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ARTICLE

An integrated multi-omics analysis identifies
prognostic molecular subtypes of non-muscle-
invasive bladder cancer
Sia Viborg Lindskrog 1,2,29, Frederik Prip1,2,29, Philippe Lamy 1, Ann Taber 1,2, Clarice S. Groeneveld 3,4,

Karin Birkenkamp-Demtröder 1,2, Jørgen Bjerggaard Jensen2,5, Trine Strandgaard1,2, Iver Nordentoft 1,

Emil Christensen 1,2, Mateo Sokac1,2, Nicolai J. Birkbak 1,2, Lasse Maretty1,2, Gregers G. Hermann6,

Astrid C. Petersen7, Veronika Weyerer8, Marc-Oliver Grimm9, Marcus Horstmann9,10, Gottfrid Sjödahl 11,

Mattias Höglund12, Torben Steiniche13, Karin Mogensen6, Aurélien de Reyniès3, Roman Nawroth14,

Brian Jordan15, Xiaoqi Lin15, Dejan Dragicevic16, Douglas G. Ward17, Anshita Goel17, Carolyn D. Hurst18,

Jay D. Raman19, Joshua I. Warrick 20, Ulrika Segersten21, Danijel Sikic22, Kim E. M. van Kessel23,

Tobias Maurer14,24, Joshua J. Meeks15, David J. DeGraff20, Richard T. Bryan17, Margaret A. Knowles18,

Tatjana Simic25, Arndt Hartmann8, Ellen C. Zwarthoff23, Per-Uno Malmström21, Núria Malats 26,

Francisco X. Real 27,28 & Lars Dyrskjøt 1,2✉

The molecular landscape in non-muscle-invasive bladder cancer (NMIBC) is characterized by

large biological heterogeneity with variable clinical outcomes. Here, we perform an inte-

grative multi-omics analysis of patients diagnosed with NMIBC (n= 834). Transcriptomic

analysis identifies four classes (1, 2a, 2b and 3) reflecting tumor biology and disease

aggressiveness. Both transcriptome-based subtyping and the level of chromosomal instability

provide independent prognostic value beyond established prognostic clinicopathological

parameters. High chromosomal instability, p53-pathway disruption and APOBEC-related

mutations are significantly associated with transcriptomic class 2a and poor outcome. RNA-

derived immune cell infiltration is associated with chromosomally unstable tumors and

enriched in class 2b. Spatial proteomics analysis confirms the higher infiltration of class 2b

tumors and demonstrates an association between higher immune cell infiltration and lower

recurrence rates. Finally, the independent prognostic value of the transcriptomic classes is

documented in 1228 validation samples using a single sample classification tool. The classifier

provides a framework for biomarker discovery and for optimizing treatment and surveillance

in next-generation clinical trials.
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Urothelial non-muscle-invasive bladder cancer (NMIBC)
represents the most common type of bladder cancer.
Patients with NMIBC experience a high likelihood of

disease recurrence (50–70%) and progression to muscle-invasive
bladder cancer (MIBC; up to 20%, depending on stage and
grade)1. Consequently, although 5-year survival rates are favor-
able (>90%), most patients must undergo lifelong cystoscopic
surveillance and multiple therapeutic interventions, making
bladder cancer the most expensive cancer to treat2. Clinically,
high-risk NMIBC is treated with adjuvant intravesical instillations
of Bacillus Calmette–Guérin (BCG) after surgery to eradicate
residual disease and hence reduce the frequency of recurrence and
progression1.

Despite similar clinical and histopathological characteristics,
tumors show large differences in disease aggressiveness and
response to therapy, emphasizing the urgent need for further
delineation of clinically useful biomarker tests to facilitate and
improve patient surveillance and treatment3. Earlier studies of
NMIBC biology addressed gene expression for classification of
aggressiveness, resulting in the identification of two major
molecular subtypes4–6. When considering the whole spectrum of
disease stages, five subtypes of bladder cancer were identified; in
particular, three subtypes (Urothelial-like, genomically unstable,
and a group of infiltrated cases) were associated with NMIBC7. In
a more recent study of 460 NMIBC patients, we reported three
gene expression-based classes (class 1–3; UROMOL2016 classi-
fication system) with different clinical outcomes and molecular
characteristics8. Differences in biological processes, such as cell
cycle, epithelial-mesenchymal transition (EMT), and differentia-
tion, were observed. Furthermore, mutations in well-known
cancer driver genes, i.e., TP53 and ERBB2, were primarily found
in high-risk class 2 tumors, together with enrichment for
APOBEC-related mutational processes.

Analysis of genomic alterations in NMIBC has revealed com-
plex genomic patterns underlying bladder carcinogenesis. Acti-
vating mutations in FGFR3 and PIK3CA and chromosome 9
deletions have been identified as early disease drivers9–11.
Recently, van Kessel et al. showed that NMIBC at high risk for
progression could be further subdivided into good, moderate, and
poor progression risk groups based on mutations in FGFR3 and
methylation of GATA212. Hurst et al. assessed 160 tumors for
genome-wide copy number alterations (CNAs) using array-based
comparative genomic hybridization (CGH). The study included
49 high-grade T1 tumors that separated into three major genomic
subgroups, one of which contained the majority of tumors
showing disease progression13. In a more recent study, the same
group analyzed CNAs in 140 Ta tumors and identified two major
genomic subtypes (GS1 and GS2). GS1 tumors showed no or very
few CNAs, while tumors in GS2 showed more alterations and a
high frequency of chromosome 9 deletions14. Exome sequencing
of 28 Ta tumors revealed that GS2 tumors had a higher muta-
tional load with enrichment for APOBEC-related mutations
compared to GS1 tumors. Furthermore, comparing 79 of the
samples to transcriptional subtypes showed that the tumors were
primarily classified as the Urothelial-like A subtype (Lund Tax-
onomy). Application of the UROMOL2016 classification system
showed that GS2 tumors with higher genomic instability were
enriched for the class 2 subtype14. However, additional refine-
ment of these genomic studies is required to determine optimal
predictors of disease aggressiveness and outcome.

The tumor microenvironment has also been linked to prog-
nosis in NMIBC. A high infiltration of cytotoxic T lymphocytes
(CTLs) is associated with better prognosis in many cancer types,
including MIBC15,16. In contrast, high infiltration of tumor
infiltrating-lymphocytes (TILs) has been associated with pro-
gression in NMIBC17,18. Furthermore, the presence of tumor-

associated macrophages and mature tumor-infiltrating dendritic
cells has been related to progression of NMIBC19. The impact of
regulatory T cells (Tregs) is conflicting, since high levels of Treg
infiltration has been associated with both a favorable20 and
unfavorable prognosis of bladder cancer21,22. The impact of
immune cell infiltration on disease outcome and association with
molecular subtypes and genomic alterations in NMIBC needs to
be further studied.

Overall, our understanding of the molecular landscape of
NMIBC is still incomplete, and integrative multi-omics analysis is
needed to obtain further knowledge of biological processes con-
tributing to disease aggressiveness, recurrence, and progression.
This should ultimately lead to biomarker-based optimized sur-
veillance and therapy modalities for patients with NMIBC.

Here, we report an integrative multi-omics analysis of NMIBC
tumors from a total of 834 patients included in the UROMOL
project. With this analysis, we delineate genomic and tran-
scriptomic predictors of outcome in NMIBC, and present an
online tool for the classification of independent samples (http://
nmibc-class.dk).

Results
Clinical, pathological, and molecular information. Patients
were enrolled in the UROMOL project, a European multicenter
prospective study of NMIBC. The initial reports from the
UROMOL project included only transcriptomic analysis6,8. We
have now performed an integrated multi-omics analysis and have
expanded the work to a larger NMIBC patient series with updated
follow-up that is essential to acquire insight into the implications
for patient management. In total, 862 tumors (613 Ta, 238 T1, 11
carcinoma in situ (CIS)) were analyzed in this study. Median
follow-up for patients without progression was 49 months and
10.3% progressed to MIBC. A detailed summary of clinical and
histopathological information and the analyses performed is
provided in Supplementary Table 1.

Delineation of transcriptomic classes in NMIBC. We analyzed
bulk RNA-Sequencing (RNA-Seq) data from 535 patients (397
Ta, 135 T1, 3 CIS; an expansion of the 460 NMIBC patient cohort
previously analyzed8). Using unsupervised consensus clustering
of gene-based expression values restricted to the 4000 genes with
highest variation across the dataset23, we identified four tran-
scriptomic classes which partially overlapped with the previous
UROMOL2016 classes 1–3: high-risk class 2 was further sub-
divided into two subclasses, named class 2a and 2b for continuity
(Fig. 1a, b). Classes showed significantly different progression-
free survival (PFS, p= 6.6 × 10−5; log-rank test; Fig. 1c): patients
with class 2a tumors had the worst outcome, followed by patients
with class 2b tumors. Patients with class 1 tumors had the best
recurrence-free survival (RFS, p= 0.025; log-rank test; Fig. 1d).
Multivariable Cox regression analysis revealed that high-risk class
2a and 2b were independently associated with worse PFS and RFS
when adjusted for the clinical EORTC risk score (European
Organisation for Research and Treatment of Cancer24) and EAU
(European Association of Urology) risk assessment25 (Supple-
mentary Table 2).

