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The role of the environment in transmission of
Dichelobacter nodosus between ewes and their lambs

Mohd Muzafar a, Leo A. Calvo-Bado a, Laura E. Green a, Edward M. Smith a,
Claire L. Russell b,1, Rose Grogono-Thomas b, Elizabeth M.H. Wellington a,*
a School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
b Department of Clinical Veterinary Sciences, University of Bristol, Langford House, Langford BS40 5DU, UK

1. Introduction

Footrot is an economically important disease of sheep.
The aerotolerant anaerobe Dichelobacter nodosus (D. nodosus)
is the essential causative agent (Beveridge, 1941) and

Fusobacterium necrophorum has been suggested as a
secondary bacterium after the development of disease
(Beveridge, 1941; Witcomb et al., 2014). The disease is
present worldwide and accounts for annual losses of
between £24 and £84 million to the UK sheep industry
alone (Nieuwhof and Bishop, 2005; Wassink et al., 2010). The
severity of ovine footrot can vary from mild interdigital
dermatitis (synonymous with benign footrot in Australian
research) to virulent footrot causing severe under-running of
the hoof horn with separation from the underlying tissue
(Stewart, 1989). D. nodosus can be detected on the feet of
sheep with no sign of disease (Calvo-Bado et al., 2011b;
Witcomb et al., 2014) but the load is higher both before and
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A B S T R A C T

Dichelobacter nodosus (D. nodosus) is the essential causative agent of footrot in sheep. The

current study investigated when D. nodosus was detectable on newborn lambs and

possible routes of transmission. Specific qPCR was used to detect and quantify the load of

D. nodosus in foot swabs of lambs at birth and 5–13 h post-partum, and their mothers 5–

13 h post-partum; and in samples of bedding, pasture, soil and faeces. D. nodosus was not

detected on the feet of newborn lambs swabbed at birth, but was detected 5–13 h after

birth, once they had stood on bedding containing naturally occurring D. nodosus. Multiple

genotypes identified by cloning and sequencing a marker gene, pgrA, and by multi locus

variable number tandem repeat analysis (MLVA) of community DNA from swabs on

individual feet indicated a mixed population of D. nodosus was present on the feet of both

ewes and lambs. There was high variation in pgrA tandem repeat number (between 3 and

21 repeats), and multiple MLVA types. The overall similarity index between the

populations on ewes and lambs was 0.45, indicating moderate overlap. Mother offspring

pairs shared some alleles but not all, suggesting lambs were infected from sources(s) other

than just their mother’s feet. We hypothesise that D. nodosus is transferred to the feet of

lambs via bedding containing naturally occurring populations of D. nodosus, probably as a

result of transfer from the feet of the group of housed ewes. The results support the

hypothesis that the environment plays a key role in the transmission of D. nodosus

between ewes and lambs.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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during episodes of interdigital dermatitis and virulent footrot
than on healthy feet (Witcomb et al., 2014).

Temporal clustering of footrot between mothers and
offspring was observed in a state transition study of factors
associated with development of, and recovery from,
footrot. Given that families cluster spatially this suggests
spatiotemporal transmission of D. nodosus between family
members (Kaler et al., 2010). D. nodosus has been isolated
from pasture and barns where sheep are kept, indicating
that contamination of the environment occurs (Witcomb,
2012). Contaminated holding areas have also been shown
to cause disease in sheep put into such environments up to
2 weeks from initial seeding (Beveridge, 1941; Whittington,
1995). Recent work has indicated that D. nodosus can
survive up to 14 days at 5 8C in soil, and at least 24 days
when hoof material was present (Cederlof et al., 2013) and
under certain conditions, D. nodosus has survived for at
least 40 days in soil microcosms (unpublished data),
however, further work is required to determine if survival
is at a dose that could cause disease in sheep.

Multiple strains of D. nodosus detected by serogroup
typing have been reported to co-exist in individual feet
during subclinical and clinical infections (Claxton et al.,
1983; Hindmarsh and Fraser, 1985; Jelinek et al., 2000;
Moore et al., 2005). Molecular detection of strain
differences is now possible using typing the pgr locus
and by MLVA of D. nodosus (Calvo-Bado et al., 2011a;
Russell et al., 2014).

