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1 Abstract. — This paper proposes a Human-knowledge-integrated 
Particle Swarm Optimization (Hi-PSO) scheme to globally 
optimize the design of the Hydraulic-electromagnetic Energy-
harvesting Shock Absorber (HESA) for road vehicles. A newly 
developed k-fold swarm learning framework is the key to the Hi-
PSO scheme, which runs k groups (folds) of individual local 
optimization (using a selected learning cycle), and validation 
(using the other k-1 testing cycles) with the concept of digital twin 
introduced into the design of the HESA. It aims to achieve the 
optimum energy recovery efficiency globally in both learning 
cycles and testing cycles. Within the learning framework, a 
nearest-neighborhood particle swarm learning algorithm is 
developed to incorporate human-knowledge (e.g., ISO standards) 
for local optimization so that the computational load can be 
reduced through downsizing of the learning spaces. Experiments 
have been conducted to evaluate the energy recovery and damping 
performance under both local conditions (duty cycles used for 
learning) and global conditions (six duty cycles covering the main 
equivalent amplitudes and frequencies of the suspension’s 
operation). Compared with the conventional PSO algorithm, Hi-
PSO is shown to be more robust by achieving a 5.17% higher mean 
value in 10 trials while achieving the same maximum energy 
efficiency. The global optimum result is obtained under 20 mm/1.5 
Hz condition and achieves an average energy efficiency of 59.07%.  

Index Terms— Global optimization; Particle swarm optimization; 
K-fold swarm learning; Mechatronics in road mobility; Energy 
harvesting shock absorber; Digital twin. 

I. INTRODUCTION 

ROWING concerns for air quality and the advent of zero-
emission zones have prompted the automotive industry to 

seek low-cost carbon emission reduction solutions [1], [2]. 
Apart from powertrain electrification [3], [4], energy recovery 
technologies, e.g. kinetic energy recovery [5], [6], thermal 
energy recovery [7], [8], vibration energy recovery [9], [10], 
have been intensively researched to improve vehicles’ energy 
efficiency. 

In a passenger car, the dissipated vibration energy reaches 
400W for the four shock absorbers [11]. If the dissipated energy 
can be regenerated into electricity with an energy recovery 
efficiency of 60% [12], the fuel economy can be improved by 
at least 2.5% [13]. In addition, an energy harvesting shock 
absorber can provide continuously variable damping for semi-
active suspension control [14], [15]. Therefore, energy 
harvesting shock absorbers have been proposed to improve 
vehicle’s energy efficiency, drivability, and ride comfort [16]. 
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Generally, there are two main types of energy regenerative 
shock absorbers, the linear electromagnetic shock absorber 
(LEMSA) [14], [16] and the rotary electromagnetic shock 
absorber (REMSA) [17], [18]. LEMSA generates electricity 
with linear-moving coils in static magnetic fields [15]. However, 
LEMSA is inappropriate for vehicle applications because 
LEMSA with sufficient recovery power to meet the damping 
requirements is too large in size to be packaged in a road vehicle 
[19], [20]. REMSA generates electricity using low-cost rotary 
motors, and both mechanical [21], [22] and hydraulic rectifiers 
[23], [24] have been studied to convert reciprocating vibration 
into unidirectional rotation of the generator for REMSA. This 
reduces irregular oscillation and enhances the durability of the 
electricity generation systems. Hydraulic rectifiers have been 
shown to be more robust compared to mechanical rectifiers 
because they can bear the larger impact forces that are common 
in vehicle suspension. The hydraulic rectifier is also more 
flexible because it only needs the hydraulic cylinder to be 
installed in the suspension, while other components can be 
mounted on the chassis [23]. The hydraulic rectifier is also 
compatible with interconnected suspensions which can provide 
a favorable compromise between drivability and riding comfort 
[10]. The Hydraulic-electromagnetic Energy-harvesting Shock 
Absorber (HESA) is one of the REMSAs with a hydraulic 
rectifier, which has been proposed by the authors [24]. 

Theorical and proof-of-concept studies on HESA have been 
intensively conducted in recent years. Fang et al. conducted an 
experimental study on the damping and energy recovery 
characteristics of a HESA [25]. Zhang et al. analyzed the 
sensitivity of the design parameters to the damping and energy 
regeneration characteristics of a HESA [26]. Guo et al. 
developed a HESA model considering the hydraulic inertia that 
was shown to be accurate and robust with respect to 
experimental data [23]. Zhang et al. conducted a feasibility 
study on energy harvesting from a vehicle suspension with 
HESA [27]. Zhou et al. evaluated the damping and energy 
harvesting performance of HESA in an off-highway vehicle 
[28]. Mi et al. studied the feasibility of energy harvesting from 
railway vehicles using HESA [29]. Zou et al. analyzed the 
riding comfort and drivability of an interconnected suspension 
using HESA [30].  

Only a few studies have focused on the optimization of 
HESA systems. Zheng et al. optimized the 8 design variables 
based on Design of Experiments (DoE) studies that 
compromised 16 groups of testing under 25 mm/1 Hz condition 
with different settings of the design variables [31]. The 
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optimization result can only be regarded as a local optimum 
because the 16 groups of tests cannot cover all the possible 
combinations of design parameters. Zou et al. implemented a 
Genetic Algorithm (GA) to determine the optimal design 
parameters of HESA for a vehicle running on a class D road 
surface [32]. Although GA is recognized as a global parameter 
searching algorithm, the result can still only be regarded as a 
local optimum because it is obtained under one single use case 
that cannot fully represent the real-world conditions.  

