

University of Birmingham

Machine learning aided identification of train
weights from railway sleeper vibration
Kaewunruen, Sakdirat; Sresakoolchai, Jessada; Thamba, Arol

DOI:
10.1784/insi.2021.63.3.151

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Kaewunruen, S, Sresakoolchai, J & Thamba, A 2021, 'Machine learning aided identification of train weights from
railway sleeper vibration', Insight - Non-Destructive Testing and Condition Monitoring, vol. 63, no. 3, pp. 151-
159. https://doi.org/10.1784/insi.2021.63.3.151

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Kaewunruen, S., Sresakoolchai, J. & Thamba, A., 2021. Machine learning-aided identification of train weights from railway sleeper vibration.
Insight - Non-Destructive Testing and Condition Monitoring, 63(3), pp.151–159. Available at: http://dx.doi.org/10.1784/insi.2021.63.3.151.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.1784/insi.2021.63.3.151
https://doi.org/10.1784/insi.2021.63.3.151
https://birmingham.elsevierpure.com/en/publications/11e269f0-0553-4e8c-8512-3404d6b3fbf8

7

Machine learning aided identification of train

weights from railway sleeper vibration

Sakdirat Kaewunruen 1,*, Jessada Sresakoolchai 2, Arol Thamba 3

1 School of Engineering, University of Birmingham, Birmingham B15 2TT, UK; s.kaewunruen@bham.ac.uk
2 School of Engineering, University of Birmingham, Birmingham B15 2TT, UK; jss814@student.bham.ac.uk
3 School of Engineering, University of Birmingham, Birmingham B15 2TT, UK; axt945@student.bham.ac.uk

* Correspondence: s.kaewunruen@bham.ac.uk; Tel.: +44 (0) 121 414 2670 (S.K.)

Abstract: The weight of a train is a critical factor in determining how much a train

operator has to pay to use the railway network within the UK and many other

countries. In this study, the different machine learning algorithms are explored to

be used to predict a trains weight based on the vibration signals recorded in the

sleeper of a rail track. The vibration signals are split into two groups, time domain

and frequency domain signals. Then, different algorithms are developed for each

group to see which domain the best representation of a vibration signal is to use

within models to find out target values. From the study, machine learning has the

potential to predict trains’ weight effectively. This insight can lead to the use of

mobile sensors in practice, such as the application of wireless accelerometers

connected with a smartphone that will help engineers audit and assure the train

access integrity.

Keywords: Weight Detection; Machine Learning; Deep Learning

1. Introduction

During the mid-1990s, there was a major change within the railway system in

the UK. The railway system was privatised and broken down into several different

private companies [1]. These companies can be classified into two groups, Train

Operating Companies (TOCs) and Freight Operating Companies (FOCs). A Train

Operating Company is a franchised passenger operator offering services to

passengers, where as a Freight Operating Company is a freight operator which

transports goods such as cereals, coal and biomass along the railway system.

The weight of a train plays an important role in determining the track access fee

a train has to pay to use the railway network. In the UK, the majority of the railway

network infrastructure is owned and managed by Network Rail. The track access fee

is a billion-pound money generating source of income for Network Rail. In 2017-18,

Network Rail received an income of £1.7 billion just from track access fees.

Currently train operators are required to fill out documentation, such as the

control period 6 (CP6), provided by Network Rail and from these documentations

their access fee is calculated [2]. Freight operators' access fee charges are

differentiated by the weight of the train. The heavier the train, the higher charge the

access fee is. This is due to the fact that the heavier the train is the more stress and

damages the train causes onto the railway network. The revenue generated from the

access fee is partially used in the maintenance of the railway network.

For freight trains, the weight of the train is the critical factor in calculating the

track access fee train operating companies have to pay. Due to this, freight operators

could falsify their documentations and claim lower train weights to decrease their

track access fee costs. Presently there is no method for Network Rail to survey

moving trains within the railway network and as a result they have to assume that

the freight operators are being truthful with the weights they are presenting.

Being able to predict the weight of a train from the vibration signals measured

on the train track sleeper will be a major game changer as it would empower

Network Rail, allowing them to be able to survey operating trains and compare the

weight results obtained in the field with the weights given by the train operating

companies. The proposed method in this study will empower the use of low-cost

smartphone technology (in comparison with more expensive wayside train

monitoring systems, WTMS) where any track inspector can use the smartphone to

gauge and judge not only defect information but also estimate the actions and the

weight of service trains. This will enable the improvement in assurance process of

train-track interface management. This technology can be applied to ensure the

system integration and supplement WTMS when malfunctioned. In addition, the

goal of this development is to help engineers carry out the assurance function under

extreme conditions such as floods, extreme heat, and so on. To some extent, existing

sensors can no longer work in such extreme conditions. This new method will

unleash the supplementary capability for rail engineers and scientists.