Transcriptomic classes were significantly associated with
various clinicopathological parameters (Fig. 1e and Supplemen-
tary Table 3). Class 2a was enriched for T1 tumors, high-grade
tumors, and tumors from patients with CIS and high EORTC risk
scores (>6; Supplementary Table 3). Tumors in class 2a also
showed a significant overlap with those expressing our previously
reported progression-4,6 and CIS-signatures5 (p= 6.4 × 10−28

and p= 1.2 × 10−6, respectively; Wilcoxon rank-sum test).
Classification using the Lund system26 revealed that 91% of
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tumors were classified as UroA and 4% as genomically unstable
(GU), the latter mostly found in class 2a (Fig. 1e). When classified
according to the six consensus classes of MIBC27, 93% of tumors
classified as Luminal Papillary (LumP). Consequently, the
classification provided here captures the molecular granularity
of NMIBC superiorly to previous strategies.

Analysis of the biological processes associated with NMIBC
classes revealed important information discriminating classical
histological features from molecular classification and outcome.
Confirming our previous findings, class 1 and 3 tumors were
associated with early cell cycle genes (p= 1.1 × 10−15 and p=
0.003, respectively; Wilcoxon rank-sum test; Fig. 1f). Further-
more, class 3 tumors were characterized by high expression of
FGFR3-coexpressed genes and a depleted immune contexture
(Fig. 1f, g), as previously demonstrated in MIBC and upper tract
urothelial carcinoma28,29. By contrast, class 2a tumors were
mostly associated with late cell cycle genes (p= 1.3 × 10−33;
Wilcoxon rank-sum test), DNA replication (p= 1.1 × 10−20;
Wilcoxon rank-sum test), uroplakins (p= 9.1 × 10−7; Wilcoxon
rank-sum test) and genes involved in cell differentiation (p=
2.9 × 10−5; Wilcoxon rank-sum test), thus indicating that
differentiation and proliferation do not show an inverse
association. Additionally, class 2b tumors were predominantly
associated with expression of cancer stem cell markers (p= 9.7 ×
10−25; Wilcoxon rank-sum test) and genes involved in EMT (p=
7.3 × 10−24; Wilcoxon rank-sum test), but a lesser association
with cell proliferation (Fig. 1f and Supplementary Fig. 1a).

We estimated the presence of immune cells by deconvolution
of RNA-Seq data30. Class 2b tumors had a significantly higher
total immune infiltration score compared to all other classes (p=
1.3 × 10−43; Wilcoxon rank-sum test), indicating a high level of
immune cell infiltration (Fig. 1g). Class 3 tumors had a
significantly lower immune infiltration score compared to both
class 1 and 2a (p= 1.8 × 10−7; Wilcoxon rank-sum test). Since
class 2b tumors showed a favorable PFS compared to class 2a
tumors (p= 0.024; log-rank test; Supplementary Fig. 1b), we
investigated the prognostic impact of immune infiltration
irrespective of NMIBC class. The transcriptome-based measure
of immune infiltration was, however, not associated with PFS or
RFS per se (Supplementary Fig. 1c, d). We also characterized the
four classes using gene signatures of potential relevance for
different treatment strategies (Fig. 1f, g). Class 2b tumors showed
significantly higher expression of immune checkpoint markers
and other immune-related signatures compared to all other
classes, suggesting that such tumors might be more responsive to
immunotherapies31,32. However, no difference in BCG failure-
free survival was observed between patients with high-grade class
2a or 2b tumors treated with a minimum of six BCG cycles (n=
54, Supplementary Fig. 1e).

To explore transcriptomic differences between NMIBC classes
further, we analyzed transcriptional regulatory networks (i.e.
regulons) for a predefined list of 23 transcription factors
previously investigated for MIBC33 and candidate regulators
associated with chromatin remodeling in cancer34. This analysis
provided confirmation of the biological relevance of a four-
subtype classification, as regulon activities were highly associated
with transcriptomic classes (Fig. 1h, i). Similar regulon activity
patterns were shared by class 1 and 3 tumors, but class 3 tumors
differed by having high AR and GATA3 regulon activity. Class 2a
tumors were distinctly associated with high FOXM1, ESR2,
ERBB2, and ERBB3 regulon activity, while class 2b tumors
showed high activity of the ESR1, FGFR1, RARB, STAT3, and
PGR regulons. Activity profiles of regulons associated with
chromatin remodeling highlighted additional potential regulatory
differences between class 1 and 3 tumors, indicating that
epigenetic-driven transcriptional networks (e.g., KMT2E,

KAT2A, KAT5, HDAC10 regulons) might be important
differentiators of these classes (Fig. 1i and Supplementary Fig. 1f).
The potential epigenetic differences between the classes were
further supported by an EPIC BeadChip methylation analysis of
29 Ta high-grade tumors, which demonstrated an overall large
difference in methylation between samples from different classes
(Supplementary Fig. 1g). Furthermore, when comparing class 1
and 3 tumors, it was revealed that gene promoters were less
methylated in class 3 (Supplementary Fig. 1h). In total, 12,035
promoter sites were differentially methylated between class 1 and
3 tumors and of these, 97.9% were more methylated in class 1
compared to class 3.

Transcriptomic subtypes stratified according to pathological
features. To minimize biological confounding arising from
pathological and morphological differences, we performed a sub-
analysis of Ta low grade tumors (n= 286) and T1 high grade
tumors (n= 101). Analysis of Ta low grade tumors by unsu-
pervised consensus clustering of gene-based expression values
restricted to the 2000 genes with highest variation identified four
subtypes significantly overlapping with the UROMOL2021 classes
(p= 4.4 × 10−69; chi-square test; Supplementary Fig. 2a). The Ta
low grade subtypes were, however, not significantly associated
with RFS (Supplementary Fig. 2b). A similar analysis of T1 high
grade tumors identified three subtypes: one larger group (T1HG-
2), enriched for class 1, -2b and -3 tumors, with higher expression
of early cell cycle and FGFR3-coexpressed genes and relatively
good outcome, and two smaller subtypes of class 2a tumors
(Supplementary Fig. 3a, b). T1HG-1 and T1HG-3 were both
associated with higher expression of genes involved in late cell
cycle and DNA replication, but T1HG-1 was enriched for tumors
with high progression- and CIS signature scores, the LundTax
GU and UroC subtypes and the MIBC consensus class LumU.
The T1HG-3 tumors showed higher expression of uroplakins and
differentiation markers, indicating a more differentiated subtype
(Supplementary Fig. 3a). Five subtypes of T1 tumors (T1BC
classes) were recently reported35 and here we found an overlap
between the T1HG subtypes and T1BC classes (p= 8.7 × 10−5;
Fisher’s exact test; Supplementary Fig. 3a). We built a single-
sample T1HG classifier and classified all 535 tumors (Supple-
mentary Fig. 3c). The T1HG subtypes were significantly asso-
ciated with PFS (p= 9.8 × 10−12; log-rank test; Supplementary
Fig. 3d), and multivariable Cox regression analysis showed that
T1HG-1 was independently associated with worse PFS and RFS
when adjusted for the clinical EORTC- and EAU risk scores
(Supplementary Table 2). The T1HG subtypes were not sig-
nificantly associated with BCG failure-free survival (n= 55; p=
0.54; log-rank test). The sub-analysis of pathologically homo-
geneous tumors demonstrates that the UROMOL2021 classes are
not mainly driven by differences in histological and morpholo-
gical features. The T1HG subtypes overlap partially with pre-
viously reported biological subtypes and signatures of
aggressiveness; however, the increase in biological granularity is
not directly translated into better prediction of outcome, since
several progression events are missed using the T1HG classifier
(Ta progression sensitivity: T1HG-1+ 3 subtype, 24% (7/29);
UROMOL2021 class 2a+ 2b, 79% (23/29). T1 progression sen-
sitivity: T1HG-1+ 3 subtype, 69% (25/36); UROMOL2021 class
2a+ 2b, 89% (32/36)).

Chromosomal instability is associated with high-risk NMIBC.
To investigate the genomic heterogeneity of NMIBC further, a
total of 473 tumor–leukocyte pairs were analyzed using Illumina
SNP arrays. Genomic losses/gains and allelic imbalance were
derived from raw-segmented total copy number and B allele
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frequency values (for details, see “Methods”). Analysis of the
genomic landscape in tumors stratified by EORTC risk score
showed similar patterns of abnormalities, but genomic altera-
tions (except for chromosome 9 losses) were more frequently
found in EORTC high-risk tumors (Supplementary Fig. 4a).
Tumors were therefore stratified to three genomic classes (GC1-
3) of equal size with increasing CNA burden to illustrate low,
intermediate, and high chromosomal instability (Fig. 2a and
Supplementary Fig. 4b). The distribution of clinicopathological
parameters and molecular variables between the genomic classes