The aims of this study were to investigate whether
D. nodosus was present on the feet of newborn lambs at or
after birth and the potential role played by the environ-
ment in pathogen transmission.

2. Materials and methods

2.1. Selection of animals

In April 2011 10 ewes with no clinical signs of disease
and one lamb per ewe were convenience selected from a
flock of 99 Mule and Suffolk crossbred ewes. Ewes were
housed on the 28th March 2011, and samples collected on
the 1st–6th April 2011 (Supplementary Table 1). Lambs
were born in a large communal straw bedded pen, ewes
and their lambs were moved to individual pens once the
ewe had given birth to all her lambs. Sampled lambs were
marked with tape so they could be identified for
subsequent sampling.

2.2. Collection of environmental and foot swab samples

Environmental samples were taken in March prior to
lambing and included swab samples of 30 fresh hoof prints
in soil, four soil samples from the area around water
containers, 10 samples of faecal material on the ground and
compacted in the interdigital space and three straw samples
collected from the storage area. In April, 10 straw bedding
samples were collected from the communal pen where
pregnant ewes were housed. All samples were stored at 4 8C
for transportation and at �80 8C until analysed. All four feet
of each lamb was swabbed using sterile cotton swabs
(EUROTUBO collection swab; Delta lab, Rubi, Spain) directly

after birth and before the lamb touched the ground. The
lamb and its dam were sampled 5–13 h later once the lamb
had stood and been transferred, with its mother, to an
individual pen. Swabs were stored at 4 8C for transportation
and at �80 8C on arrival at the laboratory.

2.3. Detection limit assay by direct PCR and nested PCR from

swabs

The D. nodosus strain VCS1703A was used as a positive
control for all PCR reactions. To determine the PCR
detection limits, cells were harvested from a 5 d culture
grown on 2% hoof agar, and 10-fold serial dilutions (10�1 to
10�10) were made in triplicate in sterile phosphate
buffered saline (PBS). The numbers of cells in the initial
concentration and all dilutions were counted using a
haemocytometer. Sterile swabs were inoculated with
500 ml of each dilution, and frozen at �20 8C to produce
swabs containing a known bacterial load. Microbial DNA
was extracted from swabs as described below and the DNA
used to determine assay detection limits.

2.4. DNA extraction from swabs

Total genomic DNA was extracted using the NucleoSpin
Tissue Kit (Macherey-Nagel, GmbH and Co, Düren,
Germany) with modifications. Swabs were thawed at
4 8C and 400 ml of buffer T1 was added followed by 40 ml of
proteinase K. The samples were vortexed twice for 5 s and
incubated for 10 min at 56 8C. The mixtures were
transferred to microcentrifuge tubes and 400 ml of buffer
B3 was added. The samples were vortexed twice for 5 s and
incubated for 5 min at 70 8C then allowed to cool before
adding 400 ml of 100% ethanol. The samples were again
vortexed twice and the supernatant transferred to a
NucleoSpin Tissue column and centrifuged at 11,000� g

for 1 min. The flow-through was discarded, the membrane
was washed with 500 ml of buffer B5 and centrifuged at
11,000� g for 1 min. The flow-through was again dis-
carded, the column was washed with 600 ml of buffer B5
and centrifuged at 11,000� g for 1 min. The flow-through
was again discarded and the membrane dried by
centrifugation at 11,000� g for 1 min to remove residual
ethanol. The DNA was eluted into 40 ml of elution buffer,
warmed to 70 8C and centrifuged at 11,000� g for 1 min
and the resultant DNA was stored at �20 8C.

2.5. DNA extraction from soil and faeces

DNA was extracted from soil and faecal samples (one
gram each) using the Fast DNA Spin Kit for soil (QBiogene,
Carlsbad, CA, USA) according to the manufacturer’s
instructions, and eluted in 70 ml DES (DNase/Pyrogen Free
Water). Sterile soil (autoclaved twice at 121 8C for 15 min)
was used as negative controls for each set of extractions.
The resultant DNA was stored at �20 8C.

