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Abstract: The recycled aggregate is an alternative with great potential to replace the conventional
concrete alongside with other benefits such as minimising the usage of natural resources in exploita-
tion to produce new conventional concrete. Eventually, this will lead to reducing the construction
waste, carbon footprints and energy consumption. This paper aims to study the recycled aggregate
concrete compressive strength using Artificial Neural Network (ANN) which has been proven to be
a powerful tool for use in predicting the mechanical properties of concrete. Three different ANN
models where 1 hidden layer with 50 number of neurons, 2 hidden layers with (50 10) number
of neurons and 2 hidden layers (modified activation function) with (60 3) number of neurons are
constructed with the aid of Levenberg-Marquardt (LM) algorithm, trained and tested using 1030
datasets collected from related literature. The 8 input parameters such as cement, blast furnace slag,
fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age are used in training the
ANN models. The number of hidden layers, number of neurons and type of algorithm affect the
prediction accuracy. The predicted recycled aggregates compressive strength shows the compositions
of the admixtures such as binders, water–cement ratio and blast furnace–fly ash ratio greatly affect
the recycled aggregates mechanical properties. The results show that the compressive strength
prediction of the recycled aggregate concrete is predictable with a very high accuracy using the
proposed ANN-based model. The proposed ANN-based model can be used further for optimising
the proportion of waste material and other ingredients for different targets of concrete compressive
strength.

Keywords: recycled aggregates; compressive concrete strength; machine learning; artificial neural
network; prediction model; concrete engineering

1. Introduction

With the widespread popularisation and application of new modern technologies, the
development of industrialisation worldwide is accelerating, and resources consumption
and environmental damages are becoming extremely worrying. As a result, more con-
struction waste has been accumulated from time to time. Generally, the compositions of
construction waste are: concrete, muck, masonry, wood, metal, mortar, asphalt, decorative
materials and other wastes [1]. Throughout the development process of human civilisation
construction, concrete materials began to be produced and used as early as the early 19th
century [2]. At present, it is one of the most widely used as the building materials in the
construction industry [3–5]. With the rapid economic development and the acceleration of
urbanisation, the per capita consumption of concrete materials is increasing day by day.
Concrete is mainly composed of coarse aggregate (stone) and fine aggregate (sand) [6].
These two aggregates account for about 75% of the total concrete. In the past economic
construction process, resource protection and environmental protection awareness did not
receive enough attention, thinking that sand and gravel aggregates have wide sources, low
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prices, inexhaustible resources, and extensive exploitation, and even abuses phenomenon,
causing serious damage to the natural ecological environment [7–11]. As the pillar industry
of the national economy, the construction industry has increased the demand for aggregate
sand and gravel as the world population continues to increase.

At the same time, the long-term exploitation and consumption of resources will
inevitably lead to resource depletion [12]. The original rich sand and gravel resources no
longer exist, and the shortage of aggregates and environmental pollution are replaced. The
natural formation of natural sand and gravel requires a long geological age or even longer.
It is a non-renewable resource. In future, due to large-scale exploitation without relevant
protection measures, natural aggregates will inevitably face shortages. On the other hand,
with the arrival of the useful life of the cement structure, a large number of buildings will
be demolished, and a large amount of waste concrete will inevitably be produced [8,13–15].
A large amount of construction waste is generated every year around the world.

Besides, in recent years, natural disasters have occurred frequently in various coun-
tries around the world, and the resulting construction waste also needs to face practical
problems such as how to be properly recycled, processed and reused [14,16]. Recycled
concrete technology is one of the main measures to realise the sustainable development
of building resources and environment. The development and application of recycled
concrete technology can solve the problems of large amounts of waste concrete treatment
difficulties and the resulting deterioration of the ecological environment [17].

The preparation of recycled aggregate concrete is not essentially different from or-
dinary concrete. Only part of the cement and aggregate will be replaced. Due to the
presence of the original mortar layer on the surface of the waste concrete in the crushing
process, the quality of the recycled concrete is not as good as that of ordinary concrete,
which will make a large amount of waste concrete not well used [18,19]. The source of
most aggregates in concrete is produced under natural conditions, that is, blast mining in
quarries or excavation in riverbeds. The advantage is that the quality is guaranteed, but the
disadvantage is that these raw materials cannot be provided in unlimited quantities and
their development and production have a huge impact on the local ecological environment.