This study will focus on freight trains as they have a greater difference in

weights compared to passenger trains. In this study, a dataset consisting of different

train weights and their vibration signals will be trained into different Machine

Learning algorithms, with the aim of being able to predict the train weight using the

sleeper vibration signal. The study will cover different algorithms that can be used

to reach our desired aim and evaluate each of these algorithms.

2. Literature Review

There are several new raising technologies which centre around detecting

weights of objects whilst they are in motion. Bridge weigh-in-motion (B-WIM) is a

system which focuses on detecting the weight of moving trains using railway

bridges. B-WIM uses existing bridges as scales to weigh the train as they traverse

through the bridge structure. Sensors are placed around the bridge and these sensors

are used to record the measurement of the bridge displacement due to the axle

weight of the train and also used to record the travelling speed of the train. The basic

principle of a B-WIM algorithm is to calculate the axle loads by minimising the

difference between the measured response and the theoretical fitted response [3].

The difference between B-WIM and the system that will be covered in this study

is that the B-WIM system uses bridges as a medium to measure the train weight as

a result this system can only be used on the bridges found in the rail track network.

However, the system that will be developed in this study can be used in any part of

the rail track network as the sleeper part of the rail track will be the medium to find

out the displacement caused by a passing train. The system covered in this study

will remove the limitations of having to need a bridge in order to find the train

weight. One of the disadvantages of the developed system compared to the B-WIM

system is that the system has not been designed to find out the speed of the passing

train and an assumption that the train will pass the sensors in the sleeper are a

constant speed of 60 mph has been made.

The vibration signals data can be calculated theoretically using the Beam on

Elastic Foundation (BOEF) model [4] which gives the rail displacement at a given

time caused by forces against the rail at a constant velocity. This displacement can

be calculated using Equation 1.

 cos sin

1

(0,)
2

− − −    
+    

    

=

=
n n nvt d vt d vt d

N
L L Ln

n system

F
w t e

k L

Equation 1

Where t is time, dn is the distance between each load, v is the velocity, w(x,t) is

vertical displacement (m), ksystems is the support system modulus (N/m2), El is the

bending stiffness of the rail (Nm2) and L is the characteristic length. The vibration

signal can be found by differentiating the displacement equation which in turn will

give the rate of displacement which is the vibration signal. The downside of using

this method to calculate vibration signals is that the signal will not be realistic as

they will not contain any noise and fluctuation that would represent real-life data.

However, there is a computer model developed by David Steffons [5] called D-

Track, which can be used for the analysis of railway track dynamic behaviour. The

model allows real-life simulation of railway tracks, where properties such as the

sleeper vibrations caused by the train weight can be obtained. The difference

between using this model and using a theoretical model such as BOEF is that the

model factors in other dynamic characteristics of the rail into the calculation thus

producing data which are close to being real as data you will obtain in the field. The

model will allow for the generation of data without having to worry of human errors

that can arise from doing calculations and may other factors can be considered using

the model such as the material of the sleeper and also the spacing of the sleeper, each

of these factors plays a role in the type of vibration the sleeper produces.

3. Background

This section provides an overview of the algorithms used in this study in order

to help with understanding the upcoming sections.

3.1. Machine learning

The science of programming computers, so they can learn from data and act like

humans do, is known as Machine Learning. The learning rate of the program is

improved overtime in a self-governing fashion through the use of data obtained

from observations and real-world interactions.

There are many types of Machine Learning algorithms which can be classified

into broad categories [6] such as Supervised Learning, Unsupervised Learning, and

Reinforcement Learning.

This study will be based around Supervised Learning, where the task is to

predict a target numeric value, train weight, given a set of features, sleeper vibration.

This sort of task is known as a regression. The regression models that will be covered

in this study are Linear Regression, Decision Tree, K-Nearest Neighbors (KNN),

Support Vector Regression (SVR), Random Forest, and Multilayer Perceptron.

3.2. Hyperparameter

Many machine learning algorithms' performance depends on their

hyperparameters. Hyperparameters are variables which control the algorithm

structure and also the variables which control the learning process of algorithm.

Hyperparameters can be tuned to allow an algorithm to reach optimal performance.

Search strategies such as Random Search and Grid Search can be used to find which

hyperparameter setting gives the optimal performance for a given algorithm.

Different machine learning algorithms have different types of hyperparameters to

tune.