2.6. DNA extraction from bedding

One gram of each of 10 bedding samples was thawed,
and suspended in 40 ml of transport buffer (sterile PBS
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containing 20 mM Na2 EDTA; pH 8.0). The samples were
shaken for 1 h at 37 8C followed by centrifugation for
15 min at 13,523� g at 4 8C. The supernatant was removed
and the pellet resuspended in 2 ml sterile PBS. DNA was
extracted from 200 ml of this solution using the NucleoSpin
Blood kit (Macherey-Nagel, GmbH and Co, Düren,
Germany) according to the manufacturer’s recommenda-
tions, and DNA was stored at �20 8C.

2.7. End point and nested PCR

PCR amplifications were performed using an Eppendorf
vapo.protect Mastercycler (Eppendorf, Hamburg,
Germany). Each 50 ml reaction contained 25 ml Promega
PCR master mix (Promega, Southampton, UK), 1.0 ml each
of primers Cc and Ac [10 mM] (La Fontaine et al., 1993)
(Table 1), 2.5 ml of dimethyl sulfoxide (Fisher Scientific,
Leicestershire, UK), 2 ml bovine serum albumin
[10 mg ml�1] (Sigma–Aldrich Ltd., Poole, Dorset, UK),
16.5 ml of nuclease free water and 2 ml of template DNA.
For direct detection of D. nodosus, PCR was performed
using Cc and Ac primers (La Fontaine et al., 1993) (Table 1)
under the following conditions: 1 cycle of 95 8C for 2 min,
40 cycles of 95 8C for 1 min, 60 8C for 45 s and 72 8C for
2 min and a final extension step of 72 8C for 5 min.
Samples that were negative using this approach, were
tested further using nested PCR. In the first round 16S

rRNA universal primers 27F and 1525R (Table 1) (Baker
et al., 2003; Lane, 1991) were used in the conditions
described above but with an annealing temperature of
55 8C, 1 ml of this product was used in the second round of
PCR as described above. The PCR products were visualised
under UV light.

2.8. Quantitative PCR of D. nodosus

The load of D. nodosus was determined using the
Applied Biosystems 7500 Fast real-time detection system
(Applied Biosystems, Warrington, UK). The qPCR targeted
the rpoD gene (RNA polymerase sigma 70 factor, single
copy number in D. nodosus genome) as described
previously (Calvo-Bado et al., 2011b). All PCR reactions
were performed in triplicate and each contained 12.5 ml
TaqMan Universal Master Mix (Applied Biosystems,
Warrington, UK), 2.25 ml each of rpoDF and rpoDR

[10 pmol ml�1], 0.625 ml rpoD probe [10 pmol ml�1]
(Table 1), 1.25 ml bovine serum albumin [10 mg ml�1],
5.375 ml nuclease free water and 1 ml of template DNA.
DNA dilutions of 1:10 were also used to investigate
potential inhibitors of the reaction. In addition, known
concentrations of target DNA were added to negative
samples as internal controls. A non-template control
(nuclease free water) was included in triplicate in all
PCR reactions. The reaction was carried out under the
following conditions: one cycle at 50 8C for 2 min, one cycle
at 95 8C for 10 min, followed by 40 cycles at 95 8C for 15 s
and 55 8C for 1 min. The rpoD copy number was estimated
based on the standard curve obtained from analysis of 10-
fold serial dilutions of DNA extracted from D. nodosus

strain VCS1703A.

2.9. Quantitative PCR assay for pgrA and pgrB

A fluorescent PCR was designed to increase the
sensitivity of detection of pgrA and B (Table 1). The
specificity of the pgrA and B primers was tested against
genomic DNA isolated from 11 bacterial species and from a

Table 1

All primers and probes used in the study.