Recycling concrete aggregates to replace natural aggregates is one of the important
means for sustainable development and resource recycling. In addition, the use of waste
concrete as a raw material can reduce a large amount of waste dumping. The recycled
concrete aggregate is mainly composed of the original natural aggregate used to prepare
the original concrete and the original mixture cement mortar adhered to the surface of the
original natural aggregate [20]. The performance of concrete containing recycled aggregate
depends to a large extent on the mortar content of the recycled aggregate, and the mortar
content depends on the strength of the original concrete recovered from the recycled
aggregate. The amount of mortar adhering to recycled aggregate depends on the crushing
process and the water–cement ratio of the original concrete [21].

The proportion of mortar attached to the surface of the recycled aggregate can be
reduced by crushing the recycled aggregate to a size close to that of the natural gravel
aggregate in recycled concrete [22–24]. The basic characteristics of undisturbed concrete,
the production process of recycled aggregates and the aggregate particle size fraction
are the three most important factors that determine the performance of recycled concrete
aggregates [25–27]. The changes in the proportion of admixtures, coarse aggregates, and
fine aggregates affect the strength of concrete. The performance of concrete is an important
reference index for designing concrete mix ratio [28]. In addition, the relationship between
mix ratio and performance is not a simple linear relationship but an extremely complex
nonlinear relationship. It is noted adding recycled aggregate leads to even more complex
relationship and proportion in order to use the standard mix design for predicting the
mechanical properties of the concrete. In recent years, many experiments and research
methods have been developed in order to predict the strength of a certain mix ratio faster.
Various methods of machine learning are also used to predict the strength of various types
of concrete. As the name suggests, machine learning is a subject that studies how to use
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machines to simulate human learning activities [29]. A stricter formulation is: machine
learning is the study of machines to acquire new knowledge and new skills and to recognise
existing knowledge.

Unlike traditional model-driven methods, machine learning is data-driven. It explores
and builds algorithms that learn from data and predict data. Most traditional statistical
models have certain requirements or assumptions for the specific distribution of data.
However, in reality, real data may not meet those assumptions or requirements. Some
of their excellent properties are impossible to get, and even some conclusions are wrong.
In this case, the machine learning method is more reasonable. The machine learning
method does not need to make any assumptions about the data distribution, and the results
produced can also be evaluated by cross-validation [30].

Recently, artificial intelligence has been implemented to study the recycled aggre-
gates mechanical properties such as compressive strength and tensile strength. For in-
stance, Naderpour et al. [31] developed an Artificial Neural Network (ANN) model from
139 datasets to predict the recycled aggregates compressive strength. They concluded that
ANN method is capable of high accuracy predictions for recycled aggregates compressive
strength. Furthermore, the 28 days compressive strength of recycled concrete was predicted
Automated Neural Network Search (ANNS) considering water, cement, fine aggregate,
coarse aggregate and recycled aggregate as input variables [32]. The R-squared value was
very high showing that the prediction model could be trustable. However, the samples
were limited to only 40. On the other hand, Deng et al. [33] proposed a convolutional
neural network (CNN) model to predict the recycled aggregate compressive strength. The
outcome of this research is CNN model able to predict the compressive strength with high
accuracy, high efficiency and higher generalisation ability by learning the deep features of
water–cement ratio and other admixtures combination. In another research, Tu et al. [34]
implemented genetic algorithm-backpropagation (GA-BP) model to predict the recycled
aggregate thermal insulation concrete. Based on the research outcomes, the GA-BP reduced
the orthogonal experimental process based on the training sample data and GA-BP neural
network has more stable and better generalisation performance than backpropagation neu-
ral network. Alabi et al. [35] developed ANN model to predict the compressive strength
and split tensile strength of recycled aggregate concrete containing lathe waste steel fibre
which the outcomes concluded that ANN approach provides a powerful tool to study the
estimation of recycled aggregates compressive strength and split tensile strength. However,
the sample sizes were very limited in the previous studies showing that the models may
not adequately reliable for future use.