According to Probst et al. [7], there was a huge significant between the

performance of an algorithm which used default hyperparameters with one which

had its hyperparameter tuned. For this study, all the baseline machine learning

algorithms will use the default hyperparameter values. Once the best performing

algorithms have been found, they will undergo hyperparameter tuning to further

increase their performance before being evaluated using the test dataset.

3.3. Grid Search and Random Search

Grid Search is an example of a process which can be used to configure optimal

hyperparameters for a given model. The user is required to specify a finite set of

hyperparameter values and the Grid Search program iterates through every possible

combination of the hyperparameter values and stores a model for each combination.

The model which performs the best can be considered the model with the best

hyperparameters for the given algorithm. Grid Search can be applied across all

machine learning algorithms. It will be used in this study in tuning the

hyperparameters of the best baseline model produced in this study.

Random Search is an alternative to Grid Search. It can also be used to configure

optimal hyperparameters for a given model. Random search randomly searches

samples configurations until a certain budget for the search is exhausted. Random

Search can be used instead of Grid Search when some of the hyperparameters to be

tuned are more important than others [8].

3.4. K-Fold Cross Validation

A commonly used technique for evaluating Machine Learning models with

small dataset is cross-validation. Cross-validation is a powerful preventative

measure against withholding data from the training set and also against overfitting.

Cross-validation works by splitting the available input data into partitions

consisting of a training subset and a complementary testing subset. The Machine

Learning model is trained using the training subset and is validated using the testing

subset.

In this study, K-fold cross-validation is used which works by splitting the input

data into k subsets of data and training the Machine Learning model on all but one

of the subsets and then evaluating the model using the unused subset. This process

is repeated k times using the same procedure reserving a different k subset for

evaluation each time.

An average performance score can then be obtained using all the different

process repeats and then used to compare the performance of different Machine

Learning models.

3.5. Performance measure

In machine learning, the performance measure is used to compare the trained

model predictions with the testing data and the actual observed data. In other

words, performance measures are used to estimate the accuracy of a model on future

data. For regression type models, there are three main performance measures [9]

which are Mean Absolute Error, Mean Squared Error, Root Mean Squared Error

(RMSE), and R Squared (R2).

This study will use the RMSE and R2 to evaluate the performance scores of all

the machine learning algorithms that will be trained. The RMSE is chosen as it is a

commonly used performance measure for regression problems which gives a sense

of how much error the model typically makes in its prediction and R2 is chosen as it

indicates how close the predicted values are to the actual values. The Mean Squared

Error is not suitable for dataset as it does not work well with data which contain a

lot of noise and Mean Absolute Error is not very sensitive to outliers compared to

the RMSE since it does not assign higher weights to larger errors [10].

3.6. Tools used

There is a numerous amount of programming languages that can be used to

build Machine Learning models such as Java and Python. Java has the WEKA

toolbox which can be used to generate a general Machine Learning algorithm,

whereas Python has a numerous number of frameworks, such as Scikit Learn, Keras

and Tensor flow, to build Machine Learning models. In this study, Python is used

because it is flexible, stable and includes predefined libraries and frameworks to

simplify the development process. Python fits these criteria, as it is one of the most

popular languages used for Machine Learning with numerous libraries and

frameworks built around machine learning to make the process as smooth, easy and

time-efficient as possible. Python is used as the programming language with Scikit

Learn and Keras as the machine learning frameworks.

3.7. Wilcoxon Signed-Rank Test

Wilcoxon Signed-Rank Test is a non-parametric statistical hypothesis test used

to compare two related samples such as the same algorithm evaluated on different

datasets or different algorithms evaluated on the exact training data. Wilcoxon p-

value is calculated using a built-in class in Python using the following hypothesis

for all the tests carried out.

• Null Hypothesis (H0): Sample distributions are equal

• Hypothesis One, Reject H0 (H1): Sample distributions are not equal

The results of this test will interpret whether or not that the samples are drawn

from different distributions. If the p-value is less than 0.05 then the null hypothesis

can be rejected and H1 can be accepted.

4. Methodology

This section explains the procedure that will be carried out in this research in

order to reach the aim of producing Machine Learning models to predict the weight

of a train from sleeper vibrations.

First, training set data is generated by using D-Track. The output is the raw data,

which is already in the time domain. Then, the frequency domain data is generated

using the Fourier Transform. Data is split into training set, validation set, through

the use of K-Fold validation, and a test set.

The time-domain data will not undergo anymore data processing and can be fed

directly into the machine learning algorithms. However, the frequency domain data

will undergo feature scaling before being passed onto the machine learning

algorithms.

