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Abstract.  Urban rail transit is a critical infrastructure system that supports urban economic and social development. 
It has a significant mass transportation capacity while enables environmental benefits. Public transport is a way to 
resolve large-scale urban road traffic problems and contributes towards sustainable development. However, with the 
operations of railway vehicles on curves, unbalanced and undulated wears often appear on rails, especially on the low 
rail. This rail surface defect, so-called ‘rail corrugation’, directly affects the service life of rolling stocks and track 
components. The high-frequency vibrations caused by train-track interaction over rail corrugations also impair 
passenger ride comfort and generate excessive noises. In severe cases, the defects may even endanger the safe 
passage of a railway vehicle. In practice, rail corrugation has brought huge challenges to the reliable operations and 
maintenance of railway networks. With the continuous expansion of railway lines and the increasing traffic demands, 
any existing rail corrugation test method is not enough to meet the actual needs of track maintainers to promptly 
identify and mitigate rail surface defects. Therefore, this investigation aims to establish a new technique to prognose 
and classify rail corrugations efficiently and effectively. This study adopts D-track dynamic simulation package to 
obtain over thousands of vibration data in the form of axle box accelerations from train-track interactions under 
different conditions. Neural network models have been developed to recognize the rail corrugations and then classify 
their severity to aid the planning and prioritization of rail track maintenance activities. The models have been trained 
and tested using the vibration data, achieving the accuracy of over 90%. The optimal model has then been 
highlighted. The investigation has demonstrated the potential of the neural network to detect and classify rail 
corrugations, which can be used practically for curved track condition monitoring and maintenance planning.  
 

Keywords:  Rail corrugation, Dynamic analysis, Artificial neural network, Machine Learning, Monitoring, 

Maintenance 

 
 
1. Introduction 
 

In the process of urban development, cities at different scales and stages of development have 

different requirements for urban transportation. This means there is an urgent need for 

transportation technology and transportation tools that can meet development needs. Urban rail 

transit has the distinctive characteristics of large passenger flow, high speed, high efficiency, high 
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safety, punctuality, and environmental friendliness. This series of advantages have attracted the 

attention of government agencies in various countries. Urban rail transit plays a vital role in 

solving the problems of sustainable development of cities, such as traffic congestion, energy 

consumption, and environmental pollution. At the same time, it also plays an important role in 

people's daily travel life (Li, 2014). 

During the development of urban rail transit (Cao et al., 2016), it is extremely important to 

ensure continuous operation and maintenance of the railway infrastructure system such as 

embankment (Zhang et al., 2018), ballast (Ngamkhanong et al., 2017), sleeper (Kaewunruen, 

2014), or railway bridge (Xia et al., 2014, Ajmal et al., 2018). The monitoring of the structural 

health of railway infrastructure systems is one of the main challenges in railway maintenance and 

operation, especially in underground trains or subway systems. As the public has a huge demand 

for faster and more frequent train services, the time for railway personnel and track maintainers to 

inspect and maintain railway infrastructure is extremely limited. The time without trains, in the 

middle of the night, in various countries is not sufficient for railway personnel to fully inspect and 

maintain the railway. For example, the track access availability is around 3 hours in Tokyo, 1-2 

hours in Hong Kong, and perhaps 5 minutes in London (Kaewunruen, 2018). In some places, 

railway operations may be suspended for large-scale maintenance work. The continuous operation 

and maintenance of railways is a huge challenge in their development. 

Rail corrugation is a major type of rail surface damages often found on curved tracks. It is a 

periodic wave-like irregularity that appears along the longitudinal surface of the rail (i.e. low rail). 

