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Abstract. The design of a Highly Instrumented Reactor
for Atmospheric Chemistry (HIRAC) is described and ini-
tial results obtained from HIRAC are presented. The ability
of HIRAC to perform in-situ laser-induced fluorescence de-
tection of OH and HO2 radicals with the Fluorescence As-
say by Gas Expansion (FAGE) technique establishes it as
internationally unique for a chamber of its size and pres-
sure/temperature variable capabilities. In addition to the
FAGE technique, HIRAC features a suite of analytical in-
strumentation, including: a multipass FTIR system; a con-
ventional gas chromatography (GC) instrument and a GC
instrument for formaldehyde detection; NO/NO2, CO, O3,
and H2O vapour analysers. Ray tracing simulations and NO2
actinometry have been utilized to develop a detailed model of
the radiation field within HIRAC. Comparisons between the
analysers and the FTIR coupled to HIRAC have been per-
formed, and HIRAC has also been used to investigate pres-
sure dependent kinetics of the chlorine atom reaction with
ethene and the reaction of O3 and t-2-butene. The results
obtained are in good agreement with literature recommenda-
tions and Master Chemical Mechanism predictions. HIRAC
thereby offers a highly instrumented platform with the po-
tential for: (1) high precision kinetics investigations over a
range of atmospheric conditions; (2) detailed mechanism de-
velopment, significantly enhanced according to its capability
for measuring radicals; and (3) field instrument intercompar-
ison, calibration, development, and investigations of instru-
ment response at a range of atmospheric conditions.

Correspondence to:P. W. Seakins
(p.w.seakins@leeds.ac.uk)

1 Introduction

Volatile Organic Compounds (VOC) are emitted in substan-
tial quantities from both biogenic and anthropogenic sources,
and have a major influence on the chemistry of the tropo-
sphere. In the past few decades, much effort has been de-
voted to developing detailed tropospheric VOC oxidation
schemes (Seinfeld, 2004); however, mechanism development
is complicated because each VOC emitted into the atmo-
sphere has a different oxidation scheme (Saunders et al.,
2003). The development of accurate VOC oxidation mecha-
nisms is essential for understanding and predicting air qual-
ity and climate change, setting emissions policies, and un-
derstanding related effects on human health. VOC oxida-
tion schemes enable understanding and prediction of the
budgets of species such as O3, which is: (1) a significant
greenhouse gas (2) a species that can modify OH budgets
thereby affecting other greenhouse gases such as CH4 (Den-
man and Brasseur, 2007; Forster and Ramaswamy, 2007;
Ravishankara, 2005); and (3) a respiratory irritant that can
impact human health in photochemical smog episodes. VOC
oxidation schemes are also necessary to understand the im-
portant role that oxygenated organics, formed in gas phase
oxidation processes, play in secondary aerosol formation
(Baltensperger et al., 2005).

The development, testing, and refining of reliable VOC
oxidation schemes involves an interplay between field cam-
paigns, laboratory kinetics studies, and chamber measure-
ments. Field measurements are critical to an understanding
of tropospheric chemistry; however, field campaign data con-
tain the largest degree of complexity for testing the chem-
istry in VOC oxidation mechanisms because of the diffi-
culty in controlling and describing variables that affect (but

Published by Copernicus Publications on behalf of the European Geosciences Union.



5372 D. R. Glowacki et al.: HIRAC design and initial results

are not easily isolated from) the chemistry, such as non-
homogeneous distribution of VOCs, emissions inventories,
meteorological transport processes, nonhomogenous radia-
tion, and weather. On the other hand, laboratory kinetics
studies, increasingly aided by the tools of quantum chem-
istry and modern rate theories, allow the most thorough study
of elementary reactions (Miller et al., 2005). Such investi-
gations provide direct and detailed information (e.g., pres-
sure and temperature dependence of rate coefficients, prod-
uct yields, and branching ratios) for the consituent reactions
that are the basis of VOC oxidation schemes, and serve as
a guide for the development and validation of structure ac-
tivity relationships (Kwok and Atkinson, 1995). However,
these studies are ideally limited to a single reaction sequence
under conditions and time scales that minimize the effect of
secondary chemistry, which is generally not the case in the
atmosphere. Furthermore, the structural prerequisites of the
apparatus used to carry out these types of studies often limits
the suite of analytical instrumentation that may be coupled to
the reaction volume.

Photochemical smog and environmental chamber stud-
ies mediate between field campaigns and laboratory studies
(Bloss et al., 2005a; Carter, 2002; Dodge, 2000) in two ways.
First, chambers allow more control of variables than is possi-
ble in field campaigns, reducing uncertainty in the direct de-
velopment, validation, and testing of VOC oxidation mecha-
nisms. Because the uncertainties pertinent to field campaigns
are reduced in chambers, they offer an experimental appara-
tus in which to investigate how the uncertainties associated
with individual rate coefficients affect a mechanism’s ability
to describe the oxidation of a particular VOC (Zador et al.,
2005), further reinforcing the interplay between atmospheric
field measurements and laboratory experiments in formulat-
ing VOC oxidation mechanisms. Secondly, with respect to
laboratory kinetics experiments, chambers offer the potential
for a highly instrumented test bed that may be used to per-
form longer time scale kinetics experiments on a wider range
of compounds under more atmospherically relevant condi-
tions, providing rate coefficients and branching ratios for use
in VOC oxidation mechanisms. Chamber kinetics investi-
gations are usually relative rate type measurements which
do not require measurement of the radicals (Wallington and
Nielsen, 1999; Brauers and Finlayson-Pitts, 1997).

However, in both of these applications, chambers suffer
limitations because: (1) their instrumentation often neces-
sitates investigating trace gas chemistry at concentrations
higher than ambient, limiting the utility of the data and
the range of conditions under which VOC oxidation mech-
anisms may be evaluated (Carter et al., 2005); and (2) back-
ground reactions that may affect the gas phase chemistry
can be difficult to characterize, introducing uncertainty into
the data (Carter et al., 2005; Dodge, 2000). Nevertheless,
chambers are valuable tools for complementing and mediat-
ing between field campaigns and laboratory kinetics experi-
ments. The European environmental chamber network (EU-

ROCHAMP: http://www.eurochamp.org/) includes 25 envi-
ronmental chambers, each of which is slightly different, but
which may be broadly schematized according to the follow-
ing interrelated features: (1) the type of radiation used to
initiate the chemistry (i.e., lamps or solar radiation), (2) the
material out of which the chamber is constructed, and (3)
whether the instrumentation coupled to the chamber is in-
tended primarily to investigate gas phase chemistry or het-
erogeneous aerosol chemistry.

The radiation sources utilized in photochemical reactors
represent a significant source of uncertainty in testing VOC
oxidation mechanisms (Dodge, 2000). In the case of reactors
that have artificial radiation sources, the uncertainties primar-
ily concern characterizing the spatial and time dependent het-
erogeneity of the radiation field within the chamber, and the
fact that not all the action spectra (i.e., the product of the
cross section, quantum yield, and radiation flux as a func-
tion of wavelength) of atmospherically relevant photolysis
mechanisms are well known. Using solar radiation reduces
the uncertainty that arises from parameterizing action spectra
for non-solar radiation sources, but introduces uncertainty re-
garding characterization of the homogeneity of the radiation
within the chamber due to cloud effects and shadow effects
that depend on solar zenith angle (Bohn and Zilken, 2005;
Bohn et al., 2005). Outdoor chambers such as that at the Uni-
versity of North Carolina (UNC) (Dodge, 2000), EUPHORE
(the European Photoreactor) (Becker, 1996), and SAPHIR
(Simulation of Atmospheric PHotochemistry In a large Re-
action chamber) (Wahner, 2002) are constructed from teflon,
which transmits solar radiation. The very large size of such
reactors enables low surface/volume (S/V) ratios, minimiz-
ing the effect of heterogeneous surface chemistry and cham-
ber background effects. While EUPHORE, SAPHIR, and the
UNC facilities are among the largest chambers in the world,
teflon chambers that utilize artificial light sources have also
been constructed and described in the literature (Carter et al.,
2005; Thuener et al., 2004). However, teflon walls restrict
chamber operation to ambient pressures and temperatures.

Cylindrical chambers constructed out of pyrex or quartz
featuring radiation from an artificial light source that is trans-
mitted through the reaction vessel allow for pressure variable
experiments (Doussin et al., 1997; Barnes et al., 1994; Nolt-
ing et al., 1988; Wallington and Japar, 1989). These cham-
bers may also be evacuated between experiments for clean-
ing. Constructing a chamber in which temperature variable
experiments are possible is simplified if the skin is metal, and
such chambers constructed of stainless steel have previously
been described in the literature (Shetter et al., 1987; Akimoto
et al., 1979; Stone, 1990; Tyndall et al., 1997) despite the de-
sign challenges involved in coupling a radiation source to a
metal reactor in a manner that maintains a reasonably homo-
geneous radiation field.

This paper describes the design of and initial results from
the HIRAC chamber recently constructed at the University
of Leeds. HIRAC is designed to complement research at
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(a) (b)

(c) (d)

Fig. 1. (a)and(b) SolidWorks 2004 views of HIRAC, coupled to the FAGE instrument, in its support frame;(c) and(d) SolidWorks 2004
cutaway views of HIRAC, revealing its interior. In panels (c) and (d) the crosses on which the optics are mounted as well as the fans are
visible. In panels (a) and (d), the FAGE instrument may be observed.

