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Abstract: The weight of a train is a critical factor in determining how much a train 

operator has to pay to use the railway network within the UK and many other 

countries. In this study, the different machine learning algorithms are explored to 

be used to predict a trains weight based on the vibration signals recorded in the 

sleeper of a rail track. The vibration signals are split into two groups, time domain 

and frequency domain signals. Then, different algorithms are developed for each 

group to see which domain the best representation of a vibration signal is to use 

within models to find out target values. From the study, machine learning has the 

potential to predict trains’ weight effectively. This insight can lead to the use of 

mobile sensors in practice, such as the application of wireless accelerometers 

connected with a smartphone that will help engineers audit and assure the train 

access integrity. 

Keywords: Weight Detection; Machine Learning; Deep Learning 

 

1. Introduction 

During the mid-1990s, there was a major change within the railway system in 

the UK. The railway system was privatised and broken down into several different 

private companies [1]. These companies can be classified into two groups, Train 

Operating Companies (TOCs) and Freight Operating Companies (FOCs). A Train 

Operating Company is a franchised passenger operator offering services to 

passengers, where as a Freight Operating Company is a freight operator which 

transports goods such as cereals, coal and biomass along the railway system. 

The weight of a train plays an important role in determining the track access fee 

a train has to pay to use the railway network. In the UK, the majority of the railway 

network infrastructure is owned and managed by Network Rail. The track access fee 

is a billion-pound money generating source of income for Network Rail. In 2017-18, 

Network Rail received an income of £1.7 billion just from track access fees. 

Currently train operators are required to fill out documentation, such as the 

control period 6 (CP6), provided by Network Rail and from these documentations 

their access fee is calculated [2]. Freight operators' access fee charges are 

differentiated by the weight of the train. The heavier the train, the higher charge the 

access fee is. This is due to the fact that the heavier the train is the more stress and 



 

damages the train causes onto the railway network. The revenue generated from the 

access fee is partially used in the maintenance of the railway network. 

For freight trains, the weight of the train is the critical factor in calculating the 

track access fee train operating companies have to pay. Due to this, freight operators 

could falsify their documentations and claim lower train weights to decrease their 

track access fee costs. Presently there is no method for Network Rail to survey 

moving trains within the railway network and as a result they have to assume that 

the freight operators are being truthful with the weights they are presenting. 

Being able to predict the weight of a train from the vibration signals measured 

on the train track sleeper will be a major game changer as it would empower 

Network Rail, allowing them to be able to survey operating trains and compare the 

weight results obtained in the field with the weights given by the train operating 

companies. The proposed method in this study will empower the use of low-cost 

smartphone technology (in comparison with more expensive wayside train 

monitoring systems, WTMS) where any track inspector can use the smartphone to 

gauge and judge not only defect information but also estimate the actions and the 

weight of service trains. This will enable the improvement in assurance process of 

train-track interface management. This technology can be applied to ensure the 

system integration and supplement WTMS when malfunctioned. In addition, the 

goal of this development is to help engineers carry out the assurance function under 

extreme conditions such as floods, extreme heat, and so on. To some extent, existing 

sensors can no longer work in such extreme conditions. This new method will 

unleash the supplementary capability for rail engineers and scientists. 

This study will focus on freight trains as they have a greater difference in 

weights compared to passenger trains. In this study, a dataset consisting of different 

train weights and their vibration signals will be trained into different Machine 

Learning algorithms, with the aim of being able to predict the train weight using the 

sleeper vibration signal. The study will cover different algorithms that can be used 

to reach our desired aim and evaluate each of these algorithms. 

2. Literature Review 

There are several new raising technologies which centre around detecting 

weights of objects whilst they are in motion. Bridge weigh-in-motion (B-WIM) is a 

system which focuses on detecting the weight of moving trains using railway 

bridges. B-WIM uses existing bridges as scales to weigh the train as they traverse 

through the bridge structure. Sensors are placed around the bridge and these sensors 

are used to record the measurement of the bridge displacement due to the axle 

weight of the train and also used to record the travelling speed of the train. The basic 

principle of a B-WIM algorithm is to calculate the axle loads by minimising the 

difference between the measured response and the theoretical fitted response [3]. 

The difference between B-WIM and the system that will be covered in this study 

is that the B-WIM system uses bridges as a medium to measure the train weight as 

a result this system can only be used on the bridges found in the rail track network. 



