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Sarcopenia is of important clinical relevance for loss of independence in older adults. The

prevalence of obesity in combination with sarcopenia (“sarcopenic-obesity”) is increasing

at a rapid rate. However, whilst the development of sarcopenia is understood to be

multi-factorial and harmful to health, the role of obesity from a protective and damaging

perspective on skeletal muscle in aging, is poorly understood. Specifically, the presence

of obesity in older age may be accompanied by a greater volume of skeletal muscle

mass in weight-bearing muscles compared with lean older individuals, despite impaired

physical function and resistance to anabolic stimuli. Collectively, these findings support

a potential paradox in which obesity may protect skeletal muscle mass in older age.

One explanation for these paradoxical findings may be that the anabolic response to

weight-bearing activity could be greater in obese vs. lean older individuals due to a larger

mechanical stimulus, compensating for the heightened muscle anabolic resistance.

However, it is likely that there is a complex interplay between muscle, adipose, and

external influences in the aging process that are ultimately harmful to health in the

long-term. This narrative briefly explores some of the potential mechanisms regulating

changes in skeletal muscle mass and function in aging combined with obesity and

the interplay with sarcopenia, with a particular focus on muscle morphology and the

regulation of muscle proteostasis. In addition, whilst highly complex, we attempt to

provide an updated summary for the role of obesity from a protective and damaging

perspective on muscle mass and function in older age. We conclude with a brief

discussion on treatment of sarcopenia and obesity and a summary of future directions

for this research field.

Keywords: sarcopenic-obesity, muscle function, metabolic syndrome, sarcopenia, obesity paradox, anabolic

resistance, intramuscular lipids

INTRODUCTION

The degenerative, generalized, and precipitous loss of skeletal muscle mass, quality and strength
associated with aging is termed “sarcopenia” and is characterized by muscle loss of ∼0.5–1.0%
per year (1). The consequences of muscle mass and strength loss with aging are well-documented
and encompass a number of physiological and non-physiological outcomes (1–7). In addition,
sarcopenia is associated with decreased mobility and impaired whole-body metabolic health, as
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well as impaired function during locomotion, reduced resting
energy expenditure, a reduction in non-structured free-living
physical activity and increased fat mass (8, 9), factors that
have also been found to be present with obesity. Evidence
now exists to implicate the progressive deterioration of muscle
quality, defined as muscle strength relative to a given quantity
of muscle mass, to functional impairment with aging (2, 10,
11), including reductions in fiber size, number, and contractile
function (12, 13), the degree of lipid infiltration (14, 15), and
impaired neurological modulation of contraction (16). However,
whilst worldwide rates of obesity have reached an all-time high
(World Health Organization, WHO) and is associated with a
plethora of comorbidities (17), research on how obesity might
affect the progression of sarcopenia is in its relative infancy.
Therefore, the purpose of this review is to explicitly focus on
skeletal muscle deterioration in the presence of excess adiposity
in older age and will explore some of the potential underlying
mechanisms regulating changes in skeletal muscle function,
with a particular focus on in-vivo models. The reader should
be directed to recent reviews elsewhere for in-depth critical
discussions on the potential multi-faceted causes of sarcopenia,
obesity, and the confluence of these two conditions (7, 18–21).
Whilst not a direct focus of the present review, the effects of
obesity on molecular signaling associated with skeletal muscle
contraction, bone health and the contribution of specific genetic
and gut microbiome fingerprints on obesity as well to muscle
mass/loss and its possible pleiotropic effects on adipose tissue are
also reviewed elsewhere (22–25).

Causes of Sarcopenia and Obesity
It is now widely acknowledged that the development of
sarcopenia and loss of muscle strength is caused by the
complex interplay of multiple factors beyond muscle atrophy
(10, 26, 27) including; declines in neural function, hormonal
changes, chronic low-grade inflammation, mitochondrial
dysfunction, impaired/reduced satellite cell function, and
lifestyle factors [e.g., malnutrition and physical inactivity;
(2, 7, 21, 28–31)]. Similar to sarcopenia, the presence of obesity
is also typically accelerated by chronic inactivity. Obesity
is primarily caused by a progressive decline in total energy
expenditure (i.e., decreased physical activity and reduced basal
metabolic rate) in the presence of excessive caloric intake
(20, 32). As opposed to the traditional model of sarcopenia,
the high energy intakes observed with obesity may offer
some protection against sarcopenic development by ensuring
sufficient protein intake and supporting elevated muscle
protein synthesis (20, 32–37). Growing evidence supports
an underlying genetic component to the development of
obesity (38–40). Whilst the major factors involved in obesity
seem to be linked with dietary and physical activity habits,
these factors have also been associated with the genome
that may, independently, influence energy expenditure, fuel
metabolism, muscle fiber function, gut microbiome, and
hormone/appetite regulation (i.e., ghrelin and leptin) and/or
food preferences (38–40).