Leeds in field work (Sommariva et al., 2007) and experi-
mental and theoretical studies of elementary reactions rel-
evant to the chemistry of earth’s atmosphere, planetary at-
mospheres, and combustion (Gannon et al., 2007; McKee et
al., 2007; Baeza-Romero et al., 2007). In addition, the Uni-
versity of Leeds has been involved of the development and
maintenance of the Master Chemical Mechanism (MCM), a
near explicit mechanism that describes the tropospheric oxi-
dation of 135 different VOCs (Jenkin et al., 2003; Saunders
et al., 2003). HIRAC therefore offers a highly instrumented
link between the various elements of the diverse atmospheric
chemistry research activity at Leeds. It offers (1) a poten-
tial test bed for calibration of atmospheric field instruments,
enabling more accurate measurements, which are central to
an improved understanding of tropospheric oxidation mech-
anisms; (2) a facility that may be used to test, evaluate, and
refine the MCM, with the potential for suggesting further
laboratory kinetics experiments necessary to improving the
mechanism; (3) a facility for kinetics investigations not pos-
sible in the laboratory, and the ability to carry these studies
out at variable temperatures and pressures spanning a range
of tropospheric and stratospheric conditions.

HIRAC has the potential to carry out temperature and pres-
sure variable experiments, and the extensive suite of instru-

mentation coupled to it offer a range of analytical techniques
available for investigating a number of systems. Especially
significant in this regard is the coupling of laser-induced fluo-
rescence (LIF) detection to HIRAC via the Fluorescence As-
say by Gas Expansion (FAGE). Many chamber studies mea-
sure radicals indirectly via VOC scavengers; however, Carter
(2002) points out that significant uncertainty remains in the
chamber HOx budgets predicted by current photochemical
mechanisms, and many workers have found large discrepan-
cies between HOx predicted in models and HOx observed ex-
perimentally (Bloss et al., 2005a, b). Uncertainties pertaining
to heterogeneous wall chemistry, unspecified radical sources,
and characterization of the radiation field within the chamber
have been proposed in order to address these discrepancies;
however, the facility for direct HOx measurements at very
low concentrations significantly enhances the possibility for
investigating these explanations.

2 The reaction chamber

2.1 Description and specifications

HIRAC was constructed from grade 304 stainless steel
instead of glass to allow for mounting/access holes and
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numerous instrumentation ports to be easily cut into the skin
during manufacture. Furthermore, stainless steel allowed
tubes to be welded to the chamber skin in order to circulate
heating and cooling fluid (see Fig. 1) and give this cham-
ber the facility for performing temperature variable exper-
iments over the typical temperature ranges of commercial
chiller/heater systems, although this has yet to be imple-
mented. HIRAC’s design differs from other temperature and
pressure variable chambers constructed from stainless steel
found in the literature. Shetter et al. (1987) describe a cylin-
drical chamber that has a triple jacketed design, with two
concentric cylinders external to the reaction volume. The
compartment in contact with the skin of the reaction vol-
ume contains the heating/cooling fluid, and the outermost
compartment operates as an evacuated dewar to insulate the
chamber from ambient temperature. The chamber is cou-
pled to instruments and a xenon arc photolysis light source
via connecting bellows that traverse the triple jacketed de-
sign. Akimoto et al. (1979) describe a double jacketed de-
sign wherein the chamber is surrounded with a volume that
contains the heating/cooling fluid, and the entire chamber is
located in a thermal enclosure that insulates it. The optics
are coupled to the chamber via feedthroughs that traverse the
double jacketed design. In both of these chambers, photoly-
sis light is provided from xenon arc lamps that shine through
windows at the end of the chamber. The HIRAC design more
closely resembles that described by Stone (1990), wherein
the heating and cooling is via tubes welded to the surface of
the chamber. However, the dark chamber described by Stone
(1990) does not have a photolysis light source, and this sig-
nificantly complicates design considerations.

Some different perspectives of the solid model constructed
during the HIRAC design phase using SolidWorks 2004
(http://www.solidworks.com/) are shown in Fig. 1. HIRAC is
a cylinder with internal dimensions of 2.0 m long and 1.2 m
in diameter, giving an internal surface area of∼10 m2 and a
volume of∼2.250 m3. Other internal surfaces in the chamber
(lamp tubes, mirrors, and fans, which are discussed below)
add∼3 m2 surface area, for a S/V of∼5.8 m−1. HIRAC is
mounted on a stainless steel frame (shown in Fig. 1) that rests
on neoprene and cork pads to damp vibrations that otherwise
affect the performance of the optical system. The curved
walls of the cylinder are 4 mm thick and the end faces are
25 mm thick. A large ISO-K500 access flange is mounted in
the centre of each end plate, and two more are located on one
side of the cylindrical face. As shown in Fig. 1, there are a
total of 6 more ISO-K160 access flanges on HIRAC’s cylin-
drical face: two on the top, two on the bottom and two op-
posite the large ISO-K500 flanges. All of these flanges allow
connection of different sampling ports and measurement de-
vices such as thermocouples, pressure gauges and pumps. In
addition to the flanges discussed above and shown in Fig. 1,
HIRAC has eight ISO-KF16 ports, arranged with four on ei-
ther end plate of the chamber. These ports allow connections
for pressure gauges (Leybold Ceravac CTR90 (0–100 Torr),

Leybold Thermovac TTR91 (Pirani type gauge)), the bath
gas inlet, and additional positions for gas injection and sam-
pling. All of the O ring seals for the above ports are viton.

HIRAC may be pumped from ambient pressure to
∼2.5×10−3 mbar within∼70 min using a rotary pump (Ley-
bold Trivac D40B) backed roots blower (Leybold Ruvac
WAU251) with a charcoal filled catchpot (BOC Edwards,
ITC300) trap to avoid oil backflush into the evacuated cham-
ber. The pumps are connected to one of the ISO-K160
flanges on the underside of the chamber via a gate valve. This
capability allows for partial cleaning of the chamber between
experimental runs.

In order to assure good mixing of gases, HIRAC has four
circulation fans, with two mounted on each end plate. The
fans are made from aluminium, 225 mm in diameter, and
coupled to externally mounted variable speed DC motors via
ferro fluidic feedthroughs (Ferrotec SS-250-SLBD). A flex-
ible coupling between the motors and the feedthroughs, in
conjunction with the neoprene pads between the motorhous-
ing and the end plates leads to significant reduction in vibra-
tions, which gives improved signal to noise ratios (S/N) in
the spectra obtained by the FTIR optical system (which is
described below).

A thorough set of measurements were performed to inves-
tigate mixing times in HIRAC. Mixing time was defined as
τ95, the time required for the concentration of a stable species
to reach 95% of its maximum value (Pinelli et al., 2001). NO
in N2 was measured with a commercial NO/NO2 analyser
(discussed below), and several combinations of injection and
sampling points across the chamber were investigated with
respect to the number of fans running as well as the speed at
which the fans were run. Mixing measurements were insen-
sitive to the particular locations of the injection and sampling
points. Furthermore, the measurements indicate that at lower
fan speeds (<1500 rpm), mixing time is reduced significantly
by running all of the fans. At higher fan speeds, mixing time
is insensitive to the number of fans that are running. With
all fans running at 1500 rpm and 3000 rpm (100%), mixing
times are∼70 s and∼60 s, respectively, and show good re-
producibility.

2.2 Radiation source

2.2.1 Lamps

Light for photochemical studies is provided by 24
TLK40W/05 actinic UV blacklamps (output spectrum shown
in Fig. 2) housed in 8 quartz tubes (3 lamps,∼60 cm in
length, orientated end to end in each tube) that are situated
radially inside of the reactive volume. Each lamp is mounted
in the quartz tube via nylon collars that are attached at each
end of the lamp with three grub screws. Each of the col-
lars has three radially situated contact points with the quartz
tube to maintain the lamp in the centre of the tube. This
method of mounting the lamps in the tubes: (1) ensures that

Atmos. Chem. Phys., 7, 5371–5390, 2007 www.atmos-chem-phys.net/7/5371/2007/
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air may flow past the lamps, (2) allows wiring to be run
through the tubes in order to supply the lamps with power,
and (3) permits thermocouples to be placed at arbitrary loca-
tions within in each of the tubes for monitoring temperature
inside of the tubes (the reasons for which are discussed be-
low). The quartz tubes are 2300 mm in length, with an out-
side diameter of 50 mm and a 2 mm wall thickness. The tubes
are mounted parallel to the chamber’s principal axis, equally
spaced around the circumference of a circle with a diameter
of 800 mm. A vacuum tight seal is made by compressing a
silicone O ring onto the outer face of the quartz tube. This
seal also allows for small amounts of movement accompany-
ing temperature and pressure changes that would otherwise
stress the quartz.

The output of the lamps is strongly temperature dependent,
and outside of a narrow range (∼35–39◦C) their performance
drops off rapidly. Given that the lamps generate heat in their
normal operation and considering HIRAC’s facility for carry-
ing out temperature variable experiments, the temperature in-
side the quartz tubes may be regulated via two variable speed
fans situated at either end of each tube, which force labora-
tory air though the tubes to remove hot gases surrounding
the lamps. The speed of these fans is computer controlled
and depends on the temperature measured within each tube
by a thermocouple. The hot gases forced through the tubes
are directed to a fume cupboard in order that the the ambi-
ent temperature of the laboratory is not affected and to safely
dispose of any ozone formed if deeper UV lamps are used.