 

However, the system that will be developed in this study can be used in any part of 

the rail track network as the sleeper part of the rail track will be the medium to find 

out the displacement caused by a passing train. The system covered in this study 

will remove the limitations of having to need a bridge in order to find the train 

weight. One of the disadvantages of the developed system compared to the B-WIM 

system is that the system has not been designed to find out the speed of the passing 

train and an assumption that the train will pass the sensors in the sleeper are a 

constant speed of 60 mph has been made.  

The vibration signals data can be calculated theoretically using the Beam on 

Elastic Foundation (BOEF) model [4] which gives the rail displacement at a given 

time caused by forces against the rail at a constant velocity. This displacement can 

be calculated using Equation 1. 
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Equation  1 

Where t is time, dn is the distance between each load, v is the velocity, w(x,t) is 

vertical displacement (m), ksystems is the support system modulus (N/m2), El is the 

bending stiffness of the rail (Nm2) and L is the characteristic length. The vibration 

signal can be found by differentiating the displacement equation which in turn will 

give the rate of displacement which is the vibration signal. The downside of using 

this method to calculate vibration signals is that the signal will not be realistic as 

they will not contain any noise and fluctuation that would represent real-life data. 

However, there is a computer model developed by David Steffons [5] called D-

Track, which can be used for the analysis of railway track dynamic behaviour. The 

model allows real-life simulation of railway tracks, where properties such as the 

sleeper vibrations caused by the train weight can be obtained. The difference 

between using this model and using a theoretical model such as BOEF is that the 

model factors in other dynamic characteristics of the rail into the calculation thus 

producing data which are close to being real as data you will obtain in the field. The 

model will allow for the generation of data without having to worry of human errors 

that can arise from doing calculations and may other factors can be considered using 

the model such as the material of the sleeper and also the spacing of the sleeper, each 

of these factors plays a role in the type of vibration the sleeper produces. 

3. Background 

This section provides an overview of the algorithms used in this study in order 

to help with understanding the upcoming sections. 

3.1. Machine learning  

The science of programming computers, so they can learn from data and act like 

humans do, is known as Machine Learning. The learning rate of the program is 

improved overtime in a self-governing fashion through the use of data obtained 

from observations and real-world interactions.   



 

There are many types of Machine Learning algorithms which can be classified 

into broad categories [6] such as Supervised Learning, Unsupervised Learning, and 

Reinforcement Learning.  

This study will be based around Supervised Learning, where the task is to 

predict a target numeric value, train weight, given a set of features, sleeper vibration. 

This sort of task is known as a regression. The regression models that will be covered 

in this study are Linear Regression, Decision Tree, K-Nearest Neighbors (KNN), 

Support Vector Regression (SVR), Random Forest, and Multilayer Perceptron. 

3.2. Hyperparameter 

Many machine learning algorithms' performance depends on their 

hyperparameters. Hyperparameters are variables which control the algorithm 

structure and also the variables which control the learning process of algorithm. 

Hyperparameters can be tuned to allow an algorithm to reach optimal performance. 

Search strategies such as Random Search and Grid Search can be used to find which 

hyperparameter setting gives the optimal performance for a given algorithm. 

Different machine learning algorithms have different types of hyperparameters to 

tune. 

According to Probst et al. [7], there was a huge significant between the 

performance of an algorithm which used default hyperparameters with one which 

had its hyperparameter tuned. For this study, all the baseline machine learning 

algorithms will use the default hyperparameter values. Once the best performing 

algorithms have been found, they will undergo hyperparameter tuning to further 

increase their performance before being evaluated using the test dataset. 

3.3. Grid Search and Random Search 

Grid Search is an example of a process which can be used to configure optimal 

hyperparameters for a given model. The user is required to specify a finite set of 

hyperparameter values and the Grid Search program iterates through every possible 

combination of the hyperparameter values and stores a model for each combination. 

The model which performs the best can be considered the model with the best 

hyperparameters for the given algorithm. Grid Search can be applied across all 

machine learning algorithms. It will be used in this study in tuning the 

hyperparameters of the best baseline model produced in this study.  

Random Search is an alternative to Grid Search. It can also be used to configure 

optimal hyperparameters for a given model. Random search randomly searches 

samples configurations until a certain budget for the search is exhausted. Random 

Search can be used instead of Grid Search when some of the hyperparameters to be 

tuned are more important than others [8]. 

3.4. K-Fold Cross Validation 

A commonly used technique for evaluating Machine Learning models with 

small dataset is cross-validation. Cross-validation is a powerful preventative 

measure against withholding data from the training set and also against overfitting. 



 

Cross-validation works by splitting the available input data into partitions 

consisting of a training subset and a complementary testing subset. The Machine 

Learning model is trained using the training subset and is validated using the testing 

subset. 