A benchmark model, baseline zero, is created for both the time and frequency

domain dataset. This model will serve as a baseline and its performance will be used

to compare the effectiveness of the other machine learning models. Then, two

models from each category are selected for further development and

hyperparameter tuning to ensure it fits best with the problem in hand. Last, a final

performance measure is then carried out using the test set on the two new improved

machine learning models.

5. Data Collection and Pre-processing

This section covers how the data used in the machine learning algorithms is

acquired and pre-processed.

5.1. Dataset

The dataset used to train the machine learning algorithms will be based on trains

of different weights and the vibration signals they induced onto the train track

sleeper. The vibration signals can be classified into two categories, Time Domain and

Frequency Domain.

The time-domain dataset consists of the raw data of 616 train weights with their

corresponding vibration signals. As the name suggest, the parameters of these data

are of time against acceleration/amplitude. The time-domain vibration signal

consists of 2,418 timesteps within a given time length of 1.21 seconds, with each

timestep being equivalent to 0.0005 seconds. This dataset is collected using D-Track.

The frequency-domain dataset consists of the manipulated time-domain dataset.

As such, there is also a total of 616 train samples, each with their own individual

frequency against power spectral density data. This dataset is collected through the

use of mathematical calculations, converting time into frequency using fast Fourie

transform.

5.2. Data Collection

The raw time-domain dataset is generated using D-track. D-Track is a program

which can be used to generate dynamic behaviour railway track data, in our case we

will be using it to generate the vibration at the rail track sleeper for a given weight.

A simple methodology is used to generate the data using a basic understanding of

freight trains.

On average freight train consists of over 100 wagons with 3 or 4 locomotives

running the train. To generate the dataset, the train is assumed to consist of 1

locomotive and a maximum of 22 wagons. The train weight data is generated using

the combination of the nominal tare mass (the weight of the locomotive plus the

weight of the empty or completely filled wagons) and the wagon carries mass, as the

total train weight.

A systematic approach is used to calculate the total train weight, the initial total

train weight is assumed to consist solely of the mass of the locomotive and the mass

of one empty wagon, and the vibration signal at the sleeper is generated and stored

for this weight. Then the carry mass of the wagon is increased by a set amount of 5

ton or 0.5 ton and the vibration signal for this new weight is generated and collected.

According to Barkan [11], the weight of a modern freight locomotive is 196 tons

and the weight of an empty railway car is 33 tons with a maximum carry weight of

110 tons. This led to the dataset consisting of trains weighing from 229 tons to 3,342

tons with a total of 616 weight samples. In Figure 1, it shows the vibration signal

produced using D-Track for a given train weight of 229.

Figure 1. Time-domain train vibration

5.3. Pre-processing

The noise within the vibration data can be removed which may lead to an

improvement of the performance of the machine learning algorithm. With the

reduction of the noise, the data will not contain unwanted information within the

data. The noise within the data could lead to overfitting due to the algorithm training

itself around the noise pattern produced or lead to a huge model runtime due to the

large size of the data. However, noise reduction can lead to important information

within the vibration signal to be lost thus leading to poor quality data, if not done

correctly. To prevent the loss of vital information from the dataset, the machine

learning algorithms are trained using the unprocessed raw time-domain data.

The time-domain data is represented using an array, where each weight is

represented by two arrays. One array contained the mass of the train whilst the other

contained the acceleration/amplitude points, starting from 0 seconds to 1.21 seconds.

This leads to the array representing the acceleration/amplitude points to be of length

2418, where the index of the array represented the timestep. Therefore, each index

of the array represents a timestep increase of 0.0005 seconds resulting with the time

domain data having a huge matrix dimension as such, no visual representation of

the regression data can be created. Representing the data into an array makes it

easier for the information to be passed onto the machine learning models.

Using a similar procedure as Liu and Yang [12], the time domain data is used to

create frequency domain data. The time-domain data is converted to the frequency

domain to produce machine learning model based on the characteristics of the signal

that are not easy to see whilst looking at the signal in the time domain. Machine

learning algorithms will be created for the two types of domain and a comparison

will be made. The difference between the two datasets is that frequency domain data

shows how much of the signal lies within each given frequency whereas the time

domain data shows how a signal changes over time.

The frequency-domain data is calculated using a Fast Fourier transform. Fast

Fourier transform is used to represent a signal from its original domain, such as time,

to the frequency domain as Equation 2.

 1
2 /

0

,
p

nk j p

k n

n

X x W W e 
−

−

=

= = Equation 2

Where xn is the input signal data, p is the number of signal samples and Xk is the

consecutive samples in the frequency domain [13]. Once the frequency domain is

found, the power spectral density is also calculated. For a given signal, the power

spectral density describes the distribution of power from the frequency components.