2.2.2 Radiation model

One of the significant sources of uncertainty in photoreactors
is adequate knowledge of the radiation field within the cham-
ber (Carter et al., 1995). Furthermore, modelling and analy-
sis of experimental results obtained within reaction chambers
is greatly simplified if the radiation profile may be assumed
homogeneous, such that Carter et al. (1995) recommend that
the radiation field within a chamber have a spatial unifor-
mity of ±10% for at least 90% of the chamber volume. Be-
cause HIRAC has the facility to perform in situ OH and HO2
radical measurements utilizing the FAGE technique, knowl-
edge of the homogeneity of the radiation field is important
insofar as it provides information regarding the potential for
radical concentration gradients across the reaction volume.
The photochemical reaction chambers at the Wuppertal fa-
cilities in Germany (Barnes et al., 1994), which use black-
lamps as a radiation source, reportJNO2 values on the order
of 10−3 s−1, while Carter et al. (1995) recommend that an
environmental reaction chamber have a light source which
is able to produceJNO2 values on the order of 5×10−3 s−1.
HIRAC’s integratedJNO2 value has been measured by fol-
lowing the steady state concentrations of O3, NO, and NO2,
upon the photolysis of NO2 in air (Wu and Niki, 1975). Us-
ing NO2 starting concentrations of 100–200 ppb,JNO2 was
measured to be (1.93±0.10)×10−3 s−1, which falls within
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Fig. 2. Output spectrum of HIRAC’s blacklamps.

the range specified by Wuppertal and Carter. An integrated
JNO2 photolysis rate contains no information regarding the
spatial profile of the radiation field within HIRAC. Thus, a
JNO2 photolysis map, similar to that developed by Bohn and
Zilken (2005) for the outdoor SAPHIR chamber, has been
developed for HIRAC.

The NO2 photolysis frequency is the product of the tem-
perature and wavelength dependent absorption cross section,
σNO2(λ, T ), multiplied by its quantum yield,φNO2(λ, T ),
and the intensity of radiation at a particular wavelength and
position with respect to a lamp,F(λ, x). σNO2(λ, T ) and
φNO2(λ, T ) are well established (DeMore et al., 1997; Voigt
et al., 2002), as isF(λ) for blacklamps (Carter et al., 2005,
1995). Assuming that the wavelength dependence of the ra-
diation passing through a small volume element located a
distancex away from the lamp is independent ofx, F(λ, x)

may be written asF(λ)F (x), and the NO2 photolysis fre-
quency may be written as function of both temperature and
distance from the lamp:

JNO2(T , x) = F(x)

∫
λ

φNO2(λ, T )σNO2(λ, T )F (λ)dλ (1)

Developing an NO2 photolysis map of HIRAC thus reduces
to a problem of describing the functional form ofF(λ)F (x).
An analytical form ofF(λ)F (x) was derived for the case of a
single tubular lamp, exploiting its cylindrical symmetry, and
treating it as a line source. The position of an arbitrary point
was defined in terms ofd, the distance of the point along a
line that is perpendicular to the central axis of the cylindri-
cal lamp, anda, which is the distance along the lamp be-
tween two planes that are perpendicular to the lamp axis, one
of which is coincident with the point of interest, and one of
which is coincident with a terminus of the lamp. The equa-
tion is as follows:

F(λ)F (x) = F(λ)F (d, a)

www.atmos-chem-phys.net/7/5371/2007/ Atmos. Chem. Phys., 7, 5371–5390, 2007



5376 D. R. Glowacki et al.: HIRAC design and initial results

(a)

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4
NO

2 Ph
oto

lys
is R

ate
 Co

ns
tan

t / 
s-1

R a d i a l  D i s t a n c e  f r o m  C e n t r e  o f  H I R A C  /  c m

(b)

- 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0
0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

NO
2 Ph

oto
lys

is R
ate

 Co
ns

tan
t / 

s-1

R a d i a l  D i s t a n c e  f r o m  C e n t r e  o f  H I R A C  /  c m

Fig. 3. Comparison of the analytical form derived to describe NO2
photolysis with the ray trace simulations for two radial transects on
(a) line a and(b) line b in Fig. 4a. Two sets of data are shown
for each transect:• indicates simulations that have no reflections,
and– the corresponding analytical description, while� indicates
simulations using the HIRAC solid model, which includes the effect
of multireflections on a surface with reflectivity of 0.55, and−−
the corresponding analytical description modified to account for the
effect of reflections.

=

Ltotal(λ)

2`

a∫
a−2`

(rlamp+d)

((rlamp+d)2+y2)
3/2

dy

 (2)

where 2̀ is the length of the lamp,rlamp is the radius of the
lamp,Ltotal(λ) represents the integrated radiance at a partic-
ular wavelength whend�` (i.e., at a distance such that the
lamp may be approximated as a point source), anddy repre-
sents an infinitesimal “slice” of the lamp, over which the in-
tegration is carried out. Specifying thatLtotal(λ)/2`=Ls(λ)

whereLs(λ) is thereby equal to the radiance per unit length
of the lamp, settinga=`, and performing the integration in
Eq. (2) yields the following result, which describes the light

intensity at a point located on a plane that bisects the lamp:

F(λ)F (x)=F(λ)F (d)=
2`·Ls(λ)

(rlamp+d)

√
(rlamp+d)2+`2

(3)

Inserting Eq. (3) into Eq. (1) gives an equation which de-
scribes the NO2 photolysis frequency as a function of the
position of a point on a plane that perpendicularly bisects the
lamp axis:

JNO2(T , x)=JNO2(T , d)=
2`·K(T )

(rlamp+d)

√
(rlamp+d)2+`2

(4)

whereK is the hypothetical photolysis frequency at the cen-
tral axis of the cylindrical lamp:

K(T ) =

∫
λ

φNO2(λ, T )σNO2(λ, T )Ls(λ)dλ (5)

Equations (3–5) describe the plane that bisects the lamps;
however, the functional form describing any plane orthogo-
nal to the lamp axis may be described by working out the
integral in Eq. (2) for different values ofa. Unlike previ-
ous equations derived in order to describe the actinic flux
from tubular lamps (Irazoqui et al., 1976), the form ofF(d)

specified in Eq. (3) behaves as expected in the limiting cases
of d�` andd�`, going toLtotal(λ)/(rlamp+d)2 (the form
of a point source) and 2Ls(λ)/(rlamp+d) (the form of a line
source), respectively.

For any integration limits, Eq. (2) may always be described
asK multiplied by a term that depends on the lamp dimen-
sions and distances, as in Eqs. (4) and (5), such that deter-
miningK from a single series of measurements allowsJNO2

to be described at any point with respect to the lamp. Fur-
thermore, Eq. (2) is easily extended via a simple summation
in order to describeJNO2 as a function of position in a re-
actor that houses several parallel lamps oriented around the
circumference of a cylinder, as in HIRAC. Figures 3a and b
show the profiles ofJNO2 along two lines located on a plane
that is coincident with the centre point of HIRAC, orthog-
onal to the cylindrical axis of symmetry withrlamp=2.0 cm,
andK=3.20×10−3 s−1 (the calculation ofK is described be-
low). The lines represented by these figures are shown with
respect to the locations of the lamps in Fig. 4a.

In order to obtain information regarding the effect of re-
flections, a series of numerical optical ray trace simulations
was performed with OptisWorks, which operates as a fully
compatible add-in to the SolidWorks CAD software pack-
age used to design HIRAC. The simulations were carried
out by propagating 10 500 000 rays emanating from the sur-
faces of the lamps, specified as Lambertian emitters in agree-
ment with previous recommendations (Cassano et al., 1995;
Irazoqui et al., 1976), and specifying that the quartz tubes
have a transmission of∼0.9 in the wavelength range emit-
ted by the lamps (Weast, 1980b). The pictorial results of a
typical multireflection ray trace run are shown in Fig. 4a.
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In order to run the OptisWorks simulations, the reflection
properties of stainless steel needed to be specified. Lacking
more thorough data regarding the reflectivity of 304 stain-
less steel in the UV after an extended search, the CRC spec-
ification that Fe, Cr, and Ni (the main constituents of 304
stainless steel, in proportions of ca. 0.66, 0.19 and 0.10, re-
spectively) have reflectivities between ca. 290–ca. 420 nm
of ∼0.54±5%,∼0.66±2%, and∼0.45±10%, (Lide, 1994)
were combined to give a net reflectivity for stainless steel of
ca. 0.50 at 290 nm and 0.56 at 420 nm, which is in reasonable
agreement with an earlier CRC recommendation that stain-
less steel has a reflectivity of 0.55 at 400 nm (Weast, 1980a).
Furthermore, a reflectance of 0.50–0.56 is in agreement with
experiments which we conducted to measure the enhance-
ment in JNO2 given a single reflecting surface, wherein a
lower limit of 0.33 was obtained. The radiation profiles ob-
tained from the OptisWorks simulations were insensitive to
(1) whether the reflection of the light off of the stainless steel
skin was Gaussian, Lambertian, or specular, and (2) the re-
fractive index of the quartz tubes and the gas mixture inside
of the chamber volume.

The output of an OptisWorks ray trace simulation is in
Watts, and thus needs to be converted toJNO2. In princi-
ple, it would be possible to convert the output in Watts to
actinic flux and multiply it by theJNO2 action spectrum, but
this would require that the lamps in the model emit radia-
tion over the range 300 nm–420 nm in a manner that mimics
the lamp spectrum. The number of rays required to obtain
reproducible results for such a calculation presents a compu-
tationally intractable problem. Given that the intensity maps
have essentially the same relative profile regardless of the
wavelength(s) at which the lamps are specified to emit, the
ray trace problem was simplified and the computational ex-
pense significantly reduced by running simulations only at
λ=350 nm, and specifying that stainless steel has a reflectiv-
ity of ∼0.53. The error associated with this approximation
over the wavelength output range of the lamps and the wave-
length dependent reflectivity of stainless steel is estimated to
be<5%.