In this study, K-fold cross-validation is used which works by splitting the input 

data into k subsets of data and training the Machine Learning model on all but one 

of the subsets and then evaluating the model using the unused subset. This process 

is repeated k times using the same procedure reserving a different k subset for 

evaluation each time. 

An average performance score can then be obtained using all the different 

process repeats and then used to compare the performance of different Machine 

Learning models. 

3.5. Performance measure 

In machine learning, the performance measure is used to compare the trained 

model predictions with the testing data and the actual observed data. In other 

words, performance measures are used to estimate the accuracy of a model on future 

data. For regression type models, there are three main performance measures [9] 

which are Mean Absolute Error, Mean Squared Error, Root Mean Squared Error 

(RMSE), and R Squared (R2). 

This study will use the RMSE and R2 to evaluate the performance scores of all 

the machine learning algorithms that will be trained. The RMSE is chosen as it is a 

commonly used performance measure for regression problems which gives a sense 

of how much error the model typically makes in its prediction and R2 is chosen as it 

indicates how close the predicted values are to the actual values. The Mean Squared 

Error is not suitable for dataset as it does not work well with data which contain a 

lot of noise and Mean Absolute Error is not very sensitive to outliers compared to 

the RMSE since it does not assign higher weights to larger errors [10]. 

3.6. Tools used 

There is a numerous amount of programming languages that can be used to 

build Machine Learning models such as Java and Python. Java has the WEKA 

toolbox which can be used to generate a general Machine Learning algorithm, 

whereas Python has a numerous number of frameworks, such as Scikit Learn, Keras 

and Tensor flow, to build Machine Learning models. In this study, Python is used 

because it is flexible, stable and includes predefined libraries and frameworks to 

simplify the development process. Python fits these criteria, as it is one of the most 

popular languages used for Machine Learning with numerous libraries and 

frameworks built around machine learning to make the process as smooth, easy and 

time-efficient as possible. Python is used as the programming language with Scikit 

Learn and Keras as the machine learning frameworks. 

3.7. Wilcoxon Signed-Rank Test 



 

Wilcoxon Signed-Rank Test is a non-parametric statistical hypothesis test used 

to compare two related samples such as the same algorithm evaluated on different 

datasets or different algorithms evaluated on the exact training data. Wilcoxon p-

value is calculated using a built-in class in Python using the following hypothesis 

for all the tests carried out. 

• Null Hypothesis (H0): Sample distributions are equal  

• Hypothesis One, Reject H0 (H1): Sample distributions are not equal  

The results of this test will interpret whether or not that the samples are drawn 

from different distributions. If the p-value is less than 0.05 then the null hypothesis 

can be rejected and H1 can be accepted. 

4. Methodology 

This section explains the procedure that will be carried out in this research in 

order to reach the aim of producing Machine Learning models to predict the weight 

of a train from sleeper vibrations. 

First, training set data is generated by using D-Track. The output is the raw data, 

which is already in the time domain. Then, the frequency domain data is generated 

using the Fourier Transform. Data is split into training set, validation set, through 

the use of K-Fold validation, and a test set.  

The time-domain data will not undergo anymore data processing and can be fed 

directly into the machine learning algorithms. However, the frequency domain data 

will undergo feature scaling before being passed onto the machine learning 

algorithms.  

A benchmark model, baseline zero, is created for both the time and frequency 

domain dataset. This model will serve as a baseline and its performance will be used 

to compare the effectiveness of the other machine learning models. Then, two 

models from each category are selected for further development and 

hyperparameter tuning to ensure it fits best with the problem in hand. Last, a final 

performance measure is then carried out using the test set on the two new improved 

machine learning models. 

5. Data Collection and Pre-processing 

This section covers how the data used in the machine learning algorithms is 

acquired and pre-processed. 

5.1. Dataset 

The dataset used to train the machine learning algorithms will be based on trains 

of different weights and the vibration signals they induced onto the train track 

sleeper. The vibration signals can be classified into two categories, Time Domain and 

Frequency Domain. 

The time-domain dataset consists of the raw data of 616 train weights with their 

corresponding vibration signals. As the name suggest, the parameters of these data 

are of time against acceleration/amplitude. The time-domain vibration signal 



 

consists of 2,418 timesteps within a given time length of 1.21 seconds, with each 

timestep being equivalent to 0.0005 seconds. This dataset is collected using D-Track. 

The frequency-domain dataset consists of the manipulated time-domain dataset. 

As such, there is also a total of 616 train samples, each with their own individual 

frequency against power spectral density data. This dataset is collected through the 

use of mathematical calculations, converting time into frequency using fast Fourie 

transform. 