is shown in Fig. 2a. Specifically, we observed partial or complete
loss of chromosome 9 in 53% (251/473; CDKN2A loci) of
tumors, and amplification of 8q22.1 in 22% of tumors (103/473;
GDF6 and SDC2 loci). Genes in the affected 8q22.1 loci may be
involved in the dysregulation of extracellular matrix synthesis
and transforming growth factor (TGF)-β pathway36. Other
frequently altered genomic areas included gains of 1q (16%), 8q
(14%; including MYC), 5p (11%; including TERT), 20q (11%)
and 20p (9.3%), and losses on 8p (16%), 11p (14%), 17p (13%;
including TP53) and 18q (8.2%). Genomic classes were
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Fig. 2 Copy number alterations in NMIBC. a Genome-wide copy number landscape of 473 tumors stratified by genomic class (GC) 1–3. Gains (gain+ high
balanced gain) and losses (loss+ high balanced loss) are summarized to the left of the chromosome band panel. EORTC European Organisation for
Research and Treatment of Cancer, EAU European Association of Urology, MIBC muscle-invasive bladder cancer. b Kaplan–Meier plot of progression-free
survival (PFS) for 426 patients stratified by genomic class. c Kaplan–Meier plot of recurrence-free survival (RFS) for 399 patients stratified by genomic
class. d Kaplan–Meier plot of PFS for patients with high EORTC risk score (n= 163) stratified by genomic class. P-values were calculated using two-sided
log-rank test. Source data are provided as a Source data file.
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significantly associated with PFS and RFS (p= 1.5 × 10−7 and p
= 1.5 × 10−5, respectively; log-rank test; Fig. 2b, c). Importantly,
restricting the survival analysis to tumors with high EORTC risk
score ( > 6), genomic classes were still significantly associated
with PFS (Fig. 2d). Genomic classes were significantly associated
with stage, grade, concomitant CIS, and EORTC risk score
(Fig. 2a and Supplementary Table 4); however, multivariable
Cox regression analysis documented that genomic classes were
an independent prognostic variable for progression when
adjusted for tumor stage and grade (HR= 3.5 (95% CI:
1.57–7.56); p= 0.002) and EORTC risk score (HR= 2.8 (95%
CI: 1.28–5.99); p= 0.01) (Supplementary Table 2). In addition,
genomic classes were also independently associated with
recurrence when adjusted for EORTC risk score (HR= 1.5 (95%
CI: 1.13-2.04); p= 0.005).

Integration of genomic alterations and transcriptomic classes.
Integrative analysis of genomic and transcriptomic data from 303
tumors showed that transcriptomic classes were significantly
associated with genomic classes (p= 2 × 10−11; chi-square test;
Fig. 3a). Class 2a included the highest fraction of tumors in GC3
(68%; 39/57). To document this association further, we found a
strong correlation between genomic classes and 12-gene qPCR
progression risk score (n= 449, p= 3.24 × 10−41; Kruskal–Wallis
rank-sum test), and tumors with a higher progression score were
predominantly class 2a and 2b (p= 1.8 × 10−32; Kruskal–Wallis
rank-sum test; Fig. 3b). When analyzing class 2a and 2b tumors
only, genomic classes were still significantly associated with PFS;
all progression events were associated with GC3 tumors (p=
0.0007; log-rank test; Fig. 3c). Likewise, when analyzing geno-
mically high-risk (GC3) tumors only, transcriptomic class 2a and
2b were still associated with PFS (p= 0.036; log-rank test; Sup-
plementary Fig. 5a). In addition, T1HG subtypes were also sig-
nificantly associated with genomic classes (p= 0.006 and p=
7.7 × 10−11 for T1HG tumors and all tumors, respectively; chi-
square tests; Supplementary Fig. 3e, f).

Single-nucleotide variants (SNVs) with moderate or high
functional impact were called based on RNA-Seq data. Class 2a
tumors showed a significantly higher number of SNVs compared
to all other classes (p= 7.7 × 10−8; Kruskal–Wallis rank-sum test;
Fig. 3d). Selected frequently mutated genes in bladder cancer are
listed in Fig. 3e, and a complete list of the most frequently
mutated genes and genes with significantly different mutation
patterns across classes can be found in Supplementary Fig. 5b.
Mutation calling based on RNA-Seq data has several limitations
compared to DNA sequencing, and without a reference germline
comparison there is a risk of including germline variants in the
analysis. We compared RNA-Seq and whole-exome sequencing
(WES) of tumors and germline for 38 patients, and found that the
filtering approach applied per sample and across samples
enriched significantly for somatic SNVs in our presented gene
lists (Fig. 3f). Additional comparative analysis of mutations
observed in DNA documented a high correlation between
observations in DNA and RNA (Supplementary Fig. 5c–e),
suggesting that potentially included germline variants have
limited impact on subsequent analyses.

Analysis of hotspot mutations in FGFR3 (64%), PIK3CA (26%),
RAS (7%), and hTERT (79%) based on tumor DNA is shown in
Supplementary Fig. 5b. Furthermore, copy number alterations
(from SNP microarray analysis) in disease driver genes are
highlighted for comparison, and indicate overall loss of CDKN2A,
significant gain of PPARG and E2F3 in class 2a and loss of RB1 in
class 2a (Fig. 3e). An overview of genomic alterations significantly
associated with transcriptomic classes is shown in Fig. 3g.
Notably, p53 pathway alterations, observed in 42% of tumors

(127/303; Fig. 3h), were significantly associated with a high CNA
burden (p= 5.9 × 10−20; Wilcoxon rank-sum test; Fig. 3i) and
class 2a tumors (p= 2.8 × 10−7; Fisher’s exact test). Gene
expression levels of key molecules in the p53 pathway (MDM2,
E2F3, TP53, ATM, and RB1) were significantly correlated to the
observed genomic changes (Supplementary Fig. 5f–j). TP53 was
affected by both copy number change and point mutation in 17
tumors (Fig. 3h), and the majority of these mutations were
homozygous (mean variant allele frequency was 0.89 in tumors
with copy number change and 0.65 in tumors without).
Furthermore, we found a positive correlation between TP53
variant allele frequency and genomic changes (R= 0.44, p-value
= 0.027; Pearson’s correlation). Mutations in DNA damage repair
(DDR) genes were significantly associated with RNA-derived
mutational load (p= 2.1 × 10−13; Wilcoxon rank-sum test;
Fig. 3j). This remained significant when TP53 mutations were
excluded from the analysis (p= 4.4 × 10−11; Wilcoxon rank-sum
test). In addition, we found a significantly higher mutational load
and immune cell infiltration (RNA-Seq based) in GC3 tumors
(Fig. 3k, l).

Furthermore, we inferred seven trinucleotide single-base
mutational signatures (Supplementary Fig. 5k), and four
signatures showed high correlation to signatures previously
identified in bladder cancer33,37,38: SBS1 (age-related), SBS2 and
SBS13 (related to excessive APOBEC activity) and SBS5 (related
to ERCC2 mutations39) (Fig. 3e). Class 2a tumors had
significantly more mutations in the context of the APOBEC-
related signatures (Fig. 3m). Concordantly, high contribution of
the APOBEC-related signatures was associated with worse PFS
(Supplementary Fig. 5l), indicating that APOBEC activity may
drive disease evolution and tumor aggressiveness8.

Finally, we applied a deconvolution method (WISP; weighted
in silico pathology) to assess intra-tumor heterogeneity and class
stability from bulk transcriptomic profiles40. WISP calculates
pure population centroid profiles from the RNA-Seq data and
estimates class weights for each sample based on the centroids
(hence, each sample is weighted between all four transcriptomic
classes; for details, see “Methods”). We found that samples
exhibited heterogeneity in all classes, with class 2a having the
highest degree of heterogeneity and class 3 the lowest (Supple-
mentary Fig. 6a). Associations of WISP class weights to molecular
and clinical features were consistent with the previous description
of the classes (Supplementary Fig. 6b–d). Class 1 weights were
associated with lower tumor stage, tumor size, and EORTC risk
score. Class 2a weights were associated with TP53 (p= 4.51 × 10
−9; Wilcoxon rank-sum test) and TSC1 (p= 1.37 × 10−5;
Wilcoxon rank-sum test) mutations, as well as to higher tumor
stage, tumor grade and EORTC risk score. Class 2b weights were
significantly correlated to infiltration by all tested immune- and
stromal cell populations (p-values ranging from 2.2 × 10−12 for
endothelial cells to 6.5 × 10−126 for B lineage cells; Spearman’s
correlation; Supplementary Fig. 6d). In addition, class 3 weights
were associated with FGFR3 and PIK3CA mutations, as well as
lower tumor stage and grade. WISP class weights also outlined
differences between class 1 and 3 signals: high class 1 weights
were associated to RAS mutations and infiltration by myeloid
dendritic cells, while high class 3 weights were strongly associated
to FGFR3 mutations (p= 7.34 × 10−15; Wilcoxon rank-sum test)
and lower immune and stromal population scores than the other
classes.

Spatial proteomics analysis of tumor and immune cell con-
texture. To resolve the immune features described above at the
spatial level, multiplex immunofluorescence (mIF) and immu-
nohistochemical (IHC) analyses were performed on 167 tumors,
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where additional tissue was available. We analyzed immune cells
(T helper cells, CTLs, Tregs, B-cells, M1- and M2 macrophages;
see Supplementary Fig. 7a for details), carcinoma cells (pan-
cytokeratin, CK5/6, and GATA3) and immune recognition/
escape mechanisms (PD-L1 and MHC class I). Automated image

analysis algorithms41 were applied to study the spatial organiza-
tion of immune cells and immune evasion mechanisms (Fig. 4a
and Supplementary Fig. 7a). RNA-Seq data was available for 150
of the tumors and the RNA-derived immune score correlated
significantly with the level of infiltrating immune cells in the
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tumor parenchyma (p= 1.4 × 10−7; Pearson’s correlation;
Fig. 4b). The different subsets of lymphocytes were pre-
dominantly present simultaneously in the stroma and the tumor
parenchyma. Consequently, only a few tumors belonged to the
immune excluded phenotype42, and we, therefore, focused on the
degree of infiltrating immune cells located in the tumor par-
enchyma, henceforth termed immune infiltration. Notably,
tumors with a high immune infiltration showed a high expression
of MHC class I (p= 6.18 × 10−12; Wilcoxon rank-sum test). Only
a few tumors expressed PD-L1 in the tumor parenchyma, and the
majority of these tumors were highly inflamed (p= 1.64 × 10−5;
Wilcoxon signed-rank test; Fig. 4b).