Figure 2 shows a frequency domain data.

Figure 2. Frequency Domain train vibration

From Figure 2, it can be seen that there is a huge difference between the scaling

of the power spectral density values at different frequencies. Machine Learning

algorithms do not perform well when there is a very different scale between the

attributes. To get the values of the power spectral density within the same scale, the

data will need to undergo feature scaling. Standardization will be used to feature

scale our frequency domain data. Standardization works by subtracting each value

with the mean value and then dividing it by the standard deviation resulting in

uniformity within the data.

The two datasets, time and frequency domain, are separated into 3 groups to be

used for training, validation and testing in the machine learning algorithms. Ten

percent of the total data is used for testing, whilst another ten is used for validation

and the remaining data is used for training the algorithms.

6. Optimised algorithm design

This section will cover the design of the machine learning algorithms which are

selected to have their hyperparameters tuned in order for them to reach optimal

performance. The two algorithms that are selected to be tuned are the Multilayer

Perceptron and the Random Forest.

6.1. Multilayer Perceptron Design

Multilayer Perceptron (MLP) consists of three layers. The first layer is the input

layer, where the feature vector is passed through. The second layer is the hidden

layer, consisting of one or more threshold logic unit layers. It is within this layer

where the weighted sums of the inputs are calculated, and a step function is applied

to it before being sent off as an output through the use of the Rectified Linear (ReLU)

activation function which provides non-linearity in the network. Finally, the output

layer which produces the output variables.

6.1.1. Baseline MLP Model Design

A 2-layer MLP model is used as a baseline to see how well dataset performed

within a neural network algorithm. A 2-layer MLP consists of an input layer, one

hidden layer and one output layer which is represented by the notation of 2418/100/1

for the time domain dataset. Since the network consisted of 2418 variables in the

input layer, one hidden dense layer with 100 nodes and an output layer with one

node. The frequency-domain dataset is represented with the notation 1208/100/1 as

it has a different about input layer variables.

The default Keras hyperparameter values are used for the baseline MLP models,

which consists of using the default values of the efficient Adam optimization

algorithm and mean squared error loss function. However, there is no default value

for the number of neurons within the hidden layers so a random value of 100

neurons is chosen and for the output layer, only one neuron is required with no

activation function as the model is targeted towards a regression problem.

The neural network design of the baseline MLP model for both the time domain

and frequency domain is the same, with the sole expectation of the number of input

variables. The design of the network for the time domain dataset can be seen in

Figure 3 and the frequency domain can be seen in Figure 4.

Figure 3. Neural Network Design of Baseline Time Domain MLP model

Figure 4. Neural Network Design of Baseline Frequency Domain MLP model

6.1.2. Optimized MLP Model

To ensure that the MLP model runs on optimal performance, some of the

hyperparameters of the MLP neural network are tuned. The two main

hyperparameters that control the architecture of the neural network are the Number

of layers and Number of nodes in each hidden layer.

Aside from these two hyperparameters, the Adam learning rate is also tuned as

it also plays a role in determining the training error of the network. A large learning

rate may result in gradient descent increasing the training error rather than

decreasing it and a small learning rate results with slow training time.

Random Search is used to find the best hyperparameter values for both the

individual time and frequency domain MLP final models. A range of values are

given for each of the hyperparameters and the Random Search algorithm finds out

the best combination between these values of the number of layers, the number of

nodes and the values of Adam learning rate which produced the least training error

thus best performance score. The Random Search algorithm returns the best values

to use for the hyperparameters and using these values, a final MLP model is created

for both the time and frequency domain. The final network design for the time

domain can be seen in Figure 5 and that for the frequency domain can be seen in

Figure 6.

The use of Random Search to tune the hyperparameters saves time and also

prioritises producing a model complexity which is centred on the performance of

the algorithm rather than the algorithm runtime. If Random Search is not available

then the hyperparameters will be chosen manually, varying each hyperparameter

one by one in different combinations with the other hyperparameters and

comparing the changes in the performance till the best combination is found. This

will have consumed a huge amount of time.

The Adam learning rate for the time-domain model is found to be 5e-5 and for

the frequency-domain, it is 0.0001. These values are found to work well with the

number of layers and number of neurons assigned to each of the respective MLP

model.

Figure 5. Final MLP Model for Time-Domain dataset

Figure 6. Final Frequency-Domain MLP Model

6.2. Random Forest Design

The Random Forest algorithm has several hyperparameters which can be tuned

in the effort to try improving the performance of the algorithm. To avoid a huge

training time using the search algorithm or Grid Search, it will be focusing on three

hyperparameters to tune which are Bootstrap, N_estimators, and Max_features.

