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Abstract

Active Learning for discriminative models has largely

been studied with the focus on individual samples, with less

emphasis on how classes are distributed or which classes

are hard to deal with. In this work, we show that this is

harmful. We propose a method based on the Bayes’ rule,

that can naturally incorporate class imbalance into the Ac-

tive Learning framework. We derive that three terms should

be considered together when estimating the probability of a

classifier making a mistake for a given sample; i) probability

of mislabelling a class, ii) likelihood of the data given a pre-

dicted class, and iii) the prior probability on the abundance

of a predicted class. Implementing these terms requires a

generative model and an intractable likelihood estimation.

Therefore, we train a Variational Auto Encoder (VAE) for

this purpose. To further tie the VAE with the classifier and

facilitate VAE training, we use the classifiers’ deep feature

representations as input to the VAE. By considering all three

probabilities, among them, especially the data imbalance,

we can substantially improve the potential of existing meth-

ods under limited data budget. We show that our method

can be applied to classification tasks on multiple different

datasets – including one that is a real-world dataset with

heavy data imbalance – significantly outperforming the state

of the art.

1. Introduction

Active learning focuses on efficient labelling of data and

has drawn much interest lately [38,41,48], due to deep learn-

ing being attempted at new domains, such as biomedical

imaging [3, 16] and industrial imaging [27, 49], where ac-
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Figure 1. Class matters – We show an example where existing

methods fail to identify important samples to put into the updated

training set. We show the importance metrics given by various

methods – DBAL [10], CoreSet [38], Max. Entropy [45], and our

method – for selected images when the dataset is dominated by

plane images. We further show below each image, the ground-truth

class y and the predicted class ŷ. Because of the data imbalance,

existing methods heavily favour the plane class, even when the

results are correct, as seen on the left. And for rare classes in the

right column, they fail to recognise that the samples are important,

which leads to the improved performance. On the other hand, our

method correctly identifies them as important, by considering also

the class difficulty and the class prior.

quiring data can be costly [39]. Even for cases where data

is not scarce, the effective usage of data may reduce train-

ing time, therefore the computational cost, including carbon

foot-prints required to train each model. There have been

various studies based on semi-supervised [7, 21] and unsu-

pervised [37, 46] learning schemes to improve the training

efficiency of data. However, with limited labelling budget,

the performance of the studies are significantly worse to the



supervised learning with the additionally labelled data [35].

In other words, their label efficiency could be improved.

Existing methods [4, 10, 38, 41, 48], regardless of how

they are formulated, have a common underlying assumption

that all classes are equal – they do not consider that some

classes might just be harder to learn compared to others, or

some classes might be more prevalent in the dataset than

others. Instead, they focus on, given a data sample, how

much error a trained model is expected to make, or the

estimated uncertainties [10, 48]. These assumptions could

be harmful, as in practice, since data is often imbalanced

and not all classes are of the same difficulty [1,51]. This can

create a bias in the labelled data pool, leading to the trained

classifier and active learning methods also being biased in

deciding which samples to the label. As we show in Fig. 1,

this can damage the capabilities of an active learning method

significantly, even for typical benchmark datasets [6, 22].

In this work, we present a novel formulation for active

learning, based on the classical Bayes’ rule that allows us

to incorporate multiple factors of a classification network

together. Through derivation, we show that the probability

of a classifier making mistakes can be decomposed into three

terms; i) the probability of misclassification for a given pre-

dicted class, ii) the likelihood of a sample given predicted

class, and iii) the prior probability of a class being predicted.

In other words, one needs to take into account i) the diffi-

culty of a class, ii) the performance of the classifier and iii)

the abundance of a certain class of data holistically when

determining the potential of a classification error. We take

all of them into account and choose samples to be labelled

by selecting those that have the highest misclassification

probability.

While the task is discriminative, our method requires

the estimation of likelihood, which could be intractable.

We, therefore, propose to use a Variational Auto Encoder

(VAE) [20] to model the lower bound of the likelihood of a

sample. To make VAE conditioned on a predicted label, a

naive way would be applied to train multiple VAEs for each

predicted class. However, this quickly becomes impractical

with a large number of classes. We thus propose to train

a single VAE, with regularisation that acts as conditioning

based on the predicted label. To further tie the VAE with the

classifier, and for quick training of the VAE, we use the deep

feature representations of the classifier as inputs to the VAE.