Health Consequences of Obesity
As aforementioned, alongside an aging population, levels of
global obesity are on a progressive rise, with >30% of men and
>40% of women currently classified as being overweight, and
>10% as obese (41). An increase in whole-body adiposity is
typically accompanied by a concomitant increase in ectopic fat
deposition within skeletal muscle, termed myosteatosis (42, 43),
both of which are associated with a plethora of comorbidities
(17), including the progression of sarcopenia (44–47) and
physical disability (48, 49). Independent of the effects of obesity
on skeletal muscle health, adiposity is also a strong risk factor
for poor overall health, reduced functional capacity and quality
of life in older age (50–52). Furthermore, obesity has well-known
metabolic effects that can lead to significant health complications
such as metabolic syndrome (defined by the existence of a
cluster of conditions including hypertension, high blood glucose
levels, high serum triglyceride levels), Type II diabetes, and
an increased risk of cancer (53, 54). In addition, obesity is a
strong risk factor for atherosclerosis and other cardiovascular
complications (55), as well as for many other chronic and
acute diseases involving end-stage organ failure and infection
(54–57), leading to further acute complications and prolonged
periods of hospitalization. Unsurprisingly, the prevalence of
many of the aforementioned medical complications are strongly
associated with obesity in older age (58). Obesity is known
to accelerate the risk of developing cardiovascular disease by
increasing circulating lipids and glucose as well as impairing
lipid and glucose metabolism and increasing systolic and
diastolic blood pressure (59–61). In addition, obesity is strongly
associated with elevated chronic systemic inflammation and
progressive declines in physical activity and cardiorespiratory
fitness, which all contribute to a worse prognosis of ill health and
accelerated sarcopenia risk (59–62). Obesity is associated with
a number of endocrinological impairments (63). For example,
in obese adipose tissue adipocytes undergo hypertrophy,
hyperplasia and activation resulting in accumulation of pro-
inflammatory macrophages and other immune cells as well as
dysregulated production of various adipokines that together
further exacerbate inflammation (23). The excessive production
and impaired capacity to store lipids in old obese individuals
is also known to increase reactive oxygen species and impair
metabolic function that is ultimately capable of inducing
metabolic dysfunction (notably, impaired mitochondrial and
skeletal muscle function via elevated inflammation) (23). Whilst
adiponectin, an adipokine produced primarily by adipose tissue,
is known to hold a number of important metabolic functions
(e.g., insulin-sensitizer and anti-inflammatory), these responses
become dysregulated with obesity, making skeletal muscle
particularly susceptible to metabolic impairments and increased
risk of morbidity (64, 65). It has been suggested that a vicious
circle of maintaining a high volume of adipose tissue and skeletal
muscle inflammation, triggers the development and acceleration
of sarcopenic-obesity with a complex interplay between a number
of mechanisms that are beyond the scope of this review (i.e.
adipocyte-like phenotype of muscle progenitor cells, insulin
resistance, impaired neuromodulation of contraction, leptin
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resistance, impaired endocrine function, reduced release of
adiponectin, increased glycation products and oxidative stress
etc.) (23, 63, 66). However, less is known on how obesity,
per se, might affect the progression of sarcopenia in older
age and/or in pre-sarcopenic individuals. Undoubtedly though,
myosteatosis has the potential to exert detrimental local effects
on muscle contractility given its close proximity (67) and this is
discussed below.

Diagnosis and Prevalence of
Sarcopenic-Obesity
The combined presence of sarcopenia and obesity (i.e.,
sarcopenic-obesity) is rapidly increasing in older adults.
Changes to body composition, including reduced muscle mass
concomitant with an increase in fat mass and simultaneous
reduction in resting metabolic rate, are evident with aging
(68). Whole-body muscle mass and strength start to decline
progressively as early as 30 years of age, with a more accelerated
loss after the age of ∼60–70 years (69–71). The prevalence of
metabolic syndrome also increases with age, with a rise after
the 3rd decade of life, reaching a peak between 50 and 80 years
(72, 73). Importantly, as skeletal muscle plays a critical role
in glycaemic control and metabolic homeostasis (74, 75), the
combination of a loss of lean body mass and a concomitant
increase in visceral adiposity will likely exacerbate the risk of
developing metabolic disease, particularly in the older adult,
accelerating skeletal muscle deterioration, reduced physical
performance, an increased risk for disability, hospitalizations,
morbidity, and early mortality (76–78). The development
of sarcopenic-obesity is thought to be brought about by a
combination of factors that contribute to the development of
both conditions (21) and is associated with significantly greater
body fat, oxidative stress and inflammation and intracellular
lipotoxicity, glucose and endocrine dysregulation, as well as
impaired muscle strength and lower lean body mass (63, 66, 79–
81). Further, when obesity and impaired muscle function
co-exist, they act synergistically in a “vicious cycle” on the risk of
developing multiple health-related outcomes (19, 21, 42, 82–84).

Multiple definitions exist for sarcopenic-obesity (21, 63),
however, the use of gross metrics such as body mass and
BMI, often provide an incomplete understanding of the person’s
actual body composition. This paradigm is depicted in Figure 1

which illustrates a cross-section of the thigh taken by magnetic
resonance imagery (MRI) from a young healthy individual
(Figure 1A) and pre-sarcopenic older individual (Figure 1B)
with similar thigh circumferences (∼60–65 cm) and similar BMI
(∼26 kg·m2). Despite a similar initial appearance, the differences
in the composition of the muscle between individuals are clear.
In the young-healthy individual, the portion of muscle mass
is relatively large with minimal adiposity and lipid infiltration.
In contrast, the pre-sarcopenic older tissue is significantly
smaller and contains a much larger layer of subcutaneous
fat and lipid infiltration within and between muscles of the
thigh. In this example, the pre-sarcopenic individual presents
with a relatively “normal” body mass and BMI but stores
higher and relatively lower amounts of adipose and lean tissue,