Primer (50–30) Sequence Expected size

in VCS1703A (BP)

Reference

Cc TCGGTACCGAGTATTTCTACCCAACACCT 783 La Fontaine et al. (1993)

Ac CGGGGTTATGTAGCTTGC 783 La Fontaine et al. (1993)

27F AGAGTTTGATCMTGGCTCAG 1500 Lane (1991); Baker et al. (2003)

1525R AAGGAGGTGWTCCARCC 1500 Lane (1991); Baker et al. (2003)

pgrAF1 CCTGCACCATGCTTGTTAAA 290 Calvo-Bado et al. (2011a)

pgrAR1 GCTGTTGGTGGTTTGGCTAT 290 Calvo-Bado et al. (2011a)

M13F GTAAAACGACGGCCAG N/A Supplied in the cloning kit

M13R CAGGAAACAGCTATGAC N/A Supplied in the cloning kit

DNTR02F ( [1_TD$DIFF]FAM)-GATCCATCGTTTCATCGTCA 549 Russell et al. (2014)

DNTR02R CGCACTTTAGCCGTTATGTTT 549 Russell et al. (2014)

DNTR09F (VIC)-GGCGTAAACGAAATGCCTAA 987 Russell et al. (2014)

DNTR09R ATCGGCGGAAGATTGTCTC 987 Russell et al. (2014)

DNTR10F (NED)-CCGTCTATCCACCCGATTTA 626 Russell et al. (2014)

DNTR10R TTGAACCGCGTCACTATCAG 626 Russell et al. (2014)

DNTR19F (PET)-CCCGTCGAATCACTCCAG 854 Russell et al. (2014)

DNTR19R GGTAGCGCCGAAGAAAGA 854 Russell et al. (2014)

rpoDF GCTCCCATTTCGCGCATAT 61 Calvo-Bado et al. (2011b)

rpoDR CTGATGCAGAAGTCGGTAGAACA 61 Calvo-Bado et al. (2011b)

rpoD Taqman probe (6FAM)-CATTCTTACCGGKCG-(BBQ) 61 Calvo-Bado et al. (2011b)

pgrAF CATGAATGATAATATTTACCTTTTCGTT 298

pgrAR AAGATTGATGATGCTCCAGAAGAAG 298

pgrA Taqman probe (6FAM)-CCTGCACCATGCTTGTTAAACTCT

AATTTT-(BBQ)

298

pgrBF AAAGGTGATCTCAACTGTATCGTCAT N/A

pgrBR AATYARCARMGCCARAATTAGAGCTTAAT N/A

pgrB Taqman probe (6FAM)-TTTACCCGCACCGTKCT-(BBQ) N/A

FAM – Carboxyfluorescein, BBQ (Black Berry Quencher). BP is the size of fragment in base pairs.

M. Muzafar et al. / Veterinary Microbiology 179 (2015) 53–59 55



range of diverse environmental samples. D. nodosus DNA
from VCS1703A was used as a positive control and
genomic DNA from Escherichia coli and sterile water as
negative and no target controls respectively (Supplemen-
tary Table 2). The cycling conditions were modified slightly
from those described above by reducing the number of
cycles to 38 and 36 for pgrA and pgrB respectively.

2.10. Cloning and sequencing of pgrA amplicons

The pgrA gene was amplified using the primers pgrAF1
and pgrAR1 (Table 1; (Calvo-Bado et al., 2011a)) from the
DNA extracted from the foot swabs of five ewes (n = 14
feet) and their lambs (n = 10 feet) and cloned using the
TOPO TA Cloning Kit (Invitrogen Ltd., Paisley, UK). The
cloning reactions were set up following the manufacturer’s
recommendations. Transformations were carried out using
chemically competent (TOP10) E. coli cells (Invitrogen Ltd.,
Paisley, UK) with 50 mg ml�1 kanamycin. One-hundred
microliters of the resulting solution was cultured on LB plates
containing 50 mg ml�1 kanamycin. Fifty colonies per sample
were inoculated into individual wells of a 96-well plate, each
containing 50 ml sterile water. The samples were heated to
75 8C for 10 min, and 1 ml of this solution was used as a
template for PCR, resulting in analysis of 1200 transformants.
The PCR products were run on a 1% high resolution agarose gel
and visualised under UV light. The clones that showed
variation in size within each foot were inoculated into LB
media to provide sufficient biomass for plasmid DNA
extraction using the Qiagen MiniPrep kit (Qiagen, West
Sussex, UK). The plasmid DNA was digested using EcoR1 and
sequenced by GATC Biotech (London, UK) using the supplied
M13f and M13r primers (Invitrogen, Paisley, UK; Table 1). All
sequences [21_TD$DIFF]were deposited in GenBank[22_TD$DIFF] database under
accession numbers KR105403–KR105413.