5.2. Data Collection 

The raw time-domain dataset is generated using D-track. D-Track is a program 

which can be used to generate dynamic behaviour railway track data, in our case we 

will be using it to generate the vibration at the rail track sleeper for a given weight. 

A simple methodology is used to generate the data using a basic understanding of 

freight trains. 

On average freight train consists of over 100 wagons with 3 or 4 locomotives 

running the train. To generate the dataset, the train is assumed to consist of 1 

locomotive and a maximum of 22 wagons. The train weight data is generated using 

the combination of the nominal tare mass (the weight of the locomotive plus the 

weight of the empty or completely filled wagons) and the wagon carries mass, as the 

total train weight. 

A systematic approach is used to calculate the total train weight, the initial total 

train weight is assumed to consist solely of the mass of the locomotive and the mass 

of one empty wagon, and the vibration signal at the sleeper is generated and stored 

for this weight. Then the carry mass of the wagon is increased by a set amount of 5 

ton or 0.5 ton and the vibration signal for this new weight is generated and collected. 

According to Barkan [11], the weight of a modern freight locomotive is 196 tons 

and the weight of an empty railway car is 33 tons with a maximum carry weight of 

110 tons. This led to the dataset consisting of trains weighing from 229 tons to 3,342 

tons with a total of 616 weight samples. In Figure 1, it shows the vibration signal 

produced using D-Track for a given train weight of 229. 

 
Figure 1. Time-domain train vibration 

5.3. Pre-processing 



 

The noise within the vibration data can be removed which may lead to an 

improvement of the performance of the machine learning algorithm. With the 

reduction of the noise, the data will not contain unwanted information within the 

data. The noise within the data could lead to overfitting due to the algorithm training 

itself around the noise pattern produced or lead to a huge model runtime due to the 

large size of the data. However, noise reduction can lead to important information 

within the vibration signal to be lost thus leading to poor quality data, if not done 

correctly. To prevent the loss of vital information from the dataset, the machine 

learning algorithms are trained using the unprocessed raw time-domain data. 

The time-domain data is represented using an array, where each weight is 

represented by two arrays. One array contained the mass of the train whilst the other 

contained the acceleration/amplitude points, starting from 0 seconds to 1.21 seconds. 

This leads to the array representing the acceleration/amplitude points to be of length 

2418, where the index of the array represented the timestep. Therefore, each index 

of the array represents a timestep increase of 0.0005 seconds resulting with the time 

domain data having a huge matrix dimension as such, no visual representation of 

the regression data can be created. Representing the data into an array makes it 

easier for the information to be passed onto the machine learning models.  

Using a similar procedure as Liu and Yang [12], the time domain data is used to 

create frequency domain data. The time-domain data is converted to the frequency 

domain to produce machine learning model based on the characteristics of the signal 

that are not easy to see whilst looking at the signal in the time domain. Machine 

learning algorithms will be created for the two types of domain and a comparison 

will be made. The difference between the two datasets is that frequency domain data 

shows how much of the signal lies within each given frequency whereas the time 

domain data shows how a signal changes over time.  

The frequency-domain data is calculated using a Fast Fourier transform. Fast 

Fourier transform is used to represent a signal from its original domain, such as time, 

to the frequency domain as Equation 2. 
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Where xn is the input signal data, p is the number of signal samples and Xk is the 

consecutive samples in the frequency domain [13]. Once the frequency domain is 

found, the power spectral density is also calculated. For a given signal, the power 

spectral density describes the distribution of power from the frequency components. 

Figure 2 shows a frequency domain data. 



 

 
Figure 2. Frequency Domain train vibration 

From Figure 2, it can be seen that there is a huge difference between the scaling 

of the power spectral density values at different frequencies. Machine Learning 

algorithms do not perform well when there is a very different scale between the 

attributes. To get the values of the power spectral density within the same scale, the 

data will need to undergo feature scaling. Standardization will be used to feature 

scale our frequency domain data. Standardization works by subtracting each value 

with the mean value and then dividing it by the standard deviation resulting in 

uniformity within the data. 

The two datasets, time and frequency domain, are separated into 3 groups to be 

used for training, validation and testing in the machine learning algorithms. Ten 

percent of the total data is used for testing, whilst another ten is used for validation 

and the remaining data is used for training the algorithms. 

6. Optimised algorithm design 

This section will cover the design of the machine learning algorithms which are 

selected to have their hyperparameters tuned in order for them to reach optimal 

performance. The two algorithms that are selected to be tuned are the Multilayer 

Perceptron and the Random Forest. 