respectively. Therefore, the pre-sarcopenic individual presents a
significantly elevated risk of developing metabolic complications.
Figures 1C–E demonstrate a significant greater lipid droplet
number and area in type II fibers of obese older compared
with healthy young and healthy old individuals, which could
be indicative of poorer muscle quality and impaired oxidative
function in older obese individuals. The precise identification
of sarcopenia and obesity is of vital importance for accurate
diagnosis and treatment of sarcopenic-obesity (84). Importantly,
as obese older adults typically experience a reduction in relative
(i.e., %) muscle mass as opposed to a loss in absolute (i.e.,
kg) muscle mass (44), sarcopenia in obese individuals is often
characterized based upon changes to muscle quality and/or
relative rather than absolute levels of skeletal muscle mass (86–
88). A number of tools are, therefore, used in combination to
assess body composition (i.e., MRI, CT, DEXA, BIA), muscle
strength (i.e., dynamometry, 1- and 12-repetition maximum
testing, grip strength), and physical performance [i.e., gait speed,
stair climb, chair rise time, standard physical performance battery
tests (SPPB)]. The following section will discuss the potential
implications of obesity for aging muscle, with a specific focus on
muscle morphology and the existence of an “obesity-paradox.”

IMPLICATIONS OF OBESITY FOR AGING
MUSCLE

Obesity and Muscle Morphology
It is well-recognized that aging is typically characterized by a
slowing of muscle phenotype toward type I and a concomitant
reduction in type II muscle fiber area and number [i.e., (89)].
However, in contrast to these typical symptoms of aging, obesity
seems to be associated with amore predominant faster phenotype
(particularly type IIx) and smaller percentage of type I muscle
fibers (85, 90, 91), with a negative relationship between the
degree of adiposity and the relative percentage of type I muscle
fibers, comparable to that observed with reduced physical activity
(92–95). In further support of this phenomenon, following a
weight loss intervention, a positive relationship between the
percentage of excess weight loss and the percentage of type I
fibers has been found in morbidly obese individuals (91). Whilst
there is evidence to suggest that a relative reduction in type I
fibers is a result of excess adiposity, it is also possible that this
may reflect an intrinsic defect predisposing individuals toward
obesity (91). This is pertinent to note as, aside from any impact
on functional outcomes, a relative reduction in type I muscle
fibers is also related to impaired metabolic health, increased
LDL content, decreased insulin sensitivity and decreased arterial
elasticity (90). In contrast to type I muscle fibers, type II
muscle fibers possess impaired lipid disposal capabilities, thus
contributing to a reduction in whole-body lipid oxidation and
an increased storage of lipids (96–98). Type II muscles fibers
are more closely associated with higher oxidative stress which
may, in turn, negatively impact the integrity of mitochondria
and lead to an apoptotic cascade that may ultimately result
in cell death (99). Others have also reported that skeletal
muscle from obese individuals hasmarkedly lowermitochondrial
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FIGURE 1 | Cross-sectional MRI of the midpoint of quadriceps muscle from a young healthy individual (A) and pre-sarcopenic older individual (B) with a similar thigh

circumference (∼60–65 cm) and BMI (∼26 kg·m2 ). The young-healthy individual exhibits a larger quantity of skeletal muscle mass (A) whereas high infiltration by

adipose tissue is observed in the pre-sarcopenic older individual (B). (C–E) Provides an illustration of representative fiber cross-sectional images stained for Myosin

Heavy Chain I (red) and lipid droplets (bodipy, green) in young lean (YL), old lean (OL), and older obese (OO), respectively. Notably, type I fiber lipid droplet number is

significantly greater in young lean (n = 616) compared with older lean (n = 412) and older obese (n = 533) and greater in olden obese compared with older lean (C–E,

respectively) indicative of an ‘athlete paradox’, whereby young, healthy individuals exhibit higher levels of intramuscular lipids but with the superior capacity for

oxidation. In addition, type II fiber lipid droplet number and area is significantly greater in the young lean (n = 377) and old obese (n = 415) compared with old lean (n

= 242) individuals, despite poor whole-body metabolic health in the former (i.e., old obese), indicative of poorer muscle quality and impaired oxidative function.

Further, in this study, type I and II muscle fiber cross-sectional area was greater in young lean (4,031 ± 1,978 µm2, 4,009 ± 1,733 µm2, respectively) compared with

older obese (3,421 ± 1,528 µm2, 3,390 ± 1,199 µm2, respectively) and older lean (3,009 ± 1,251 µm2, 2,170 ± 1,243 µm2, respectively) groups and significantly

greater in old obese compared with older lean [from Smeuninx et al. (85)]. White bars for (C–E) represent 50µm.