The level of infiltrating immune cells identified at the
proteomic level was significantly associated with transcriptomic
classes and class 2b tumors showed the highest immune
infiltration (p= 8 × 10−5, Kruskal–Wallis rank-sum test; Fig. 4c),
supporting the observations delineated from the transcriptomic
deconvolution analysis. The differences among transcriptomic
classes were particularly evident for T helper cells and CTLs (p=
2.5 × 10−5 and p= 0.0082, respectively; Kruskal–Wallis rank-sum
test; Supplementary Fig. 7b). These data confirm that the
transcriptomic-based estimation of inflammation in class 2b
tumors truly represents high immune cell infiltration.

Despite the overall aggressive characteristics of the inflamed
class 2b tumors, a high immune infiltration was significantly
associated with a lower recurrence rate (p= 0.022;
Jonckheere–Terpstra test for trend; Fig. 4d), particularly for T
helper cells and CTLs (p= 0.019 and 0.012, respectively;
Jonckheere–Terpstra test for trend Supplementary Fig. 7c). There
were too few progression events to document this effect on PFS.
Furthermore, a possible protective immune response was shown
in patients with tumors of similar genomic background (few
genomic alterations); in this group, patients with high immune
infiltration had a longer RFS compared to patients with low
immune cell infiltration (p= 0.011; log-rank test; Fig. 4e).

Finally, we stained for basal cytokeratin expression (CK5/6)
and luminal characteristics (GATA3) and aligned these with a
pan-cytokeratin staining of the carcinoma cells to estimate the
proportion of carcinoma cells positive for CK5/6, GATA3 or both
(Supplementary Fig. 7d). All tumors stained positive for GATA3
and 23% for CK5/6 (positivity: > 50% GATA3 or CK5/6 positive
cells in the tumor parenchyma). All CK5/6 positive tumors were
concurrently GATA3 positive and thereby not basal/squamous by
definition43. Similar coexpression of basal- and luminal-like
markers has been observed previously in the Urothelial-like B
tumors44. The fraction of CK5/6 positive cells was associated with

transcriptomic classes, with class 3 having the strongest
enrichment for CK5/6 expression (p= 4.5 × 10−8; chi-squared
test; Fig. 4f).

Integrative prediction models, classifier construction, and
independent validation. An overview of the univariate Cox
regression analyses of selected clinical features and molecular
variables is shown in Fig. 5a. In addition, we performed receiver
operating characteristic (ROC) analysis for predicting progression
within five years using logistic regression models (n= 301,
Fig. 5b). Combining EORTC risk score with genomic classes
increased the predictive accuracy from 0.77 to 0.82, and com-
bining EORTC risk score and transcriptomic classes increased the
predictive accuracy to 0.85. Including all three variables in the
model slightly increased the predictive accuracy to 0.88 (BH-
adjusted p= 0.033, Likelihood ratio test; full model vs. EORTC
model). Logistic regression models including continuous variables
(EORTC, genome altered, and 12-gene progression score), EAU
risk scores and T1HG subtypes showed no increased predictive
value (Supplementary Fig. 8a–d).

Overall, each transcriptomic class has distinct clinical features,
molecular characteristics, and tumor microenvironments, as
summarized in Fig. 5c. To facilitate the use of the four
transcriptomic classes in future research and clinical settings,
we constructed a single-sample classifier for NMIBC. The
classifier was built similarly to the recently published tool for
the consensus subtypes of MIBC27, where a class label is assigned
to the transcriptomic profile of a tumor based on correlation to
the class-specific mean expression profiles (for details, see
“Methods”). We applied the classifier to 14 independent cohorts,
including three unpublished datasets, with a total of 1228 patients
whose tumors were analyzed with a wide range of platforms
(Fig. 6a). Notably, RNA-Seq platforms were better suited to call
class 3 tumors compared to microarray analyses. Overall, we
found highly significant correlations between class and tumor
stage, tumor grade and mutations in FGFR3 and TP53 (Fig. 6b),
and classes showed significantly different PFS (p= 0.0002; log-
rank test; Fig. 6c) where patients with class 2a tumors had the
worst outcome. Notably, multivariable Cox regression analysis
revealed that class 2a (HR= 2.9 (95% CI: 1.53–5.27); p= 0.0009)
and class 2b (HR= 2.1 (95% CI: 1.01–4.36); p= 0.046) were
independently associated with worse PFS compared to class 1
when adjusted for tumor stage (Supplementary Table 5). For
comparison, the T1HG classifier was also applied to the
independent samples. The biological features of the T1HG

Fig. 3 Genomic alterations associated with transcriptomic classes. a Genomic classes (GCs) compared to transcriptomic classes (n= 303). b 12-gene
qPCR-based progression risk score compared to GCs. Colors indicate transcriptomic classes. c Kaplan–Meier plot of progression-free survival (PFS) for 154
patients (including only class 2a and 2b tumors) stratified by GC. d Number of RNA-derived mutations according to transcriptomic classes. e Landscape of
genomic alterations according to transcriptomic classes. Samples are ordered after the combined contribution of the APOBEC-related mutational
signatures. Panels: RNA-derived mutational load, relative contribution of four RNA-derived mutational signatures (inferred from 441 tumors having more
than 100 single nucleotide variations), selected RNA-derived mutated genes, copy number alterations in selected disease driver genes (derived from SNP
arrays). Asterisks indicate p-values below 0.05. Daggers indicate BH-adjusted p-values below 0.05. f Comparison of RNA-derived single nucleotide
variations to whole-exome sequencing (WES) data from 38 patients for 11,016 mutations in all genes, 280 mutations in the genes most frequently mutated
or differentially affected between the classes (n= 82, Supplementary Fig. 5b) and 93 mutations in 19 selected bladder cancer genes (Fig. 3e). Only
mutations with > 10 reads in tumor and germline DNA were considered and a mutation was called observed when the frequency of the alternate allele was
above 2%. g Genomic alterations significantly enriched in one transcriptomic class vs. all others. h Overview of p53 pathway alterations for all tumors with
available copy number data and RNA-Seq data (n= 303). i Amount of genome altered according to p53 pathway alteration. j Number of mutations
according to mutations in DNA-damage response (DDR) genes (including TP53, ATM, BRCA1, ERCC2, ATR, MDC1). k RNA-based immune score according
to GCs. l RNA-derived mutational load according to GCs. m Relative contribution of the APOBEC-related mutational signatures according to transcriptomic
class. P-values were calculated using two-sided Fisher’s exact test for categorical variables, Kruskal–Wallis rank-sum test for continuous variables and two-
sided log-rank test for comparing survival curves. For all boxplots, the center line represents the median, box hinges represent first and third quartiles and
whiskers represent ± 1.5× interquartile range. Source data are provided as a Source data file.
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subtypes were consistent when considering all tumor stages (n=
1226) and T1 tumors only (n= 663) (Supplementary Fig. 9a). A
significant correlation to outcome was observed for the full cohort
(p= 0.001; log-rank test; Supplementary Fig. 9b), but the
stratified analysis of T1 tumors did not show a significant
association to outcome (p= 0.097; log-rank test; Supplementary
Fig. 9c). This underlines our observation from the discovery

cohort, that the T1HG classifier separates patients into biological
subtypes that may not be important for clinical outcome.

To validate the UROMOL2021 classifier further, we compared
differences of regulon activity and biological pathway enrich-
ment between classes in the discovery cohort to findings in the
independent cohorts. The regulon and pathway analysis
documented a high concordance between datasets (Fig. 6d, e
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1.5× interquartile range. Source data are provided as a Source data file.
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and Supplementary Fig. 9d), supporting the robustness of the
classes.

Discussion
Here we expanded our analysis of NMIBC biology and associated
clinical outcomes to 834 patient samples from the UROMOL
consortium’s multicenter study. Utilizing integrative multi-omics
analysis, we demonstrated that disease aggressiveness in NMIBC
patients was associated with genomic alterations, transcriptomic
classes, and immune cell infiltration. We described the develop-
ment and validation of a single-sample transcriptomic classifier
for NMIBC, and identified patients with high chromosomal
instability and poor outcome, denoted as class 2a. We demon-
strated that the genomic and transcriptomic subtypes showed
independent prognostic value when compared to clinical risk
factors. Integrative disease models of clinical risk factors and
molecular features showed that the addition of transcriptomic

class or genomic instability measures result in similar significant
increases in area under the curves (AUCs), and the inclusion of
both variables in disease models minimally improved the pre-
dictive accuracy (Fig. 5b and Supplementary Fig. 8a). Future
classification schemes that incorporate all predictive molecular
features may be optimal; however, for clinical application, we
suggest the use of a transcriptomic-based classifier, as the
expression data in addition will reflect tumor biological processes
and possible treatment options (Fig. 5c). The classifier was suc-
cessfully validated using data from 1228 yet unpublished- and
previously published patient samples.