A further issue that complicates numerically deriving a
chamber integratedJNO2 value using OptisWorks is that ray
trace simulations would need to be rerun for as many planes
across the chamber as required to convergeJNO2, which is
another computationally intractable issue. However, given
(1) the good agreement between the analytical model and
ray trace results shown in Fig. 3 for the case with no re-
flection, and (2) correlation plots between the ray trace data
not including reflection and that including reflection indicate
that the effect of multireflections is to increaseJNO2 across
the entire chamber by an approximately homogeneous back-
ground amount, the following strategy has been adopted:
Eqs. (4) and (5) were used to evaluateJNO2 for values of
K from 0.0025–0.0040. For each value ofK, the ray trace
output data atλ=350 nm could be converted to absoluteJNO2

values via a correlation plot. The backgroundJNO2 due to
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Fig. 4. (a)Pictoral results of a typical ray trace simulation, showing
the relative energy incident on a plane that bisects HIRAC, and is
parallel to its end flanges. The lines a and b in the figure correspond
to the results plotted in Figs. 3a and b.(b) Comparison of the an-
alytical form derived to describe NO2 photolysis as a function of
position along HIRAC’s cylindrical symmetry axis (−−), and the
multireflection ray trace results (�) carried out on the HIRAC solid
model.

reflection were then calculated by comparing the ray trace
curves with and without reflection (shown in Fig. 3) using an-
other correlation plot. The value ofK and its corresponding
JNO2 due to reflection were then used in a numerical model
which calculated a chamber integratedJNO2 value based on
1.1×107 points uniformly distributed across HIRAC’s entire
volume (approximating it as a perfect cylinder). The inte-
grated chamberJNO2 from the model could then be com-
pared to the experimental value, and the value ofK de-
termined. The plots in Fig. 3 have been constructed with
K=3.20×10−3 s−1, for which the corresponding background
JNO2 value due to multireflection is 1.11×10−3 s−1. Using
these values, the model gave a chamber integratedJNO2 of
1.97×10−3 s−1, in good agreement with the experimental
value of (1.93±0.10)×10−3 s−1.
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Fig. 5. Schematic of the 72 pass arrangement for the modified
Chernin cell multipass optics in HIRAC. The image pattern on the
field mirror is shown, as well as the location of the centre of curva-
ture for each objective mirror. The centre of curvature F1 is located
at the midpoint of the line connecting the centres of O1 and O2,
while the centre of curvature of F2 is located at the midpoint of the
line connecting the centres of O1 and O3.

The good agreement between the data obtained from
the numerical ray trace results with and without reflection
is shown alongside the corresponding analytical results in
Fig. 3 (along a radial axis) and Fig. 4b (along the cylindrical
axis). The ray trace data shown in these figures was obtained
at the threshold of the available computing resources; how-
ever, increasing the number of rays propagated through the
system would smooth these data points. The slight asymme-
try in the multireflection ray trace data of Figs. 3 and 4a likely
derives from the asymmetry of HIRAC’s interior (e.g., one
side has two large ISO-K500 access flanges, while the other
side has two small ISO-K160 access flanges), for which the
analytical description does not account. However, these devi-
ations are very small with respect toJNO2. The good agree-
ment shown in these figures indicates that, given HIRAC’s
symmetry, it is possible to derive an analytical expression to
describeJNO2 as a function of position which agrees well
with state of the art numerical ray trace simulations. Using
this model, it has been determined thatJNO2 is within±15%
of the average for∼75% of HIRAC’s volume.

3 Instrumentation: design, specifications, and perfor-
mance

3.1 FTIR and optics

The FTIR and optics which couple it to HIRAC have been
described in detail in a recently submitted publication by
Glowacki et al. (2007). A Bruker IFS/66 FTIR spectrom-

eter has been coupled via throughput matched transfer op-
tics located in a box constantly purged by nitrogen gas to
a multipass optical arrangement mounted on the interior of
HIRAC. Two (8.7 millirad wedged, KBr, 75 mm diameter,
5 mm thick) windows are located on one of the end flanges,
and are aligned with the cell’s input and output apertures.
Symmetrical transfer optics couple the multipass optics to a
mid-band mercury-cadmium-telluride (MCT) detector (mea-
surement range: 12 000 cm−1–600 cm−1), also housed in the
N2 purge box. Mid IR (MIR) measurements are performed
with a KBr beam splitter (range 7500 cm−1–370 cm−1). The
mirrors have not been mounted on the end flanges on either
end of the chamber, but are instead fixed to crosses offset
10 mm from the internal face of the end of the chamber. The
crosses are mounted in HIRAC by fastening each end of the
cross beams to the cylindrical portion of the skin in order to
avoid pressure dependent misalignment of the optical system
that may result from the bowing of end flanges as they are
subject to pressure gradients during experiments. The mirror
mounts are made from aluminium with stainless steel contact
points for the adjustment screws. The adjustment screws are
80-pitch per inch with a total travel of 50 mm. A more de-
tailed description of the design of the the mounts is presented
elsewhere (Glowacki et al., 2007).

The multipass arrangement, shown in Fig. 5, is a modi-
fied multipass matrix system (MMS) featuring three objec-
tive mirrors (Chernin, 2002; Chernin and Barskaya, 1991)
that places the input and output aperture on opposite sides
of the small field mirror (F2 in Fig. 5), a design that to our
knowledge, has not been previously implemented. It fea-
tures three objective mirrors and two field mirrors, giving
a matrix of images on the field mirrors, thereby: (1) min-
imizing potential losses of throughput deriving from larger
off axis angles implied by a traditional Bernstein-Herzberg
(BH) modified White cell design (White, 1942; Bernstein
and Herzberg, 1948; Tobin et al., 1996), and (2) enabling
the use of a smaller field mirror for the same number of
images. A number of subsequent modifications to the BH
modified White cell design have been reported in the liter-
ature which give a matrix of images on the field mirror. In
general these designs operate in a similar manner: the BH
modified White cell, which functions as a confocal resonator,
“walks” the beam through the system, giving the character-
istic image arrangement on the field mirror for the first two
image rows. Then, some arrangement of optics “reinjects”
the beam back into the system using retroreflectors (Horn
and Pimentel, 1971; Doussin et al., 1999; White, 1976) or
another field mirror and another objective for every row of
the image matrix (Shetter et al., 1987; Hanst, 1971). Apart
from the latter technique, which requires several mirrors, the
other modifications do not conserve the focal properties of
the BH modified White cell. Previous ray trace simulations
have shown that failure to perserve the focal properties of
the BH modified White cell has non-trivial consequences
for conserving optical throughput in multipass cells (Grassi
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Fig. 6. Schematic of the how the throughput matched transfer optics couple the FTIR and detector optics to the multipass cell.

and Guzzi, 2001), whereas our own ray tracing simulations
and measurements indicate that the three objective modified
Chernin cell, which retains the focal properties of the orig-
inal White cell, perfectly conserves optical throughput over
a range of matrix arrangements. In practice, it is very easy
to align, and shows very good stability to vibrations, with
the FTIR giving good trace gas detection limits over small
acquisition times even when the mixing fans, whose motor
housings are located near to the optical mounts, are running.

All mirrors in the Chernin cell are made from zerodur, and
have radii of curvature (ROC) of 1785±1 mm, verified by
performing a Ronchi test (Cornejo-Rodriguez, 2007) on the
uncoated optics with respect to a single standard test plate.
Mirror F1 has dimensions of 180×255 mm and centre thick-
ness of∼12 mm, mirror F2 has dimensions of 180×45 mm
with a centre thickness of∼9 mm, and mirrors O1–O3 are
100 mm in diameter with a centre thickness of∼7.5 mm. A
schematic of the manner in which the throughput matched
transfer and detection optics are coupled to the FTIR, as well
as typical results of the ray trace simulations carried out with
OptisWorks, is presented in Fig. 6. Transfer optics P1 and P2
are plane mirrors, 75 mm in diameter, and∼7.5 mm thick,
while S1 is 101.6 mm in diameter with a centre thickness
of ∼7.5 mm and an ROC of 2400±12 mm. In Fig. 6,d2,
the distance between the S1 optics and the input or output
apertures, is 1200 mm. All mirrors are polished to have a
maximum deviation from spherical ofλ/4 (at 633 nm) with
a 60/40 scratch dig ratio, and coated with protected silver.

The maximum passes through the system obtained was
124 (8×8 field mirror image arrangement, 228.48 m total
path length) with a 2.0 mm FTIR aperture. With a smaller
aperture, it would be possible to increase this number of
passes. Presently, the system has a base pathlength (d in
Fig. 6) of∼1.785 m, and has been optimized at 72 passes
for an aperture of 2.5 mm (∼0.13 cm−1 resolution for MIR
spectral regions less than∼3900 cm−1), giving 36 images
on F1 and F2 and a total pathlength of 128.52 m. The num-
ber of passes through the system is easily varied: align-
ment and path length determination are undertaken by us-
ing the near infrared (NIR) output of the IFS/66 (CaF2

beam splitter, Si diode detector, measurement range 15 000–
1200 cm−1), which is nearly collinear with the MIR source,
and which may be seen on the surface of the mirrors.
Measurements of the total raw signal on the MCT detec-
tor with several different matrix arrangements, from 42 to
112 passes (74.97 m–199.92 m), allowed the integrated MIR
(7500 cm−1–600 cm−1) reflectivity of the mirrors to be de-
termined as 0.98658±0.00024, in very good agreement with
the manufacturer’s coating specification. The continuity of
the data for these measurements indicate that the optical
throughput is nearly perfectly conserved. Having measured
the mirror reflectivity, determination of the optimum arrange-
ment of 72 passes (128.5 m pathlength) is straightforward.
In this arrangement, with a 2.5 mm aperture, the MIR beam
saturates the detector. To avoid saturation, mirror P1 (situ-
ated immediately before the detector optics in Fig. 6) is very
slightly misaligned in order to bring the raw signal on the
detector just under the saturation threshold, allowing smaller
detection limits than a smaller aperture.