Being generative, this training of VAE does not involve any

labels, and we utilise the vast amount of unlabelled data with

their predicted labels while inferring probabilities that are

independent of data samples on the labelled ones.

We show empirically in Section 4 that our method al-

lows a significant leap in performance for the benchmark

dataset and the real application dataset, especially when the

labelling budget is highly limited. Furthermore, we posit

that considering the prior, that is, the distribution of labels

during training, is critical when analysing the uncertainty of

estimates.

In summary, our contributions are four-fold:

• we derive a novel formulation for active learning based

on the Bayes’ rule and posterior probability;

• we propose a framework based on VAE that realises

this formulation;

• we reveal that considering the differences between

classes – abundance and difficulty – is important;

• we outperform the state of the art in the various experi-

ments.

2. Related Works

Traditional Active Learning. Increasing the label effi-

ciency, thus reducing the cost associated with obtaining

labels, has been of interest for decades. Even before deep

learning became popular, various methods were suggested

towards this goal [39]. Methods were proposed to estimate

the uncertainty of the unlabelled samples through the prob-

ability of prediction [24], the difference between the best

prediction and the second one [25, 30, 36], or the entropy

covering all the possible classes [17, 40]. For support vector

machine classifiers the methods were suggested to utilise the

distance from the decision boundary, for both the classifica-

tion task [26,43] and the detection task [44]. The algorithms

clustering and finding representative samples were also sug-

gested as another way [2, 12, 32].

Discrete optimisation algorithms have been proposed to

consider the relationship between the sampling result and

the model performance [8, 11, 47]. In a voting scheme-based

algorithm [31], multiple different models are trained by the

labelled pool, which determines the next queries according

to their disagreement. Despite these efforts, the classical

approaches are geared towards simple features and may hold

limitations when applying to a large deep network with many

nonlinear estimations.

Active Learning for deep networks. Active learning algo-

rithms for deep networks can be categorised into uncertainty-

based methods and representation-based methods. The

uncertainty-based methods aim to select the uncertain sam-

ples from the unlabelled data pool and annotate them to

increase the labelled pool [4, 10, 48]. Yoo and Kwon [48]

proposed to use a small auxiliary “module” network predict-

ing the training loss of the baseline network that is being

trained with the active learning scheme. They then select the

samples that are expected to give high losses. While their

method is similar to ours in that an additional network is

trained, as they require a ground-truth loss value while train-

ing, the auxiliary network can only be trained with labelled

data, creating yet another network that the performance de-

pends on how data is sampled. In contrast, we train our

VAE with unlabelled data since we only rely on the pre-



dicted labels from the baseline network during training, and

result in stable performance even with few labelled data.

Gal et al. [10] proposed a method based on the estimation of

sample-wise posterior probability through a Bayesian deep

learning [9] framework. The method can be implemented

simply by locating several dropout layers in a deep network,

but this increases training time significantly until the conver-

gence. Beluch et al. [4] suggest an active sampling method

that estimates the disagreement of the prediction by using

multiple deep networks. The downside of their method is

that, as they use multiple networks, the memory and the

computational requirement increases proportionally.

The representation-based methods target on finding rep-

resentative samples within the high-dimensional space that

deep networks learn [38, 41]. Sener and Savarese [38] pro-

posed the Coreset algorithm that determines representative

samples by using the feature maps of the intermediate layers

of a deep network, rather than the last layer. However, the

optimisation method in the Coreset algorithm does not scale

well as the number of classes, and the number of unlabelled

samples grows. To improve the scalability, Sinha et al. [41]

proposed to map the high dimensional feature maps into a

lower dimension through adversarial training. Unfortunately,

being based on adversarial training, the method requires a

large amount of training data for the mapping to be reliable.

Beyond them, hybrid approaches combine the best of both

uncertainty-based and representation-based methods [34,50].

Some works focused on a specific task: for example person

re-identification [29] and a human pose estimation [28].