Nevertheless, the ANN model performance is greatly affected by its architecture.
The parameters of the model are obtained by trial-and-error method. The process of
finding the optimum architecture is time-consuming. Moreover, the compressive strength
of the recycled aggregate depends on the recycled aggregates admixtures proportions.
The variability in the characteristics of the recycled aggregates makes it more complicated
to predict and understand the non-linear relationship between the compressive strength
of recycled aggregates and its mixing ratio [33]. Thus, this study aims to create a more
accurate and cost-effective prediction model of the compressive strength of concrete on the
basis of different proportions of various components including recycled waste material.
Several modifications such as number of hidden layers, number of neurons in hidden layer
and modification of activation function are studied in order to obtain high efficiency and
high prediction accuracy prediction model and also to understand the parameters that
affect the performance of the ANN models. Firstly, this article is based on investigating
the status of recycled concrete waste in various countries around the world and grasps
the latest technology research trends. The 1030 raw data of different mixtures have been
collected from the literature and previous experimental results. Note that blast furnace
slag is considered as recycled aggregates mixed in concrete. This study considers 8 inputs
parameters: water, cement, fine aggregate, coarse aggregate, blast furnace slug, fly ash,
superplasticizer and day. Secondly, the collected relevant data of recycled aggregate
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concreted are then used to develop concrete compressive strength prediction models by
using Artificial Neural Network (ANN) approach in order to study the impact of recycled
aggregates on the strength of recycled concrete using Levenberg-Marquadt (LM) which can
provide better speed and performance than others because of its flexibility to solve multi-
dimensional problems Moreover, LM is remarked as the best algorithm to predict concrete
behaviour [36,37]. Note that ANN offers quick learning with an accurate performance
for capturing the intrinsically nonlinear nature of patterns in the concrete properties and
reducing the cost, as well as saving time in the class of compressive strength’s determination
problems. Lastly, three different prediction ANN-based models of concrete compressive
strength are constructed and compared in this study. The best model can be used to predict
the recycled aggregate concrete compressive strength considering blast furnace slug and
various general input parameters based on the user’s resources and objectives.

2. Methodology
2.1. Artificial Neural Network Model Training and Dataset
2.1.1. Artificial Neural Network

An artificial neural network (ANN) is a data prediction framework based on existing
features created from the human mind structure. This network is made of some functional
blocks, which are named neurons. Neurons are connected by weights, which are usually
randomly selected at first. Weights in a learning process are increased or decreased by
some epochs to eventually achieve the desired network which can predict it by reasonable
accuracy [30].

Therefore, in a trained neural network, the desired output can be achieved by receiving
the inputs and considering the updated weights as shown in Figure 1. The network
improves over time by comparing the desired input and output and calculating the error.
The improvement of the machine learning model from time to time indicates the accuracy
of the prediction model can be improved and the predicted results are reliable.
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Figure 1. Artificial neuron model.

Usually, nonlinear activation functions like sigmoid (tansig and logsig) are used
because of a better response. The training purpose of an artificial neural network is to
minimise the error function that is usually mean square value (MSE).

MSE (mean square value) =
1
N

n

∑
i=1

(ti − ai) (1)

where N is the number of input parameters, the output is shown by ti, parameter ai are
desired outputs (targets).

Xlsread function is used to import the datasets in Xls format into MATLAB as shown
in Figure 2. Then, Neural Net Fitting app in MATLAB is used to sort the data and select
input and output parameters. Then, the modifications of number of hidden layers are
done using nftool in MATLAB by coding an advance script as explained in Section 2.2.2.
Backpropagation algorithm Levenberg-Marquardt is chosen as a training algorithm for
better curve fitting (regression) and performance.
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Figure 2. Xlsread function.