The three objective MMS shows good stability to pres-
sure variations. The alignment has been optimized for at-
mospheric pressures, but the raw MCT signal drops by no
more than∼20% at 10−2 millibar. Readjusting the transfer
optics at low pressures brings the signal to within 10% of
the optimized signal at atmospheric pressure. The system
is very stable and has gone without realignment for several
weeks with a drop in signal of no more than∼15%. In ev-
ery case, optimum signal may then be regained by a simple
readjustment of the transfer optics. For observation times
as short as 60 s (12 scan average), detection limits (deter-
mined whenS/N=1) of ozone, acetaldehyde, methane, and
formaldehyde are approximately 20 ppbv, 35 ppbv, 30 ppbv,
and 20 ppbv, respectively for the 72 pass system (total path-
length = 128.5 m). The optical system is quite stable with
respect to vibrations from the fans. With the fans running
at∼3000 rpm, fast enough to give a mixing time of∼60 s,
the detection limits of ozone, acetaldehyde, methane, and
formaldehyde are increased to approximately 60 ppb, 80 ppb,
75 ppb, and 50 ppb, respectively. Without the fans running,
the effects of vibration in this cell are negligible.
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Fig. 7. SolidWorks 2004 model of the FAGE instrument which is
coupled to HIRAC in Fig. 1 and corresponding cutaway view of
the FAGE instrument, revealing the fluorescence chambers for OH
and HO2 detection as well as the optics and PMT mounts for each
fluorescence chamber.

3.2 FAGE instrument

3.2.1 Instrument description

A significant feature of HIRAC, distinguishing it from other
chambers of its size, is the facility for carrying out absolute
OH and HO2 in situ measurements via the FAGE technique,
which has been described in recent reviews (Heard, 2006;
Heard and Pilling, 2003). A SolidWorks model of the FAGE
apparatus is shown in Fig. 7. A continuous sample of cham-
ber gas undergoes supersonic expansion through a 0.8 mm
diameter pinhole at the apex of a conical inlet, and then trav-
els down a black anodized aluminium tube (internal diameter
50 mm) into a fluorescence cell, maintained at low pressure
(typically 1–2 Torr). This tube is coupled to HIRAC through
a compression O-ring seal affixed to a flange which attaches
to one of the ISO-K160 access ports shown in Fig. 1. The
low pressure of the fluorescence cell is maintained with a ro-
tary pump backed roots blower combination (Leybold trivac
D40B and ruvac WAU251) and the flow rate through the sam-
pling pinhole is∼2 L min−1. Furthermore, the length of the
tube down which the gas expansion occurs may be extended
or shortened, a design permitting easy variation of the sam-
pling pinhole’s position within the chamber, which will be
particularly useful for examining whether the radiation field
profile within HIRAC gives rise to radical concentration gra-
dients.

A pulsed probe laser beam is directed into the low pres-
sure fluorescence chamber, orthogonal to the axis which
the HIRAC gas sample traverses, and excites OH radicals
through theA26+ (v′=0)←X25i (v′′=0) Q1 (Eq. 2) transi-
tion near 308 nm (307.995±0.001 nm). On-resonance fluo-
rescence accompanying the subsequent relaxation of the OH
A26+ is detected on an axis orthogonal to the gas expansion
and the probe beam. Precise tuning to the peak of the Q1(2)
spectral line of the OH transition is achieved by splitting a
small fraction of the light from the probe laser to a reference

cell containing a relatively high [OH], produced by passing
water vapour in ambient air at over a heated nichrome wire at
∼3.5 Torr. Maintaining the fluorescence cell at low pressure
(2 Torr) extends the OH fluorescence lifetime well beyond
the duration of the laser pulse (35 ns), enabling the much
larger scattered light signal from the probe laser to be dis-
criminated from the longer lived OH fluorescence signal by
using delayed photon counting. The background laser scatter
can be further minimized by switching the photomultiplier
detector off during the laser-pulse and switching on rapidly
immediately afterwards using a modification of a home-built
high voltage gating circuit (Creasey et al., 1998). Use of a
laser with a high pulse repetition frequency and low pulse en-
ergy avoids optical saturation and minimizes photolytic gen-
eration of OH from other chemical species. The latter consid-
eration determines why on-resonant detection of the 308 nm
excitation is used instead of the alternative off-resonant tech-
nique, wherein relaxation of the OHA26+ is detected fol-
lowing OH radical excitation via theA26+ (v′=1)←X25i

(v′′=0) transition near 282 nm (Heard, 2006).
HO2 detection is accomplished by adding NO at a flow

rate of 10–50 sccm to the flowtube via an inlet positioned
50 mm downstream of the OH fluorescence cell, but 335 mm
upstream from a second OH detection cell (Fig. 7) in order
to rapidly convert HO2 to OH via the reaction:

HO2+ NO→ OH+ NO2 (6)

The HO2 number density can then be obtained from the dif-
ference between the OH and HO2 measurements in this sec-
ond cell. A known concentration of NO is added to optimize
conversion of OH to HO2, while ensuring no back-diffusion
of NO to the first OH measurement cell occurs. Potential
interferences from RO2 to the FAGE detection of HO2 have
been previously investigated (Ren et al., 2004), and shown to
be insignificant. The conversion of HO2 to OH is performed
in a fluorescence chamber that has a pressure of∼1 Torr.
Thus, although RO2 will be converted into RO quite read-
ily, the reduced pressure means that the rate of RO+O2 to
give HO2 is quite slow even when RO2 (and hence RO) is
high. The level of interference depends on the relative ratio
of RO2 and HO2; however, under conditions with high RO2
concentrations, the levels of HO2 are also likely to be higher,
and the effect of RO2 interference on any HO2 measurements
is expected to be minor.

For the measurements of OH described in this paper,
the HIRAC FAGE system uses a Nd:YAG pumped titanium
laser system (Bloss et al., 2003) to generate 308 nm radia-
tion at 5 kHz pulse-repetition-frequency. The laser power
entering each fluorescence cell is typically 5–10 mW. As
shown in Fig. 7, the fluorescence signal is collimated via
two touching plano-convex 50 mm diameter, 100 mm focal
length (at 633 nm) lenses, passes through a 308 nm bandpass
interference filter (Barr Associates, 308.75 nm central wave-
length, 5.0 nm bandwidth, 50% transmission), and is focused
onto the electronically gated channel photomultiplier (CPM,
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C943P, Perkin Elmer) using optics identical to those used for
collimation. The optics are isolated from the fluorescence
chamber via an antireflection coated UV grade fused silica
window. The solid angle of the OH fluorescence collected
is approximately doubled by a concave spherical mirror lo-
cated opposite the window that separates the optics and de-
tector housing from the fluorescence chamber. Gated pho-
ton counting (Becker and Hickl, PMS MSA 300A) is used
to monitor the signal from the PMT, which is subsequently
normalised for laser power measured by a photodiode.

Switching the blacklamps within HIRAC on and off re-
sults in no change of PMT signal, indicating that scattered
light from the chamber does not interfere with the OH flu-
orescence signal. Interferences with the measured OH fluo-
rescence signal arise from scattered laser light and detector
dark current (typically<1 count s−1 mW−1). These are sub-
tracted by performing alternating measurements on and off
the OH spectral line in order to ascertain the background sig-
nal, which has no contribution from OH LIF.

3.2.2 Instrument calibration

LIF is not an absolute technique and calibration of the sen-
sitivity of the FAGE instrument is necessary. Calibration
procedures have been described in detail in previous publi-
cations (Faloona et al., 2004; Floquet, 2006) such that only
a brief overview will be provided here. The signal due to
OH fluorescence,SOH, is related to the concentration of OH,
[OH] by:

SOH = COH× P × [OH] (7)

where COH is the instrument sensitivity (counts
s−1 mW−1 molecule−1 cm3) and P is the laser power
(mW). For determining instrument sensitivity, 184.9 nm
photolysis of water vapour at atmospheric pressure has
become the standard method (Heard and Pilling 2003).
Within the photolysis region, the concentration of OH is
determined as:

[OH]=[H2O]σH2O,184.9 nmφOH, 184.9 nmF184.9 nmt (8)

whereσH2O, 184.9 nm is the absorption cross-section of wa-
ter vapour [7.1±0.2×10−20 cm−2 (Cantrell et al., 1997),
φOH, 189.4 nm is the photodissociation quantum yield of OH
(φOH, 189.4 nm=1),F184.9 nm is the photon flux of the lamp, and
t is the photolysis exposure time.

Calibration of the HIRAC FAGE instrument utilizes a
“wand” system, initially developed by Faloona et al. (2004).
Briefly, humidified air at atmospheric pressure is passed
through a 1.27 cm×1.27 cm square internal section black-
anodised aluminium tube of 30 cm length known as the
“wand”. A mercury pen-lamp is housed in a heated (36–
40◦C) aluminium casing flushed with nitrogen and posi-
tioned over a 3.81 cm SuprasilTM window, mounted 2 cm
from the end of the wand. The lamp output is collimated
using a series of thin walled tubes (3 mm diameter, 8 mm

length) to create a uniform flux across the photolysis region.
Immediately prior to the air entering the wand a small flow
is diverted to a dew point hygrometer (CR4, Buck Research
Instrument) to measure the concentration of water vapour in
the flow. The product of the photon flux and the photolysis
exposure time as a function of lamp current is determined us-
ing NO actinometry (Edwards et al., 2003), which allows a
determination ofF184.9 nm and t according to the following
relation:

[NO]=[N2O]σN2O,184.9 nmφNO, 184.9 nmF184.9 nmt (9)

A 5 slm flow of N2O is added to zero air (45 slm), NO is mea-
sured with a commercial NO analyser (Thermo Electron Cor-
poration, Model 42C),σN2O, 184.9 nm is the absorption cross-
section of N2O [1.43×10−19 cm2 molecule−1 (DeMore et
al., 1997)], andϕNO, 184.9 nm is the quantum yield of NO from
O(1D)+N2O→2 NO (Edwards et al., 2003). The uncertainty
for the actinometry is±13% (1σ), and the total calibration
uncertainty is±23% (1σ).