While our work is most similar to uncertainty-based meth-

ods, it falls into neither uncertainty-based nor representation-

based methods. Contrary to the previous uncertainty-based

works, we take into account characteristics that are not re-

stricted to a single sample – we consider the class difficulty

and class imbalance. Also, unlike the representation-based

methods, we are not aiming to find representative samples,

but a global trend of samples that are predicted to belong to

a certain class.

Semi-supervised learning with VAEs. As we utilise

VAEs [20], we also briefly review works related to VAEs

that associate them with labelled data. Since VAEs model

the likelihood of data, Lee et al. [23] used them to identify

out-of-distribution samples for each class. We are loosely

inspired by them, as we also use conditioned VAEs. How-

ever, unlike them, we estimate one portion of our conditional

probabilities in estimating the label correctness. M2 VAE

models [19] and Conditional VAEs [42] have been proposed

to model conditional distributions. They directly add the

condition as an additional latent dimension that is trained

independently with the other latent dimensions for the re-

construction. In contrast, we apply conditioning implicitly

during training to represent the class information and the fea-

ture distribution in the same latent dimensions. In our early

attempts, we were not able to obtain successful modelling

for our application with the former.

3. Methodology

We first formally describe the active learning problem

and detail how we select new samples to be labelled with

the estimated correctness of predictions. We then derive our

method via Bayes’ rule and describe how our derivation can

be implemented in practice through a VAE. Afterwards, we

provide a summary of how we tie every component together

as an active learning algorithm and implementation details.

3.1. Problem formulation

Active learning can be formulated as a problem of in-

creasing the pool of labelled data at every round by labelling

subsets of the unlabelled pool. Formally, given a pool of data

P , we keep a pool of labelled data PL and unlabelled data

PU , such that P = PL ∪ PU and ∅ = PL ∩ PU . Then, for

each active learning round r, we select P
(r)
S that is a subset

of PU with Nr samples according to a criterion that defines

the active learning method, which is moved from PU to PL.

Thus, P
(r+1)
U = P

(r)
U − P

(r)
S and P

(r+1)
L = P

(r)
L + P

(r)
S .

The core of active learning is how P
(r)
S is selected, which

in our case is based on the probability of a model providing

a wrong answer for the given data.

Active learning based on the probability of wrong pre-

dictions. The underlying idea of our method is that when

acquiring data with a limited labelling budget, one should

acquire those that have the highest probability of making

wrong predictions [10, 25, 29, 48]. Formally, if we let y de-

note the real label and ŷ the label predicted by a model, we

find samples x with large

p(y 6= ŷ|x). (1)

Unfortunately, this is not a probability distribution that can

be modelled directly, and we, therefore, estimate this proba-

bility via Bayes’ rule and approximations.

3.2. Bayesian active learning

We now derive our Bayesian formulation. To estimate

p(y 6= ŷ|x), we take an alternative route through Bayes’

rule, instead of the direct estimation that could be given by

a discriminative model. We first represent this probability

with its complement, which can then be written as the sum

of joint probabilities. We write

p(y 6= ŷ|x) = 1− p(y = ŷ|x) = 1−

Nc∑

n=1

p(yn, ŷn|x),

(2)

where Nc is the number of classes and p(yn) and p(ŷn)
is a shorthand for p(y = n) and p(ŷ = n), respectively.



Then, each p(yn, ŷn|x) within the summation can be written

through Bayes’ rule as following:

p(yn, ŷn|x) =
p(yn|ŷn,x)p(x|ŷn)p(ŷn)∑Nc

n=1 p(x|ŷn)p(ŷn)
. (3)

Here, p(yn|ŷn,x) corresponds to the probability of the real

label being n, given that the predicted label is n and the data

being x. However, this is a probability that cannot be evalu-

ated unless we have the paired true label. Thus, we instead

do an informed guess, by ignoring x and approximating with

p(yn|ŷn). In other words, we assume that the probability

of a model making a mistake is highly related to the label.