2.1.2. Dataset

The collected datasets are used for predicting concrete compressive strength consists
of 8 parameters which are cement, blast furnace slag, fly ash, water, superplasticizer,
coarse aggregate, fine aggregate, and age(day), as shown in Table 1. Table 2 shows the
target output of concrete compressive strength (MPa), which will be predicted by ANN in
this study.

Table 1. Parameters of recycled concrete.

Parameter Unit Min Max

Cement kg/m3 102 540
Blast Furnace Slag kg/m3 0 359.4

Fly Ash kg/m3 0 200.1
Water kg/m3 121.8 247

Superplasticizer kg/m3 0 32.2
Coarse Aggregate kg/m3 801 1145

Fine Aggregate kg/m3 594 992.6
Age Day 1 365

Table 2. Prediction of concrete compressive strength by artificial neural network (ANN).

Parameter Unit Min Max

Concrete compressive strength MPa 2.3318 82.59

The data and range of each parameter are then normalised (except Age) in Table 3
to make them more suitable for performing the activation function on them so that, in
addition to performing more accurate and easier calculations, the speed of network training
is also increased. Without the data normalisation process, the training process may not
lead to the desired result, and also the data processing may be heavy and slow and may
not be accurate enough. Normalising data can also reduce data duplication and similarity
between them so that there are purer and smaller datasets.

Table 3. Normalised data used for training artificial neural networks.

Parameter Min Max

Cement 0.0448 0.2254
Blast Furnace Slag 0 0.150 g

Fly Ash 0 0.0888
Water 0.0514 0.1122

Superplasticizer 0 0.0131
Coarse Aggregate 0.3459 0.4798

Fine Aggregate 0.2480 0.4141
Age 1 365
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2.2. MATLAB Neural Fitting

Firstly, the raw data, which consists of input and output data, must be imported into
the workspace. It can be done by the Xlsread function which can import Xls format data
to the MATLAB. Neural Net Fitting, which is chosen as the training application, can be
started in MATLAB as illustrated in Figure 3. Then, input and output should be selected as
shown in Figure 4. There are 1030 data sorted in matrix rows in total. It can be seen that
1030 datasets of variables contain 8 inputs (parameters presented in Table 3) and 1 output
(concrete strength).
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All the input data are randomly divided into three aspects: training, validation and
testing. The next step is to define the fixed allocation ratio for training, validation and
testing as 70%, 15% and 15%, respectively, as shown in Figure 5.
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2.2.1. 3 Layers (1 Hidden Layer with 50 Neurons)

The number of hidden neurons must be set in the hidden layer which going to be used
for our purpose. Fifty neurons were selected. Neural fitting tools select 1 hidden layer by
default but it can be changed in the future by editing Advanced-Script which nftool will
make at the end of the training.

There are different algorithms in the MATLAB toolbox for updating weights. Some of
them are Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient.
Levenberg-Marquardt backpropagation algorithm is one of the most popular algorithms in
the MATLAB toolbox. It is one of the fast algorithms which has reasonable performance
and is used more than the other ones. This algorithm has better regression (curve fitting).
So, Levenberg-Marquart (trainlm) is chosen as a training algorithm. The First step is to
import input data and find outputs using initial random weights. It is clear that because
of random weights the error will be high in this step and outputs are far from the target.
The second step is to calculate errors in hidden layers neurons. Then, the weights will be
updated. In the next step, outputs will be calculated and backpropagation will be done
from the output. This way helps neurons to update the weights.

Each layer has an activation function. After that, weights will be updated and one
epoch will be done. Figure 6 shows the structure of the neural network. Usually, this process
will repeat for several epochs. This can help the network to find its better performance.
Now the network is ready to train. Table 4 show the features below.
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Table 4. Features of neural network.

Inputs 8
Number of hidden layers 1
Neurons of hidden layer 50

Training algorithm Levenberg-Marquadt
The activation function of the hidden layer Sigmoid
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2.2.2. Hidden Layers

Some features and parameters of the ANN must be changed for finding better accuracy.
One option is to increase the number of hidden layers. Usually, the best option is to have
2 hidden layers. In this study, the Advanced-Script shown in Figure 7 helps to achieve this.
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The network parameters undergo some modifications. At line 26, another hidden
layer is added, as shown in Figure 8, with 10 neurons to see whether the error will be
reduced or not.
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Figure 8. Addition of hidden layer.