Gas flow through the wand at 50 slm assures a fully
turbulent radial flow profile, with uniform mixing of the
concentrations of OH produced across the face of the
wand. To allow calibrations of OH between∼2×106 and
2×109 molecule cm−3, the concentration of water vapour
was maintained at 0.03% v/v water vapour in the calibra-
tion gas, and the photon flux varied between 5.6×1012–
3.4×1013 photons cm−2 s−1 (Lamp current = 0.5–3 mA).
The design of the HIRAC fluorescence cells is very similar to
those used on the Leeds aircraft FAGE instrument, for which
the sensitivity to OH and HO2 was found to be invariant over
the water vapour mixing ratio range of 0.03% and 2.2%. Ini-
tial results indicate that the HIRAC FAGE instrument shows
a similar insensitivity to water vapor but more complete char-
acterization of the instrument sensitivity is planned.

The limit of detection (LOD) is determined by:

[OH]min =
S/N

COH× P

√(
1

m
+

1

n

)
1

t
σb (10)

where: S/N is the signal to noise ratio,m and n are the
number of online and offline points, respectively,t is
the data collection time, andσb=

√
Slb+Sdc. Slb is the

average signal due to background laser scatter andSdc is
the average signal due to dark counts from the CPM. For
a 1 s integration time, the limit of detection (LOD) for OH
was calculated to be 4.7×105 molecule cm−3, whereS/N=1,
COH=9×10−8 cts s−1 mW−1 molecule−1 cm3, P=11 mW,
m=1142 points,n=119 points,t=1 s,Slb+Sdc=10.9 cts s−1.

3.3 Gas chromatography instrumentation

3.3.1 Commercial GC

In addition to the FTIR multipass optics, organic compounds
may be measured in HIRAC via a commerical gas chro-
matography (GC) instrument (HP 6890). Detection of the
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(a)

(b)

Fig. 8. (a)schematic of the automated GC sampling system coupled
to HIRAC; (b) chromatograph showing the sequence of events in
the automated GC sampling system.

species separated on the column is via a flame ionisation de-
tector (FID) maintained at 250◦C. Gas samples are injected
onto the column using a six way gas sampling valve equipped
with a 5 mL stainless steel loop. Gas samples are drawn from
HIRAC into the stainless steel loop using a diaphragm pump.
The gas sampling valve is coupled to HIRAC via 1/16 inch
(i.d.) teflon tubing attached to a moveable stainless steel
sampling inlet, which is fitted on an ISO-K160 flange ad-
jacent to that housing the FAGE nozzle (shown in Fig. 1a).
The GC sampling system, for which a schematic is shown in
Fig. 8a, has been automated by using two solenoid valves,
one of which (the pump valve) is located between the gas
sampling valve and the pump, and one of which (the cham-
ber valve) is located between the gas sampling valve and
HIRAC. In normal operation, the chamber valve is closed
and the pump valve opened in order to evacuate the teflon
tube and the stainless steel sample loop. To fill the sam-
ple loop, the pump valve is closed and the chamber valve
opened, allowing a sample of chamber gas to fill the sam-
pling loop at the current chamber pressure. The gases in the
sampling loop are transferred to the column using the six
way gas sampling valve, and the chamber and pump valve
are reset in order to purge the teflon line and sample loop.
This entire automated sampling cycle, which lasts∼120 s,
is represented as a function of time in Fig. 8b, and the duty
cycle for typical measurements is∼20 h−1. Detection lim-
its of some species measured thus far with the commerical
GC are as follows: i-butane, 0.1 ppm; ethane, 0.3 ppm; and
chloroethane, 0.3 ppm.

3.3.2 Formaldehyde GC

The formaldehyde instrument coupled to HIRAC has been
described in detail previously (Hopkins et al., 2003) and been
successfully deployed in field campaigns to monitor ambient
formaldehyde (Still et al., 2006). The instrument, coupled
to HIRAC via teflon tubing, transfers a loop sample of 1–
6 mL onto the column (50 m, 0.32 mm id, 100% dimethyl
polysiloxane, WCOT column, 5µm phase thickness, CP-
Sil 5CB Chrompack, Netherlands) using helium carrier gas
(BOC, CP grade, further purified by a helium purifier HP2,
Valco Instruments) and the formaldehyde is refocused at the
head of the column with liquid N2 cold trap. Following elu-
tion of the untrapped air, the analytes were released, sepa-
rated in the column, and detected using an argon doped (1%
Ar in He mix, Air Products Special Gases), pulsed discharge
helium ionization detector (Model D44, VICI AG, Schenkon,
Switzerland). To prevent the deposition of water and heavier
species on the column, the column flow is reversed and the
column back flushed (30 ml min−1, 70 s, backing pressure
60 psi) after elution of formaldehyde. Calibration with a per-
meation source (Kintec, Texas) allows the relative measure-
ments to be converted to absolute values. Samples may be
obtained from HIRAC in a manner identical to that described
above for the commercial GC. The formaldehyde instrument
detection limit is 42 ppt, it has a duty cycle of∼11 h−1.

3.4 Other analysis instrumentation

In addition to the instrumentation described above, HIRAC is
also coupled to a suite of commerical chemical analyzers for
measurement of NO, NO2, O3, CO, and H2O. The analyzers
are connected to any of HIRAC’s several chamber sampling
ports via teflon tubing. Currently the sampling position is
simply located at the surface of one of the ISO-K500 flanges;
however, it is possible to change the sampling position to a
variable length inside the chamber by coupling it to a stain-
less steel tube that passes through one of the flanges fixed to
a HIRAC access port, as occurs with the GC sampling.

A conventional subambient chemiluminescence analyzer
is used for detection of NO and NO2 (Thermo Electron
Corporation, Model 42C). The detection limits for each
species is 400 ppt, the sample flow rate at ambient pres-
sure is 0.6 L/min, the response time is 40 s with a 10 s av-
eraging time, and the instrument operates down to a pres-
sure of∼725 mbar. A conventional UV photometric O3
Analyzer is used for O3 detection (Thermo Electron Envi-
ronmental instruments, Model 49C), which has a detection
limit of 1.0 ppb, a standard sample flow rate of 2 L/min, a
response time of 20 s with a 10 s averaging time, and oper-
ates down to a pressure of∼725 mbar. The O3 analyser has
been calibrated using a commercial ozone primary standard
(Thermo Electron Corporation 49i-PS) and intercomparisons
with the FTIR, discussed in the next section, are linear. CO
detection is via a commercial gas chromatographic reduction
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gas analyser (Trace Analytical, Model RGA3), which has
a detection limit of 10 ppb, a sample flow rate of less than
35 mL/min, a response time of∼30 s, and is capable of op-
erating at pressures varying from vacuum to ambient. Inter-
comparisons of the CO measurements with the FTIR are also
linear. H2O is monitored with an infrared hygrometer (An-
alytical Development Company, Model 7000), which has a
detection limit of 5 ppm, a sample flow rate of 0.6 L/min, a
response time of 5 s with a 5 s average time, and operates at
ambient pressure. All of the data output from the analysers
are monitored with a LabView program run on a laboratory
PC.

4 Initial results

4.1 Comparison of FTIR with commercial analysers

Intercomparisons to investigate FTIR measurements with re-
spect to the calibrated O3 analyser and the CO analyser were
undertaken. The results are shown in Figs. 9a and b. In the
O3 intercomparisons, a mercury pen-ray lamp was attached
to a port located on the end of the chamber adjacent to the
Chernin cell objective mirrors. O2, delivered by stainless
steel tubing, was passed over the mercury lamp at a rate of
∼2 L min−1 in order to balance the sampling rate of the O3
analyser, measured with a rotameter flow meter. The mercury
lamp’s 184.9 nm emission was used to photolyse O2 to give
O(3P), which recombines with O2 to produce O3. FTIR spec-
tra were obtained by averaging 12 scans (measurement time
∼60 s), and integrating the O3 absorption features with re-
spect to the baseline from 995 cm−1 to 1072 cm−1, and [O3]
was obtained from the analyser every 20 s. For the CO mea-
surements, a known [CO] was transferred via the vacuum
line into a 0.97 L stainless steel delivery vessel cleaned be-
tween experimental runs by attaching it to the vacuum line
and subsequent pumping. The chamber was then evacuated
to a pressure∼50 mbar below ambient, and the delivery ves-
sel, coupled to the chamber via teflon tubing, was flushed
with N2 until the pressure in the chamber was brought to
ambient (∼150 L N2 at a flow rate of 100 L min−1). Gas
samples removed from HIRAC were replenished with N2
to maintain a constant pressure. [CO] was obtained every
∼30 s with the analyser, while FTIR spectra were obtained
by averaging 128 scans (measurement time∼4 min), and the
CO band areas and peak heights from 2250–2030 cm−1 were
measured. Both plots indicate that FTIR measurements are
linear with respect to the commercial analysers. As a check
on the accuracy of the measurements obtained with the O3
analyzer and CO GC instrument, simulations of CO and O3
FTIR spectra with the HITRAN database (Rothman et al.,
2005) were performed for a representative range of the CO
and O3 measurements shown in Fig. 9. The simulations used
the LINEPAK suite of algorithms (Gordley et al., 1994) in-
terfaced to spectral calculation software available on the web

(a)

0 . 0 4 . 0 x 1 0 1 2 8 . 0 x 1 0 1 2 1 . 2 x 1 0 1 3 1 . 6 x 1 0 1 3 2 . 0 x 1 0 1 3
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

FT
IR 

O 3 A
bs

orp
tio

n /
 re

l u
nit

s

[ O 3 ]  /  m o l e c u l e  c m - 3

(b)

0 1 x 1 0 1 3 2 x 1 0 1 3 3 x 1 0 1 3
0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2
0 . 0 1 4
0 . 0 1 6
0 . 0 1 8
0 . 0 2 0
0 . 0 2 2

[ C O ]   /  m o l e c u l e  c m - 3

FT
IR 

Pe
ak

 he
igh

t / 
rel

 un
its

Fig. 9. Correlation plots for intercomparisons staged between
the FTIR and: (a) the commerical ozone analyser: gradient =
(8.65±0.06)×10−14, and intercept = (3.1±7.8)×10−3; (b) the
commercial CO analyser: gradient = (8.41±0.49)×10−16, and in-
tercept = (−1.7±6.9)×10−4. Errors quoted are standard errors ob-
tained in the regression analysis.