Thus we approximate by writing

p(yn, ŷn|x) ≈
p(yn|ŷn)p(x|ŷn)p(ŷn)∑Nc

n=1 p(x|ŷn)p(ŷn)
. (4)

Finally, with Eq. (2), we have

p(y 6= ŷ|x) ≈ 1−

Nc∑

n=1

p(yn|ŷn)p(x|ŷn)p(ŷn)∑Nc

n=1 p(x|ŷn)p(ŷn)
. (5)

Note that here, i) p(yn|ŷn) is the probability of a model

making mistake based on label, ii) p(x|ŷn) is the likelihood

of a sample given predicted label, iii) p(ŷn) is the prior on

the distribution of predicted labels, which represents how

imbalanced the predictions of a model are. As mentioned

earlier in Section 1, the likelihood estimation is non-trivial

and requires a generative model. Furthermore, through our

Bayesian formulation, the confirmation bias of pseudo-labels

can be also alleviated. The prior terms would encode whether

such a bias exists, and compensate for it. As our formulation

is probabilistic, the predictions would not be affected as

drastically as other heuristic methods. We now detail how

we model these three probabilities.

3.3. Estimating probabilities with regularized VAE

To estimate the probabilities, we use a VAE [20]. Be-

fore we discuss the details, let us first clarify that we train

this VAE exclusively in the unlabelled data pool PU , and

associate it with the behaviour of the discriminative model

on unseen data. We do not use the labelled pool PL, as it

is likely that the classifier has overfitted to the data. Note

also that while we explain in terms of x, in fact, we use the

deep feature representations given by the classifier to tie the

VAE more with the classifier and to facilitate training by

removing the need of learning the deep features. See Fig. 2

for an illustration of our framework.

We first detail why and how we estimate the likelihood

with a VAE and then discuss the other two probabilities.

Likelihood of a sample – p(x|ŷn). Estimating p(x|ŷn) is

not straightforward. A naive idea would be to implement

argmin ෍𝑗∈𝐶1 𝑧𝑗2 , ෍𝑗∈𝐶2 𝑧𝑗2 , … , ෍𝑗∈𝐶𝑁𝑐 𝑧𝑗2
T

Figure 2. Framework – An illustration of our framework. We

train a Variational Auto Encoder (VAE) that models the deep feature

representation of the classifier with unlabelled data. We then use

the VAE to estimate p(x|ŷn), p(yn|ŷn), and p(ŷn), which in turn

is used to estimate the probability of labelling error, p(y 6= ŷ|x).
See Section 3.3 for details.

multiple generative models that model p(x), each trained

with labels predicted to be of a certain class. However, this

becomes quickly impractical as the number of classes grows.

Moreover, estimating p(x) can be intractable in practice [20].

In our work, we use a single VAE to estimate the lower

bound of p(x|ŷn) for all ŷn. We use a VAE, as it learns to

reconstruct the data sample using the tractable lower bound

for p(x). Distinct from existing work, to condition the p(x)
based on predicted labels, we propose to learn a latent space

where the absence of parts of the latent embeddings are

related to the predicted label. In other words, this is as

if we are training multiple VAEs with shared weights and

overlapping latent spaces. Once such latent embeddings are

learned, we compute the lower bound of p(x|ŷn), by simply

enforcing the absence manually via masking – thus selecting

a VAE dedicated to a certain predicted class among the

multiple virtual VAEs – and computing p(x). This strategy

allows us to have a manageable latent space while still being

able to deal with many classes.

In more detail, if we denote the j-th embedding dimen-

sion of VAE as zj and write j ∈ Cn to denote dimension j

is related to class n, we write this absence condition as

ŷ = argmin
n


∑

j∈C1

z2j ,
∑

j∈C2

z2j , . . . ,
∑

j∈CNc

z2j



⊤

. (6)

Notice how this condition is conceptually similar to disentan-

gled representations [5, 42]. In our earlier attempts, we have

also tried forming this condition as disentangled representa-

tions or enforcing
∑

j∈Cn
z2j to be zero if ŷn, which neither

was successful. We suspect that enforcing such constraints

limit the capacity of the latent space and interferes with the

training of the VAE too much. We have also tried other ways

of enforcing absence – using the ℓ− 1 norm or the sigmoid

– but using the square worked best. We provide empirical

results in Section 4.4.

We enforce this constraint as a form of regularisation.