content and a concomitant lower oxidative capacity, which is
also linked with insulin resistance (43, 96, 100–103). A recent
review has found adiposity to have profound negative impacts
on cellularity, secretory profiles, and inflammatory status, which
drive lipotoxicity of skeletal muscle and negatively impact muscle
fiber contractility (78). In contrast, an increase in the absolute
number and size of type II muscle fibers is associated with indices
of muscle strength and power, and, thus, may contribute to a
reduced risk of falls and fracture which can have important
implications for muscle loss in aging (104). However, both
aging and obesity are independently associated with muscle
atrophy and reduced myogenesis, as well as impaired excitation-
contraction coupling (105, 106). Obese individuals are also
known to possess impaired functional capacity (48, 107) and
fat mass is negatively associated with jump height in middle-
aged and older adults (108). An important consideration in
these individuals is the significantly higher intramuscular lipid
content in type II fiber (compared with older lean controls)
combined with impaired muscle fiber contraction, lower relative
muscle strength and impaired oxidative function, indicative of
poorer muscle quality (85, 109–112). At least in old sarcopenic-
obese rodents, ectopic fat deposition seems to also contribute
to anabolic resistance (113). We have also previously shown

type I fiber intramuscular lipid content to be equivalent between
young lean and old obese, but not old lean, individuals (85)
(Figure 1). However, type I fiber intramuscular lipid content
was negatively associated with insulin sensitivity for old lean
and old obese, but not young lean individuals (85), reinforcing
the notion that the capacity for intramuscular lipid oxidation
is likely greater in young lean and, in particular, significantly
impaired in older obese individuals (14, 85). It is also pertinent
to note that such observations are also likely to be related
to aerobic fitness/physical activity levels rather than obesity,
per se. Indeed, both impaired oxidative capacity and increased
muscle IIx fiber number are both typical outcomes of physical
inactivity (114). Nevertheless, as reduced physical activity is
typically an inherent characteristic of obesity, it is often difficult
to distinguish between the two. It is plausible that a physically
active older obese individual might possess greater intramuscular
lipid oxidation capabilities compared with a inactivity older obese
individual (85).

Obesity is also characterized by the induction of skeletal
muscle remodeling as well as mitochondria-mediated apoptosis
(115). On the contrary, exercise has been reported as a
positive regulator of skeletal muscle remodeling and apoptosis,
however, as aforementioned, obese individuals typically present
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with low levels of physical activity (115). Interestingly, it has
been suggested that the impaired function of mitochondria
with obesity may be triggered by altering the expression of
mitochondrial proteins regulating key metabolic processes in
skeletal muscle likely due, in-part, to the subcellular localization
of lipid droplets and a reduction in the amount of skeletal
muscle perilipin 2 protein per intramyocellular lipid, particularly
in type II muscle fibers (116, 117). A recent review has also
demonstrated that such effects of obesity on muscle morphology
and contractile performance may be muscle specific, such that
obesity may increase the absolute force producing capacity
of the postural and antigravity muscles (22, 118). Further,
studies examining the contractile performance of isolated muscle
suggest that obesity may accelerate the age-related decline of
respiratory, but not locomotory weight-bearing, muscles (119).
However, whilst a high-fat diet (and an associated increase in
body and fat mass in rodents) may contribute to increased
muscle mass and strength, the increase in absolute strength is
smaller than the magnitude of weight gain, meaning that in-
vivo locomotor function is likely to be impaired in old obese
adults (119). In further support of this notion, a recent study
demonstrated an additive effect of obesity, induced by a high-fat
diet on the reduction in contractile function with aged rodents,
demonstrating that the increase in intramyocellular lipid levels
were associated with the degree of impaired muscle contractile
force (120, 121).

A Paradox of Obesity in Older Age?
Whilst many studies have shown that muscle strength and,
to some extent, muscle mass are strong predictors of survival
(2, 71, 122–124), the relationship between obesity and mortality
remains equivocal (125–127). Studies have shown that obese
individuals seemingly maintain a higher absolute quantity of
muscle mass compared with their lean counterparts (85),
supporting the existence of an aging “obesity paradox” (128).
The existence of an obesity paradox has been observed in a
range of populations including, for example, patients undergoing
lung cancer surgery (129), with overall morbidity and in-hospital
mortality significantly decreased in obese patients (129). Whilst
a number of studies have shown a BMI in the “normal” range
(18.5–25 kg·m2) to be associated with the lowest risk of mortality
(130, 131), other large cohort studies have demonstrated a
“survival benefit” for overweight (25–30 kg·m2) and even obese
(≥30 kg·m2) individuals, suggesting a protective effect of obesity
against mortality in older age (125, 132–134). By contrast, a
recent study found that whilst waist circumference was associated
with greater muscle size, this was also associated with impaired
muscle function (assessed via leg extension strength, chair stands
and stair climb time, gait speed, and SPPB scores) as well as
with measures of muscle quality (135). It is widely accepted
that, with increasing body mass, absolute skeletal muscle mass
increases, and this might explain these consequential findings in
obese individuals (87). In support of this notion, reduced survival
for individuals with a ‘normal’ (18.5–25 kg·m2) or ‘low’ (≤18.5
kg·m2) BMI, compared with overweight (≥25 kg·m2), might be
explained by loss of muscle mass in the former (136). A recent
study found that skeletal muscle mass mediates associations

of BMI with adiposity and mortality, such that irrespective of
adiposity and BMI, muscle mass was inversely associated with the
risk of mortality (137). Excluding participants with low muscle
mass across all groups also alleviated the risk associated with a
low BMI, but magnified the risk associated with a high BMI, such
that survival was greatest with a normal BMI (137). These data
are in agreement with a recent cohort study sampling >38,000
men with >12,000 deaths, suggesting that the obesity paradox
is likely explained by low levels of lean mass, rather than low
fat mass, in the lower range of BMI, such that a “J” shaped
association was consistently observed between BMI and all-cause
mortality (138). In contrast, a “U” shaped association was found
between predicted lean body mass and all-cause mortality (138).
Thus, more recent observations are not consistent with a survival
advantage related to overweight or obesity, but rather to elevated
levels (or better preservation) of muscle mass in aging and “at
risk” groups. Individuals with a BMI of ≥30 kg·m2 have, indeed,
been shown to be at a significantly higher risk of functional
impairment (139).