(http://www.spectralcalc.com). In the simulated spectra, the
O3 absorption features between 1100–900 cm−1, and the CO
features between 2250–2030 cm−1, were integrated with re-
spect to the baseline, and compared to the same integral val-
ues obtained from the experimental spectra. All of the inte-
gral values from the experimental spectra agreed with the in-
tegral values from the experimental spectra within 5% (i.e.,
within the experimental error limits), reaffirming the accu-
racy of those measured values shown in Fig. 9.

4.2 Initial GC relative rate experiments

In order to verify that kinetic data obtained from HIRAC
agree with previous literature recommendations (Atkinson
and Aschmann, 1985; Lewis et al., 1980) relative rate tech-
niques were used to measure the kinetics of chlorine atom
reactions with propane and isobutane under a variety of
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Fig. 10. Typical plot of ln([isobutane]0/[isobutane]t ) versus
ln([propane]0/[propane]t ) obtained with the GC following Cl2 ir-
radiation (R2=0.993).

conditions. The measurements were carried out at room
temperature (298±2 K) and 1000 mbar in N2 (Dominick
Hunter N2 generator, MAX116,>99.995% purity). The
loss of propane and isobutane was followed using the GC-
FID with a gas sample valve. The compounds were sepa-
rated using a 50 m, 0.53 mm i.d. column coated with 100%
dimethylpolysiloxane (J&W, DB-1) and operated at 50◦C.
The organic compounds were of stated purity levels (>99%),
and GC analyses showed no observable impurities. GC sam-
ples from HIRAC were obtained using moveable probes,
and indicated that concentration gradients across the cham-
ber were insignificant. The reagent concentrations were
typically: 10 ppm propane, 10 ppm isobutane, and 20 ppm
Cl2. These were introduced into the dark chamber, and Cl
was then generated via the photolysis of Cl2, using four of
HIRAC’s lamps.

In the relative rate method, the rate of reaction be-
tween the compound of interest and a reactive species
(e.g., isobutane + Cl), is measured with respect to the
rate of reaction for some reference compound and the re-
active species (e.g., propane + Cl). The relative rate
(k/kref, e.g.,kCl+isobutane/kCl+propane) is then obtained from
the slope of the plot of ln([isobutane]0/[isobutane]t ) versus
ln([propane]0/[propane]t ). A series of kinetic measurements
were carried out following Cl2 irradiation, and indicated that:
(1) results obtained using dichloromethane as an internal
standard were in good agreement with those obtained using
chloroform; (2) experiments carried out by introducing the
reagents into HIRAC the previous night, and then carrying
out the irradiations the following morning, gave results in
good agreement with those where the irradiations were per-
formed immediately following reagent mixing. We are not
able to directly measure how much Cl2 was lost to the walls

overnight, but the results suggest that any uptake has a negli-
gible effect on the kinetic measurements; (3) measurements
undertaken with smaller initial concentrations of i-butane and
propane (5 ppm) gave results in good agreement with exper-
iments using higher concentrations; (4) results using Cl2 as
the Cl precursor agreed well with those using COCl2. A typ-
ical set of results is shown in Fig. 10. For all experiments
conducted over the range of conditions mentioned above, the
ratio between the rate coefficients (kCl+isobutane/kCl+propane)

is 0.99±0.02. The errors obtained for these measurements
are the 95% confidence limits weighted to account for er-
rors in the concentrations of both the isobutane and propane
(Brauers and Finlayson-Pitts, 1997; Vetterling, 1988). This
value is in good agreement with previous measurements
of this ratio: 1.02±0.04 (Atkinson and Aschmann, 1985);
0.93±0.20 (Lewis et al., 1980); and 1.02±0.01 (Choi et al.,
2006).

4.3 Pressure dependent relative rate experiments

To demonstrate HIRAC’s capability for performing pressure
variable kinetics measurements and in order to stage an in-
tercomparison between the FTIR and GC, relative rate mea-
surements were carried out to investigate the kinetics of Cl +
ethene with respect to Cl + chloroethane and Cl + isobutane
at room temperature (298±2 K). These measurements were
performed over a range of pressures, from 15–1000 mbar,
using nitrogen as the bath gas (BOC, Oyxgen Free) in or-
der to avoid potential recycling of ethene (Wallington et al.,
1990b). GC measurements of the loss of the organic com-
pounds were carried out using the moveable gas sampling
system, and compounds were separated using a 1.8 mm i.d.
column coated with a 50 m, 0.53 mm i.d. column operated at
305 K coated with 100% dimethylpolysiloxane (J&W, DB-
1). The duty cycle varied from 10–15 h−1, depending on the
pressure.

Spectroscopic measurements of the loss of the organic
species were undertaken by measuring the characteristic ab-
sorptions of ethene, isobutane, and chloroethane in the wave-
length regions 925–975, 800–850, and 1285–1290 cm−1, re-
spectively. Calibration curves for both the GC and FTIR
were obtained for each organic compound over a series of
concentrations and, where appropriate, using known mix-
tures of compounds. The typical initial concentration of each
gas (ethene, chloroethane or isobutane, and Cl2) was 3 ppm.
These were introduced into the dark chamber, and Cl was
then generated via the photolysis of Cl2, typically using two
of HIRAC’s blacklamps. The organic compounds were of
stated purity levels (>99%), and the GC and FTIR analyses
obtained for calibration purposes showed no observable im-
purities.

The relative rate analysis assumes that the reactant and ref-
erence organic species are removed solely by reaction with
Cl. In order to verify this, the concentrations of the com-
pounds were monitored during each experimental run for
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Fig. 11. Plots of ln([reference]0/[reference]t ) versus
ln([ethene]0/[ethene]t ) obtained with the FTIR following Cl2
irradiation. Dashed lines with open symbols, and solid lines with
filled symbols indicate measurements using chloroethane, and
isobutane as the reference, respectivley. Triangles, circles, and
squares correspond to measurements at 1000, 400, and 100 mbar,
respectively.
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 Fig. 12. Fall-off curve showing the rate of loss of Cl + ethene as a
function of total pressure N2. 4 and� represent the data obtained
in this work with the FTIR and GC, respectively, and−− the corre-
sponding Troe fit to these data.• represents the data of Kaiser and
Wallington (1996).

a period of∼15–30 min, after addition of the reagents to
HIRAC, and before the photolysis lights were switched on.
Additionally, FTIR and GC measurement of the calibration
curves, wherein several measurements were made at each or-
ganic concentration, revealed no significant decay of the or-
ganics. Typical relative rate plots for each reference com-
pound at a range of pressures, obtained with the FTIR, are
shown in Fig. 11. These plots are linear with the intercepts at
the origin, within the error limits, suggesting that the present
work is free from complications due to secondary chem-
istry. Table 1 gives the ratio between the rate coefficients

Table 1. a 9 ppm referenceb 9 ppm ethenec 10 ppm (COCl)2 used
as Cl precursor instead of 3 ppm Cl2.

Pressure/ Reference GC determined FTIR determined
mbar kr /k kr /k

15 Chloroethane N/A 1.62±0.07
25 Chloroethane 1.26±0.05 1.25±0.03
50 Chloroethane 0.88±0.02 0.70±0.01
100 Chloroethane 0.39±0.05 0.39±0.01
100 Isobutane 6.06±0.61 6.67±0.39
100 Isobutanea 6.49±0.23 6.57±0.26
100 Isobutaneb 6.12±0.36 6.77±0.19
100 Chloroethanea 0.41±0.03 0.39±0.01
100 Chloroethaneb 0.42±0.03 0.44±0.01
200 Chloroethane 0.26±0.03 0.26±0.01
200 Isobutane 4.09±0.47 3.64±0.09
400 Chloroethane 0.18±0.01 0.19±0.01
400 Isobutane 2.45±0.13 2.51±0.03
500 Isobutane 2.41±0.17 2.16±0.09
600 Chloroethane 0.15±0.02 0.15±0.01
600 Isobutane 1.96±0.08 1.90±0.15
800 Chloroethane 0.13±0.02 0.12±0.01
800 Isobutane 1.64±0.07 1.66±0.05
800 Chloroethanec 0.12±0.02 0.11±0.01
800 Isobutanec 1.75±0.03 1.69±0.10
1000 Chloroethane 0.12±0.01 0.12±0.01
1000 Isobutane 1.58±0.12 1.57±0.05
1000 Isobutanea 1.61±0.08 1.57±0.02
1000 Isobutaneb 1.57±0.06 1.56±0.05
1000 Chloroethanea 0.12±0.03 0.11±0.01
1000 Chloroethaneb 0.11±0.03 0.12±0.01

obtained for each experimental condition, but does not fea-
ture results for measurements carried out under identical con-
ditions. However, we note that several such measurements
were performed, and the reproducibility is very good, typ-
ically within 4% for the GC measurements and 7% for the
FTIR measurements. Errors for each point on the regres-
sion plot were determined from the standard deviation of a
series of measurements of a particular compound maintained
at the same concentration. The errors in Table 1 are those ob-
tained from the regression analysis, and reflect the fact that
the error in measurement of the compound of interest and the
reference compound are similar, as discussed in the previous
section.