2.11. Multi Locus VNTR analysis

The four D. nodosus tandem repeat (DNTR) loci were
amplified individually as described previously (Russell et al.,
2014) (Table 1) from the DNA isolated from the feet of all ewes
and lambs. Primer specificity was tested against genomic DNA
isolated from 11 bacterial species and from a range of diverse
environmental samples (Supplementary Table 2). D. nodosus

strain VCS1703A was included as a positive control for all PCR
reactions. The amplified products from the community DNA
were pooled in the ratio of 1:1:1:1 and submitted for fragment
analysis to the University of Dundee (DNA Sequencing &
Services, Dundee, Scotland). GeneScan 1200 LIZ dye (Applied
Biosystems, Warrington, UK) was used as a size standard in
fragment analysis. The data obtained were processed using
Peak Scanner Software (Applied Biosystems, Warrington, UK)
and analysed using T-REX (Culman et al., 2009) with a
minimum fragment length cut off [23_TD$DIFF]values of[24_TD$DIFF] 300 bp and
500 bp[25_TD$DIFF] for DNTR10 and DNTR19 respectively, peak height
baseline threshold of 40 and bin range of 4 bp.

2.12. Statistical analysis

To determine the strain overlap between all ewes and
lambs defined by MLVA, the coincidence index of overlap

was calculated using the formula: C = 2B/(E + L), where
C = coincidence index of overlap, B = occurrence of the
same allele in ewes and lambs, E = occurrence of the allele
in ewes, L = occurrence of the allele in lambs. Results can
range from C = 0, no overlap between ewes and lambs to
C = 1, identical strains occur in both ewes and lambs (Dice,
1945).

The rpoD copy number in ewes and lambs was not
normally distributed. Therefore, a Mann–Whitney U test
(Mann and Whitney, 1947) was used to test for differences
in copy number between ewes and lambs.

3. Results

3.1. D. nodosus copy number detection limit and its

persistence in the environment

End point PCR and qPCR data of the inoculated swabs
suggested that the minimum detection level was 104 cells
and 102 rpoD genome equivalents (i.e. 102 cells) per swab
respectively assuming 100% DNA recovery. Below this
concentration, detection was not reproducible. D. nodosus

was detected by end point PCR in 5/10 faecal samples/balls
from the interdigital space, 2/10 straw bedding samples
collected after ewes were housed, 5/30 fresh hoof prints
and 2/4 soil samples taken from the areas surrounding
water containers. However qPCR analysis revealed that
D. nodosus was present at loads of 102–104 rpoD genome
equivalents per gram in all the used straw bedding samples
and 103–104 rpoD genome equivalents per gram in all the
faecal samples. Quantitative PCR also confirmed that
D. nodosus was not detectable in the three stored straw
samples (Fig. 1).

3.2. Quantification of D. nodosus in ewes and lambs

D. nodosus was not detected in lambs’ feet at birth but
was detected in all lambs and ewes 5–13 h later after their
feet had touched the floor initially in a large communal
pen, and subsequently in an individual pen. D. nodosus was
detected on 39/40 (97.5%) of ewes’ feet and 39/40 (97.5%)
of lambs’ feet (Fig. 2). Whilst overall the population loads
were significantly higher in ewes than lambs (Mann–
Whitney U test; p-value< 0.001); analysis of ewe/lamb pairs
suggested only ewes 2, 3 and 5 had a higher load than their
lambs. The D. nodosus load ranged from 103 to 105 rpoD

genome equivalents per swab in lambs and 102–107 rpoD

genome equivalents per swab in ewes (Supplementary Fig. 1).