The principle factors driving individuals toward either the
sarcopenic-obese or healthy-obese phenotype are currently
unknown but might include differences in physical activity and
caloric intake as these are known regulators and associating
factors to many of the potential causes of sarcopenia and
obesity (i.e. reduced lean mass, elevated oxidative stress and
inflammation, impaired muscle regeneration, anabolic and
insulin resistance, nutrient ‘overload’ and metabolic dysfunction
etc.) (66, 80). Furthermore, the inability to delineate sarcopenic-
obesity based on BMI alone, adds to the misclassification of
certain individuals (140). Indeed, whilst obese individuals are
typically less physically active, observations of higher levels
of muscle mass in obese groups are likely a response to an
elevated overload stimulus due to the requirement to move
an increased body mass. It is reasonable to speculate that the
role of other factors, such as genetics, may also contribute to
the discrepancies observed between these two aging groups.
As aforementioned, whilst Smeuninx et al., amongst others,
have shown that obese individuals seemingly maintain a higher
absolute quantity of muscle mass, greater insulin resistance is
also observed in these individuals compared with lean age-
matched controls, suggesting that the quality, and not necessarily
quantity, of skeletal muscle may play a more relevant role
in whole-body metabolic health, particularly in aging (85).
Observations to date question the role of obesity to skeletal
muscle anabolism, and, interestingly, whether a “threshold”
exists after which obesity becomes deleterious. Based on our
observations, and those of others, we postulate the existence of an
aging-obesity “muscle quality threshold” beyond which, obesity-
induced muscle anabolic resistance results in a precipitous, rapid
decline in muscle mass and function (Figure 2), centered on
muscle quality rather than absolute levels of skeletal muscle
mass. Research suggests that obesity may have differential
effects on muscle metabolism and preservation of muscle mass
depending on age (88) and it is likely that being young,
physically active and not suffering from the longer-term impacts
of obesity, may also mediate some level of protection against
any obesity-related anabolic resistance (141). Thus, obesity may
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not be problematic for muscle mass and function unless present
under situations of aging, chronic inactivity, and/or other known
risk factors for anabolic resistance (142–147). Undoubtedly, more
studies are required to examine the metabolic, morphological,
and functional characteristics related to obesity, particularly in
pre-sarcopenic individuals and/or in the earlier stages of the
aging process to better understand the principle factors driving
individuals toward either the sarcopenic-obese or ‘healthy’-
obese phenotype.

DYSREGULATION OF SKELETAL MUSCLE
IN OBESITY AND AGING

Regulation of Muscle Proteostasis
The regulation of skeletal muscle mass is a complex process
that involves the precise coordination of several metabolic
and intracellular signaling pathways, ultimately affecting the
dynamic balance between muscle protein synthesis (MPS)
and muscle protein breakdown (MPB). In order to increase
skeletal muscle mass, MPS must exceed MPB, which can be
achieved by performing regular resistance exercise training in
combination with adequate protein nutrition (148–151). By
contrast, dysregulation of MPB in combination with impaired
and/or normal MPS is observed in numerous conditions such
as aging and prolonged immobilization (152, 153). In a young,
healthy individual, skeletal muscle turnover is ∼1–2% per day
(154). Indeed, following the intake of as little as ∼10 g of dietary
protein, a transient robust increase inMPS is observed (155–158)
and with the addition of exercise, the duration and themagnitude
of this anabolic response can be potentiated (158–160). Whilst
the addition of regular physical activity elevates MPB, when
physical activity is combined with sufficient protein intake in
healthy individuals, the outcome will be a favorable elevation in
MPS and net protein accretion (155). Indeed, physical activity is
an important locus of control in the regulation of skeletal muscle
mass in both young and older individuals, with increased physical
activity levels stimulating MPS (161) and decreased physical
activity levels blunting MPS (142).

Old Age and Muscle Proteostasis
Whilst young individuals demonstrate a pronounced response to
anabolic stimuli, a blunted response has been observed in older
adults (157, 161–163). These studies amongst others, indicate the
importance of increasing daily, per meal and quality of protein
doses as well as the intensity and volume of exercise to restore
muscle anabolic sensitivity in the older adult (164–167). Recent
studies have also demonstrated anabolic resistance (defined as
a diminished MPS response to food intake and exercise) in
older adults following a chronic exercise training program (168),
which suggests that by extension, aspects of chronological aging
are inevitable, and that regular physical activity becomes a less
effective stimulus for muscle remodeling and maintenance. It
has been suggested that the post-prandial inhibition of MPB
may also be impaired in older adults in combination with a
blunted post-prandial MPS stimulation (169). This age-related
anabolic resistance is likely an important driving factor in age-
related muscle loss and appears to be exacerbated by aspects of