Global optimization is a new key enabler to help the 
Hydraulic-electromagnetic Energy-harvesting Shock Absorber 
(HESA), which is a promising automotive mechatronic system, 
advance into real-world application. Efficient local 
optimization for the selected learning conditions (as challenge 
1) and robust global optimization for both learning conditions 
and validation conditions (as challenge 2) are the two issues that 
must be addressed for global optimization of the HESA system 
as in other engineering systems.  

For challenge 1, artificial intelligence has shown effective 
in enabling practical optimization in engineering. Meta-
heuristic algorithms (e.g. Generic Algorithms [33], [34] and 
Particle Swarm Optimization (PSO) algorithms [35], [36]) have 
been proposed to conduct global searches in learning conditions, 
and are more computationally efficient than exhaustive 
searching. The PSO algorithm, which mimics the intelligence 
of birds flocking, is one of the most widely used AI-learning 
algorithms in automotive engineering. Mamun et al. determined 
the optimal component specification and control parameters of 
a vehicle using a PSO algorithm [37]. Zhang et al conducted 
transient diesel engine calibration with PSO [38]. Zhou et al 
proposed a cyber-physical vehicle control based on the PSO 
algorithm [39]. Transfer learning is an emerging technology 
that can accelerate AI learning processes based on prior 
knowledge of the objects. The approaches that enable 
knowledge transfer include transferring of characteristics [40], 
feature representations [41], model parameters [42], and 
relational knowledge [43]. There is a large amount of research 
into transfer learning for classification problems [44], but 
studies on incorporating human-knowledge into AI-learning 
procedures remain scarce. 

For challenge 2, cross-validation is a statistical method that 
is used to estimate the skill of machine learning models to 
prevent overfitting in local learning [45]. It divides the source 
data into two datasets (the training dataset and the validation 
dataset) and implements several rounds of training and 
validation to obtain the global best solution that is robustly good 
in both training and validation sets. K-fold cross-validation is a 
widely used method for learning with labelled data [45]. Lv et 
al. implemented five-fold cross-validation in training a neuro-
network for driver intention prediction [46]. Zuo et al 
developed a five-fold method for training a fuzzy model in 
solving regression problems [47]. Tivive used a ten-fold 
method to train a convolutional neuro-network for pattern 
recognition [48]. There is a lack of results on using K-fold 
cross-validation method for PSO-based design optimization of 
the HESA system.  

To address the two challenges in global optimization of the 
main parameters of the HESA system, this paper proposes a 
Human-knowledge-integrated Particle Swarm Optimization 
(Hi-PSO) scheme. Experiments were conducted to evaluate 

energy recovery and damping performance. This work focuses 
on incorporating computational intelligence with the concept of 
digital twin introduced into the design of the HESA, which is 
conducted by providing two main contributions,  

1) A new nearest-neighborhood particle swarm optimization 
algorithm is proposed for local optimization in the Hi-PSO 
scheme, which optimizes the integer design variables in the 
learning spaces that are downsized by human knowledge.  

2) The k-fold swarm learning framework, which incorporates 
k-fold cross-validation with particle swarm optimization, is 
proposed for the Hi-PSO to ensure that the optimization 
result is globally robust with respect to varying conditions. 

The rest of the paper is organized as follows: Section II 
develops the digital twin of the HESA, which is based on the 
first principle of the hydraulic system. The Human-knowledge-
integrated Particle Swarm Optimization (Hi-PSO) scheme for 
design optimization of HESA is proposed in Section III. 
Experimental validations and evaluations are conducted in 
Section IV. Section V summarizes the conclusions. 

II. DIGITAL TWIN OF THE HYDRAULIC-ELECTROMAGNETIC ENERGY 
HARVESTING SHOCK ABSORBER (HESA) 

The HESA prototype and schematic of the system are 
shown in Fig. 1. The HESA system works in parallel with a 
spring in a suspension, aiming to recover the vibration energy 
as electricity and mitigate the vibration in the vehicle 
suspension. The digital twin of the HESA is developed in the 
laboratory, which includes a HESA model and data interfaces 
that interact with artificial intelligence algorithm in the server 
computer. The HESA is modelled from a system level, 
including its hydraulic circuit and energy recovery unit. The 
energy recovery efficiency is defined as the optimization 
objective with the consideration of both hydraulic friction loss 
and energy conversion efficiency.  

 
A. Hydraulic Circuit 

The hydraulic circuit of the HESA includes a hydraulic 
cylinder, a rectifier composed of four check valves (CV1-4), a 
high-pressure accumulator (HPA), a low-pressure accumulator 
(LPA), and a hydraulic motor. The hydraulic cylinder replaces 

Fig. 1 The HESA prototype and the schematic of the HESA system 
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the traditional shock absorber in a suspension, and the other 
hydraulic components can be integrated into a chassis-mounted 
assembly as in Fig. 1.  

One key component in the HESA is the hydraulic rectifier, 
which converts the bi-directional vibration of the piston to a 
unidirectional rotation of the hydraulic motor to avoid the 
energy loss in the rotation-reversing process. When the piston 
of the hydraulic cylinder moves up, it pushes the fluid out of the 
hydraulic cylinder to the hydraulic motor through the CV1 and 
back to the hydraulic cylinder through CV4, and the motor 
rotates clockwise. When the piston moves downward, the fluid 
is pushed to the motor through the CV3 and back to the 
hydraulic cylinder through CV2, and the motor rotates 
clockwise as well.  