Bootstrap decides whether bootstrap samples are used when building the trees

or when set to fault the whole dataset is used to build each tree. N_estimators

decides the number of trees that will be built in the random forest and max_features

decides the number of features to consider when looking for the best split.

The default Random Forest used in the baseline models has bootstrp set to true,

n_estimators set to 100, and max_features set to 10. After using Grid Search for both

the time and frequency domains, it is found that the following hyperparameters are

ideal for the final model for each type:

• Time domain: bootstrap = false, max_features = 20 and n_estimators = 73

• Frequency domain: bootstrap = false, max_features = 20 and n_estimators

= 200

7. Results and Discussion

In this section, different algorithms are compared and evaluated. The training

set consisted of 80% of all the data, the validation set consisted of 10% whilst the test

set consisted of the remaining 10%.

7.1. Time Domain Baseline Models Result

The performance of models can be shown as Table 1.
Table 1. Time Domain Baseline model results

Model
Training Set

Validation Set

RMSE

R2 Average RMSE Average Standard Deviation

Baseline Zero - - 912.33 912.33

Linear Regression 1.0 1.13 68.40 5.70

Support Vector Regression (SVR) 1.0 0.01 68.40 5.57

Decision Tree 1.0 0.00 22.51 3.26

K Nearest Neighbor (KNN) 0.084 872.40 1101.84 62.15

Random Forest 0.999 2.98 7.75 1.84

Multilayer Perceptron (MLP) 0.998 41.73 92.23 2.0

The Baseline Zero model is a sanity check. It is used as a predictor to compare

how relatively well the other models do. The Baseline Zero is a prediction model

that will be used if there is no machine learning available, in other words, it predicts

the weight of the train without using the time/frequency domain data. For the

Baseline Zero, the weight of the train is predicted to be equal to the mean train

weight of all the samples used in the validation set. If a model has an RMSE score

that is higher than the Baseline Zero’s RMSE then it means that the model performed

worse than a prediction thus would be no better than just using the mean train

weight for all the predicted train weight values.

From Table 1, it can be seen that only the KNN model performed worse than the

Baseline Zero model in the validation set. One of the reasons for this is that the

accuracy of a KNN model tends to decrease with an increase in the number of k

neighbours around a given point in the model. The dataset used in training the

model consists of over 2,400 points for a given single train weight resulting in a huge

k neighbour value thus leading to poor accuracy for the model. The dataset used is

clearly not suitable for the KNN model especially with its hyperparameters being

untuned.

The R2 score provides a “goodness of fit” measure of the predicted line of best

fit to the actual value. KNN has an extremely low R2 compared to the other models

and the effects of this can be seen with the average RMSE score in the validation set.

The prediction does not fit in well with the training set data. From the boxplots in

Figure 7, it can be seen that the boxplot of the KNN results can be considered as an

outlier compared to the other model due to its underfitting of the training data.

Underfitting can be improved by either increasing the number of samples used in

the training data, tuning the hyperparameters to produce predictions that better fit

the data, or simply using another algorithm.

Figure 7. Time-domain results shown in a boxplot diagram

Figure 8. Time-domain results excluding the KNN model

Accepting that the KNN model is a poor choice for the given dataset and

removing it from the boxplot diagrams it can be seen a better relationship between

the rest of the algorithms created, as shown in Figure 8.

Excluding KNN, the other models have great R2 scores with values close to one

thus meaning that the prediction fit of the training set is very close to the

observation. It can be clearly seen that as the R2 score for the training set increase the

mean RMSE score for the training set got closer to zero. For RMSE, the closer the

score is to zero the better the accuracy as there is less error between the predictions

and the observations. The best performing algorithm is the Random Forest with a

training set RMSE score of 2.98 and a validation RMSE score of 7.75; whereas MLP,

excluding the KNN, performed the poorest with a training set score of 41.73 and

validation score of 92.23. Compared to the remaining algorithms, excluding KNN,

the Decision Tree, MLP and Random Forest algorithms seem to perfectly fit the

training data without any overfitting and thus generalise well with new data. This

can be seen from the relatively low difference between the RMSE values obtained

training and validation set. Linear Regression and SVR both seem to overfit the

training data, and this can be seen from the large difference between the training

and validation RMSE scores. When a model is too complex relative to the amount

and noisiness of the training data, overfitting occurs. It can be resolved by removing

the noise in the training data, simplifying the model via reducing the number of

attributes in the training data or gathering more data. The training data set which

used can be considered to contain a lot of noise and also have a lot of attributes and

this may be the reason why overfitting is observed in some algorithms. The amount

of training data used is not also ideal quantity wise in producing high-quality

models and is thus also another factor which lead to the overfitting of algorithms.