Specifically, we showed that the extent of genomic alterations
in NMIBC is an independent predictor of recurrence and pro-
gression. Tumors with high chromosomal instability should,
therefore, optimally be managed as high-risk tumors regardless of
histopathological findings. In addition, we demonstrated that the
number of genomic alterations is significantly associated with
high-risk transcriptomic classes, p53 pathway alterations, and
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increased immune cell infiltration. Previous studies that applied
array-based CGH analysis have shown that genomic alterations
were correlated to histopathological parameters such as stage and
grade13,14,45, but independent prognostic value has not previously
been described. We investigated a large clinically well-annotated
patient series and applied SNP array technology to increase the
granularity of genomic analysis and to gain information of allelic
imbalance—a molecular feature not available through CGH
analysis. In the current study, we did not aim at identifying
specific genomic loci associated with progression to MIBC, but
instead we report that the overall CNA burden is directly asso-
ciated with clinical outcome. This observation is in agreement
with other findings linking chromosomal instability to intra-
tumor heterogeneity, disease aggressiveness, and poor patient
outcome in various human tumor types46,47. In bladder cancer,
chromosomal instability has previously been linked to advanced

muscle-invasive disease48. Our observation is further strength-
ened by the identification of mutations in DDR genes and p53
pathway alterations which were associated with genomic
instability. This link has been observed previously in a smaller set
of bladder tumors48. The underlying mechanisms responsible for
the genomic instability is, however, not fully understood, but may
be caused by oncogene activation and replication stress, which
triggers DDR checkpoints49. Mutations in DDR genes and p53
pathway alterations are therefore likely to cause the genomic
instability observed. We used RNA-Seq data for mutation calling,
which is associated with some limitations as only mutations in
expressed genes can be detected and no germline reference is used
to eliminate germline variations. However, we applied very
stringent filters per sample and across the sample cohort to avoid
false positives and observed a relatively low number of germline
SNPs when comparing to WES in a subset of samples.
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Furthermore, a similar approach shown in a recent study also
documented that high-precision analysis of mutations based on
RNA is achievable50.

At the transcriptomics level, we identified four main classes of
NMIBC with the UROMOL2016 defined class 2 being separated
into two groups: class 2a and class 2b. Class 2a, displaying a
higher RNA-derived mutational load and elevated APOBEC-
related mutational signature contribution, was characterized as a
high-risk group with multiple progression events, whereas class
2b, displaying higher expression of stem cell and EMT markers
and immune infiltration, was associated with a lower risk of
progression. APOBEC-associated mutations are proposed to
drive tumor evolution and disease aggressiveness in lung
cancer51,52 and high levels of the APOBEC3B protein have been
associated with poor outcome in breast cancer53. High tumor
mutational burden and APOBEC mutational load have, how-
ever, previously been associated with a better prognosis of
MIBC33. Possible reasons for this discrepancy could be related to
better treatment efficacy for muscle-invasive tumors with a high
mutational burden and APOBEC-related mutational
signatures3.

The ability to discriminate between class 1 and class 3 tumors
was possible since we analyzed a large number of samples by
RNA-Seq, a technology with much higher resolution than
microarrays used in prior studies. Methylation analysis further
emphasized the distinctive features of these two classes (Supple-
mentary Fig. 1g, h). We also observed that class 3 tumors showed
a high level of keratin 5 gene expression and simultaneously the
highest level of CK5/6 protein expression; however, this should
not be associated with basal/squamous MIBC tumors, since we
also observed GATA3 expression in all of these tumors (see
example in Supplementary Fig. 7d). The transcriptomic classes
were prognostic per se, which further highlights several aspects of
tumor biology (Fig. 5c). Since all MIBC tumors initially arise as
NMIBC, a relevant question is whether the recently developed
MIBC consensus classification27 would be applicable to NMIBC.
We provide evidence that this is not the case (Fig. 1e). Our
analysis showed that NMIBC displayed less dramatic phenotypic
variability compared to MIBC, and classifiers have to be adjusted
accordingly. The NMIBC classes described here overlapped par-
tially with previously generated signatures of outcome and gene
expression subtypes in NMIBC6,8,54. The subtypes from the Lund
group initially generated based on the whole spectrum of bladder
tumors7, have now been further developed to include five major
tumor cell phenotypes26,55. As the classification system spans a
large biological range (NMIBC to MIBC), it may not fully capture
the subtype granularity observed exclusively in NMIBC. In our
work, we compared our transcriptomic classes to the Lund classes
using the Lund single-sample classification system55. Although
we observed an overlap between e.g., class 2a and GU, most
tumors were classified as UroA.

Our analysis of regulons revealed potential druggable path-
ways related to sex hormones in distinct tumor subsets: the
androgen receptor pathway was significantly activated in class 3
tumors, although there was no enrichment for male patients in
this group. In a recent study, low levels of the androgen receptor
was linked to increased translation and tumor proliferation in
prostate cancer56, and the high levels observed in class 3 could
therefore have a protective effect. Class 2a was dominated by
high levels of ESR2 regulon activity, while class 2b was domi-
nated by high levels of ESR1 and PGR, indicating that hormonal
receptor activity may play a pivotal role in disease development.
The estrogen and androgen receptors have been linked to uro-
thelial tumorigenesis in animal models57–59. Furthermore, the
androgen receptor has been shown to be expressed in early-stage

bladder tumors60, corroborating the finding of a unique class
with androgen receptor activity in NMIBC. It is, however,
important to emphasize that the transcriptomic analyses of
regulon activity were based on bulk tumor analysis and some
regulon activities could therefore be driven by different tissue
compositions, e.g., higher immune infiltration in class 2b
tumors.

The different biological characteristics of the transcriptomic
classes suggest that specific therapeutic interventions may have
different effects in these patients, as outlined in Fig. 5c. Of note,
class 2a tumors were characterized by a high RNA-derived
mutational load, which is considered to result in an elevated
neoantigen burden, and these patients may therefore benefit from
immunotherapy. Checkpoint inhibitors have been shown to be
most effective in tumors with high mutational burden31. Class 2b
tumors were frequently PD-L1 positive, suggesting that these
patients may also benefit from checkpoint inhibitor immu-
notherapy, since high PD-L1 has been linked to an improved
response to both PD-1 and PD-L1 inhibitors in MIBC61,62. The
interest toward the use of systemic immunotherapy in NMIBC
has gained momentum, and Pembrolizumab (PD-1 inhibitor) has
recently been approved by the FDA for high-risk BCG-unre-
sponsive NMIBC patients. The frequent FGFR3 mutations
observed in class 1 and 3 suggest that FGFR inhibitors could be
effective in these tumors, especially since the oral FGFR inhibitor
BGJ398 recently showed antitumor activity in a marker lesion
study of patients with NMIBC (ref. 63, NCT02657486), and
Pemigatinib (FGFR1,2,3 inhibitor) is being tested in an ongoing
phase II clinical trial in patients with recurrent low- or
intermediate-risk tumors (NCT03914794). Intravesical che-
motherapy should be considered especially for class 3 tumors, but
possibly also for class 1 tumors although the recurrence rate is
lower in these patients.

BCG response mechanisms have been studied intensely64 and
so far, one of the most promising markers of BCG response is
fluorescence in situ hybridization (FISH, Urovysion) analysis of
chromosomal abnormalities65. A recent study of resistance to
BCG treatment showed a higher baseline tumor PD-L1 expres-
sion among patients unresponsive to BCG compared to patients
responsive to BCG treatment66, indicating that the pre-treatment
tumor microenvironment may play a crucial role in BCG
response mechanisms. Thus, class 2b tumors, with the highest
PD-L1 expression, may respond poorly to BCG. In this study, we
did not observe any tumor-centric biological variables that were
associated with BCG treatment response. However, the number of
patients that received >5 cycles of BCG in connection with the
analyzed tumor was low, and larger studies of BCG response are
needed to delineate response mechanisms.

In conclusion, we report an integrative multi-omics analysis of
NMIBC tumors from a total of 834 patients included in the
UROMOL project. We delineate biological processes associated
with disease aggressiveness based on detailed, high-quality clinical
data, and we provide and validate a classification tool for
assigning transcriptomic class and associated progression risk to
independent samples. Transcriptomic classification of disease
biology provides a framework for biomarker discovery in next-
generation clinical trials to optimize the current clinical man-
agement of patients with NMIBC.

Methods
Patients and data in the UROMOL discovery cohort. Patients in the discovery
cohort were included in the UROMOL project and followed according to national
guidelines. Further details regarding samples, procedures, and clinical follow-up are
listed in ref. 8. Informed written consent to take part in research projects was
obtained from all patients, and all ethical regulations for work with human par-
ticipants were followed. The study was approved by the Central Denmark Region
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Committees on Biomedical Research Ethics (#1994/2920; Skejby, Aalborg, Fre-
deriksberg); the Danish National Committee on Health Research Ethics
(#1906019), the ethics committee of the University Hospital Erlangen (#3755); the
ethics committee of the Technical University of Munich (#2792/10); Medical Ethics
Committee of Erasmus MC (MEC#168.922/1998/55; Rotterdam); the Uppsala
Region Committee on Biomedical Research Ethics (#2008/252); the Ethical Com-
mittee of Faculty of Medicine, University of Belgrade (#440/VI-7); the Ethics
Committee (CEIC) of Institut Municipal d’Assistència Sanitària/Hospital del Mar
(2008/3296/I); the ethics committee of the University Hospital Jena (#4774-4/16).

RNA-Seq data from 438 tumors included in our previous work8 was reanalyzed
together with new RNA-Seq data from 97 tumors.