The HPA and LPA are installed at the inlet and outlet of the 
hydraulic motor, respectively with the purpose to stabilize the 
fluid pressure at the inlet of the hydraulic motor and 
complement the fluid change in the hydraulic circuit. The 
pressure drop ∆𝑃! between the HPA and the LPA is  

∆𝑃!(𝑡) =
"!"∙$!"#

($!"&$$('))#
− "%"∙$%"#

($%")$$(')&*#(+)∙,&('))#
  (1) 

where 𝑃"# and 𝑃$# are the gas pressure of HP accumulator and 
LP accumulator when the HESA is initially installed in the 
vehicle, respectively; 𝑉"# and 𝑉$# are the initial gas volume of 
HPA  and LPA, respectively; 𝑟 represents the adiabatic index; 
𝑉%(𝑡) is the fluid volume change (based on initial state) in the 
high-pressure accumulator at time 𝑡; 𝐴&(𝐷) is the area of the 
piston rod where 𝐷 is the inner diameter of the cylinder; 𝑧'(𝑡) 
is the piston displacement at time 𝑡. 

Since fluid-charging is very fast, the pressure and volume of 
HP and LP accumulators can be calculated via polytropic 
process equations such that 

𝑃𝐻1 = 𝑃𝑖,				𝑉𝐻1 = 𝑉𝐻0(
𝑃𝐻0
𝑃𝐻1
)
1/𝑟

𝑃𝐿1 = 𝑃𝑖,				𝑉𝐿1 = 𝑉𝐿0(
𝑃𝐿0
𝑃𝐿1
)
1/𝑟 +	  (2) 

where 𝑃(  is the pre-set initial environmental pressure in the 
hydraulic circuit, and 𝑃"), 𝑉"), 𝑃$), 𝑉$)  are the gas pressure 
and gas volume of the HP and LP accumulators at the free state.  

The flow rate to the hydraulic motor 𝑄! is  

𝑄𝑚 = .𝑄𝑝. − �̇�%   (3) 

where 𝑄' and �̇�% respectively represent the flow rate from the 
hydraulic cylinder (driven by the piston) and the flow rate into 
(out of) the accumulator; the absolute value of 𝑄' =

*+!

,
∙ 𝑣' is 

due to the hydraulic rectifier, which converts the bidirectional 
flow to a unidirectional flow; 𝐷 and 𝑣'  are the diameter and 
velocity of the cylinder piston.  

B. Energy Recovery Unit 
The energy recovery unit includes a hydraulic motor, an 

electric generator, and a gearbox connecting them. According 
to the Newton’s law, the relationship between the torque of the 
hydraulic motor 𝑇! and the electromotive torque of the 
generator 𝑇-!. yields 

𝑇𝑚 − 𝑛𝑔 ∙ 𝑇𝑒𝑚𝑓 = 𝐽𝑔 ∙ 𝜔�̇�

𝑇𝑚 = ∆𝑃𝑚∙𝐷𝑚
2𝜋

∙ 𝜂𝑚

𝑇𝑒𝑚𝑓 =
𝑈𝑒𝑚𝑓
𝑅𝑖+𝑅𝑒𝑥

∙ 𝑘𝑡

𝜔𝑔 =
2𝜋∙𝜂𝑣∙𝑛𝑔
𝐷𝑚

∙ 𝑄𝑚 ⎭
⎪
⎬

⎪
⎫

   (4) 

where 𝑛/ is the gear ratio of the gearbox; 𝐽/ is the inertia of the 
rotational components; 𝜔/ is the rotation speed of the generator; 
∆𝑃! and 𝑄! are the pressure drop and the flow rate across the 
hydraulic motor; 𝐷! , 𝜂! , and 𝜂0  are the displacement, the 
mechanical and volumetric efficiency of the hydraulic motor; 
𝑘1 , 𝑅( , 𝑅-2 , and 𝑈-!.  are the torque constant, the internal 
resistance, the external resistance, and the back electromagnetic 
force of the generator; 𝑈-!. = 𝑘-𝜔/ , where 𝑘-  is the 
generator’s speed constant and its value is equal to 𝑘1.  

The pressure drop across the hydraulic motor ∆𝑃! can be 
derived from equation (1)-(4) as  

∆𝑃!(𝑡) =
DE2∙F32∙G4
+52∙G5

∙ 3𝐽H ∙ �̇�!(𝑡) +
I6∙I7∙J5(')
K8)K79

6  (5) 

C. Damping Force Excitation 
The damping force can be calculated based on the pressure 

drop between the high-pressure chamber and the low-pressure 
chamber, namely the sum of the pressure drops across the 
hydraulic motor, ∆𝑃! , and the hydraulic pipeline, ∆𝑃. . 
Meanwhile, the hydraulic rectifier, which converts the bi-
directional flow into a uni-directional flow, always forces ∆𝑃! 
and  ∆𝑃.	to have positive values. The damping force has the 
same direction as the moving direction of the cylinder. Hence, 
the damping force can be modelled by 

𝐹𝑑 = (∆𝑃𝑚 + ∆𝑃𝑓) ∙ 𝑆 ∙ sign(𝑣𝑝)  (6) 

where 𝑆 = *+!

,
	is the sectional area of the piston; 𝑣' = �̇�' is the 

speed of the cylinder piston; sign(𝑣') is the sign function of the 
piston speed 𝑣'; and ∆𝑃. is the pressure drop in the hydraulic 
circuit due to the hydraulic friction such that [27] 

∆𝑃𝑓 = (𝑎1 + 𝑎2) ∙ 𝑣𝑝2 + 𝑎3 ∙ 𝑣𝑝 ∙ sign(𝑣𝑝)

𝑎1 = 𝜆 ∙ 𝜌 ∙ 𝑙
2𝑑
∙ E𝐷

𝑑
F
4

𝑎2 = 6𝜍𝑖 ∙ E
𝐷
𝑑
F
4

𝑎3 = 𝑘1 ∙
𝜋∙𝐷2

2 ⎭
⎪⎪
⎬

⎪⎪
⎫

  (7) 

where 𝑙  and 𝑑  are, respectively, the hose length and hose 
diameter; ρ is the fluid density; 𝜆 is the friction factor, which 
can be obtained by looking up the moody chart with known tube 
roughness and Reynolds number; 𝜍(  is the local friction 
coefficient; and 𝑘# is a constant which equals to 3×103, given 
by the product brochure of the check valve.  