6.1. Multilayer Perceptron Design 

Multilayer Perceptron (MLP) consists of three layers. The first layer is the input 

layer, where the feature vector is passed through. The second layer is the hidden 

layer, consisting of one or more threshold logic unit layers. It is within this layer 

where the weighted sums of the inputs are calculated, and a step function is applied 

to it before being sent off as an output through the use of the Rectified Linear (ReLU) 

activation function which provides non-linearity in the network. Finally, the output 

layer which produces the output variables. 

6.1.1. Baseline MLP Model Design 

A 2-layer MLP model is used as a baseline to see how well dataset performed 

within a neural network algorithm. A 2-layer MLP consists of an input layer, one 

hidden layer and one output layer which is represented by the notation of 2418/100/1 

for the time domain dataset. Since the network consisted of 2418 variables in the 



 

input layer, one hidden dense layer with 100 nodes and an output layer with one 

node. The frequency-domain dataset is represented with the notation 1208/100/1 as 

it has a different about input layer variables. 

The default Keras hyperparameter values are used for the baseline MLP models, 

which consists of using the default values of the efficient Adam optimization 

algorithm and mean squared error loss function. However, there is no default value 

for the number of neurons within the hidden layers so a random value of 100 

neurons is chosen and for the output layer, only one neuron is required with no 

activation function as the model is targeted towards a regression problem. 

The neural network design of the baseline MLP model for both the time domain 

and frequency domain is the same, with the sole expectation of the number of input 

variables. The design of the network for the time domain dataset can be seen in 

Figure 3 and the frequency domain can be seen in Figure 4. 

 
Figure 3. Neural Network Design of Baseline Time Domain MLP model  

 
Figure 4. Neural Network Design of Baseline Frequency Domain MLP model 

6.1.2. Optimized MLP Model 

To ensure that the MLP model runs on optimal performance, some of the 

hyperparameters of the MLP neural network are tuned. The two main 

hyperparameters that control the architecture of the neural network are the Number 

of layers and Number of nodes in each hidden layer. 

Aside from these two hyperparameters, the Adam learning rate is also tuned as 

it also plays a role in determining the training error of the network. A large learning 

rate may result in gradient descent increasing the training error rather than 

decreasing it and a small learning rate results with slow training time. 

Random Search is used to find the best hyperparameter values for both the 

individual time and frequency domain MLP final models. A range of values are 

given for each of the hyperparameters and the Random Search algorithm finds out 

the best combination between these values of the number of layers, the number of 

nodes and the values of Adam learning rate which produced the least training error 

thus best performance score. The Random Search algorithm returns the best values 

to use for the hyperparameters and using these values, a final MLP model is created 

for both the time and frequency domain. The final network design for the time 



 

domain can be seen in Figure 5 and that for the frequency domain can be seen in 

Figure 6. 

The use of Random Search to tune the hyperparameters saves time and also 

prioritises producing a model complexity which is centred on the performance of 

the algorithm rather than the algorithm runtime. If Random Search is not available 

then the hyperparameters will be chosen manually, varying each hyperparameter 

one by one in different combinations with the other hyperparameters and 

comparing the changes in the performance till the best combination is found. This 

will have consumed a huge amount of time. 

The Adam learning rate for the time-domain model is found to be 5e-5 and for 

the frequency-domain, it is 0.0001. These values are found to work well with the 

number of layers and number of neurons assigned to each of the respective MLP 

model.  

 
Figure 5. Final MLP Model for Time-Domain dataset 



 

 
Figure 6. Final Frequency-Domain MLP Model 

6.2. Random Forest Design 

The Random Forest algorithm has several hyperparameters which can be tuned 

in the effort to try improving the performance of the algorithm. To avoid a huge 

training time using the search algorithm or Grid Search, it will be focusing on three 

hyperparameters to tune which are Bootstrap, N_estimators, and Max_features. 

Bootstrap decides whether bootstrap samples are used when building the trees 

or when set to fault the whole dataset is used to build each tree. N_estimators 

decides the number of trees that will be built in the random forest and max_features 

decides the number of features to consider when looking for the best split. 

The default Random Forest used in the baseline models has bootstrp set to true, 

n_estimators set to 100, and max_features set to 10. After using Grid Search for both 

the time and frequency domains, it is found that the following hyperparameters are 

ideal for the final model for each type: 

• Time domain: bootstrap = false, max_features = 20 and n_estimators = 73  

• Frequency domain: bootstrap = false, max_features = 20 and n_estimators 

= 200 

7. Results and Discussion 

In this section, different algorithms are compared and evaluated. The training 

set consisted of 80% of all the data, the validation set consisted of 10% whilst the test 

set consisted of the remaining 10%. 