Let w = [w1, w2, . . . , wn]
⊤

, where wn =
∑

j∈Cn
z2j , then

we form an additional regularisation loss LClass to be used



during training of VAE as

LClass = H (softmax (−w) , ŷ) , (7)

where H denotes the cross entropy, softmax is the softmax,

and ŷ is the one-hot encoded vector representation of ŷ. With

this regularisation term, recall from [20], that the training

loss for VAEs LVAE is the inverse of the empirical lower

bound (ELBO) of the likelihood, which is defined as

LVAE = −E
z∼qφ(z|x) [log pθ(x|z)] +DKL (qφ (z|x) ‖ p(z)) ,

(8)

where pθ(x|z) is the decoder with parameters θ and qφ (z|x)
is the encoder with parameters φ. Therefore, the total loss to

train our VAE is

L = LVAE + λLClass, (9)

where λ is a hyperparameter that controls the regularisation

strength. Note that with this loss, the VAE now also tries to

mimic the behaviour of the classifier.

Once the VAE is trained, this VAE – without any con-

ditioning – is now able to estimate the lower bound of the

likelihood of a given data p(x) [20] by simply computing

the inversed value of LV AE . Furthermore, by masking the

embedding space associated with ŷ with zero, we can com-

pute the lower bound of p(x|ŷ). To avoid the decoder going

too far from the latent embeddings, it was trained for; we

use Eq. (6) to obtain ŷ, instead of the one from the classifier.

Probability of labelling error – p(yn|ŷn). While the la-

belled pool PL is the only set of data that we have labels for,

as the trained classifier is likely to have overfitted to PL, we

cannot use it for modelling this probability. We, therefore,

use the labels given by the VAE for the data samples in the

labelled pool PL. Note that the VAE has never seen these

data points during training. Mathematically, if we denote the

i-th sample as x(i), its label as y(i), the predicted label from

Eq. (6) as ŷ(i), and introduce an indicator function δ that is

1 if all inputs are equal and 0 otherwise, we write

p(yn|ŷn) ≈
E

x∈PL,z∼qφ(z|x)

[
δ
(
y(i), ŷ(i), n

)]

E
x∈PL,z∼qφ(z|x)

[
δ
(
ŷ(i), n

)] . (10)

Here, we approximate the expectations with Monte Carlo

estimates. Note that we also take the expectation over z, to

take into account the stochastic nature of VAEs.

Prior – p(ŷn). The prior is also acquired by using the la-

belled samples included in PL as this probability should

be related to how the classifier is trained. Same as in the

case of p(yn|ŷn), we cannot use the classifier predictions for

the labelled pool, and we use the predictions from the VAE.

Thus, sharing the notations as in Eq. (10), we write

p(ŷn) ≈ E
x∈PL,z∼qφ(z|x)

[
δ
(
ŷ(i), n

)]
. (11)

Algorithm 1: Proposed Method

Input: P
(0)
U

, P
(0)
L

, Nr ,M
r = 0 while not at the maximum round do

TrainM using P
(r)
L

FreezeM
Train the VAE module using P

(0)
U

by Eq. (9)

Estimate p(x|ŷn) by Eq. (8)

Estimate p(yn|ŷn) by Eq. (10)

Estimate p(ŷn) by Eq. (11)

Estimate p(y 6= ŷ|x) by Eq. (2)

X ← Nr samples with the highest uncertainty

P
(r+1)
U

←P
(r)
U
− X

P
(r+1)
L

←P
(r)
L

⋃
X

r← r + 1
end

3.4. Summary and implementation details

We summarise our method in Algorithm 1. For each

Active Learning round r, we train a classifier M(r) with

the labelled pool P
(r)
L . We then freeze the weights of the

classifier, and train our VAE – p
(r)
θ (x|z) and q

(r)
φ (z|x) –

with the unlabelled pool P
(r)
U . We then estimate the three

probabilities, which we use to construct the final estimate

of p(y 6= ŷ|x), and sample those from P
(r)
U that have the

highest value.

As noted earlier, we use the deep features of the baseline

network (the classifier) as input to the VAE. Specifically, we

extract deep features from the specific four layers of baseline.

If the feature representations are from fully-connected layers,

we use it as is. If it is from a convolutional layer, thus a

feature map, we first apply global average pooling. We then

apply batch normalisation to each feature, so that they are

roughly in the same range, and feed it to a fully connected

layer with 128 neurons and Sigmoid activation. Finally, the

outputs from these fully-connected layers are concatenated

to form a 512× 1 vector and given as input to the VAE.