The rail corrugation needs to be managed by rail grinding and polishing activities, in order to 

enable smooth ride comfort and lower noise radiation. The severity of rail corrugations is the key 

parameter for track maintenance planning and prioritization. If the size of rail surface defect is 

relative small in depth, the maintenance regime such as grinding can be performed quickly without 

too much effort (e.g. within 3 hours of trackwork or track possession). On this ground, the early 

classification of rail corrugations can dramatically improve the track maintenance program. With 

the continuous expansion of railway lines and the continuous increase in labour costs, existing 

track corrugation testing equipment in the field is not sufficient to meet the actual needs of railway 

maintenance personnel to carry out necessary track inspections for rail defect classifications 

(Kaewunruen et al., 2019). Therefore, it is very important to develop a more feasible and effective 

monitoring method that can guide track maintenance engineers to plan and prioritise track 

maintenance work. This study will evaluate the use of artificial neural network to aid rail 

corrugation monitoring and classification. The use of dynamic vehicle-track interactions in the 

form of axle box acceleration (generally obtained from train ride measurements) has been used to 

explore the new alternative method for prognosing rail corrugations. This study uses the D-track 

dynamic simulation package to obtain the vibration data of the vehicle-track systems under 

different conditions. Classifications of the rail corrugation through neural network training are 

demonstrated to achieve the goal for rail corrugation monitoring and classification. 
 

2. Rail corrugation 
 
2.1 Corrugation background  
 

Rail corrugation refers to a type of rail head defect that appears on the surface of the rail after it 

has been used in the railway system, which has periodic characteristics and resembles a wave 

shape. It is commonly observed in curved tracks that cater all kinds of train services, ranging from 



light rail, metro, suburban, freight and highspeed rail systems. The rail is initially non-corrugated 

but has a certain degree of roughness. This initial roughness combined with other factors (such as 

traction, creep and friction characteristics at the wheel-rail contact) will stimulate dynamic loads 

and cause certain damage to the rail, thereby changing the initial profile (Grassie and Kalousek, 

1993). The wavelength and degree of severity depend on the rail structure, rail geometry, traction 

system, rail vehicle performance, and wheel-rail interaction. 

 

 
Fig. 1 Rail corrugation (Liu, 2018) 

 

2.2 Rail Corrugation Formation Theory 
The self-excited vibration theory was proposed by Suda (1991). Matsumoto et al. (2002) argued 

that the generation of rail corrugation is related to the natural frequency of the vertical vibration of 

the wheelset. Clark et al. (1988) presented that wheelset lateral stick-slip vibration theory. On a 

small radius curve, when the frequency of the sleeper is close to the lateral natural frequency of the 

wheelset, the wheelset will vibrate laterally, resulting in periodic relative sliding. This will cause 

corrugations. At the same time, the wavelength is equal to an integer multiple or fraction of the 

sleeper pitch (Vadillo et al., 1998). Chen et al. (2010) proposed that friction-coupled self-excited 

vibration causes rail corrugation. This theory states that when the slip force between the wheel and 

rail reaches a saturated state, friction coupling self-excited vibration between the wheel and rail 

will occur, resulting in rail corrugation. The rail corrugation wavelength obtained from this 

viewpoint is basically the same as the actual line rail corrugation wavelength.  

 
2.3 The hazards of rail corrugation 
 

When a train passes through a corrugation part of curved track section, such defect will cause 

severe vibrations of the wheelset, bogie and body. Reciprocally, track components are excited 

excessively, radiating noises and impairing ride comfort.  This kind of vibrations not only 

seriously affects the comfort of subway vehicles, but also aggravates the damage of vehicles and 

track components, shortens the service life of railways, wheels and related equipment, and 

increases maintenance costs. In a study by Remennikov and Kaewunruen (2008), the secondary 

vibration of the ground was regenerated in the surrounding environment (such as nearby buildings 

and structures). Rail corrugations can also produce unpleasant noise. If the railway corrugation is 

severe, it will also cause the rails and axles to break, which will affect driving safety. On this 

ground, early warning of rail corrugation can help track maintainers to develop suitable 

preventative maintenance programs, which are very timely and cost effective. If the defect is 



severe, major corrective maintenance can be time consuming and very costly.  