 

7.1. Time Domain Baseline Models Result 

The performance of models can be shown as Table 1. 
Table 1. Time Domain Baseline model results 

Model 
Training Set  

Validation Set 

RMSE 

R2 Average RMSE Average  Standard Deviation 

Baseline Zero - - 912.33 912.33 

Linear Regression 1.0 1.13 68.40 5.70 

Support Vector Regression (SVR) 1.0 0.01 68.40 5.57 

Decision Tree 1.0 0.00 22.51 3.26 

K Nearest Neighbor (KNN) 0.084 872.40 1101.84 62.15 

Random Forest 0.999 2.98 7.75 1.84 

Multilayer Perceptron (MLP) 0.998 41.73 92.23 2.0 

The Baseline Zero model is a sanity check. It is used as a predictor to compare 

how relatively well the other models do. The Baseline Zero is a prediction model 

that will be used if there is no machine learning available, in other words, it predicts 

the weight of the train without using the time/frequency domain data. For the 

Baseline Zero, the weight of the train is predicted to be equal to the mean train 

weight of all the samples used in the validation set. If a model has an RMSE score 

that is higher than the Baseline Zero’s RMSE then it means that the model performed 

worse than a prediction thus would be no better than just using the mean train 

weight for all the predicted train weight values. 

From Table 1, it can be seen that only the KNN model performed worse than the 

Baseline Zero model in the validation set. One of the reasons for this is that the 

accuracy of a KNN model tends to decrease with an increase in the number of k 

neighbours around a given point in the model. The dataset used in training the 

model consists of over 2,400 points for a given single train weight resulting in a huge 

k neighbour value thus leading to poor accuracy for the model. The dataset used is 

clearly not suitable for the KNN model especially with its hyperparameters being 

untuned. 

The R2 score provides a “goodness of fit” measure of the predicted line of best 

fit to the actual value. KNN has an extremely low R2 compared to the other models 

and the effects of this can be seen with the average RMSE score in the validation set. 

The prediction does not fit in well with the training set data. From the boxplots in 

Figure 7, it can be seen that the boxplot of the KNN results can be considered as an 

outlier compared to the other model due to its underfitting of the training data. 

Underfitting can be improved by either increasing the number of samples used in 

the training data, tuning the hyperparameters to produce predictions that better fit 

the data, or simply using another algorithm.  



 

 
Figure 7. Time-domain results shown in a boxplot diagram 

 
Figure 8. Time-domain results excluding the KNN model 

Accepting that the KNN model is a poor choice for the given dataset and 

removing it from the boxplot diagrams it can be seen a better relationship between 

the rest of the algorithms created, as shown in Figure 8. 

Excluding KNN, the other models have great R2 scores with values close to one 

thus meaning that the prediction fit of the training set is very close to the 

observation. It can be clearly seen that as the R2 score for the training set increase the 

mean RMSE score for the training set got closer to zero. For RMSE, the closer the 

score is to zero the better the accuracy as there is less error between the predictions 

and the observations. The best performing algorithm is the Random Forest with a 

training set RMSE score of 2.98 and a validation RMSE score of 7.75; whereas MLP, 

excluding the KNN, performed the poorest with a training set score of 41.73 and 

validation score of 92.23. Compared to the remaining algorithms, excluding KNN, 

the Decision Tree, MLP and Random Forest algorithms seem to perfectly fit the 

training data without any overfitting and thus generalise well with new data. This 

can be seen from the relatively low difference between the RMSE values obtained 

training and validation set. Linear Regression and SVR both seem to overfit the 

training data, and this can be seen from the large difference between the training 

and validation RMSE scores. When a model is too complex relative to the amount 

and noisiness of the training data, overfitting occurs. It can be resolved by removing 

the noise in the training data, simplifying the model via reducing the number of 

attributes in the training data or gathering more data. The training data set which 

used can be considered to contain a lot of noise and also have a lot of attributes and 



 

this may be the reason why overfitting is observed in some algorithms. The amount 

of training data used is not also ideal quantity wise in producing high-quality 

models and is thus also another factor which lead to the overfitting of algorithms. 

From the results, it can be clearly seen that the Random Forest algorithm 

performed the best even though it uses default hyperparameter values. Based on its 

performance, it is chosen to be selected to undergo hyperparameter tuning to see if 

its performance can be further enhanced. MLP is also chosen to be tuned even 

though it performed relatively poorly compared to the other algorithms, but it has a 

small standard deviation between the average RMSE value and there are not any 

signs of overfitting thus the algorithm generalises well when it comes to new data. 