2.2.3. Hidden Layers with Customising Activation Function

For the modifications of activation functions, the newff function was used to allow
the customization of the network. The (60 3) neurons have been used for 2 hidden layers.
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Logsig and tansig are also used as transfer (activation) functions of hidden layers. The
output layer has a purelin activation function like before as shown in Figure 9.
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Figure 9. Different activation functions.

After running the new code, a neural network structure that has new activation
functions for the first hidden layer will be created as shown in Figure 10. Table 5 shows the
new artificial neural network features.
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Table 5. New artificial neural network features.

Inputs 8
Number of hidden layers 2
Neurons of hidden layer (60 3)

Training algorithm Levenberg-Marquadt
The activation function of the first hidden layer Logsig

The activation function of the second hidden layer Tansig

3. Results and Discussions
3.1. 1 Hidden Layer with 50 Number of Neurons

The performance plotted in Figure 11 shows iterations that the process of training has
been done. It specifies how much is the final error and gradient. A model of ANN with
nodes and one hidden layer has been defined and error decreased up to 34.81. The training
process ended at the 19th iteration where it is not the best choice for a trained network.
The algorithm chooses the 13th iteration because it has a less valid error in comparison
to the training error. It means, by continuing the process, the iteration may have better
performance for training data but it can make test data or valid data performance worse.
The minimum mean squared error (MSE) is 34.81 at iteration 13.
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Figure 11. New neural network structure with activation function.

Although training data errors will decrease in later periods, validation and test data’s
error increase, that is why iteration 13 is the best choice for this neural network training.
Mu is the learning rate in the Levenberg-Marquardt algorithm and after some iteration,
0.01 was selected in Figure 12. It is clear that after 6 validation fails, the process of training
has been stopped.
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epoch 19.

Regression for training data, validation data, and Test data is shown in Figure 13. The
line fits the test data with a slope of 0.924 and it is reasonable.
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3.2. Hidden Layers with (50 10) Number of Neurons

Two hidden layers with number of neurons (50 10) were added to improve the perfor-
mance of the ANN model. After training the ANN model, the performance of the second
model with the implementation of Levenberg-Marquardt algorithm has increased as shown
in Figure 14. The line fits the test data with a slope of 0.942 as shown in Figure 15 has
increased than the previous model with 1 hidden layer and (50) number of neurons. The
performance of validation data for this model, which is 2 hidden layers, (50 10) number of
neurons in hidden layers is 28.33.
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3.3. Hidden Layers with (60 3) Number of Neurons

Several modifications were made in order to develop a model with better accuracy
where (60 3) neurons have been. Then, the Logsig and tansig are used as activation
functions of hidden layers.

The third model (2 hidden layers, (60 3) number of neurons in hidden layers with
modified Activation function) has the Mean Square Error of 22.17 at epoch 16 as shown in
Figure 16. Figure 17 shows the neural network training regression where the line fits the
test data with a slope of 0.943.
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4. Discussions
4.1. Model Comparisons

Table 6 compares the MSE and R2 obtained from three different models. It is found
that, at first, the first model with 1 hidden layer and (50) number of neurons in hidden layer
has the MSE of 34.81 and the line fits the test data with the slope of 0.924 which indicates
the model is fit and reasonable. However, there is still room for improvement. In order
to obtain a prediction model with high accuracy results and less error, some features and
parameter of the ANN model need to be changed and configured. Hence, the available
options are to increase the hidden layers and the number of neurons in hidden layers.

Table 6. Comparison of the models.