3.3. Detection of pgr variants in the community DNA

pgrA was detected on 23/40 (57.5%) of ewes’ feet and
15/40 (37.5%) of lambs’ feet, whereas pgrB was detected on
27/40 (67.5%) of ewes’ feet and 22/40 (55%) of lambs’ feet
(Fig. 2). Both variants pgrA and pgrB were detected on eight
ewes and nine lambs.

Forty-two pgrA clones were sequenced from 14 foot
swabs from five ewes and 10 foot swabs from five lambs.
This resulted in the detection of 11 variants containing
3–21 tandem repeats in the R1 region, with 2–6 variants
per animal (Table 2). Multiple pgrA variants with varying
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numbers of tandem repeats were observed in a single foot
swab (data not shown).

3.4. Molecular typing MLVA from the community DNA

Alleles at D. nodosus tandem repeat DNTR19 were
detected on the feet of six ewes and their lambs whereas
for DNTR10 alleles were only detected on two ewe/lamb

pairs (Table 3) (Supplementary Fig. 2). The fluorescent data
for DNTR09 was below the peak height threshold level (40
fluorescence units) and DNTR02 primers demonstrated
some non-specific binding, so were excluded from the
analysis. For both loci (DNTR10 and DNTR19), one or two
alleles occurred in lambs, but there was greater diversity in
ewes, with up to six alleles detected (Table 3). As detectable
diversity in ewes increased, so did the likelihood of

[(Fig._1)TD$FIG]

Fig. 1. Presence of D. nodosus in the environmental samples. Absolute quantification of rpoD gene in bedding samples from the storage area, used bedding

samples and faeces compacted within the interdigital space. Each bar is the average of triplicate analyses, error bars represent� standard deviation.

[(Fig._2)TD$FIG]

Fig. 2. Detection of pgr variants in the community DNA. Presence of pgrA, pgrB and rpoD on the feet of 10 ewes and 10 lambs. pgrA/B was absent/below the

detection limit in the samples where no data is shown. (E = Ewe; L = Lamb).
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detecting the same strain on its offspring. The overall
coincidence index of overlap between ewes and lambs was
0.45.

4. Discussion

In the current study we demonstrated, for the first time,
that lambs are born free from D. nodosus (given the
sensitivity of the tests used) but that we were able to
detect high levels of D. nodosus on foot swabs within a few
hours of birth. The most likely route of transmission is from
standing on contaminated bedding in communal pens,
however, recent work (Witcomb, 2012) indicated that
D. nodosus can be detected in the mouths of ewes, so
transmission might also have occurred as the lamb was
being cleaned by the ewe after birth. Quantitative PCR with
specific primers is widely used to determine bacterial load
from swabs (Fredricks et al., 2009; Jaton et al., 2006; Lund
et al., 2004) especially when studying disease development
over time (Srinivasan et al., 2010). Here, as elsewhere
(Witcomb et al., 2014) qPCR of rpoD was used to determine
D. nodosus load on the feet of ewes and lambs. It was
striking that such a large D. nodosus population was
present on the feet of lambs within a few hours of birth.
This suggests that D. nodosus might be an early coloniser of

lambs’ feet, although, it could be that naı̈ve feet are simply
colonized by the first bacterial species they encounter.

Several serogroups of D. nodosus on individual feet have
been reported elsewhere (Claxton et al., 1983; Hindmarsh
and Fraser, 1985; Jelinek et al., 2000; Moore et al., 2005)
but not using the typing methods used in the current study
where both pgr data and MLVA provided evidence for the
occurrence of multiple strains in most animals studied. Not
all the D. nodosus strains detected on the feet of lambs were
on their mother’s feet, indicating that the strains detected
on lambs’ feet originated from sources additional to their
mothers’ feet, most likely contaminated bedding in the
communal pen. In addition, not all the strains detected in
ewes were present in their offspring. It is possible that the
specific variants on the ewes were not detected by chance,
or were present below the minimum detection level or that
only some of the strains were transferred via bedding.