 
2.4 Current status of corrugation detection technology 
 

At present, the methods for detecting rail irregularities are mainly divided into two categories, 

which are divided into the string measurement method and the inertial reference method (Zhang, 

2007). The string measurement method has some flaws. The "baseline" used as a reference for 

measurement is in a state of change along with the level of rail irregularities. For sinusoidal 

irregularities, the transfer function ratio (the ratio between the measured value and the actual value) 

is not equal to 1 but is between 0 and 2. When measuring non-sine waves, the orbital irregularities 

may have a transfer function ratio greater than 2 (Xu and Dai, 2007). Therefore, the string 

measurement method cannot truly and reliably reflect the irregularities of the rail. Many countries 

have also gradually transitioned from the original string test method to the inertial reference 

method (Luo et al., 2006). 

According to the above two methods, the actual detection methods in different countries are not 

the same (Zhang, 2007). Japan measures the original basic data through the three-point chord 

measurement method and obtains railway irregularities after compensation and correction of the 

data (YAZAWA and TAKESHITA, 2002). Russia divides the vehicle speed into three different 

grades and uses the axle box acceleration integration method to carry out the quadratic integration, 

and then filters the low-frequency signal components that affect the detection results through a 

filter. Australia directly integrates the collected axle box acceleration signal twice to obtain the 

amplitude of the railway irregularity displacement. In the United States, both the string 

measurement method and the inertial reference method are used. In order to obtain data on the 

uneven surface of the railway, Germany directly uses photoelectric scanning technology. This is of 

great significance for improving the efficiency of rail corrugation testing and saving costs. 

However, before conducting a more detailed study of rail corrugation in the field, the first thing 

that needs to be tackled is how to detect rail corrugation quickly and effectively in order to reduce 

the railway sector’s capital investment in human and material resources. 

Rail corrugation is a common defect found in the rail. It can be detected by visual inspection, 

image processing, or dynamic responses. However, using machine learning techniques to detect 

and classify corrugation is new. This study aims to apply machine learning to detect corrugation 

because it is fast and cost-efficient. In addition, this study uses accelerations as features to do 

predictions which easy to collect using axle box acceleration sensors so there is no or little 

additional cost for equipment installation. 
 
3. Train vibration data using multibody simulations 
 

The main function of the railway track dynamics analysis model is to couple the various 

components of the vehicle and the track structure to determine the influence of the load on the 

stress, strain and deformation of each component, and to correctly express their complex 

interactions. Such a model provides a basis for predicting orbital performance and serves as a 

technical means for orbital design and maintenance (Oscarsson and Dahlberg, 1998). 

Cai (1994) studied a detailed model of track dynamics and wheel-rail interaction by initially 

creating the D-track for dynamic simulation. Iwnick (1998) set the benchmark (Manchester 

benchmark) in 1998. Steffens (2005) used the Manchester benchmark parameters to compare the 

performance of various dynamic simulation programs and developed a user interface for D-track. 



However, the original D-track still had problems, because its numerical results are often lower. 

Leong (2007) revised the procedure on the basis of Steffens' Manchester benchmark and obtained 

the new Benchmark. Leong verified the revised results, and the difference between the numerical 

results is less than 15% (Kaewunruen and Chiengson, 2018). 

In the D-track software, through adjusting the parameters, different railway models are 

designed, and through operation, the DARTS (Dynamic Analysis of Track Structure) model 

automatically calculates a variety of output parameters during the simulation process. In this study, 

the package has been used to obtain over a thousand of train vibration data (i.e. axle box 

acceleration). The aim is to reuse the axle box accelerations that are commonly measured onboard 

a train to aid the monitoring and classification of rail corrugations on curved tracks.  