For the architecture of VAEs, we opt for a simple one as

the deep features already have abstracted context. We apply

four layers of fully connected layers with again 128 neurons

and ReLU activations, with the exception of the layer that

outputs the latent embeddings. For this layer, we use 10×Nc

weights and dedicate 10 dimensions per each class.

We implement our method with PyTorch [33].To train

our VAE, we set λ=0.005 in Eq. (9), for all tasks. We use

Adam optimiser [18] with a learning rate of 10−4 and default

parameters. We train for 20 epochs. To remove randomness

from experiments, we perform our training multiple times

with different initial conditions. We report both the average

and the standard deviation of our experiments. For inference,

to perform the Monte Carlo estimation in Eqns. (8), (10), and

(11), we iterate the inference 100 times for every sample.



4. Experimental Results

We first introduce the dataset, then the experimental setup,

including the classification network and the compared base-

lines. We then report our results and discuss the effect of the

individual probability terms through an ablation study.

4.1. Dataset

To validate our experiments we apply our method to the

standard CIFAR-10 and CIFAR-100 [22] datasets as well

as the Northeastern University surface defect classification

dataset (NEU) [14]. We use the CIFAR datasets to be compa-

rable with recent Active Learning studies [41], and NEU to

demonstrate that class imbalance is important in real-world

applications. In more detail, the CIFAR-10 dataset contains

60,000 images sized by 32 × 32 × 3 with 10 classes. The

CIFAR-100 dataset also consists of 60,000 images of the

32× 32× 3 size with 100 classes. Both the CIFAR-10 and

the CIFAR-100 datasets are well balanced – all included im-

ages are assigned exactly one class among the 10 or the 100,

and the number of instances per each class is equal. The

datasets come with a pre-determined training and evalua-

tion split of 50,000 and 10,000 images, respectively. The

goal of the NEU dataset is to classify the 9 defect types on

steels. The main feature of this dataset is that it is heavily

imbalanced – the number of instances per class varies from

200 to 1589. In total, the NEU dataset contains 7226 defect

images of size 64× 64 pixel. This dataset does not provide

pre-determined splits, and we thus randomly reserve 20%

of the dataset for evaluation. This results in 5778 training

samples and 1448 validation samples.

Introducing synthetic class imbalance. To demonstrate

the importance of considering class-wise probabilities, we

build additional variants of CIFAR datasets by removing

a part of the samples in CIFAR-10 and CIFAR-100. First,

we build four datasets that have dominant classes within

them – we hereafter refer to them as dominant datasets. A

real-world example would be when scraping data from the

internet – there will be many images of people, cats, and

dogs, but not so many of platypus. The first three dominant

datasets are built from CIFAR-10 by randomly removing 90%

samples of every category except for the {1, 5, 10}th classes,

respectively. For CIFAR-100, as there are many classes,

there are only a few instances each – 500 for each class

in the training set. We, therefore, build the last dominant

dataset by removing 40% of the original samples for all

categories other than the middle ones from 45th class to

55th class, from the CIFAR-100 dataset. We denote these

dominant datasets as CIFAR-10+[1], CIFAR-10+[5], CIFAR-

10+[10], and CIFAR-100+[45:55], respectively.

We further consider the case when some samples are

rare. This would be, for example, cases where there are

rare events, such as accidents or defects that need to be

discovered. Similar to the dominant datasets, we build rare

datasets by taking certain classes away from CIFAR datasets.

Specifically, we use three variants, where we remove 90% of

the samples that correspond to the {1, 5, 10}th classes. We

denote these as CIFAR-10−[1], CIFAR-10−[5], and CIFAR-

10−[10], respectively.

With these datasets, we run different active learning se-

tups, based on the size of the dataset. For NEU, we run five

active learning rounds, where each round samples 250 sam-

ples. For CIFAR-10 based ones, we run six active learning

round, which 500 samples each. For CIFAR-100, we run

five rounds with 1000 samples each.