Model Hidden Layer Number of Neurons in Hidden Layer Transfer Function MSE (Performance) R2

1 1 50 Sigmoid 34.81 0.924
2 2 (50 10) Sigmoid 28.33 0.946
3 2 (60 3) Logsig and Tansig 22.11 0.943

Thus, with the help of Advance-Script in MATLAB, the second model has 2 hidden
layers with (50 10) number of neurons in hidden layers. This time, the MSE of the second
model has decreased from 34.81 (model 1) to 28.33 (model 2). The line fits the test data
with a slope of 0.942 for model 2. Nevertheless, when a further modification of the number
of hidden layers and number of neurons in hidden layers was made for model 3 where 2
hidden layers with Activation function (Logsig and Tansig), (60 3) number of neurons in
hidden layers, the MSE for model 3 is 22.11, which is the lowest compared to model 1 and
model 2. Meanwhile, the test line fits the test data with the slope of 0.943, which is only a
small change compared to model 2, but model 3 has the highest correlation compared to
model 1 and model 2.

After changing the number of neurons in hidden layers, activation function, and the
number of hidden layers, the reasonable results that could predict the concrete compressive
strength are achieved. It is known that a prediction model with large MSE performance
value means the data values are dispersed widely around its central moment (mean), while
a smaller MSE means the data values are concentrated or dispersed closely towards its
central moment (mean). In other words, smaller MSE reflects on the distribution of data
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values and it is centralised, not entirely skewed. In other words, smaller MSE means the
prediction has smaller errors, where the errors measured by the dispersion of data value
from its mean. However, very small MSE performance value means the data is being
overfit. In developing prediction models, it is important to ensure the data is not overfit
and underfit. Hence, low MSE has smaller error which results in better prediction results.

The accuracy of the current model is compared with the previous studies published in
the last decade together with the sample size, methods used and input and out variables
as shown in Table 7. Previous studies mostly collected the recycled aggregates from the
construction site and various sources while this study specifically provides the use of blast
furnace slag. It is found that the accuracy of the current model seems to provide an accurate
and precise results in comparison to the previous studies while the number of sample sizes
of the current model is much larger than those in the past. This has proven that the current
model is sufficient for predicting the recycled concrete strength by introducing the input
variables into the model.

Table 7. Summary of the previous works on prediction model of recycled concrete.

Reference Sample Size Method R2 Day Remark

[31] 139 ANN 0.82 -

Type of recycled aggregate: Various sources
Input: w/c ratio, water absorption, fine aggregate,
recycled coarse aggregate, natural coarse
aggregate, water-total material ratio
Output: Compressive strength

[32] 40 ANNS 0.99 28

Type of recycled aggregate: Not specify (recycled
aggregate collected from the different sources of
construction and demolition waste)
Input: Water, cement, fine aggregate, coarse
aggregate and recycled aggregate
Output: Compressive strength and tensile
strength

[33] 74 CNN - 7, 28

Type of recycled aggregate: Not specify (recycled
aggregate collected from the pier of an abandoned
highway bridge)
Input: w/c ratio, recycled coarse aggregate
replacement ratio, recycled fine aggregate
replacement ratio and fly ash replacement ratio
Output: Compressive strength

[37] 17 ANN, RSM 0.99, 0.98 7, 28, 56

Type of recycled aggregate: Not specify
Input: Cement content, ratio of recycled concrete
aggregates, slump
Output: Compressive strength

[34] 40

Genetic
Algorithm-

Back
Propagation

(GABP)

- 28

Type of recycled aggregate: A combination of
recycled aggregate and vitrified micro bead
thermal insulation concrete
Input: Water binder ratio, cement, silica,
admixture, recycled aggregates, apparent density,
water absorption rate
Output: Compressive strength

[35] 5 ANN 0.99 7, 28

Type of recycled aggregate: Lathe Waste Steel
Fibre (LWSF)
Input: Ordinary Portland cement, w/c ratio, age,
granite, river sand, recycled aggregate
Output: Compressive strength and tensile
strength
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Table 7. Cont.

Reference Sample Size Method R2 Day Remark

This study 1030 ANN 0.94

1, 3, 7, 14
28, 56, 90,
180, 279,

365

Type of recycled aggregate: Blast furnace slag as
recycled aggregate
Input: cement, water, coarse aggregate, fine
aggregate, superplasticizer, fly ash, blast furnace
slag, and age
Output: Compressive strength

4.2. Predicted Recycled Aggregates Compressive Strength

The predicted recycled aggregates compressive strength (highest and lowest compres-
sive strength) is shown in Table 8.