Based on the discovery samples, we created a “BCG cohort” of 55 patients who
meet the following criteria: (1) indication of BCG treatment was high-grade
disease, (2) the patient received a minimum of six BCG series and (3) BCG
treatment was initiated within 12 months after TURB (hence, BCG was given in
relation to the analyzed tumor). The BCG cohort was used to investigate time to
BCG failure using multiple features available from our datasets. BCG failure-free
survival was defined as time to first high grade tumor or first progression to MIBC
after BCG treatment.

DNA and RNA extraction. Tumor tissue was collected fresh from resection in each
clinical center, embedded in Tissue-Tek O.C.T. and snap frozen in liquid nitrogen
before storage at −80 °C. Total RNA was extracted from serial cryosections using
RNeasy Mini Kit (Qiagen) and quantified using an Infinite 200 PRO NanoQuant
spectrophotometer (Tecan). RNA integrity was assessed using a 2100 Bioanalyzer
(Agilent Technologies) and only samples with an RNA Integrity Number (RIN)
above five were included. DNA was extracted using Puregene DNA Isolation kit
(Fischer Scientific).

Total RNA-Sequencing. For the 438 tumors included in our previous work8,
library preparation was performed using ScriptSeq (EpiCentre) followed by
sequencing on an Illumina HiSeq 2000. For the 97 tumors added in this study,
library preparation was performed with KAPA RNA HyperPrep Kit (RiboErase
HMR; Roche) using 500 ng input. Libraries were paired-end sequenced using an
Illumina NovaSeq6000.

Gene expression quantification and normalization. We remapped and requan-
tified all new and previously generated expression data. Salmon67 was used to
quantify the amount of each transcript using annotation from GRCh38. The R
packages tximport and edgeR were used to summarize the expression at gene-level
and normalize the data, respectively.

Consensus clustering. The expression matrix was filtered to only include tran-
scripts with a median expression above zero. Genes were ranked based on median
absolute deviation (MAD) across all samples and divided into subsets of the top
-2000, -4000, -6000, -8000, -10,000, -12,000 MAD-ranked genes. Consensus clus-
tering was performed on the different gene subsets using the R package Con-
sensusClusterPlus (settings: maxK= 10, reps= 1000, pItem= 0.95, pFeature= 1,
clusterAlg= “hc”, distance= “pearson”). To identify the most representative
samples within each cluster, silhouette scores were computed for all samples using
the R package CancerSubtypes. A four-cluster solution based on the top-4000
MAD-ranked genes was chosen. Consensus clustering was furthermore performed
on Ta low grade tumors only (n= 286) and T1 high grade tumors only (n= 101)
to identify subtypes within pathologically homogeneous tumors.

Gene expression signatures. We extracted genes associated with cell cycle, uro-
plakins, cancer stem cells, epithelial-mesenchymal/mesenchymal-epithelial transi-
tion, and differentiation7,68,69 and summarized each biological process as the mean
expression of all marker genes associated with the given process. Gene expression
signatures of bladder cancer have previously been reported, including a progres-
sion- and CIS signature4,5,70,71. We calculated a progression signature score for all
535 samples in the RNA-Seq cohort as the ratio between the mean expression of
genes upregulated in the signature (KPNA2, BIRC5, UBE2C, CDC25B, MSN,
COL4A1, COL18A1) and the mean expression of genes downregulated in the
signature (COL4A3BP, NEK1, MBNL2, SKAP2, FABP4). Likewise, we calculated a
CIS signature score for all 535 samples in the RNA-Seq cohort as the ratio between
the mean expression of genes upregulated in the signature (IL13RA1, FBXL5,
ARL5A, CXCR4, F13B, SHOC2, IL6ST, HLA-DQA1, SPOP, EFEMP1, DCN,
COL15A1, LYZ, SPARC, IGKC, TCF4, KRAS, SDCBP, COL3A1, FBXW2, PDGFC,
SGCE, BIRC2, GAPVD1, FLNA, PPP2R5C, LUM, MBD4, UAP1, TOP2A,
RARRES1, CLIC4, KPNA2) and the mean expression of genes downregulated in the
signature (FGFR3, LAMB3, ANXA10, CRTAC1, TMPRSS4, CTSE, MST1R, FABP4,
CA12, ITGB4, TNNI2, ST3GAL4, PKP1, BCAM, NDUFA4L2, TRIM29, SH3BP1,
LTBP3, LYPD3, CDH11, BST2, EEF1A2, CLCA4, BMP7, AKR1B10, KCTD12,
KYNU, UPK2, CFD, TMEM45A). Finally, we characterized the classes using gene
signatures of potential relevance for different treatment strategies7,27,31,32,72–75. All
gene lists can be found in Supplementary Table 6.

RNA-based estimation of immune cell infiltration. As in Rosenthal et al.30, we
evaluated immune cell infiltration based on the expression of predefined gene lists
for 14 different immune cell populations76 (for CD4+ T cells77). Gene lists can be
found in Supplementary Table 7. A score for each cell type was calculated as the
mean expression of all marker genes associated with the given cell type, and a total
immune score was defined as the sum of all immune cell type scores.

RNA-based mutation calling. Single base mutations were called from the RNA-
seq data using the GATK pipeline. Indels were not considered here due to technical
issues that may arise from calling this from RNA-Seq data. Briefly, STAR v2.7 was
used to align the raw RNA reads to the hg38 human genome assembly and
PICARD tools were used to mark duplicates. GATK tools, SplitNCigarReads,
BaseRecalibrator, and ApplyBQSR were applied in order to reformat some of the
alignments that span introns and correct the base quality score. Finally, the
HaplotypeCaller software was used to call variants. The resulting VCF files were
annotated using SnpEff followed by filtration for possible impact on proteins. First,
only SNVs annotated with a HIGH or MODERATE impact by SnpEff were
included and SNVs in splice-site genomic locations were excluded. Second,
mutations with an rs ID in dbSNP were excluded. Third, only mutations with a
quality score above 100 and a Fisher Strand score (FS) below 30.0 were included.
Finally, mutations called in ten or more samples were filtered out with the
exception of known mutation hotspots (FGFR3 and PIK3CA). When calculating
the RNA-derived mutational load, we excluded mutations that were significantly
found more often in samples sequenced on an Illumina NovaSeq 6000 (new
additional RNA-Seq data) compared to samples sequenced on an Illumina HiSeq
2000 (original RNA-Seq data) (Fisher’s exact test p-values < 0.01), as the samples
sequenced using the NovaSeq platform contained considerable more reads.
Thereby, a total of 791 genes were considered for the RNA-derived mutational
load. Furthermore, we validated RNA-derived mutations in DNA for a subset of
patients (n= 38) where whole-exome sequencing data was available. Mutations
with > 10 reads in tumor and germline DNA were considered and a mutation was
called observed when the frequency of the alternate allele was above 2%.

RNA-based mutational signature analysis. To infer mutational signatures, we
included mutations called within the gene sequence (HIGH, MODERATE, and
LOW impact) and excluded mutations with rs ID together with mutations with a
quality score below 100 or a Fisher Strand score (FS) above 30.0. Finally, mutations
were included if they met the following criteria: (1) alternate allele frequency (AF)
> 0.15 and < 0.60; (2) number of reads > 20. Only samples with more than 100
SNVs were kept to infer the mutational signatures (n= 441). We used non-
negative matrix factorization to decompose the motifs matrix into seven signatures
and their corresponding weights using the R package SomaticSignatures. The
similarity between the seven inferred signatures and defined COSMIC signatures
was examined using the R package MutationalPatterns.

Copy number analysis. GSA Illumina SNP arrays (~760 k positions) were used on
tumor DNA from 473 patients in order to assess copy number alterations. We
previously applied the Infinium OncoArray-500K BeadChipGenotyping arrays for
the paired germline samples and used this as reference. LogR Ratio (LRR) and B-
allele-fraction (BAF) were corrected and normalized using the Genotyping module
from GenomeStudio 2.0 (Illumina) within each array type and all positions
uniquely found in both arrays were exported for further analysis (151,291 probes).
The R package ASCAT was used for segmentation of the genome and we used the
raw-segmented total copy number, the raw-segmented BAF data and various
empiric thresholds (gains: > 0.08, high gains: > 0.16, loss: <−0.1, high loss: <−0.2,
allelic imbalance (AI): < 0.45) to identify five different types of CNAs: (1) losses
associated with AI (i.e., associated with a deviation in BAF), (2) gains associated
with AI, (3) high losses without AI, (4) high gains without AI and (5) AI without a
change in total copy number. The applied thresholds were validated using histo-
grams of LRR and in all diploid cases (83%), the peak for no change in copy
number was within the thresholds defined for the gains/losses without deviation in
BAF. Using these thresholds, subclonal events present in a minority of carcinoma
cells will either not be called or instead be defined as regions with no copy number
changes but with deviation in BAF (due to the higher sensitivity of the BAF
measurement). Therefore, defined gains/losses are clonal events or subclonal events
present in the majority of carcinoma cells.

The amount of genome in a non-normal state was calculated using the
thresholds above (referred to as the CNA burden). Tumors were assigned to three
genomic classes (GC1-3) of equal size based on the CNA burden to illustrate low,
intermediate, and high chromosomal instability (cut-offs at the 33rd and 67th
percentiles). Furthermore, based on LRR and BAF plots, we manually defined
tumors as being diploid or not diploid.