4.2. Experimental setup

The baseline classification network. As the baseline clas-

sifier, we utilise ResNet-18 [13]. This network is composed

of an initial simple convolution layer, followed by four ba-

sic residual blocks. As discussed previously in Section 3.4,

the output feature maps from these four residual blocks are

used to form the input to our VAE. At every Active Learning

round, we train the network for 200 epochs, with a batch

size of 128. We train with a typical setup for classification

on CIFAR-10: SGD with the momentum of 0.9, weight de-

cay of 0.0005, the learning rate is also initialised as 0.1 and

decreased to 0.01 after 160 epochs. We repeat the same

experiments with the different random seeds three times to

remove the randomness from our experiments.

The competitors. To demonstrate the effectiveness of the

proposed algorithm, we compare our method with the state-

of-the-art for active learning. We consider VAAL [41],

DBAL [10], and Core-set [38]. We utilise the author’s imple-

mentation for VAAL and Core-set. For DBAL we integrate

the author’s implementation to our framework to utilise our

baseline classification network – this method is architecture

dependant. In more detail, we utilise the authors’ code for un-

certainty estimation and embed it into ours. Among the mul-

tiple methods to estimate the uncertainty in DBAL, we use

the Bayesian Active Learning by Disagreement (BALD) [15]

as the estimation method – it showed the best generality in

our experiments. For the dropout layers of DBAL, we place

them before each the residual blocks of the ResNet and fix

the dropout ratio to 0.25. As suggested by the authors [10],

we further use 100 samples to estimate the uncertainty. In

addition, we also consider uniform random sampling as a

baseline. Finally, for a fair comparison, after new samples

are extracted by these methods, we train the networks with

the same random seed to exclude any random surprises.

4.3. Comparison results

NEU dataset – a real-world imbalanced dataset. We first

compare different methods on the NEU dataset, which is a

typical case of an imbalanced real-world dataset. We report



(a) NEU dataset (b) Dominant CIFAR-10 (c) Dominant CIFAR-100

(d) Rare CIFAR-10 (e) Full CIFAR-10 (f) Full CIFAR-100
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Figure 3. Results for the dominant, rare, and full datasets.

the results in Fig. 3(a). As shown, the proposed method

delivers improved performance, especially for the early iter-

ations. Methods here mostly converge after 5 rounds, but the

small difference in the later rounds are simply the results of

using most of the available data. Hence, focus should be in

the earlier stages, where our method dominates. Specifically,

on the second round, our method performs 8.3% better than

the second best method that is CoreSet. Interestingly, for this

small dataset, VAAL performs worse than simple random

selection because VAAL requests a lot of labels to bake in.

Dominant datasets. We now consider the dominant variants.

In the dominant situation, a large part of the entire training

samples is dedicated to a few specific categories – in the

case of CIFAR-10, just one. In Fig. 3(b), we average the re-

sults from CIFAR-10+[1], CIFAR-10+[5], and CIFAR-10+[10]

that we run three times each – a total of nine experiments.

As shown, the proposed method outperforms the compared

methods by a significant margin. Especially, we perform

4.0% better than the second best in the third round. This gap

comes from the fact that the dataset is biased, and this causes

the active learning methods also to become biased. However,

our method successfully mitigates this class imbalance and

provides improved performance.

A similar phenomenon happens when there are more

classes. In Fig. 3(c), we report results for CIFAR-100+[45:55].

Here, it is worth noting that all compared methods per-

form worse than Random. This is because the dataset has

100 classes, and it is easy to start ignoring a certain class.

Nonetheless, our method is the only method that provides

improved label efficiency. To mitigate this, existing works

have only studied when there is a sufficient number of labels

from the beginning – for example in VAAL [41], 10% of the

entire set. However, this greatly limits the applicability of

active learning methods, as 10% is sometimes already too

much to afford. In appendix A.1, we present the additional

results of our method with the different classifier.

Rare datasets. We further test the case when some classes

are rare. In Fig. 3(d), we show the average performance

of each method on the three rare datasets – CIFAR-10−[1],

CIFAR-10−[5], and CIFAR-10−[10]. Similar to the dominant

case, our method shows the best performance among the

compared methods. Interestingly, in this case, similar to the

results with CIFAR-100+[45:55], existing methods perform

worse than the random baseline. Again, this is because

existing methods can break down easily without enough

labelled samples from the beginning. This is a limitation our

method does not have.