 
Table 1 The input and the output of the D-track software 

Input  
Output  

Track Vehicle Irregularity Variety 

• Rail type  

• Axial force  

• Sleeper type  

• Spacing  

• Track bed 

stiffness  

• Track bed  

• Damping  

• Pad damping  

• Pad stiffness 

• Speed  

• Tare mass  

• Carry mass  

• Primary suspension  

stiffness  

• Primary suspension 

damping  

• Wheel dimension  

• Hertzian contact 

coefficient 

• Corrugation  

• Dipped joint  

• Dipped weld  

• Peaked weld  

• Arbitrary 

profile  

• Wheel flat 

• Speed  

• Irregularity length  

• Irregularity depth  

• Center of 

irregularity  

• Rail analysis 

position  

• Sleeper analysis 

position 

• Acceleration  

• Force and 

pressure  

• Moment and 

shear  

• Bending moment  

• Displacement 

 

In order to design a suitable railway model, each component needs to be designed safely and 

meet the requirements. The choice of all track components is important. D-track has parameter 

libraries for various components of vehicles and tracks. A parameter library has been established 

for various components in the system, including vehicles, bogies, wheels, tracks, rail pads, 

sleepers and track bed materials. By selecting parameters and inputting data in the "Track", 

"Vehicle", "Irregularity", "Analysis" and "Comments" windows of D-track, different railway 

models can be designed. In this study, AS50, AS53, AS60 type track and 106t Coal Wagon, 

Manchester, RQTY Container Wagon type vehicles are used. Meanwhile the vehicle speeds are set 

at 60, 70, 80, 90, 100, 110, and 120km/h. 

Kaewunruen (2018) shown different intervals often experience "unbalanced" velocities, which 

usually lead to "short-distance" low-orbit corrugations. At an unbalanced speed, the train travels at 

a speed that causes a centripetal force. The wheels acting on the lower rail will bear more weight 

or load than the wheels on the outer rail. Because the wheel-rail interaction produces additional 

dynamics and bending effects, the rail will be subjected to excessive wheel load and wear. Track 

ripple defects on steep curves are often related to the 30 mm to 100 mm wavelength band. In this 

study, the wavelengths of rail corrugation are set at 30, 40, 50, 60, 70, 80, 90, and 100mm. At the 

same time, in order to compare with the rail without corrugation, a model without corrugation will 

be established. 

As shown in Table 2, the general parameters of each part of the railway track structure are 

combined to build 567 different models. 

 



Table 2 Selection and input of different parameters of D-track railway model 

Parameters Input 

Track type  AS50, AS53, AS60 

Vehicle type 106t Coal Wagon, Manchester, RQTY Container Wagon 

Vehicle speed (km/h)  60, 70, 80, 90, 100, 110, 120 

Wavelength (mm)  0, 30, 40, 50, 60, 70, 80, 90, 100 

 

Liu (2018) found the relationship between track irregularity in irregularity amplitude, 

wavelength and vehicle speed. The detail can be shown as follows: 

(1) On the premise that the vehicle speed and the wavelength of the irregularity are kept 

constant, increasing the amplitude of the irregularity will result in greater dynamic response such 

as the force between the wheel and the rail and the vehicle vibration. 

(2) Under the premise that the amplitude of the irregularity and the speed of the vehicle are 

kept constant, the wavelength of the irregularity becomes shorter, and the impact will be larger and 

non-linear. At the same time, the influence of the periodic resonance wavelength and the sensitive 

wavelength will be more obvious. 

(3) Under the premise that the irregularity amplitude and the irregularity wavelength are kept 

constant, as the vehicle speed increases, its nonlinearity increases and its influence increases. 

Liu (2018) established a dynamic model for the relationship between the frequency of rail 

corrugation irregularities and the frequency of vibration acceleration and concluded that the 

frequencies of the two are equal. Based on this principle, the rail corrugation characteristics can be 

studied by studying vibration acceleration. Through D-track, accelerations of wheel/rail contact, 

rail and sleeper can be obtained, as shown in Fig. 2 and Fig. 3. 

 
Fig. 2 The acceleration output of D-track software 

 

In this study, the acceleration of wheel-rail contact1 will be used for research and neural 

network training.  