The reason for its poor performance can be due to the simplicity of the network 

architect used in the baseline model and also due to the small training data sample 

size. The MLP algorithm has a huge potential when it comes to enhancing its 

performance via hyperparameter tuning. 

7.2. Frequency Domain Baseline Models Result 

The performance of models can be shown as Table 2. 
Table 2. Frequency Domain Baseline model results 

Model 
Training Set  

Validation Set 

RMSE 

R2 Average RMSE Average  Standard Deviation 

Baseline Zero - - 912.33 912.33 

Linear Regression 1.0 2.28 604.65 138.26 

Support Vector Regression (SVR) -1.379 1406.33 2349.66 376.90 

Decision Tree 1.0 0.00 133.56 12.91 

K Nearest Neighbor (KNN) 0.935 232.19 291.37 19.71 

Random Forest 0.998 31.72 85.81 7.43 

Multilayer Perceptron (MLP) 0.128 987.47 959.31 78.58 

From the results of the frequency domain algorithms, it can be clearly seen that 

the performance of the algorithms is generally worst compared to their respective 

algorithms in the time domain. Two algorithms, SVR and MLP, performs worse than 

the Baseline Zero algorithm, which is the terrible predictor. These two algorithms 

underfit the training data thus meaning that either there is not enough training data 

to effectively train the algorithms or that the algorithms are not suitable at all for the 

frequency domain dataset. The MLP has an extremely low R2 score and its effect can 

be seen on the RMSE score as the training error measured in the RMSE is huge due 

to the predictions not being a good fit for the observations. The SVR has a negative 

R2 score which means that the algorithm is doing worse than the mean value and 

this can be seen from comparing it to the Baseline Zero RMSE score, where the SVR 

RMSE score is more than twice bigger than the Baseline Zero RMSE score in the 

validation set. 

The Linear Regression algorithm performs well in the training set but poorly in 

the validation set. The RMSE score in the validation set is slightly lower than the 

Baseline Zero and there is a huge difference between the training set RMSE, and the 

validation set. RMSE clearly shows that there is overfitting in the algorithm. 



 

Overfitting also occurs in the Decision Tree algorithm and the Random Forest 

algorithm, which perform the best in comparison to the other algorithms. The 

Decision Tree has the same performance in the train set as it did for the time domain 

dataset. However, there is a huge difference between the RMSE values obtained in 

the validation set. This shows that an algorithm can perform well in the training set 

but may not generalise as well when it comes to new data presented in the validation 

or even test set. 

The KNN algorithm performs much better with the frequency domain dataset 

compared to the time domain dataset and this can be explained due to the fact that 

there are fewer attributes used in the frequency domain data set thus reducing the 

number of k neighbours in the algorithm. In KNN, the higher the number of k 

neighbours, the lower the accuracy of the algorithm. A clear comparison of the 

frequency domain algorithms can be seen in Figure 9, from which it can be seen that 

the SVR algorithm not only has the worst mean RMSE score but also a huge standard 

deviation between the scores recorded for it. 

The same two algorithms are used as the time domain dataset to undergo 

hyperparameter tuning. The Random Forest performs the best in both the time and 

frequency domain datasets, so it makes sense choosing it to further undergo tuning. 

However as stated before, even though the MLP does not perform as well as the 

Random Forest or even the Decision Tree, there is still a huge potential in improving 

the performance score once it undergoes tuning.  

 
Figure 9. Frequency domain results shown in a boxplot diagram 

7.3. Final Tuned Models Result 

The performance of models can be shown in Table 3. 
Table 3. Tuned Time Domain Models Results 

Model 

Training Set  
Validation Set Test Set 

RMSE RMSE 

R2 
Average 

RMSE 

Average  Standard 

Deviation 

Average Standard 

Deviation 

Random Forest 1.0 0.0 85.61 1.51 73.49 4.19 

Multilayer Perceptron 

(MLP) 
0.999 13.60 

55.80 6.25 57.17 5.40 

The results for both the tuned algorithms for each dataset can be found in tables 

3 and 4. For the time domain dataset, it can be seen that the Random Forest algorithm 