Table 8. The highest and lowest predicted recycled aggregates compressive concrete strength.

Parameter Unit Value

Cement kg/m3 0.15932 0.04789
Blast Furnace Slag kg/m3 0.07723 0.07181

Fly Ash kg/m3 0 0
Water kg/m3 0.05962 0.08999

Superplasticizer kg/m3 0.00898 0
Coarse Aggregate kg/m3 0.38601 0.41488

Fine Aggregate kg/m3 0.30883 0.37543
Age Day 91 3

Concrete Compressive Strength MPa 82.60 2.332

Based on Table 8, from the 1030 data sets of concrete mixtures which comprise of
8 parameters such as cement, blast furnace slag, fly ash, water, superplasticizer, coarse
aggregate, fine aggregate and age, the highest recycled aggregate concrete compressive
strength predicted is 82.60 MPa. The lowest highest recycled aggregate concrete compres-
sive strength predicted is 2.332 MPa, which shows there is a huge difference between the
highest and the lowest predicted compressive concrete strength. The significant difference
was ultimately influenced by the age of the recycled aggregate. The lowest concrete com-
pressive strength is only 3 days old, while the highest concrete compressive strength is
91 days old.

Apart from that, the value of the superplasticizer of the lowest concrete compressive
strength is zero compared to highest concrete compressive strength is 0.00898 kg/m3. On
the other hands, the cement composition for the lowest concrete compressive strength
is only 0.004789 kg/m3, lower than the highest predicted concrete compressive strength
where the cement composition is 0.15932 kg/m3.

However, the industrial concretes compressive strength mostly is tested at the age of
28 days old as the concrete achieve 90% of its designated strength at 28 days old [38].

The highest predicted concrete compressive strength for the recycled aggregates is
81.751 MPa while the lowest is 8.5357 MPa as shown in Table 9. Both recycled aggregates
are 28 days old but there is a huge difference in terms of the concrete compressive strength.
The cement composition for the highest concrete compressive strength recycled aggregates
is 0.12712 kg/m3, while the lowest concrete compressive strength has 0.07199 kg/m3. The
blast furnace slag for the highest value of concrete compressive strength is 0.00528 kg/m3,
the lowest value contains zero blast furnace slag. The 81.751 MPa does not contain any fly
ash, while the 8.5357 MPa composed of 0.08884 kg/m3 of fly ash. Moreover, the lowest
value composed of 0.10023 kg/m3 of water which is two times of the water composition of
the 81.751 MPa. The other parameter does not show any significant difference in terms of
parameter compositions.
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Table 9. The highest and lowest predicted recycled aggregates compressive concrete strength for
28 days old.

Parameter Unit
Value

Max Min

Cement kg/m3 0.13723 0.07199

Blast Furnace Slag kg/m3 0.00528 0

Fly Ash kg/m3 0 0.08884

Water kg/m3 0.05852 0.10023

Superplasticizer kg/m3 0.00238 0.00501

Coarse Aggregate kg/m3 0.45603 0.40911

Fine Aggregate kg/m3 0.30066 0.32483

Age Day 28 28

Concrete Compressive Strength MPa 81.751 8.5357

However, based on Tables 8 and 9, the age, cement and water compositions greatly
affect the recycled aggregates concrete compressive strength. It is known that the wa-
ter/cement ratio influenced the performance of the concrete in terms of strength and
durability when it is completely cured. In concrete mix design, the ratio of the amount of
water to the amount of cement used is called water to cement ratio. The water–cement
ratio depends on the application of the concrete. In short, the greater the amount of water
in a concrete mix, the more dilute the cement. Thus, the concrete compressive strength,
tensile strength, flexural strength, porosity, shrinkage and colour are affected [39].