 

TIME(s)  X-RAIL(m)  ACON1  ACON2  A-RAIL  A-R.S.  A-TY

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

5.00E-04 6.67E-03 3.91E-02 0.00E+00 -1.54E-02 -1.04E-02 -8.94E-03

1.00E-03 1.50E-02 -3.32E-02 0.00E+00 2.56E-02 4.12E-03 4.99E-03

1.50E-03 2.33E-02 1.15E-03 0.00E+00 -2.10E-02 -4.62E-03 -3.65E-03

2.00E-03 3.17E-02 7.54E-02 0.00E+00 -6.64E-03 -1.49E-02 -1.29E-02

2.50E-03 4.00E-02 2.02E-02 0.00E+00 1.98E-02 6.30E-03 7.73E-03

3.00E-03 4.83E-02 1.08E-01 0.00E+00 -3.48E-02 -1.32E-02 -1.07E-02

3.50E-03 5.67E-02 1.34E-01 0.00E+00 1.88E-02 -1.22E-02 -9.85E-03

4.00E-03 6.50E-02 4.87E-02 0.00E+00 1.62E-02 1.17E-02 1.30E-02

4.50E-03 7.34E-02 3.58E-02 0.00E+00 -5.90E-02 -2.58E-02 -2.27E-02

5.00E-03 8.17E-02 -8.44E-02 0.00E+00 3.25E-02 -1.05E-02 -8.92E-03

5.50E-03 9.00E-02 -2.02E-01 0.00E+00 3.54E-02 2.49E-02 2.42E-02

6.00E-03 9.84E-02 -2.25E-01 0.00E+00 -5.46E-02 -1.42E-02 -1.30E-02

6.50E-03 1.07E-01 -2.50E-01 0.00E+00 2.06E-02 -3.24E-03 -3.40E-03

7.00E-03 1.15E-01 -1.88E-01 0.00E+00 2.97E-02 2.17E-02 1.93E-02



 
(a) 

 
(b) 

Fig. 3 The chosen acceleration output of D-track software (a) Examples of measurement point; 

(b) Measurement points in a sample 

4. Artificial Neural Network  
 
4.1 Development of Artificial Neural Network 
 

Since the vibration acceleration data can be obtained, an artificial neural network can be 

established for training and testing. Artificial neural networks have been widely used in the fields 

of pattern recognition, signal processing, intelligent control, and system modelling due to their 

advantages of distributed storage of information, parallel processing, and self-learning capabilities. 

This is good for processing problems which need to consider many factors and inaccurate 

information (Tiğdemir, 2014). For these reasons, this study adopts the artificial neural network 

method for predictive model development.  

Artificial Neural Network (ANN) is based on the basic principles of neural networks in biology 

(CSDN, 2019). It simulates the processing mechanism of the human brain's nervous system to 

complex information. A neural network is a computational model consisting of a large number of 

nodes (or neurons) connected to each other. These neurons are distributed in a series of units. 

There are three main types of processing units in the network: input units, output units and hidden 

units. The input unit receives various forms of information from the outside. This is the data that 

the neural network is designed to process or learn. Data from the input unit passes through one or 

more hidden units. The job of the hidden unit is to convert the input into content that the output 

unit can use. Most neural networks are fully connected from one layer to another. These 

connections are called ‘weighted’. The larger the number, the greater the influence of one unit on 

another, similar to the human brain. The other end of the network is the output unit, which is 

where the network responds to the given and processed data. Parallel and distributed information 

processing functions are obtained through network conversion and dynamic behavior (Jain et al., 

1996). 

 
4.2 Neural network training 
 

Any artificial neural network (ANN) model can be established using a designed computation 

architecture with various number of layers and hidden nodes. Generally, a specific architecture of 

ANN can yield certain level of accuracy and computation performance. In this study, a number of 

ANN architectures (forming various ANN models) are assessed to identify the optimal ANN 

model that can yield the best outcome. 