 

performs worse compared to the untune Random Forest algorithm. This simply 

means that the default hyperparameter values suited the dataset more. As for the 

MLP algorithm, the tuned model performs better in both the training set and 

validation set compared to the untuned model. For the training set, there is a 

decrease in the average RMSE which resulted in a decrease in the average validation 

set RMSE. This indicates that the new hyperparameters obtained using random 

search are able to optimise the performance of the model. The test set average RMSE 

results for both models are not too far off from the validation RMSE score, however, 

there is clear evidence of overfitting occurring within these models since there is a 

huge difference between the test RMSE scores with the training set RMSE score. As 

previously mentioned, one of the main reasons why models keep showing signs of 

overfitting is most likely due to the size of the used dataset. Dataset size can be 

considered small and not of the ideal size to produce precise and reliable machine 

learning models. 
Table 4. Tuned Frequency Domain Results 

Model 

Training Set  
Validation Set Test Set 

RMSE RMSE 

R2 
Average 

RMSE 

Average  Standard 

Deviation 

Average Standard 

Deviation 

Random Forest 1.0 0.0 77.61 0.62 59.66 1.73 

Multilayer Perceptron 

(MLP) 
0.999 57.40 

231.58 20.40 250.03 11.95 

For the frequency domain tuned algorithms, it can be seen that both algorithms 

perform better than the untune models thus meaning that the optimisation carried 

out using grid search and random search is a success. The RMSE score in the 

validation set for the MLP is decreased by nearly a factor of four and this can 

evidently be seen from the increase of the R2 score which goes from being close to 

zero to being close to one. The changes in the hyperparameter for the MLP model 

allows for the predictions of the training set to fit much better with the real data 

observation. However, there is still overfitting occurring in both algorithms. If there 

are more training samples available, it should result in a greater improvement in the 

RMSE scores.  

7.4. Wilcoxon Test 

Several statistical hypothesis tests are carried out to see if there is any clear 

distinction between the distribution of the final two models. The following tests are 

carried out: 

1) Test 1 – Test to see if there is the same distribution between the tuned 

MLP model and the Random Forest model for the time domain dataset  

2) Test 2- Test to see if there is the same distribution between the time 

domain dataset untune MLP model and the tune MLP model  

3) Test 3 - Test to see if there is the same distribution between the frequency 

domain untune Random Forest model and the tuned Random Forest 

Model  



 

4) Test 4 - Test to see if there is the same distribution between the same MLP 

algorithm but for the different dataset  

5) Test 5 - Test to see if there is the same distribution between the same 

Random Forest algorithm but for the different dataset 

The Wilcoxon Signed-Rank Test is used for all the five tests and the p-value 

calculated for each test is 0.00008857, which is lower that the needed 0.05 p-value to 

indicate that the distribution is the same. This small p-value shows that the idea that 

the difference for each test is due to chance can be rejected and that each model tested 

in the different tests has a clear possible distribution. From the results, it can be seen 

clearly that the time domain dataset performed better than the frequency domain 

dataset. 

8. Conclusion 

8.1. Achievements 

The aim of this study is to produce machine learning algorithms capable of 

predicting the train weight using the vibration signals measured in the sure. Using 

D-Track, dataset of vibration signals is generated and measured at the sleeper to use 

for our machine learning algorithms. The data generated are real-life representations 

of the type of signals which gain from rail track. Using this data, the vibration signals 

are processed into the time domain signal and the frequency domain signals which 

are then used to train machine learning algorithms. 

Six machine learning algorithms are developed for each type of domain, which 

are all successfully able to predict the train weight. Some algorithms perform better 

than others and the best algorithm, the Random Forest algorithm, is selected for 

further tuning in hopes of improving the performance. The MLP algorithm is also 

chosen, as it is a neural network algorithm which has a huge potential of 

performance improvement from having its hyperparameters tune. The performance 

of the MLP algorithm for both datasets can be improved through hyperparameter 

tuning but the performance improvement for the Random Forest algorithm varies 

for each dataset. This insight can lead to the use of mobile and wireless sensors such 

as accelerometers, laser droppers, laser systems to help engineers quantify the train 

weights in the field as part of systems audit and assurance. 

8.2. Future Work 

Some overfitting can be observed in results. One of the ways to overcome 

overfitting is by increasing the data size, so in the future if this study is to more 

dataset from the fields. The architect of the MLP algorithm and the Random Forest 

algorithm can be improved, by using a much more detailed search algorithm which 

takes in more hyperparameters into consideration and also covers a greater range of 

possible hyperparameter values. Due to the higher training time, only a small 

narrowed hyperparameter test is carried out and the effects of this can be seen in the 

Random Forest for the time domain results, for example, are the optimal 

hyperparameter values does not perform as well as the default hyperparameter 



 

algorithm. The time-domain data can of underwent more pre-processing such as 

signal denoising before being used to obtain the frequency domain dataset. This will 

have removed the unwanted frequency bands within the frequency data, giving a 

frequency dataset which contains nothing but the important features which are 

distinct for each weight without the noise pattern which are identical in each given 

data. 
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