D. Energy Recovery Efficiency 
The energy recovery efficiency is defined by dividing the 

electric energy 𝐸454 by the mechanical energy 𝐸6478 such that 

𝜂𝑟 =
𝐸ele
𝐸mech

    (8) 
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The mechanical energy, which is absorbed by the HESA 
from vibration, is calculated by 

𝐸mech = ∫ 𝐹𝑑(𝑡)
𝑡𝑡
𝑡0

𝑣𝑝(𝑡)𝑑𝑡   (9) 

where 𝑡) and 𝑡1 are the start time and stop time in a duty cycle; 
and 	𝐹9(𝑡)  and 𝑣'(𝑡)  are the damping force and position 
velocity at time t. 

The electricity generated from the HESA is calculated by 
𝐸454 = ∫ :"#$(1)!

=%>=&'

1(
1)

𝑑𝑡   (10) 
Based on Equations (1), (6-10), the energy efficiency can be 

written as a function of design parameters 𝑿 and the duty cycle 
𝑪 such that 

𝜂𝑟 = HESA(𝛘, 𝑪)   (11) 

where HESA(∙) is the generic model that calculates the energy 
efficiency of the HESA; 𝝌= [𝐷,𝐷!, 𝑛/, 𝑘1 , 𝑅( , 𝑅-2 , 𝑃"), 𝑉")]? 
is a vector of design parameters; 𝑪 = [𝑍, 𝑓] is a vector of duty 
cycle parameters; and 𝑍  and 𝑓  are the displacement and 
frequency of the suspension. 

III. HUMAN-KNOWLEDGE-INTEGRATED PARTICLE SWARM 
OPTIMIZATION FOR THE HESA 

The proposed Human-knowledge-integrated Particle 
Swarm Optimization (Hi-PSO) is based on a K-fold swarm 
learning framework, as shown in Fig. 2, to achieve globally 
optimal design parameters for the HESA. Human knowledge, 
including sensitivity analysis results and ISO standards, are 
incorporated in the swarm intelligence learning process to 
reduce the search space for the optima with a mixed-integer 
particle swarm optimization algorithm. 

A. K-fold Swarm Learning Framework 
One of the design targets of the proposed Hi-PSO for global 

optimisation of the HESA is to allow the best system to be 
adapted to most of the damper stroke (amplitude)/ frequency 
duty cycles. The cross-validation under the selected six duty 
cycles aims to provide compliant and comprehensive 
evaluations because every local optimisation result (obtained in 
one learning cycle) is validated in other five testing cycles (it 
can be regarded as evaluations on combined cycles of five duty 
cycles). The proposed k-fold swarm learning implements k-fold 
cross-validation in the process of retrieving the optimal 
parameter vector 𝑿∗ as shown in Fig. 3, where the duty cycles 
labelled with ‘L’ are used for learning, and the duty cycles 
labelled with ‘T’ are used for testing. The involvement of 
testing cycles with larger amplitude/frequency ranges (five 
times larger than the learning cycles) provides complementary 
environments to comprehensively evaluate local optimization 
results so that the global optimal design can be attained 
adaptively to real-world situations. Following the authors’ 
recent work on acquiring the power spectrum of the suspension 
vibration on road test with the Fourier transform [49], which 
suggested the dominant frequencies for the HESA are under 
5Hz, six duty cycles are defined to cover most of the common 
amplitude/frequency ranges of vehicle suspensions in Table I.  

 
Table I Duty cycles for HESA optimization 

Duty cycles 𝑪! 𝑪" 𝑪# 𝑪$ 𝑪% 𝑪& 

Amplitude 𝑍 (mm) 20 20 20 50 10 2 

Frequency 𝑓 (Hz) 0.5 1.5 2 0.5 5 10 

A rotational learning-testing cross validation process is 
conducted by repeating the following three procedures for six 
groups of optimizations, 
1) Local optimization is conducted individually under one of 

the defined duty cycles, i.e., 𝑪A = [𝑍A , 𝑓A]?	(𝑘 =
1,2, … ,6), to obtain the locally optimal result 𝑿A∗ . 

Fig. 3 Data partition in the k-fold swarm learning  

Fig. 2 The proposed Human-knowledge-integrated Particle 
Swarm Optimisation for the HESA  
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2) The HESA with the parameter vector 𝑿A∗  is tested under 
other duty cycles apart from 𝑪A , e.g., 
𝑪#, 𝑪B, …𝑪AC#, 𝑪A>#, …𝑪D	(2 < 𝑘 < 4) , to obtain the 
energy recovery efficiencies and damping characteristics.  

3) The result 𝑿A∗ , including energy recovery efficiencies and 
damping characteristics, is saved in a memory pool. 

The global optimization terminated when all six groups of 
optimizations are complete. The global optimal result is then 
selected by considering energy recovery efficiency and 
damping performance, which will be discussed in Section IV. 

B. Local Swarm Intelligence Learning 
Local swarm intelligence learning algorithm is developed 

based on particle swarm optimization (a software that mimics 
swarming insects) to solve the local optimization problem 
under a given duty cycle 𝑪A. The local optimization problem 
can be formulated mathematically as 

𝑿A∗ = argmax 𝜂& = HESA(𝑿, 𝑪A)

	s. t.