TIME(s)  X-RAIL(m)  ACON1  ACON2  A-RAIL  A-R.S.  A-TY

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

5.00E-04 6.67E-03 3.91E-02 0.00E+00 -1.54E-02 -1.04E-02 -8.94E-03

1.00E-03 1.50E-02 -3.32E-02 0.00E+00 2.56E-02 4.12E-03 4.99E-03

1.50E-03 2.33E-02 1.15E-03 0.00E+00 -2.10E-02 -4.62E-03 -3.65E-03

2.00E-03 3.17E-02 7.54E-02 0.00E+00 -6.64E-03 -1.49E-02 -1.29E-02

2.50E-03 4.00E-02 2.02E-02 0.00E+00 1.98E-02 6.30E-03 7.73E-03

3.00E-03 4.83E-02 1.08E-01 0.00E+00 -3.48E-02 -1.32E-02 -1.07E-02

3.50E-03 5.67E-02 1.34E-01 0.00E+00 1.88E-02 -1.22E-02 -9.85E-03

4.00E-03 6.50E-02 4.87E-02 0.00E+00 1.62E-02 1.17E-02 1.30E-02

4.50E-03 7.34E-02 3.58E-02 0.00E+00 -5.90E-02 -2.58E-02 -2.27E-02

5.00E-03 8.17E-02 -8.44E-02 0.00E+00 3.25E-02 -1.05E-02 -8.92E-03

5.50E-03 9.00E-02 -2.02E-01 0.00E+00 3.54E-02 2.49E-02 2.42E-02

6.00E-03 9.84E-02 -2.25E-01 0.00E+00 -5.46E-02 -1.42E-02 -1.30E-02

6.50E-03 1.07E-01 -2.50E-01 0.00E+00 2.06E-02 -3.24E-03 -3.40E-03

7.00E-03 1.15E-01 -1.88E-01 0.00E+00 2.97E-02 2.17E-02 1.93E-02



 
4.2.1 Training of the first neural network model 
 

The purpose of this study is to monitor rail corrugation, so this study first uses a single output 

layer corresponding to the corrugation value of the model. The input layer contains 1,117 nodes 

which are accelerations from D-track simulation as shown in Fig. 2 and 3. 567 D-track model 

samples are analyzed through railway track dynamics, and 1,117 wheel-rail contact accelerations 

were obtained at 1,117 different time nodes. The output of the first model is the size of corrugation. 

When designing neural networks, the main emphasis is on experimentation and discussion of 

multiple model schemes. In the process of selecting the hidden layer, if the number of hidden 

nodes is too few, the network cannot have the necessary learning ability and information 

processing ability. On the contrary, if it is too much, it will not only greatly increase the 

complexity of the network structure, but the network is more likely to be overfitting, and the 

learning speed of the network will become very slow. In the process of neural training, only a 

small number of hidden nodes are selected first, and then the number of hidden nodes is 

continuously increased until satisfactory performance is obtained. The training process is 

performed to repeatedly adjust the weight and threshold according to the error between the target 

value and the network output value, until the error reaches a predetermined value (Karsoliya, 

2012). 

Initially, the training data set containing 397 random parts (70%) among the 567 available parts 

is selected as the learning stage. In the remaining 30% of the data set, 15% is used to verify the 

model, and the other 15% is used to test the model. 

In this study, the different numbers of hidden nodes are tired. It is found that R is 0.57 when the 

number of hidden nodes is 1 and the accuracies increase when the number of hidden nodes 

increases up to 15 which R is 0.94. After that, the accuracies decrease significantly when the 

number of hidden nodes is more than 20 which might be resulted from the overfitting. Therefore, 

to demonstrate the results of the models in this study, the number of hidden nodes is set up from 10 

nodes and increased continuously, and the correlation coefficients of the test are compared to 

select the optimal number of hidden nodes. 

When the number of hidden nodes=10, the neural network in Fig. 4 can be obtained. 