From the results, it can be clearly seen that the Random Forest algorithm

performed the best even though it uses default hyperparameter values. Based on its

performance, it is chosen to be selected to undergo hyperparameter tuning to see if

its performance can be further enhanced. MLP is also chosen to be tuned even

though it performed relatively poorly compared to the other algorithms, but it has a

small standard deviation between the average RMSE value and there are not any

signs of overfitting thus the algorithm generalises well when it comes to new data.

The reason for its poor performance can be due to the simplicity of the network

architect used in the baseline model and also due to the small training data sample

size. The MLP algorithm has a huge potential when it comes to enhancing its

performance via hyperparameter tuning.

7.2. Frequency Domain Baseline Models Result

The performance of models can be shown as Table 2.
Table 2. Frequency Domain Baseline model results

Model
Training Set

Validation Set

RMSE

R2 Average RMSE Average Standard Deviation

Baseline Zero - - 912.33 912.33

Linear Regression 1.0 2.28 604.65 138.26

Support Vector Regression (SVR) -1.379 1406.33 2349.66 376.90

Decision Tree 1.0 0.00 133.56 12.91

K Nearest Neighbor (KNN) 0.935 232.19 291.37 19.71

Random Forest 0.998 31.72 85.81 7.43

Multilayer Perceptron (MLP) 0.128 987.47 959.31 78.58

From the results of the frequency domain algorithms, it can be clearly seen that

the performance of the algorithms is generally worst compared to their respective

algorithms in the time domain. Two algorithms, SVR and MLP, performs worse than

the Baseline Zero algorithm, which is the terrible predictor. These two algorithms

underfit the training data thus meaning that either there is not enough training data

to effectively train the algorithms or that the algorithms are not suitable at all for the

frequency domain dataset. The MLP has an extremely low R2 score and its effect can

be seen on the RMSE score as the training error measured in the RMSE is huge due

to the predictions not being a good fit for the observations. The SVR has a negative

R2 score which means that the algorithm is doing worse than the mean value and

this can be seen from comparing it to the Baseline Zero RMSE score, where the SVR

RMSE score is more than twice bigger than the Baseline Zero RMSE score in the

validation set.

The Linear Regression algorithm performs well in the training set but poorly in

the validation set. The RMSE score in the validation set is slightly lower than the

Baseline Zero and there is a huge difference between the training set RMSE, and the

validation set. RMSE clearly shows that there is overfitting in the algorithm.

Overfitting also occurs in the Decision Tree algorithm and the Random Forest

algorithm, which perform the best in comparison to the other algorithms. The

Decision Tree has the same performance in the train set as it did for the time domain

dataset. However, there is a huge difference between the RMSE values obtained in

the validation set. This shows that an algorithm can perform well in the training set

but may not generalise as well when it comes to new data presented in the validation

or even test set.

The KNN algorithm performs much better with the frequency domain dataset

compared to the time domain dataset and this can be explained due to the fact that

there are fewer attributes used in the frequency domain data set thus reducing the

number of k neighbours in the algorithm. In KNN, the higher the number of k

neighbours, the lower the accuracy of the algorithm. A clear comparison of the

frequency domain algorithms can be seen in Figure 9, from which it can be seen that

the SVR algorithm not only has the worst mean RMSE score but also a huge standard

deviation between the scores recorded for it.

The same two algorithms are used as the time domain dataset to undergo

hyperparameter tuning. The Random Forest performs the best in both the time and

frequency domain datasets, so it makes sense choosing it to further undergo tuning.

However as stated before, even though the MLP does not perform as well as the

Random Forest or even the Decision Tree, there is still a huge potential in improving

the performance score once it undergoes tuning.