⎩
⎪
⎨

⎪
⎧

𝑿 ∈ 𝕏
𝑪A = [𝑍A , 𝑓A]? ∈ {𝑪#, 𝑪B, … , 𝑪D}

𝑧' = 𝑍A ∙ sin	(2𝜋 ∙ 𝑓A)

𝑚𝑎𝑥 E*(1)
0+(1)

≤ 𝑐>

other	constrains	defined	in	HESA(∙)	⎭
⎪⎪
⎬

⎪⎪
⎫

 (12) 

where 𝑿A∗  is the locally optimal result at the 𝑘 -th group of 
optimizations; 𝕏  is the learning space where the swarm 
intelligence retrieves the optimization result; 𝑧'  is the 
displacement of the vehicle suspension modelled by a sine 
function with the amplitude 𝑍A and frequency 𝑓A defined in the 
duty cycle 𝑪A ; and 𝑐> is the upper boundary of the damping 
ratio defined by dividing the damping force 𝐹9(𝑡) with piston 
speed 𝑣9(𝑡). 𝑐> = 2.4 × 10, is chosen for passenger vehicles. 

1) Downsizing of the learning space with human knowledge 
The proposed Hi-PSO scheme transfers human-knowledge 

in hydraulic system design for selection of the number of design 
variables and their candidate value. This is a way of feature 
space-based transfer learning [41]. The learning space 𝕏 is a 
multiple dimensional space. Both the number of design 
variables and the candidate values for each design variable 
determine the size of the learning space 𝕏  that affects the 
learning efficiency and computational effort.  

The HESA is modelled with the parameters of 
𝐷,𝐷!, 𝑛/, 𝑘1 , 𝑅( , 𝑅-2 , 𝑃"), and 𝑉"). In this paper, the number of 
design variables were reduced based on human knowledge of 
sensitivity analysis and an understanding of the HESA systems. 
A sensitivity study on the hydraulic system of the HESA 
suggested that the pressure 𝑃")  and volume 𝑉")  of the 
accumulator has very low impact on the suspension 
performance [26]. Torque constant 𝑘1 and internal resistance 𝑅( 
can be regarded as two coupled motor parameters if the motor-
generator is chosen from off-the-shelf products to reduce cost. 
The external resistance 𝑅-2 is a controllable variable, and it is 
better optimized via design of the control system after the 
physical components of the HESA have been confirmed. 
Therefore, 𝐷,𝐷!, 𝑛/, 𝑘1, are selected to be optimized with the 
Hi-PSO. This reduced the number of variables that needs to be 
optimized from 8 to 4. 

Conventional PSO retrieves the optimal values of the design 
variables in a space that is restricted by the lower and upper 
boundary of each design variable. Although the number of 
candidate values for the design variables can be reduced by 
using a larger step length ∆𝑥  in the search space {𝑥C, 𝑥C +
∆𝑥, 𝑥C + 2 ∙ ∆𝑥,… , 𝑥>}, this may miss the truly optimal result 
if an improper ∆𝑥 is chosen.  

The specification of standard hydraulic components, e.g., 
diameters of the hydraulic cylinder, are specified by ISO 
standards. In this study, the learning space is through replacing 
the continuously varying learning spaces by sets of the available 
component specifications which are defined in ISO 3320:2013 
and ISO 8426:2008 for hydraulic cylinders and hydraulic 
motors, respectively. The using of the specification in the ISO 
standards also allows the prototyping of the HESA with less 
cost and time. The learning space 𝕏 = [𝔻,𝔻!, 𝕟/, 𝕜1]?  is 
redefined by involving ISO standards (human knowledge), 
where 𝔻,𝔻!, 𝕟/, and 𝕜𝑡	 are vectors of the candidate values for 
𝐷,𝐷!, 𝑛/,	 and 𝑘1 as in Table II.  

Table II Downsized Learning Area with Human Knowledge 

Design 
variable 

Learning 
space Candidate value vector 

𝐷 𝔻 [25, 32, 40, 50, 63, 80] 

𝐷' 𝔻' [8, 10, 12.5, 14, 16, 18, 20, 25, 28, 31.5] 

𝑛( 𝕟( [2, 2.1, 2.2, 2.3, …, 9.8, 9.9,10] 

𝑘) 𝕜) [0.16, 0.165, 0.170, …, 0.235, 0.24] 

2) Nearest-neighborhood Particle Swarm Optimization 
Algorithm 

The local swarm learning is based on the particle swarm 
optimization (PSO) algorithm, which defines the particle 
positions at each iteration by the value of the design variables 

𝒙(,H = [𝐷,𝐷!, 𝑛/, 𝑘1]?

𝑖 = 0,1,2, … , 𝑛; 	𝑗 = 1,2, . . , 𝑝�  (13) 

where 𝒙(,H is the ‘position’ of the 𝑗1% ‘particle’ at 𝑖1% iteration; 
𝑛  is the maximum number of iterations, which is used to 
terminate the iterations; and 𝑝 is the population of the particles, 
which defines the capability of global search in each iteration 
via computing agents.  

A matrix of particle positions	[𝒙(,#, 𝒙(,B, 𝒙(,I, … , 𝒙(,'] ∈ 𝕏𝒑 
supplies the inputs to the HESA twin in MATLAB/Simulink for 
each iteration. The HESA twin simulates 𝑝 cases in parallel and 
outputs the energy recovery efficiency 𝜂& and a timeseries of 
the damping force 𝑭9 = [𝐹9(𝑡)), 𝐹9(𝑡) + ∆𝑡), … , 𝐹9(𝑡1)] , 
where ∆𝑡 is the sampling time. 