On the full dataset. For completeness, we further study how

methods perform with the full CIFAR-10 and CIFAR-100

datasets. However note that, as we demonstrated previously,

these datasets are with perfect data balance, which is not

the case for real-world datasets. We report a summary of

these results in Figures Fig. 3(e) and (f). Our method per-

forms comparable to existing methods for CIFAR-10 and

outperforms existing methods for CIFAR-100. However, ex-

periment for CIFAR-100 shows a limitation of active learning

methods including ours, that when there are too many classes

and very few examples, their performances are close to ran-

dom, and sometimes even worse. Nonetheless, compared

to existing methods, our method performs best, even in this

extreme situation.

Additional results. In the supplementary document, we pro-

vide the original plots for all experiments before averaging.

From them, we can confirm that the proposed method outper-

forms existing methods consistently for various situations.

4.4. Ablation study

4.4.1 Effectiveness of p(ŷ) and p(yn|ŷ).

To validate their effectiveness, we perform an ablation study

by excluding one or both of the prior (p(ŷ)) and the label

difficulty (p(y|ŷ)) – we artificially set either to 1. We use



p(ŷ) p(y|ŷ)
CIFAR-10 CIFAR-10+[1]

avg. final avg. final

- - 82.56% 88.66% 48.02% 60.13%

X - 82.91% 90.68% 54.23% 70.25%

- X 82.71% 90.51% 51.86% 65.98%

X X 83.36% 91.12% 54.16% 70.35%

Table 1. Validity of the prior p(ŷ) and label difficulty p(y|ŷ).
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Figure 4. Top samples for CIFAR-10
+[1] – DBAL (Top), Core-

Set (Second row), and ours (Third row). The dominant class plane

is shown in red. Our method creates a balanced set by considering

the class imbalance, whereas other methods are susceptible to it.

CIFAR-10 and CIFAR-10+[1] for these experiments to re-

move randomness. To avoid tuning on the test set, we use

the validation splits for these experiments. We take the av-

erage performance over all active learning rounds and also

the average final performance. We summarise the results

in Table 1. We report both the average performance over

all six active learning rounds (avg.) and the performance of

the final round (final). We run each experiment three times

and report the average. As shown, all terms contribute to

performance improvement. We observe that all terms con-

tribute to providing the best performance. Among the two

terms, the prior (p(ŷ)) provides more gain compared to the

label difficulty (p(y|ŷ)), demonstrating that it is critical to

take data imbalance into account. We show an example of

the two terms in action in Fig. 4. Our method balances the

training data even when the dataset is imbalanced.

4.4.2 Robustness for various budgets and λ values

To analyse the sensitivity of the proposed framework against

the user-defined parameters, we report the result of our

method with various sampling budgets and λ values in

Eq. (9): see Fig. 5(a). Regardless of the choice of the bud-

get size, our method outperforms all compared methods.

Smaller budget size tends to allow methods to react faster

to the training outcomes and increase the effectiveness of

active learning.
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(a) Varying budget sizes.
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Figure 5. Results of ablation tests on dominant CIFAR-10.

In Fig. 5(b) we report the performance of our method

with varying λ. We test with various λ, which do affect

the performance of the proposed method to some degree.

However, as before in the case of the budget, our method

outperforms all compared methods regardless of the choice

of λ. This further hints that the two-loss terms that we train

for in Eq. (9) do not compete. Note that λ = 0 completely

disables p(ŷ) and p(y|ŷ), as ŷ estimation becomes meaning-

less, which causes the method to perform significantly worse

as shown earlier in Table 1, and we have therefore left it out

in this figure to reduce cluster; see supplementary appendix

for full results.

5. Conclusion

We have proposed a novel active learning method that in-

corporates class imbalance and label difficulty. Our method

was derived through the Bayes’ rule, which results in three

types of probabilities – data likelihood, label prior, label

difficulty – being considered together. We implement our

method via a VAE, that is regularised to behave as a condi-

tional VAE. We have shown that this creates a significant

difference for a real-world dataset that exhibits data imbal-

ance, as well as in cases when data imbalance is introduced

to CIFAR-10 and CIFAR-100 datasets.

While we limit our experiments to classification in this

work, our method is application agnostic. In the future, we

plan to extend our work to other discriminative tasks, for

example, object detection and segmentation.
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