Methylation analysis. DNA methylation analysis was performed using DNA from
29 patients based on the UROMOL2016 classification with 10–11 samples from
each class. After re-classification, we had 10 samples in class 1, 12 in class 2a/2b
with a majority in class 2b and 6 in class 3. All tumors were selected to have a high
silhouette score, and all were Ta high-grade tumors. We used 500 ng genomic DNA
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for bisulfite conversion followed by whole-genome amplification prior to hybri-
dization to EPIC BeadChip (Illumina, San Diego, CA) overnight as described by
the manufacturer and then scanned with the Illumina iSCAN system. Data was
imported and processed using the RnBeads v2.2R package pipeline. For the pre-
processing of the data, the normalization method was set to “illumina” and the
background correction method to “methylumi.noob”.

Regulon analysis. We reconstructed transcriptional regulatory networks (reg-
ulons) using the R package RTN78. We investigated 23 transcription factors
previously associated with bladder cancer33 and 78 candidate regulators asso-
ciated with chromatin remodeling in cancer34. Gene lists can be found in Sup-
plementary Table 8. Potential associations between a regulator and all possible
target genes were inferred from the expression matrix by Mutual Information and
Spearman’s correlation, and permutation analysis was used to remove associa-
tions with a BH-adjusted p-value > 1 × 10−5. Unstable associations were elimi-
nated by bootstrap analysis (1000 resamplings, consensus bootstrap > 95%) and
the weakest association in triangles of two regulators and common target genes
were removed by data processing inequality (DPI) filtering (tolerance= 0.01).
Regulon activity scores for all samples were calculated by two-tailed gene set
enrichment analysis.

12-gene progression score. All molecular data related to the qPCR 12-gene
progression score were generated previously6 and analyzed here with additional
follow-up information. In brief, RNA was extracted from serial cryosections using
an RNeasy Mini Kit (Qiagen). A total of 500 ng RNA was used for cDNA synthesis
and PCR amplification was performed using a 7900HT PCR system (Thermo
Fisher Scientific). Scores for progression were calculated using non-normalized
cycle threshold (Ct) values: mean Ct (COL4A3BP, NEK1, MBNL2, SKAP2, FABP4)
—mean Ct (KPNA2, BIRC5, UBE2C, CDC25B, MSN, COL4A1, COL18A1). Primer
sequences for the 12 genes can be found in Supplementary Table 9.

Construction of single-sample transcriptomic classifier. We constructed a
Pearson nearest-centroid classifier for NMIBC based on the recently published
classifier for the MIBC consensus subtypes27. Only samples with positive silhouette
scores were used for feature selection (n= 505). We filtered the expression matrix
to include genes with a median expression > 0 in at least one of the four classes and
used a step-wise ANOVA approach to identify genes with significantly different
expression levels across classes. ANOVA between all four classes resulted in
13,650 significant genes (BH-adjusted p-values < 0.05). Genes highly expressed in
class 2b dominated the list, so we removed class 2b samples and previously sig-
nificant genes from the dataset and performed a second round of ANOVA on the
remaining classes. This analysis added only four significant genes to the feature list
(BH-adjusted p-values < 0.05). Next, class 2a samples were removed and one last
round of ANOVA between class 1 and class 3 was performed (corresponding to a t-
test), resulting in 109 significant genes (BH-adjusted p-values < 0.05). Thereby, a
total number of 13,762 genes were suggested to be differentially expressed between
classes. The step-wise ANOVA approach was chosen instead of multiple pairwise t-
tests to reduce the number of statistical tests while still accessing differences
between all classes. We computed the AUC associated with each gene for pre-
diction of the four classes and kept genes with an AUC > 0.6 (n= 10,149). An
additional filtering of genes was performed to only keep genes with a mean
expression > 0 across all samples. Overall, the initial selection of features resulted in
a list of 9,451 genes.

We used leave one out cross-validation (LOOCV) to assess the classification
performance associated with different subsets of the 9451 features. In each LOOCV
run, we computed the mean fold-change associated with each gene for each class
versus the others. Genes were ordered by their mean fold-change within each class
and the four gene lists were used to generate several gene subsets. The N top
upregulated and N top downregulated genes within each class, with N varying from
50 to 800, were selected and used as feature input for the classifier. We obtained the
lowest LOOCV error rate when selecting the 368 top upregulated and 368 top
downregulated genes within each class (1964 unique genes in total). Finally, genes
appearing in > 80% of the LOOCV runs were selected and used to build the final
classifier (n= 1942). We computed four centroids corresponding to the four
NMIBC classes (i.e., the mean gene expression profile of the 1942 chosen feature
genes for each class), and class labels are then assigned to single NMIBC samples
based on the Pearson correlation between a sample’s expression profile and the
four-class centroids. The NMIBC classifier is available as a web application at
http://nmibc-class.dk, as an R package at https://github.com/sialindskrog/
classifyNMIBC or in Supplementary Software 1.

A similar approach was used to construct a Pearson nearest-centroid classifier
for the T1HG subtypes, resulting in 883 chosen feature genes.

Proteomics. Formalin-fixed paraffin-embedded (FFPE) tissue from transurethral
resection of bladder tumors (TURB) was obtained from 167 Danish patients at
Skejby and Frederiksberg hospital. Tissue microarrays (TMAs) were constructed
from representative tumor areas with 1 mm triplicate core biopsies using the
automated TMA-GRAND Master (3DHISTECH Ltd, Budapest, Hungary).

Immunofluorescence, immunohistochemistry, and imaging. Multiplex immu-
nofluorescence analysis (mIF) was performed on two TMA sections (3 μm) for
detection of Panel 1 (CD3, CD8, and FOXP3) and Panel 2 (CD20, CD68, CD163,
and HLA-A, B, C) as in Taber et al.41. Stainings were performed on the Discovery
ULTRA staining instrument (Ventana Medical Systems), all primary antibodies are
listed in Supplementary Data 1. We deparaffinized TMA sections using the EZ
Prep solution (Ventana Medical Systems, cat # 950-102) for 16 min at 72 °C.
Afterwards, heat-induced epitope retrieval using CC1 solution (Ventana Medical
Systems, cat# 950-124) was run for 64 min at 95-100 °C. Then, endogenous per-
oxidase activity was blocked using a DISC inhibitor reagent (Ventana Medical
Systems, cat#760-4840). For fluorescent detection, we utilized a tyramide signal
amplification strategy with horseradish peroxidase (HRP)79. The first primary
antibody (1-ab) was incubated followed by detection using a secondary antibody
(2-ab) conjugated with HRP (listed in Supplementary Data 1). Two rinses with
reaction buffer (Ventana Medical Systems, cat# 950-300) was then carried out
followed by adding and incubating the tyramide conjugated fluorophore (TcF,
listed in Supplementary Data 1) for 4 min. We then applied 0.01 % H2O2 (DIS-
COVERY reagent, Ventana Medical Systems,cat#760-244), and let the TcF react
with the HRP in the 1-ab/2-ab complex for 8 min. Heat-mediated stripping of the
antibodies was run for 20 min at 100 °C using a CC2 buffer (Ventana Medical
Systems, cat#950-223). The cycle was then repeated sequentially with a new 1-ab/2-
ab complex and TcF in the order listed in Supplementary Data 1. Afterwards, the
TMA sections were counterstained with VECTASHIELD anti-fade mounting
medium with DAPI (Ventana Medical Systems, cat#H-1200) for nuclear detection.
The fluorophore-labeled sections were imaged at 20× magnification using the
NanoZoomer s60 scanner (Hamamatsu Photonics KK, Japan). Immunostaining for
pan-cytokeratin (Clone A1/A3, 1:100, 16 min, Dako Agilent, cat#GA005361-2) as a
second layer was performed on all mIF stained sections to outline carcinoma cells.
For bright-field detection, we used the Ventanas Detection Kits: ultraView Uni-
versal 3,3’-Diaminobenzidin (Ventana Medical Systems, cat#760-500) according to
the manufacturer’s instructions. We counterstained all TMA sections with hema-
toxylin II (Ventana Medical Systems, cat#790-2208) for 8 min, followed by Bluing
reagent (Ventana Medical Systems, cat#760-2037) for 4 min. The Hamamatsu
Nanozoomer 2.0 HT (Hamamatsu Photonics KK, Japan) was used for bright-field
imaging.

Identification of PD-L1 expression in the tumor parenchyma was performed
using two sequential TMA sections, the first section stained against pan-cytokeratin
(Clone A1/A3, 1:100, 16 min, Dako Agilent, cat#GA005361-2) and the second
against PD-L1 (Clone Sp263, ready to use, 60 min, Ventana Medical Systems,
cat#790-4905). Identification of basal and luminal markers on the carcinoma cells
was performed using three sequential TMA sections, stained for pan-cytokeratin
(Clone A1/A3, 1:100, 16 min, Dako Agilent, cat#GA005361-2), GATA3 (Clone
L50-823, ready to use, 24 min, Ventana Medical Systems, cat#7107749001) and
CK5/6 (Clone D5/16 B4, ready to use, 24 min, Agilent/Dako cat#M7237). For
bright-field detection, the above-mentioned method was used.