The local best position in the 𝑖 th iteration, 𝒍𝒃(,∗, is defined 
by a column of the trial matrix, [𝒙(,#, 𝒙(,B, … , 𝒙(,'] that satisfies 

𝜂𝑟	�𝒍𝒃𝑖,∗� ≤ 𝜂𝑟	(𝒙𝑖,𝑗)   (14) 

where 𝜂&	(𝒙(,H) is the energy recovery efficiency that achieved 
with the design parameter values in each 𝒙(,H  value; 𝑖 =
1,2, … , 𝑛; 	𝑗 = 1,2, . . , 𝑝. 

The global best position in the 𝑖  th iteration, 𝒈𝒃(,∗ , is 
defined by a column of the local best matrix, 
[𝒍𝒃#,∗, 𝒍𝒃B,∗, … , 𝒍𝒃(,∗], that satisfies 
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𝜂𝑟	�𝒈𝒃𝑖,∗� ≤ 𝜂𝑟	(𝒍𝒃𝑖,∗)   (15) 

Conventional PSO updates its particle position by 
𝒙(>#,H = 𝒙(,H + 𝒗(>#,H

𝒗(>#,H = 𝒗(,H + 𝑐# ∙ Rnd(0,1) ∙ �𝒍𝒃(,∗ − 𝒙(,H�
																								+𝑐B ∙ Rnd(0,1) ∙ �𝒈𝒃(,∗ − 𝒙(,H�

� 

 (16) 
where 𝒗(,H  is the velocity that the 𝑗  th particle changes its 
position at the 𝑖  th iteration; Rnd(0,1)  is a random number 
generator that generates a vector of random numbers between 0 
and 1 at each iteration; and 𝑐# and 𝑐B are factors that scales the 
attraction from local best 𝒍𝒃(,∗ and global best 𝒈𝒃(,∗. 

Equation (16) updates the particle positions based on the 
assumption that the candidate design parameter is continuously 
varying between the lower and upper boundary. It cannot deal 
with the learning space as described in Table II. Therefore, a 
nearest-neighborhood position update mechanism was 
developed for the PSO algorithm which regulates the position 
calculated in equation (16) by finding the nearest candidate 
value 𝒙K(>#,H = [𝐷K, 𝐷K!, 𝑛K/, 𝑘K1]? ∈ 𝕏 that satisfies 

‖𝐷X −𝐷‖ ≤ ‖𝔻YZ −𝐷‖ n1 = 1,2,… ,6
‖𝐷X! −𝐷!‖ ≤ U𝔻[

Y\ −𝐷!U n2 = 1,2,… ,10
U𝑛XH − 𝑛HU ≤ U𝕟]Y^ − 𝑛HU n3 = 1,2,… ,81
‖𝑘X' − 𝑘'‖ ≤ U𝕜_YD − 𝑘'U n4 = 1,2,… ,17⎭

⎪
⎬

⎪
⎫

 (17) 

where 𝔻n1 , 𝔻m
n2 , 𝕟gn3 , and 	𝕜t

n4  are elements in the candidate 
vectors within the learning space, 𝔻 = [𝔻#, 𝔻B, … ,𝔻D] , 𝔻𝑚 =
[𝔻m

1,𝔻m
2,… ,𝔻m

10] , 𝕟𝑔 = [𝕟g1,𝕟g2,… ,𝕟g81] , and 𝕜𝑡 =
[𝕜t

1, 𝕜t
2,… ,𝕜t

17], respectively.  
The iteration ends when the termination condition (𝑖	 = 	𝑛) 

is met, and the algorithm will extract the global best at the last 
iteration as the local optimization result.  

IV. EXPERIMENTAL STUDIES 

The experimental study was conducted in four stages. In the 
first stage, the HESA twin was validated by testing a physical 
HESA prototype. The energy recovery performance at local 
conditions and global conditions were investigated based on a 
software-in-the-loop testing platform at stages two and three 
respectively to examine the effectiveness of the optimization 
results. The damping characteristics were evaluated at the 
fourth stage to study the feasibility of implementation of the 
optimized HESA on the suspension of road vehicles.  

A. Experimental Validation of the Digital Twin of HESA 
To validate the digital twin of HESA, lab tests and 

numerical simulations were both conducted. The lab test setup 
is shown in Fig.4. A HESA prototype was tested in an Instron 
8801 machine that provides displacement excitation for the 
hydraulic cylinder. The damping force, generated power, 
displacement, and velocity were measured under excitations of 
1 Hz/10 mm and 1 Hz/15 mm. The specifications of the HESA 
prototype are shown in Table III. 

Table III Specifications of the HESA prototype 

Parameter Value Nomenclature 
𝐷 0.0635m/2.5inch Piston diameter 
𝜈 2.1 × 10*&𝑚"/𝑠 Fluid kinematic viscosity 
𝑙 2 m Pipe length 
𝑑 0.016 m/ (5/8 inch)  Pipe diameter 
𝑃+, 500,000 𝑃𝑎 Initial gas pressure of HPA 
	𝑉+, 0.16× 10*#	𝑚# Initial gas volume of HPA 
𝑃-, 200,000 𝑃𝑎 Initial gas pressure of LPA 
	𝑉-, 0.32× 10*#	𝑚# Initial gas volume of LPA 
𝑃. 500,000 𝑃𝑎 Initial environmental pressure  
𝐷' 28 × 10*&	𝑚#/𝑟 Hydraulic motor displacement 
𝐽( 560 × 10*/	𝑘𝑔 ∙ 𝑚" Inertia of the generator 
𝑅. 3.9Ω Resistance of the generator 
𝑘-  0.242Vs/rad Generator voltage constant 

𝑘1  0.242Nm/A Generator torque constant 
𝑛( 4.3 Gear ratio of the gear box 

The force and power characteristics of the digital twin of 
HESA were simulated by MATALB 2019a on a PC with an 
Intel Core i7-8700 CPU and 16GB RAM. Simulation results 
obtained under the excitations of 10 mm/1 Hz and 15 mm/ 1 Hz 
are compared with the testing results in Fig.5. The HESA twin 
that was built by from first principles analysis of hydraulic 
systems is shown to predict the performance of the physical 
HESA prototype. In addition, a higher peak and a lower peak 
can be observed in the power curves, which is due to the piston 
rod in the cylinder inducing different flow rates from the 
cylinder in the extension stroke and the compression stroke. 
The HESA twin built in this paper was therefore used for 
optimization with Hi-PSO.  