 

 
Fig. 4 Neural network of the first NN model (The number of hidden layers =10) 

 

Through neural network training, the test correlation coefficient results are as follows: 

 



 
(a) The number of hidden nodes = 10 

 
(b) The number of hidden nodes = 11 

 
(c) The number of hidden nodes = 12 

 
(d) The number of hidden nodes = 13 

 
(e) The number of hidden nodes = 14 

Fig. 5 The degree of fit of the first NN model. (the number of hidden nodes =10, 11, 12, 13, 14) 

 

Through continuous experimentation, it can be found that when the number of hidden nodes is 

13, the correlation coefficient of the test is the highest. 

 
4.2.2 Training of the second neural network model 
 

In this study, when analyzing the dynamics of the railway track through D-track, not only the 

rail corrugation of the track surface is defined, but also parameters such as speed, track type, and 

vehicle type are selected. Based on the previous NN model, a new combined model containing two 

outputs is proposed. The input is the same as the first model. The first output is still the rail 

corrugation value of the corresponding model. The second output is the rolling stock’s speed of the 



corresponding model.  

As in the first model, the numbers of hidden nodes are tired. To demonstrate the performance of 

the model, the number of hidden nodes is set to start from 10, the following neural network can be 

shown in Fig. 6. 

 

 
Fig. 6 Neural network of the second NN model. (the number of hidden nodes =10) 

 

Through neural network training, the test correlation coefficient results are shown in Fig. 7. 

 

 
(a) The number of hidden nodes = 9 

 
(b) The number of hidden nodes = 10 

 
(c) The number of hidden nodes = 11 

 
(d) The number of hidden nodes = 12 

Fig. 7 The degree of fit of the second NN model. (the number of hidden nodes = 9, 10, 11, 12) 

 

Because when the number of hidden nodes is 11, 12, the test correlation coefficient is lower 

than the result of the number of hidden nodes of 10. Therefore, this study considers reducing the 



number of hidden nodes, and compares the correlation coefficients of the test. 

Through neural network training, it can be found that when the number of hidden nodes is 10, 

the correlation coefficient of the test is the highest. 

 

4.2.3 Training of the third neural network model 
The comparison of the two models is not sufficient to explain the influence of the output node 

on the correlation coefficient. In order to make the research more rigorous, it will compare the 

third new combination model with three outputs - adding orbital types as the third output. The 

output layer consists of three data nerves, as follows: 

Output 1: Rail corrugation value (0, 30, 40, 50, 60, 70, 80, 90, 100)  

Output 2: Vehicle speed (60, 70, 80, 90, 100, 110, 120)  

Output 3: Track type (AS50, AS53, AS60)  

The input layer is the same as the previous two models. When the number of hidden layers = 10, 

the following neural network can be shown in Fig. 8. 

 

 
Fig. 8 Neural network of the third NN model. (the number of hidden nodes =10) 

 

Through neural network training, the test correlation coefficient results are shown in Fig. 9.  

 

 
(a) The number of hidden nodes = 10 

 
(b) The number of hidden nodes = 11 



 
(c) The number of hidden nodes = 12 

 
(d) The number of hidden nodes = 13 

Fig. 9 The degree of fit of the third NN model. (the number of hidden nodes = 10, 11, 12, 13) 

 

Through continuous experimentation, it can be found that when the number of hidden nodes is 

12, the correlation coefficient of the test is the highest. 
 

5. Results and discussion 
 

In the artificial neural network training process, the three possible neural network models have 

achieved excellent results, and the correlation coefficients of the tests are all very high. The first 

NN model has only one output layer of rail corrugation values. This is because, for train vibration 

quantifications, not only the rail corrugation of the track surface is defined, but there are also 

several variables such as speed, track type, and vehicle type. Therefore, parameter variables are 

added to the model to explore the most suitable NN model. The second NN model has two output 

layers, rail corrugation value and vehicle speed. The comparison of the two models is not enough 

to explain the influence of the output layer on the correlation coefficient. Therefore, a third neural 

network model is established, which includes three output nodes of rail corrugation value, vehicle 

speed and track type. For other variables, the three NN models remain consistent. 