biological aging such as intermittent periods of musculoskeletal
disuse and reduced physical activity (87, 104, 142, 144, 145,
157, 165, 170, 171). Aging is also associated with impaired
molecular regulation of skeletal muscle signaling pathways.
Growing evidence suggests that mTOR complex 1 [mTORC1]
(mammalian target of rapamycin) signaling, which is thought
to have a regulating impact on protein synthesis, influences the
aging process as acute inhibition of this pathway (by rapamycin)
seems to extend the lifespan in model organisms and provides
protection against a number of age-related pathologies (172–
177). In addition to impaired mTORC1 signaling, impaired
satellite cell proliferation is associated with aging (99, 178).
This has important implications in the aging adult as satellite
cells are thought to play a critical role in muscle fiber growth,
muscle tissue turnover, and regeneration and are activated and
proliferate in response to anabolic stimuli (179). Changes in the
secretion of sex-hormones (i.e., growth hormone, testosterone,
estrogen) are also associated with chronological aging (180).
There has also been a recent interest in the role of a number of
other factors involved in an individuals’ dietary status, beyond
protein intake, that have been implicated in the age-associated
deterioration of skeletal muscle mass. For example, whilst the
role of vitamin D status in sarcopenia is not well-understood, it
has been suggested that older adults are at higher risk of lower
levels of vitamin D as a result of decreased cutaneous synthesis
and dietary intake of vitamin D (181, 182) and epidemiological
evidence indicates an association between low levels of vitamin
D and diseases associated with aging (182). Specifically, vitamin
D induces myogenic differentiation in skeletal muscle derived
stem cells (183). Similarly, there has also been a recent rise in
the interest of the role of vitamin D receptors in the nervous,
cardiovascular, and endocrine systems that may interact to
accelerate sarcopenia progression (184, 185).

Obesity and Muscle Proteostasis
As aforementioned, infiltration of fat is evident within muscle
(termed “myosteatosis”) and this typically increases with age.
Similar to chronological aging, it is generally agreed that rates of
basal MPS are similar between obese and lean individuals (186).
However, muscle anabolic resistance is exacerbated with obesity
and thus the combination of obesity with older age leads to a
near non-existent elevation of the MPS response to amino acid
provision beyond basal levels, which may be associated with a
plethora of factors including; reduced physical activity and a low
relative proportion of lean mass, intracellular lipotoxicity and
elevated inflammation, impaired muscle regeneration, insulin
resistance, impaired endocrine function, impaired anabolic
signaling etc. (85, 187, 188). Whilst little is known of the
impact of obesity on MPB, there is evidence to suggest that
MPB may be elevated due to a higher inflammatory burden
associated with excessive adiposity and overfeeding (188–199). It
has been suggested that the muscle anabolic resistance observed
in obese individuals may be underpinned by impaired/inhibited
muscle anabolic signaling phosphorylation (200, 201). Taken
together, the available data suggest the possibility of an obesity-
induced inability to regulate muscle protein turnover in response
to nutrition, which may lead to impaired skeletal muscle

Frontiers in Nutrition | www.frontiersin.org 6 December 2020 | Volume 7 | Article 569904

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Morgan et al. Skeletal Muscle Function in Older Obese

FIGURE 2 | Hypothetical relationship between muscle quality and the rate of muscle accretion or loss with advancing age. The dotted line represents the “muscle

quality threshold” beyond which obesity-induced muscle anabolic resistance results in a precipitous, rapid decline in muscle mass and function. The arrows represent

some of the factors that might influence muscle quality. The red line represents a decrease in muscle quality, whereas the green line is representative of muscle quality

maintenance and the yellow line depicts the “normal” chronological aging process.

remodeling. In contrast to suggestions of elevated MPB, the
impairment of MPS following protein nutrition in obese may
be offset by inhibition of MPB, implicating a possible protective
mechanism to explain the apparent preservation of muscle
mass in obese vs. lean older adults (188). It is also worthy of
note that, as obese individuals are subjected to greater loading
forces and increased muscle contractile work during activities
of daily living (due to the requirement of moving more inert
mass), this might elicit elevations in MPS and offer a degree
of “protection” against the loss age-related muscle mass loss
[(85, 187, 188, 202, 203); Figure 3]. Indeed, there is currently not
a clear consensus for the impacts of obesity on MPS. There is
no obvious explanation for the discrepancies observed between
studies on the impacts of obesity on post-prandial MPS (85,
186–188, 204, 205). However, differences in habitual levels of
physical activity as well as the immediate effects of exercise
on indices of skeletal muscle anabolism, might explain in part,
some of these contrasting observations between lean and obese
individuals. Indeed, we showed that the MPS response to protein
ingestion correlated with physical activity (as assessed via daily
step count, r = 0.57) (85). Further, some of these discrepant
findings might be explained by the assessment of MPS under
hyperinsulinemic-hyperaminoacidemic conditions, which are
not representative of a normal physiological response (186, 187).
Anabolic resistance to protein provision has also be associated
with obesity due to overfeeding and/or lipid oversupply (187,
188, 204), and therefore, the predominant cause(s) of obesity
should also be considered. Nonetheless, irrespective of these
discrepant findings, the magnitude of any potential “training”

effect of physical activity, as discussed above, is typically lower
than the increase in body weight observed with excess adiposity
and is likely insufficient in offsetting sarcopenia (119, 206).