This is where the superplasticizer plays the role. The superplasticizer is an admixture
where it acts as water-reducing retarders. The admixtures are mix with the concrete to
achieve certain workability at a low water–cement ratio. This results in concrete with a
specified strength at lower cement content where this method eventually saves the usage
of the cement [40].

In Table 9, the highest value of concrete compressive strength, 81.751 MPa, contains
0.00238 kg/m3 superplasticizer which is slightly lower than the 8.5357 MPa, where it con-
tains 0.00501 kg/m3. Even though the 81.751 MPa has lower water composition compared
to 8.5357 MPa, it contains 0.00528 kg/m3 of blast furnace slag while for the 8.5357 MPa,
it contains 0 kg/m3 of blast furnace slag. Blast furnace slag used as a binder material
to improve the properties of the concrete in terms of strength, watertightness, chemical
resistance and ion permeation resistance [41].

Meanwhile, there is 0 kg/m3 of fly ash for the 81.751 MPa concrete compressive
strength, while 8.5357 MPa contain 0.8884 kg/m3 of fly ash. Fly ash is fine ash produced
at coal-fired power plants which can be used as prime material in many cement-based
products to improve the workability, durability and the strength of the concrete [42].
Although the 81.751 MPa does not contain any fly ash, it came out stronger than the
8.5357 MPa. This is due to the cement, water, superplasticizer and the blast furnace slag
composition, which greatly affect the concrete compressive strength of the 28 days old
recycled aggregates. The fly ash and blast furnace slag ratio also influenced the concrete
compressive strength [43].

5. Conclusions

In this paper, three ANN prediction models have been developed to further study
the impact of recycled aggregates on the strength of recycled concrete. ANN is utilised to
train 8 elements of the recycled concrete to predict the concrete compressive strength of
the recycled concrete from 1030 datasets. The three different models delivered different
performances in terms of MSE and R2. Several modifications have been made to distinguish
the three types of ANN prediction model, where model 1 (1 hidden layer with (50) number
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of neurons in hidden layers), model 2 (2 hidden layers with (50 10) number of neurons in
hidden layers) and model 3 (2 hidden layers with activation function, (60 3) number of
neurons in hidden layers). The increase of hidden layers and neurons in hidden layers and
customisation of activation functions has been done in order to improve the performance
of the ANN prediction model. The following key findings can be drawn as follows:

• Due to an extremely complex nonlinear relationship between mix ratio and the con-
crete strength, a machine learning prediction model is a reliable tool for the design
mixture for the target concrete strength. The proposed models present the correlation
coefficient of 0.92–0.94 and mean square error of 22.11–34.81.

• The increase in the number of hidden layers and the number of neurons in hidden
layers with customisation of activation function improves the performance of the
ANN prediction model in terms of MSE.

• Model 3, with 2 hidden layers with activation function, (60 3) number of neurons in
hidden layers, delivers the best performance with MSE value of 22.11, which indicates
that this model has a smaller error and reliable prediction results. Thus, Model 3 is
the most reliable model to predict the compressive strength of the recycled aggregate
concrete.

Researchers can use this model to predict the concrete compressive strength with
the consideration of blast finance slag as a recycled aggregate by inserting the concrete
mix proportions including cement, water, fine aggregate, coarse aggregate, day, fly ash,
superplasticizer and blast finance slag. It is noted that fly ash, superplasticizer and blast
finance slag can be excluded in the current model as the datasets also contain the mix
proportion without them.

Note that the number of datasets is limited in this study due to the lack of experimental
data. Hence, more datasets need to be collected for future research. Once more datasets
are collected, the more accurate prediction model with different inputs and outputs can
be further investigated. As proven, that replacing the aggregates by recycled aggregates
can greatly influence the concrete compressive strength so that it is also essential to try
other types of recycled aggregates to find the best cost-effective and efficient aggregate for
use in concrete in the future. It will be useful to enhance the properties and proportions
relationship to the microstructure of concrete to understand its linkage and physical and
chemical contributions from additives and admixtures that can be applied in the model.
Thus, it is recommended to improve the prediction model in the future by including more
input and output parameters for a better outcome and benefits to the engineers.
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