 
Table 3 Output layers of these three NN models 

Classification of NN models Output layer 

The first NN model  Rail corrugation 

The second NN model  Rail corrugation and vehicle speed 

The third NN model  Rail corrugation value, vehicle speed and track type 

 

The first NN model has only one output layer of rail corrugation values. Through continuous 

experiments, when the hidden layer is 13, the tested correlation coefficient is the highest where R 

= 0.969. 

 



 
Fig. 10 The tests correlation coefficients of the different hidden nodes of the first NN model 

 

The second NN model has two output layers, rail corrugation value and vehicle speed. When 

the number of hidden layers is 9, the best result will be displayed, and the tested correlation 

coefficient is the highest where R = 0.951. 

 
Fig. 11 The tests correlation coefficients of the different hidden nodes of the second NN model 

 

The third NN model includes three output layers of rail corrugation value, vehicle speed and 

track type. Experiments show that when the number of hidden nodes is 12, the tested correlation 

coefficient is the highest where R = 0.953. 

 

 
Fig. 12 The tests correlation coefficients of the different hidden layers of the third NN model 

 

Comparing the results of the hidden nodes of the three NN models, the results show that the 

NN model with one output layer has the best test correlation coefficient. 

 



On the other hand, the fewer the output layers, the shorter the training time of the artificial 

neural network. The experiment shows that the NN model with only one output layer has the 

shortest training time. By comparison, it can be found that the first NN model with only one output 

layer of rail corrugation value has the best results, and it is the most suitable NN model for 

monitoring rail corrugation based on this study. 

Moreover, this study also shows that it is not that the more hidden nodes, the greater the 

correlation coefficient R obtained. It is not that the more layers and the more nodes, the better the 

results obtained. However, as the number of hidden layers increases, the model will appear to be 

overfitting and resulting in lower predicted accuracy. While training the neural network, it is 

necessary to consider the number of effective hidden nodes for training to avoid overfitting 

affecting the training results. 

 

6. Conclusion 
 

In this study, the D-track software is first used to simulate the railway track dynamics providing 

over a thousand of train vibration data. Through the selection and input of parameters and data 

such as vehicle type, track type, and track surface roughness, 567 railway simulations under 

different conditions are designed. Then through the simulation of D-track software, the 

acceleration of wheel-rail contact is obtained. After obtaining the acceleration of wheel-rail contact, 

Matlab's artificial neural network is used for training, and three neural network (NN) models with 

different output layers are established. The input layers of the three NN models are all acceleration 

of wheel-rail contact obtained by D-track software. The output layer of the first NN model only 

has the rail corrugation value. The output layer of the second NN model contains two layers which 

are rail corrugation value and vehicle speed. The third NN model contains three output layers 

including rail corrugation value, vehicle speed and track type. Each NN model obtains the optimal 

test correlation coefficient R of the model by adjusting the number of hidden nodes. Comparing 

the best results of the three models, it is found that the NN model with only one output layer 

containing rail corrugation values is the best. On the other hand, when there are fewer output 

layers, neural network training is faster. In this regard, the NN model with only one output layer is 

also the best. All in all, the most suitable model is the NN model containing only one output node, 

which is the rail corrugation value. 

Most of the rail corrugation detection methods require railway personnel to conduct on-site 

surveys of their tracks within a specific time, and then perform on-site maintenance. These 

methods have great restrictions on the time and location of maintenance. In this study, D-track is 

used to obtain the dynamic simulation of the railway track, and then the artificial neural network is 

used to achieve the purpose of monitoring the rail corrugation status. Such a novel method reduces 

the harsh conditions for monitoring the rail condition. This is a feasible and more effective 

detection method. Practically, the results from this study can be applied by collecting acceleration 

data from axle boxes then applying the developed model to detect corrugation. The novel ANN 

established in this study is not only a very effective diagnostic method for rail corrugation, but also 

can be applied to other railway loss monitoring. Future work will include the commercial 

translation of the neural networks to various field studies. 
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