Fig. 4 Lab test setup Fig. 5 Testing results vs simulation with the HESA digital twin 
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B. Local Energy Recovery Performance 
Local energy recovery performance were evaluated by 
monitoring the maximum energy efficiency that can be 
achieved by the local swarm intelligence learning in the six 
given duty cycles (with the specifications listed in Table I). To 
investigate the local swarm learning performance, the 
optimized design parameters and energy recovery efficiency 
(under the 20 mm/1.5 Hz condition) obtained with the Hi-PSO 
in 10 individual trials are firstly compared with the results 
obtained by conventional PSO algorithm in Fig.6. In each 
subplot, the red and blue edge bars show the frequency that the 
values attained in the 10 trials by Hi-PSO and PSO, respectively. 
The red and blue solid lines illustrate the estimated normal 
distribution (based on the data from 10 trials) for Hi-PSO (fit) 
and PSO (fit), respectively. The best settings for each design 
parameter that achieves the maximum energy recovery 
efficiency are shown by the green solid line (Opt.). The 
algorithm performs better if it has higher frequency (probability) 
to achieve the optimal solution.  

In general, the proposed Hi-PSO outperforms conventional 
PSO by having greater opportunity to achieve the maximum 
energy recovery efficiency as shown in Fig.6 e). The proposed 
Hi-PSO has higher probability of accessing the optimal setting 
for cylinder diameter 𝐷  and motor displacement 𝐷!  in both 
real measurement and normal distribution estimation. Hi-PSO 
and conventional PSO have the same probability to attain 
optimal gear ratio 𝑛/ . Although both Hi-PSO and PSO can 
obtain the same optimal solution under the condition of 20 
mm/1.5 Hz, it should be noticed that conventional PSO may 
find better solutions than Hi-PSO because human-knowledge 
may prevent access to the solution that has better performance 

in some scenarios. However, conventional PSO has a much 
lower ability to access better solution than the Hi-PSO (as 
shown in Fig.6) because the larger learning space increases the 
computational effort and reduces the probability of accessing 
the optima. Therefore, the Hi-PSO has been shown effective to 
provide solutions for rapid prototyping of the HESA system. 

The local optimal design parameters for the HESA and its 
energy recovery efficiency under the six duty cycles (𝑪# − 𝑪D) 
are then compared in Table IV. As results of the local swarm 
learning, the HESA can have at least 57.57% energy efficiency 
with different settings for its design parameters. The maximum 
energy recovery efficiency that can be achieved locally is 
62.09% with the design parameters optimized under duty cycle 
𝑪D. When looking at the locally optimal settings for each design 
parameter, the design parameters have at least three different 
values as the local optimal settings. The diameter 𝐷  has 3 
different settings; the motor displacement 𝐷!  has 4 different 
settings; the gear ratio 𝑛/ has 5 different settings; and the motor 
torque constant 𝑘𝑡 has 4 different settings. In real engineering 
practice, the design parameters should be fixed for production, 
therefore design parameters obtained in each local learning 
should not only achieve the maximum energy recovery 
efficiency locally under the scenario for learning, but also be 
robust with respect to other scenarios.  

Table IV Local optimization results and the maximum energy 
recovery efficiency in learning cycles 

Duty 
cycles 𝑪! 𝑪" 𝑪# 𝑪$ 𝑪% 𝑪𝟔 

𝐷 80mm 63mm 50mm 50mm 50mm 80mm 

𝐷' 14cc 18cc 10cc 12.5cc 12.5cc 10cc 

𝑛( 6.1 8.1 7.1 5.6 10 10 

𝑘) 0.2 0.19 0.23 0.2 0.18 0.19 

𝜂𝑟 0.5797 0.6080 0.6140 0.5757 0.6194 0.6209 

C. Global Energy Recovery Performance 
To test the robustness of the local optimization results, global 

energy recovery performance was evaluated with six groups of 
tests as shown in Fig.7. The locally optimal design parameters 
obtained in 𝑪# to 𝑪D are tested under other duty cycles in the 
respective testing groups, e.g., in Group 1, the locally optimal 
design parameters obtain in 𝑪# is tested under duty cycle 𝑪B to 
𝑪D at testing group 1. The energy efficiencies obtained under 

Fig. 7 Energy recovery efficiency that achieved under the 
six testing groups 

Fig. 6 Optimization results in 10 trials: a) cylinder diameter 𝐷; 
b) hydraulic motor displacement 𝐷! ; c) gear ratio of 
gearbox 𝑛H; d) torque constant 𝑘'; e) energy efficiency. 
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learning duty cycle and testing duty cycles for each group are 
shown in the bars with same color. In general, the locally 
optimal design parameters achieve different energy efficiency 
values under different testing duty cycles. Sometimes, similar 
energy recovery efficiency is achieved in the testing duty cycle 
and the learning duty cycles. In some cases, the energy recovery 
performance is very poor, e.g., in testing group 1 and 4. The 
energy recovery efficiencies achieved in each testing duty cycle 
for each testing group are displayed in Table V. 