Whilst high-fat diets, lipid administration, obesity, and
ectopic fat deposition have all been shown to induce whole-
body and muscle anabolic resistance (113, 187, 204, 207, 208), as
aforementioned, data also implicates obesity in impairing MPS
through compromised muscle quality and/or elevated levels of
adipose-derived inflammatory cytokines (139, 209). Indeed, a
number of lipid species and metabolites have been implicated
in impairing muscle function as well as developing anabolic
resistance (210–216). However, despite previously observing a
negative association between the net post-prandial MPS response
following ingestion of a moderate protein dose (15 g milk
protein) and leg fat mass, at least in our hands, we were
unable to demonstrate any association with muscle fiber-specific
intramuscular lipid content (85). This was despite a two-fold
higher type II fiber intramuscular lipid content in older obese
compared with older lean and young lean individuals. This,
however, is in contrast to previous reports of associations
between intramuscular lipids and muscle anabolic resistance
in old rodents (113). Type I fiber intramuscular lipid content
was, though, negatively associated with insulin sensitivity for
old lean and old obese, but not young lean. This reinforces the
notion that the capacity for intramuscular lipid oxidation is likely
greater in young lean individuals and that this may contribute
to metabolic resistance in the former (14). Activity-matched
older lean and older obese comparisons are required to confirm
such speculation (14). The subcellular characteristics, location of
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FIGURE 3 | Proposed impacts of obesity on muscle protein turnover (MPT), in

a fed state (post-prandial) and following a load-bearing activity (assuming

sufficient protein intake). We speculate that, as lean mass is often preserved in

obese vs. lean individuals and as obese individuals are subjected to greater

loading forces and increased contractile work during activity due to the

required to move more inert mass, this might elicit a positive training effect,

driving muscle protein synthesis (MPS) following periods of movement,

compensating for diminished MPS in response to protein provision. However,

whilst little is known of the impact of obesity on MPB, there is evidence to

suggest that MPB may be elevated due to a higher inflammatory burden

associated with obesity.

intramuscular and/or specific class of lipid intermediates (i.e.,
ceramides, diacylglycerol, etc.) may associate more closely with
age-related muscle anabolic resistance (217). The specific role
of perilipins, a lipid droplet-associated protein, requires further
research (213, 215), particularly as there is lack of research
investigating anabolic resistance in response to load carriage
work in obese older vs. lean age-matched individuals. Taken
together, these data may support an obesity-induced blunting
of post-prandial MPS due to intramuscular lipid accumulation.
We speculate that any potential protection of adiposity on
skeletal muscle mass is likely solely driven by physical activity
and that decreases in muscle mass and function in individuals
diagnosed with sarcopenia and obesity combined are likely to be
accelerating at a rate whereby levels of adiposity fail to provide
any protection, but rather compound disease progression.
Importantly, and as aforementioned, the causes of obesity and
muscle loss are likely interrelated and interact. For example,
research suggests that increasing storage of fat may also influence

sedentary behavior, producing a vicious cycle of skeletal muscle
deterioration and impaired whole-body metabolic health (218).
Therefore, appropriate treatment for obesity (and sarcopenic-
obesity) is imperative in improving muscle function and quality
of life in older age.

TREATMENT OF SARCOPENIA AND
OBESITY

Treating obesity appropriately in older age is of upmost
importance in order to prevent any further loss of skeletal
muscle associated with aging (219–221). Treatment of obesity
in older age (and sarcopenic-obesity) requires a combination of
personalized nutrition and physical activity approaches as, under
certain conditions, inappropriate changes to these paradigms
may actually accelerate the progression of sarcopenia given
the susceptibility to energy restriction and, thus, a potential
catabolic state (222). As the pathogenesis of these three
conditions (sarcopenia, obesity, and sarcopenic-obesity) is multi-
faceted, understanding the optimal treatment is highly complex.
Optimal treatment of sarcopenic-obesity likely incorporates a
combination of resistance and aerobic training in the presence
of a small dietary calorie deficit with sufficient protein intake,
as severe weight reduction strategies may also compromise
the ability to preserve muscle function and mass which may
subsequently lead to frailty, disability, and increased morbidity
and mortality (220, 223). It is also noteworthy that bone
density may also be impaired with weight-loss programs which
may, in-turn, contribute to fracture risk, and subsequent
further risk of hospitalization, periods of prolonged inactivity
and further muscle loss and functional impairment (87, 104,
222). Nevertheless, weight loss should be considered safe in
older adults, if managed appropriately (222, 223). As such,
treatment of sarcopenia alone may be easier than treatment of
(pre)-sarcopenic obese individuals. Accumulating evidence also
indicates that diet-induced weight loss can improve physical
function among obese older adults, independent of any changes
in physical activity (224–226). Incorporation of resistance
exercise, in particular, into a training program is extremely
important in reversing the symptoms of obesity in older age.
Studies suggest that when a diet and exercise intervention is
administered to obese individuals, subsequent improvements in
muscle strength and muscle quality, are observed (227, 228).
More recent attempts to assess the effectiveness of chronic
training paradigms in obese older individuals have investigated
the potential of a combined aerobic and resistance training
approach and found positive outcomes when combined to either
alone (229). Resistance exercise is known to have a number
of effects that have the potential to prevent and/or overcome
anabolic resistance including: enhanced post-prandial muscle
protein synthesis, sensitized muscle insulin action, increased
number and size of muscle fibers (particularly fast twitch) and
reduced inflammation [i.e., IL-6 and TNF-a; (160, 230, 231)].
Aerobic exercise has also been shown to improve oxidative
capacity, reduce intramyocellular lipid accumulation, enhance
lipolysis and improve glucose utilization and insulin sensitivity
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(232), all of which have the potential to improve symptoms
of sarcopenia and/or obesity in older age. Whilst we recognize
that research suggests that weight loss in obese individuals is
also typically followed by a further period of weight gain (233–
236), it is important to note that the metabolic health benefits
of weight loss and increased physical activity are likely sustained
for a prolonged period (234, 235). Indeed, even when weight has
been regained, long lasting benefits of weight loss are observed
on a number of important metrics including insulin sensitivity
(237). Accordingly, a multi-faceted approach to the prevention,
management and treatment of sarcopenic-obesity remains the
most promising.