Using the data in Table 1, and taking the
pressure independent rate coefficients for Cl
+ chloroethane and Cl + isobutane to be
(1.15±0.15)×10−11 cm3 molecule−1 s−1 (Wallington et
al., 1990a) and (1.51±0.09)×10−10 cm3 molecule−1 s−1

(Wallington et al., 1988), the ratios of the rate coefficients
may be converted to absolute rate coefficients, and fitted to a
Troe expression (Troe, 1974) weighted by the experimental
uncertainties as shown in Fig. 12. Using a broadening factor
of 0.6 (Wallington et al., 1990b; Kaiser and Wallington,
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Table 2. Comparison of the high pressure and low pressure limiting rate coefficients obtained in this work (15–1000 mbar) with those
obtained by Kaiser and Wallington (1996) (75–2255 mbar). All errors cited are standard errors.

FTIR (this work) GC (this work) Kaiser and Wallington (1996)

k0/cm6 molecule−2 s−1 (1.25±0.79)×10−29 (1.22±0.74)×10−29 (1.42±0.05)×10−29

k∞/cm3 molecule−1 s−1 (1.45±0.15)×10−10 (1.42±0.14)×10−10 (3.2±0.15)×10−10

1996), k0=(1.22±0.74)×10−29 cm6 molecule−2 s−1 and
k∞=(1.42±0.14)×10−10 cm3 molecule−1 s−1 for the data
obtained with the GC. For the data obtained with the
FTIR, k0=(1.25±0.79)×10−29 cm6 molecule−2 s−1 and
k∞=(1.45±0.15)×10−10 cm3 molecule−1 s−1, in good
agreement with the values obtained using the GC data. The
low pressure termolecular rate coefficients,k0, determined in
this work agree well with those determined by Wallington et
al. (1990b) and Kaiser and Wallington (1996), but the high
pressure bimolecular rate coefficients are roughly a factor
of two slower than those determined by the same authors,
as shown in Table 2. These other studies investigated
pressures between 0.15 and 2255 mbar, and even at these
high pressures, the data do not appear to have reached the
high pressure limit, whereas the data obtained in the present
study appear to be approaching the high pressure limit at
1000 mbar. At atmospheric pressure and below, the data
obtained in all studies are in good agreement.

We are aware of controversy regarding the absolute value
for the rate coefficient for the Cl + chloroethane reference
reaction. Unfortunately, only a limited number of refer-
ence compounds are available for the Cl + ethene reaction
at low pressure. We have used a value determined in a rel-
ative rate study against ethane (Wallington et al., 1990a).
Direct measurements (Bryukov et al., 2003) report a value
of approximately 8×10−12 cm3 molecule−1 s−1, some 30%
lower. Our absolute values for Cl + ethene from both ref-
erence compounds are consistent if the higher value for Cl
+ chloroethane is used, although the errors are of the order
of ±20%, which are comparable to the systematic errors in
the Cl + chloroethane rate coefficient. This issue will be ad-
dressed in further studies on Cl atom kinetics.

4.4 Ozonolysis experiments

The capability of HIRAC to quantitatively measure free-
radicals has been investigated by examining the reaction of
O3+t-2-butene, which is known to produce OH and acetalde-
hyde (Rickard et al., 1999; Calvert et al., 2000). The exper-
iments were conducted in synthetic air at room temperature
and a total pressure of 1000 mbar. The absorption bands of
acetaldehyde in the region 1762 cm−1 were measured using
the FTIR, O3 was measured with the commercial analyser,
and OH was monitored with the FAGE instrument described
above. O3 was generated by photolysing O2 flowed over a

Hg pen-ray lamp until the chamber [O3] reached∼1 ppm,
during which time HIRAC samples were replenished by O2.
Then, the FAGE sampling pumps were turned on, HIRAC
gas samples were replenished by N2, and 1 ppm t-2-butene
was added to HIRAC. Throughout the experiment, all four
of HIRAC’s fans were run at 50% of their maximum speed.
Additional experimental runs using either laboratory air or
pure N2 for the bath gas were also carried out. The rate of O3
decay in the dark chamber was measured before and after the
experimental runs, and found to be proportional to [O3], with
a unimolecular loss rate determined to be∼3.2×10−5 s−1.

Data obtained from these reactions for the time depen-
dent OH profile, as well as the growth and decay of ac-
etaldehyde and O3, respectively, in nitrogen bath gas are
shown in Figs. 13a and b. Also shown in these figures is the
comparison between the measured [OH] and model predic-
tions obtained using a chemical model based on the MCM
(Saunders et al., 2003; Jenkin et al., 1997, 2003) and in-
tegrated using FACSIMILE (MCPA software, Oxon, UK).
The MCM subset extracted for these simulations included
54 intermediates and 124 reactions. MCM v3.1 specifies
that 57% of the Criegee biradical intermediate formed from
the O3+t-2-butene reaction yields OH. The peak modelled
[OH]=4.50×107 molecules cm−3, in agreement with the ex-
perimental value of (4.60±1.06)×107 (1 s signal averaging).
The reduction of [OH] with respect to its peak value, ob-
served in Fig. 13a, is due OH reactions with products of
the ozonolysis reactions and t-2-butene, which become sig-
nificant as the rate of OH production drops off due to re-
duced concentrations of O3 and t-2-butene. Within error, the
modelled and measured [OH] and [O3] are in good agree-
ment. Similar to other studies of O3+t-2-butene oxidation,
the residual plot in Fig. 13b indicates that the measured ac-
etaldehyde is slightly higher than the modelled acetaldehyde,
likely due to the presence of carbonyl compounds formed by
subsequent reactions of the Criegee biradicals (Calvert et al.,
2000).

Because the FAGE instrument calibration was carried out
in synthetic air, the effect of O2 quenching of the OH flu-
orescence LIF signal was investigated for determination of
[OH] in N2. The OH LIF signal recorded in pure N2 was
larger than the signal for the identical experiment carried out
in synthetic air. The difference in signal has been attributed
to the fact that O2 has a larger rate coefficient for colli-
sional quenching of excited OH than N2. These have been
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measured at 294 K to be 1.39×10−10 cm3 molecule−1 s−1

and 3.40×10 −11 cm3 molecule−1 s−1, respectively (Bailey
et al., 1997). The change in sensitivity for OH detection
observed between O3+t-2-butene experiments carried out in
pure N2 of and those observed in synthetic air (0.67) is in
good agreement with calculations of the fluoresence quantum
yields of OH in N2 and synthetic air using the coefficients
of collisional quenching cited above and the detection tim-
ing gates (0.70). In these experiments, the water vapour was
less than 0.03% (the threshold of the calibration, discussed
above). However, the good agreement between model and
the measurements suggests that the OH fluorescence signal is
not sensitive to the decreased [H2O] for the geometry of the
HIRAC FAGE expansion. Further experiments are planned
to examine the dependence of the OH fluorescence signal on
[H2O].

This work demonstrates HIRAC’s potential to simulate a
range of atmospheric compositions, pressures, and tempera-
tures. It thereby offers a test-bed for calibration and investi-
gation of the FAGE instrument response, so long as a reliable
means for generating a known [OH] is available. Further-
more, the measurements described above indicate HIRAC’s
potential to measure the time dependent profiles of a range
of species, including radical concentrations.

5 Conclusion

We have demonstrated that HIRAC, a highly instrumented
photochemical reaction chamber, has the potential to perform
detailed pressure dependent studies on gas phase chemical
systems over a range of atmospheric conditions. It features
a suite of analytical instrumentation, including: a multipass
FTIR system coupled to a Chernin cell; a commerical GC
FID and a home built formaldehyde GC, both of which are
coupled to an automated sampling system; commercial NO
and NO2, CO, O3, and H2O analysers; and a LIF FAGE in-
strument for performing OH and HO2 radical measurements.
Its capabilities and its coupling to the FAGE instrument for
in situ radical detection establish it as internationally unique
for a chamber of its size. Intercomparisons of the instruments
coupled to HIRAC indicate good agreement, and it has been
used to investigate pressure dependent kinetics, giving good
agreement with previously reported literature results. Be-
sides kinetics applications, HIRAC has been used to examine
the reaction of O3 and t-2-butene and the corresponding OH
yields, and the results obtained are in good agreement with
the mechanism featured in the current version of the Master
Chemical Mechanism (v3.1).

HIRAC may be used for a range of applications in atmo-
spheric chemistry, including: (1) field instrument intercom-
parison, calibration, development, and investigations of in-
strument response at a range of atmospheric conditions; (2)
kinetics investigations over a range of atmospherically rele-
vant conditions, with the potential for providing highly accu-

(a)

0 200 400 600 800 1000 1200
-1x107

0

1x107

2x107

3x107

4x107

5x107

[O
H

] /
 m

ol
ec

ul
e 

cm
-3

Time / s  

(b)

0 200 400 600 800 1000 1200

0.0

5.0x1012

1.0x1013

1.5x1013

2.0x1013

2.5x1013

C
on

ce
nt

ra
tio

n 
/ m

ol
ec

ul
e 

cm
-3

Time / s  

Fig. 13. (a)Time dependent [OH] in HIRAC for the reaction of
O3+t-2-butene, obtained with the FAGE LIF instrument (5 s signal
averaging; for the sake of a clearer plot, every third point is shown).
The solid line represents model results generated with MCM v3.1.
Open squares� show the residual plot and associated errors.(b)
Time dependent [O3] (4) and [CH3CHO] (�) profiles in HIRAC
for the reaction of O3+t-2-butene, obtained with the O3 analyser
and FTIR, respectively. The solid line and dotted lines represent the
corresponding MCM v3.1 predictions, andN and♦ the correspond-
ing residual plots.

rate kinetic data; and (3) the potential to facilitate mechanism
development and validation, which is significantly enhanced
by its ability to both perform in situ radical measurements
and measure several species simultaneously. Future experi-
ments will investigate whether the radical measurements in
HIRAC have any dependency upon position of the sampling
pinhole with respect to the radiation field profile, and total
pressure. Additionally, we plan to couple a cavity ring down
spectroscopy (CRDS) apparatus to HIRAC for detection of
key oxidation products such as glyoxal, as well as to add the
facility for carrying out temperature variable experiments.
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