Given the survival time of D. nodosus off host and the
D. nodosus-negative stored straw samples, the most
probable source of D. nodosus was the population of ewes
in the communal pen. Methods to reduce the load of
D. nodosus in ewes and the environment would probably
have the biggest impact on transmission to newborn
lambs. Management strategies that have been linked to a
reduction in footrot prevalence and incidence include
rapid appropriate treatment of diseased sheep (Kaler et al.,
2010; Wassink et al., 2010), segregation of diseased sheep
and footbathing healthy sheep (Wassink et al., 2004).

The identification of transmission routes and under-
standing the role of the environment is critical for the
control of footrot. Previous studies have highlighted that
diseased sheep are a reservoir of infection (Green et al.,
2007; Kaler et al., 2010; Smith et al., 2014; Whittington,
1995), although transmission occurs indirectly via con-
taminated pasture or floors (Beveridge, 1941; Whittington,
1995). The current study has demonstrated that the
environment potentially forms at least a temporary
reservoir of infection for lambs because D. nodosus was
detected in the straw bedding in the communal pens, and
lambs have strains of D. nodosus on their feet not detected
on their mother’s feet.

The fact that lambs were D. nodosus-negative at birth
suggests that it might be possible to produce D. nodosus-
free lambs without the need for a caesarean birth. This
finding is of interest to those performing challenge studies
on pathogen-free individuals. At the practical, farm level
this information might also be useful in countries that have
eradicated footrot. In countries where footrot is endemic,
even if lambs could be kept D. nodosus-free around lambing
time, it is highly unlikely that this status could be
maintained because of the high levels of infection in ewes.
Reducing initial exposure (as suggested above) might be
beneficial to subsequent disease severity, however, it
might be detrimental if later age at first exposure increases
disease severity.

5. Conclusions

We have provided evidence that lambs are born
D. nodosus-negative, but within hours of birth several
strains of D. nodosus are detectable on their feet. The

Table 2

Distribution of pgrA R1 tandem repeats in five pairs of ewes and lambs (14

ewe and 10 lamb feet).

Ewe/Lamb ID Number of clones

sequenced

Number of

pgrA tandem repeats

in the R1 region

[8_TD$DIFF]E 1 6 3, 4, 5, 11, 13, 16

[9_TD$DIFF]L 1 4 4, 11, 12, 16

[8_TD$DIFF]E 2 3 4, 11, 15

[9_TD$DIFF]L 2 5 3, 4, 6, 11, 16

[8_TD$DIFF]E 3 4 6, 15, 16, 21

[9_TD$DIFF]L 3 2 16, 20

[8_TD$DIFF]E 4 4 4, 6, 11, 13

[9_TD$DIFF]L 4 5 4, 6, 11, 12, 16

[8_TD$DIFF]E 5 4 5, 12, 15, 16

[9_TD$DIFF]L 5 5 4, 11, 12, 15, 16

Table 3

DNTR19 and DNTR10 allelic distribution between six and two pairs of

ewes and lambs.

ID DNTR19 DNTR10

3+ 4 5 6 7 8 Total 3 4 7 9 10 Total

E 1 1 1 1 1 1 1 6 1 1 1 1 1 5

L 1 0 0 0 1 0 0 1 1 0 0 0 0 1

E 2 1 1 0 1 0 0 3 1 0 0 1 0 2

L 2 1 0 0 0 0 0 1 1 0 0 0 0 1

E 3 0 1 0 0 0 0 1

L 3 1 0 0 0 0 0 1

E 4 0 1 1 0 0 0 2

L 4 0 0 0 1 0 0 1

E 5 1 1 1 1 1 0 5

L 5 0 0 0 0 1 0 1

E 6 0 1 0 0 0 0 1

L 6 0 0 0 0 0 1 1

+ The numbers given in the table heading are the number of tandem

repeats.
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strains detected were a combination of those present on
their mother’s feet and on the feet of other ewes. Straw
bedding in the communal pen was D. nodosus-positive and
the most likely source of D. nodosus for newborn lambs.
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