Taken together, as undoubtedly older individuals with higher
amounts of muscle mass are less likely to suffer from the
inevitable impacts of age-related muscle loss, it would be
prudent to increase basal levels of muscle mass, preferably,
via a well-programmed resistance exercise training programme
possibly combined with small increases in fat mass and body
weight. It is, however, important to recognize that excess weight
gain via increases in fat mass, whilst may be associated with
higher volumes of muscle, are likely to impair muscle function
and accelerate the age-related impairment in muscle function
by significantly impairing muscle quality. In contrast, given
the potential for muscle mass in obese older adults to be
somewhat protected from sarcopenia, it may be prudent to
suggest individuals carry a small amount of extra weight in older
age, at a consequence of a small sacrifice in muscle quality,
in support of a “muscle quality threshold” (Figure 2). Whilst
speculative at this stage, this may help achieve a delicate balance
of increasing lean and fat mass without the deliberating effects
of excess adiposity. However, whilst the optimal strategy in pre-
sarcopenic individuals is unclear, older individuals who are under
weight and seemingly at an elevated risk, may benefit from
small increases in fat mass. Undoubtedly though, promotion of
a healthy lifestyle for chronic prevention (or attenuation), rather
than treatment, per se, of sarcopenia, obesity, and sarcopenic-
obesity should be considered the best approach by promoting
adaptations of higher basal levels of muscle mass. Therefore, a
combination of progression physical activity and gradual well-
planned caloric restriction are likely key to achieving improved
health outcomes in overweight individuals (84, 219, 238, 239).
For more comprehensive reviews on the treatment of sarcopenia,
obesity and sarcopenic-obesity in older age, the reader is directed
to the following [i.e., (216, 232, 233)].

CONCLUSIONS

Future Directions
Throughout this review, we have provided some suggestions on
how/where this research field could benefit with further research.
From a broad perspective, further work is required to delineate
the precise mechanisms through which obesity exacerbates
the age-related loss of muscle mass and function to better
understand the cause(s) and treatments of sarcopenic-obesity.
For example, there is a need to understand the specific role of
myosteatosis, lipid species and metabolites, in age-related muscle
anabolic resistance, particularly in obese individuals. Indeed,

further exploration of the role of intramuscular lipids in obesity-
induced muscle anabolic resistance and sarcopenia is pivotal,
particularly with regard to the co-localization of lipid droplets
and mitochondria. In addition, it is plausible to suggest that the
MPS response to weight-bearing activity could be greater in obese
vs. lean older individuals, due to the larger mechanical stimulus.
This could provide some explanation for the compensation for
the blunted MPS response to amino acids, despite an apparent
better preservation of muscle mass in obese older individuals.
Future studies should also attempt longitudinal observations of
obesity-induced changes to skeletal muscle as well as the effects
of lifelong high calorie dietary patterns and sedentarism, and
the reversal of obesity on skeletal muscle to truly understand
the complex interactions between aging, obesity, skeletal muscle
mass regulation and metabolic health parameters. Finally, as
reduced physical activity is typically an inherent characteristic of
obesity, further research is required to delineate the mechanisms
associated with obesity and physical activity, independently, to
the age-associated deterioration of skeletal muscle, as it is often
difficult to distinguish between the two.

Conclusion
The prevalence of sarcopenia, obesity, and sarcopenic-obesity
are increasing globally, posing a considerable challenge to
public health, healthcare resources, and the global economy.
Sarcopenic-obesity is associated with accelerated functional
decline, chronic disease risk, and increased risk of mortality.
In contrast, increased levels of muscle mass, irrespective
of adiposity, are associated with reduced risk of mortality.
Despite evidence reporting greater amounts of muscle mass,
but not muscle quality, in obese vs. normal weight older
individuals in support of an “age-associated obesity paradox,”
the current available data are inconclusive. Instead, obesity
may impair muscle anabolic processes, potentially through
compromised muscle quality and/or elevated levels of adipose-
derived inflammatory cytokines. When combined with the age-
related loss of muscle mass, this may further exacerbate the
loss of muscle function in aging as well as the development
of metabolic disease and disability. Older individuals are also
likely disproportionately impacted by obesity at a functional
level compared with younger obese individuals. The loss of
muscle quality likely represents an important contributor to
the impairment in physical function in older age. Indeed,
intramyocellular lipid accumulation, a common characteristic
of obesity, may interfere with contractile force production.
Currently, however, the mechanisms through which obesity in
older age may protect muscle quantity, yet seemingly impair
muscle quality and function are unclear and warrant further
investigation, as the complex interplay between obesity and
sarcopeniamakes it difficult to determine precise cause and effect.
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