechanism of action of memantine, it is recommended that
future trials should avoid using memantine in TBI patient with long-standing sequelae of
their head injury, as this intervention is unlikely to reverse established neuronal damage.
Further trials are needed in patients with recent TBIs with the aim of assessing if memantine
as an intervention infers long term benefits that result in a significant difference in the
quality of life between those in the therapeutic arm and the control arm.
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