Table V Energy efficiency performance in testing duty cycles 

Duty 
cycles 𝑪! 𝑪" 𝑪# 𝑪$ 𝑪% 𝑪& 

Group 1 - 0.5580 0.5640 0.5045 0.6172 0.6134 

Group 2 0.5512 - 0.6112 0.5546 0.6183 0.6011 

Group 3 0.4688 0.6073 - 0.5622 0.6189 0.5872 

Group 4 0.4804 0.5976 0.6078 - 0.6128 0.5718 

Group 5 0.4725 0.6075 0.6129 0.5537 - 0.5910 

Group 6 0.5309 0.5769 0.6023 0.5065 0.6304 - 

From a global performance perspective, the locally optimal 
design parameters obtained under 𝑪#, 𝑪B and 𝑪D are shown to 
be more adaptive, achieving the energy efficiency with values 
of at least 50%, whereas the results obtained under 𝑪I-𝑪Y show 
less adaptiveness in some duty cycles where the energy 
efficiency they can achieve is less than 50%. From the statistical 
summary of the results in each testing group, as in Table VI, the 
locally optimal design parameter obtained under 𝑪B  (i.e., 20 
mm/1.5 Hz) is shown to be the most robust by achieving the 
highest mean value and lowest variation of energy efficiency in 
the testing duty cycles. 

Table VI Statistic summary of the results in each testing groups 

Groups 1 2 3 4 5 6 

𝜇 0.5714 0.5873 0.5689 0.5741 0.5675 0.5694 

𝜎 0.0463 0.0320 0.0600 0.0547 0.0579 0.0507 

D. Global Damping Force Performance 
Damping characteristics are important for the HESA to 

absorb the vibration. The damping coefficient 𝐹9 𝑣'⁄  was 
limited in local swarm learning as in Section III.B, and the 
force-displacement performance were further evaluated under 
both learning and testing conditions to validate the design 
results. The force-displacement loops, which use their area to 
quantify the mechanical energy that can be absorbed by the 
HESA, are shown in Fig.8. Each subplot of Fig.8 summarizes 
the force-displacement performance of the HESA that is locally 
optimised under 𝑪# to 𝑪D, respectively. As an example, Fig.8 a) 
presents the force-displacement performance of the HESA that 
is locally optimized under 𝑪# . In each subplot of Fig.8, the 
force-displacement loops under 𝑪#-𝑪D are shown in dark blue, 
yellow, green, red, purple, and light blue.  

For the HESA with local optimal design parameters 
obtained under 𝑪#  and 𝑪D , it can be seen that the damping 
forces vary greatly under the same duty cycle, indicating that 
the locally optimized parameters in 𝑪# -𝑪D  provides various 
damping property and fits for different types of vehicle. By 
considering the global performance in both energy recovery 

efficiency and damping characteristics, the HESA with the local 
optimal design parameters obtained under 𝑪B is recognized as 
the global optimization result. 

By comparing the damping performance with the energy 
recovery efficiency, a very interesting phenomenon can be 
observed, i.e., the damping performance varies more 
significantly than the energy efficiency for different local 
optimal designs. This is because the local swarm learning is a 
single objective (to maximize energy efficiency) optimization 
with constraints (e.g., damping coefficient range), and it 
retrieves the best design parameters which can achieve the 
maximum energy efficiency (as in Table IV). This will result in 
several designs that have less differences in energy efficiency 
but with more significant differences in damping forces (e.g., 
the local optima in 𝑪Y and 𝑪D). Therefore, it is very important 
to conduct global optimization with the proposed Hi-PSO 
scheme to confirm the feasibility of the design.  

V. CONCLUSIONS 

This paper proposed a Human-knowledge-integrated Particle 
Swarm Optimization (Hi-PSO) scheme to achieve global 
optimization of the design parameters of the HESA for a road 
vehicle. A digital twin of the HESA has been developed with 
testing validations of a HESA prototype. An experimental study 
has been conducted to evaluate the optimized HESA in terms 
of both energy recovery efficiency and damping characteristics. 
The conclusions drawn from the investigation are: 

Fig. 8 Force-displacement Loops under six duty cycles with the 
HESA optimized under: a) 20mm/0.5Hz cycle (𝑪Z); b) 
20mm/1.5Hz cycle (𝑪\); c) 20mm/2.0Hz cycle (𝑪^); d) 
50mm/0.5 Hz cycle (𝑪D); e) 10mm/5.0Hz cycle (𝑪`); f) 
2mm/10.0 Hz cycle (𝑪a). 
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• The proposed Hi-PSO is effective in local swarm learning. 
It can achieve 5.17% higher energy efficiency compared to 
the results obtained by using conventional PSO in 10 
individual tests under 20mm/1.5Hz duty cycle (𝑪B). 

• The local optimal design parameters obtained under 𝑪B can 
be recognized as the global optimization result. They can 
achieve an average energy efficiency of 59.07% in the 
testing duty cycles, performing at least 2.2% better than the 
benchmark obtained by other methods.  

• The damping force provided by the HESA with global 
optimization, i.e., the optimal setting obtained in 𝑪B , is 
proved applicable to isolate the vibration in a vehicle 
suspension. Additionally, the optimal setting obtained in 
C1-C6 presents different damping properties, which suit 
for different vehicles.  

In the next stage, a prototype using an upgraded HESA with 
the global optimal design parameters will be manufactured and 
installed on a vehicle, in order to further research the active 
suspension control with artificial intelligence technology.  
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