Digital pathology. For digital pathology, we utilized the Visiopharm image ana-
lysis software version 2018.9.5.5952 (Visiopharm A/S, Hørsholm, Denmark). The
Tissue Array module was used to identify and extract individual cores on the
TMAs and the Tissue Align module to align the pan-cytokeratin stained image
with its corresponding fluorescence image (Supplementary Fig. 7a, step 1). Image
analysis protocol packages (APPs) developed by our group41 were used to auto-
matically: (1) Define parenchymal and stromal regions as pan-cytokeratin positive
and negative, respectively (Supplementary Fig. 7a, step 2). Calculate the proportion
of immune cell subsets based on co-localization of selected markers (Supplemen-
tary Fig. 7a, step 3). Calculate the proportion of PD-L positive cells. In addition, we
designed an APP using the Tissue Author module, in order to calculate the pro-
portion of GATA3, CK5/6 or double-positive positive cells. For GATA3 and CK5/
CK6 detection, tumors were classified as positive if more than 50% of the carci-
noma cells expressed the marker. For all markers, we selected a threshold visually
to differentiate between positive and unspecific staining. The threshold was verified
by an experienced pathologist. We applied the following scoring algorithm to
calculate cell fractions (here shown for T helper cells):

Fraction of T helper cells ¼ Number of CD3þ;CD8�FOXP3� cells in the parenchyma or stroma
Total cell count in the parenchyma or stroma

ð2Þ
The proportion of infiltrating immune cells was consistent across the 3 tissue

cores from the same tumor; average Pearson correlation coefficient: 0.67 (panel 1)
and 0.77 (panel 2).

Independent transcriptomics datasets used for validation. Transcriptomics
data from 11 historical cohorts (Kim80, Lindgren45, Sjödahl20127, CIT72, Choi81,
Sjödahl201726, Song82, Sjödahl201983, Aarhus microarrays5,54,84,85,, Meeks35) were
used for the validation of the four-class NMIBC classification and T1HG subtypes.
The data were downloaded from GEO or ArrayExpress and annotated with HUGO
Gene Symbols. In addition to using the publicly available data, we included data
from three yet unpublished cohorts (listed below). Each sample in each cohort
(n= 1228) was classified using the single-sample classifiers trained using the
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UROMOL cohort (1225 and 1226 tumors were assigned a class using the NMIBC
classifier and T1HG classifier, respectively).

Unpublished cohort 1 provided by Margaret Knowles. Data from Affymetrix Human
Transcriptome 2.0 microarrays for 104 stage T1 and 113 stage Ta tumors from the
Leeds Multidisciplinary Research Tissue Bank following approval by the research
ethics committee 10/H1306/7). All ethical regulations for work with human par-
ticipants were followed. Total RNA was isolated from frozen tissue sections using a
RNeasy Plus Micro Kit and amplified using the Affymetrix GeneChip WT PLUS
Reagent Kit. The resulting cDNA was hybridized onto Affymetrix Human Tran-
scriptome 2.0 microarrays. Quality control checks, gene level normalization (using
SST-RMA) and signal summarization was conducted using Affymetrix Expression
Console Software.

Unpublished cohort 2 provided by Richard Bryan. RNA-Seq based analysis of
78 tumors from the West Midlands Bladder Cancer Prognosis Programme (BCPP,
ethics approval 06/MRE04/65). All ethical regulations for work with human par-
ticipants were followed. RNA libraries were prepared using the Truseq Stranded
Total RNA with Ribo-zero Gold kit (Illumina) and 2 × 100 bp PE sequenced
(Hiseq, n= 26) or 2 × 75 bp PE sequenced (Nextseq, n= 52). The data were
aligned to GRCh37 and reads counted with STAR aligner (v2.5.2b). Log2(Read
count+1) for each gene has been used as input for the class prediction.

Unpublished cohort 3 provided by Trine Strandgaard. RNA-Seq based analysis of 47
fresh frozen tumors from patients enrolled at Aarhus University Hospital with
high-risk NMIBC, and analyzed following approval by the Danish National
Committee on Health Research Ethics (#1708266). All ethical regulations for work
with human participants were followed. RNA-Seq data was generated using ana-
lysis pipelines described above for the additional samples included in the discovery
cohort in this work.

Pathway enrichment analysis. Pathway enrichment analysis was performed
independently in the UROMOL cohort and each historical cohort that contained
representatives of all classes. First, we collected pathway annotation from the
Reactome (using R package reactome.db v1.68.0) and KEGG (using the R package
KEGGREST v1.24.1) databases. We joined these annotations and performed gene-
set variation analyses (using the R package GSVA v1.32.0) to obtain single-sample
enrichment scores for each pathway.

To find associations between pathways and classes, we performed
Mann–Whitney U-tests using the pathway enrichment scores between samples in
each class versus samples in other classes in each cohort separately. P-values were
BH-adjusted. For the pathway visualizations, we first filtered pathways that were
enriched in the same class in the UROMOL cohort and in at least four other
datasets and then manually selected pathways from the filtered list. Pathway
enrichment scores were grouped using hierarchical clustering with correlation
distances (1 – r) and Ward clustering using the enrichment scores in the
UROMOL cohort and the same pathway order was then used for the independent
cohorts.

Regulon activity in validation cohorts. The regulons from the transcriptional
networks calculated from UROMOL data were used to derive differential
enrichment scores in each cohort separately using the two-tail GSEA method (R
package RTNsurvival). We discretized the activity scores into “active” and
“repressed” status, aggregated the regulon status in all cohorts, and used Fisher’s
exact tests to find the association of regulon status with each class. P-values were
BH-adjusted.

Weighted in silico pathology (WISP) analysis. To approximate intra-tumor
heterogeneity, we used the bulk transcriptomic profiles and the consensus clus-
tering results for the UROMOL cohort and applied the Weighted in silico
pathology (WISP, R package v. 2.3) method with default settings. Only samples
with a positive silhouette score were used for the WISP analysis (n= 505). WISP
consists of two main steps: (1) Calculation of pure population centroid profiles and
(2) Estimation of pure population weights for each sample. First, WISP selects
features for each class by iteratively considering ANOVA p-values (FDR adjusted
p-values < 0.05), AUC scores (AUC > 0.8) and expression log-fold changes between
classes, fitting a non-negative least squares model and removing samples con-
sidered mixed. A model is then built from the core of pure samples for each class
(154 samples were kept as “pure” and 199 top marker genes were included in the
centroid profiles). Next, WISP class weights were estimated for all the samples in
the cohort (n= 505) using the centroid profiles (hence, each sample is weighted
between all four transcriptomic classes). We recovered the estimated WISP class
weights and used Pearson and Spearman correlations to investigate their associa-
tion to silhouette scores and MCPcounter immune scores86, respectively. Finally,
we used Wilcoxon rank-sum tests to associate WISP class weights to genetic
mutations and clinical variables.

Quantification and statistical analysis. Statistical comparisons between groups
were performed using the two-sided Wilcoxon rank-sum test or Kruskal–Wallis
rank-sum test for continuous variables and two-sided Fisher’s exact test or chi-
square test for categorical variables. It is stated in the figure legends if tests other
than the above-mentioned were applied. Survival analyses were performed
using the Kaplan–Meier method and two-sided log-rank tests were used to
compare survival curves (R packages survival and survminer). Cox
Proportional-Hazards analyses were performed using the R packages survival
and survminer. We built logistic regression models to predict progression and
used the predicted probabilities as variables in ROC analyses (R packages
glmnet and pROC). AUCs and associated 95% CIs (computed with 2000 stra-
tified bootstrap replicates) were calculated using the R package pROC. Like-
lihood ratio tests were used to assess model improvement (all models were
compared to the EORTC model). P-values below 0.05 were considered sig-
nificant across all tests and BH-adjustment of p-values was performed to
control for multiple testing when necessary (otherwise unadjusted p values are
reported). The R packages tidyverse, ggplot2, reshape2, and ComplexHeatmap
were used for data analysis and figure creation. All statistical and bioinformatics
analyses were performed with R (v3.6.0 or 3.6.1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing and SNP data are deposited and available under controlled access at The
European Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute (EBI) and the Centre for Genomic Regulation (CRG). The RNA-
Seq data are available under accession code: EGAS00001004693 and the SNP data are
available under accession code: EGAS00001004862. The data are available under
controlled access at EGA. Due to privacy laws, data will be available following new
approvals by ethical committees and data protection agencies. The data release process
can be initiated by contacting the corresponding author (lars@clin.au.dk). Processed
normalized mRNA read counts are available in Supplementary Data 2, processed
proteomics data are available in Supplementary Data 3 and processed EPIC BeadChip
methylation data are available in Supplementary Data 4. Data are available within the
Article file, Supplementary Information or from the authors upon request. The expression
data used for validation are available under the following accession codes: Kim80,
microarray, GEO: GSE13507; Lindgren45, microarray, GEO: GSE32549; Sjödahl20127,
microarray, GEO: GSE32894; CIT72, microarray, ArrayExpress: E-MTAB-1803; Choi81,
microarray, GEO: GSE48075; Sjödahl201726, microarray, GEO: GSE83586; Song82,
microarray, GEO: GSE120736; Sjödahl201983, microarray, GEO: GSE128959;
Aarhus microarrays5,54,84,85, GEO: GSE3167 and GSE5479; Meeks35, RNA-Seq, GEO:
GSE154261; unpublished cohort 1 provided by Margaret Knowles, microarray, GEO:
GSE163209; unpublished cohort 2 provided by Richard Bryan, RNA-Seq, EGA:
EGAS00001004358; unpublished cohort 3 provided by Trine Strandgaard, RNA-Seq,
EGA: EGAS00001005050. Source data are provided with this paper.

Code availability
We implemented the transcriptomic classification tool as an R package that is available at
https://github.com/sialindskrog/classifyNMIBC.
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