Figure 9. Frequency domain results shown in a boxplot diagram

7.3. Final Tuned Models Result

The performance of models can be shown in Table 3.
Table 3. Tuned Time Domain Models Results

Model

Training Set
Validation Set Test Set

RMSE RMSE

R2
Average

RMSE

Average Standard

Deviation

Average Standard

Deviation

Random Forest 1.0 0.0 85.61 1.51 73.49 4.19

Multilayer Perceptron

(MLP)
0.999 13.60

55.80 6.25 57.17 5.40

The results for both the tuned algorithms for each dataset can be found in tables

3 and 4. For the time domain dataset, it can be seen that the Random Forest algorithm

performs worse compared to the untune Random Forest algorithm. This simply

means that the default hyperparameter values suited the dataset more. As for the

MLP algorithm, the tuned model performs better in both the training set and

validation set compared to the untuned model. For the training set, there is a

decrease in the average RMSE which resulted in a decrease in the average validation

set RMSE. This indicates that the new hyperparameters obtained using random

search are able to optimise the performance of the model. The test set average RMSE

results for both models are not too far off from the validation RMSE score, however,

there is clear evidence of overfitting occurring within these models since there is a

huge difference between the test RMSE scores with the training set RMSE score. As

previously mentioned, one of the main reasons why models keep showing signs of

overfitting is most likely due to the size of the used dataset. Dataset size can be

considered small and not of the ideal size to produce precise and reliable machine

learning models.
Table 4. Tuned Frequency Domain Results

Model

Training Set
Validation Set Test Set

RMSE RMSE

R2
Average

RMSE

Average Standard

Deviation

Average Standard

Deviation

Random Forest 1.0 0.0 77.61 0.62 59.66 1.73

Multilayer Perceptron

(MLP)
0.999 57.40

231.58 20.40 250.03 11.95

For the frequency domain tuned algorithms, it can be seen that both algorithms

perform better than the untune models thus meaning that the optimisation carried

out using grid search and random search is a success. The RMSE score in the

validation set for the MLP is decreased by nearly a factor of four and this can

evidently be seen from the increase of the R2 score which goes from being close to

zero to being close to one. The changes in the hyperparameter for the MLP model

allows for the predictions of the training set to fit much better with the real data

observation. However, there is still overfitting occurring in both algorithms. If there

are more training samples available, it should result in a greater improvement in the

RMSE scores.

7.4. Wilcoxon Test

Several statistical hypothesis tests are carried out to see if there is any clear

distinction between the distribution of the final two models. The following tests are

carried out:

1) Test 1 – Test to see if there is the same distribution between the tuned

MLP model and the Random Forest model for the time domain dataset

2) Test 2- Test to see if there is the same distribution between the time

domain dataset untune MLP model and the tune MLP model

3) Test 3 - Test to see if there is the same distribution between the frequency

domain untune Random Forest model and the tuned Random Forest

Model

4) Test 4 - Test to see if there is the same distribution between the same MLP

algorithm but for the different dataset

5) Test 5 - Test to see if there is the same distribution between the same

Random Forest algorithm but for the different dataset

The Wilcoxon Signed-Rank Test is used for all the five tests and the p-value

calculated for each test is 0.00008857, which is lower that the needed 0.05 p-value to

indicate that the distribution is the same. This small p-value shows that the idea that

the difference for each test is due to chance can be rejected and that each model tested

in the different tests has a clear possible distribution. From the results, it can be seen

clearly that the time domain dataset performed better than the frequency domain

dataset.

8. Conclusion

8.1. Achievements

The aim of this study is to produce machine learning algorithms capable of

predicting the train weight using the vibration signals measured in the sure. Using

D-Track, dataset of vibration signals is generated and measured at the sleeper to use

for our machine learning algorithms. The data generated are real-life representations

of the type of signals which gain from rail track. Using this data, the vibration signals

are processed into the time domain signal and the frequency domain signals which

are then used to train machine learning algorithms.

Six machine learning algorithms are developed for each type of domain, which

are all successfully able to predict the train weight. Some algorithms perform better

than others and the best algorithm, the Random Forest algorithm, is selected for

further tuning in hopes of improving the performance. The MLP algorithm is also

chosen, as it is a neural network algorithm which has a huge potential of

performance improvement from having its hyperparameters tune. The performance

of the MLP algorithm for both datasets can be improved through hyperparameter

tuning but the performance improvement for the Random Forest algorithm varies

for each dataset. This insight can lead to the use of mobile and wireless sensors such

as accelerometers, laser droppers, laser systems to help engineers quantify the train

weights in the field as part of systems audit and assurance.

8.2. Future Work

Some overfitting can be observed in results. One of the ways to overcome

overfitting is by increasing the data size, so in the future if this study is to more

dataset from the fields. The architect of the MLP algorithm and the Random Forest

algorithm can be improved, by using a much more detailed search algorithm which

takes in more hyperparameters into consideration and also covers a greater range of

possible hyperparameter values. Due to the higher training time, only a small

narrowed hyperparameter test is carried out and the effects of this can be seen in the

Random Forest for the time domain results, for example, are the optimal

hyperparameter values does not perform as well as the default hyperparameter

algorithm. The time-domain data can of underwent more pre-processing such as

signal denoising before being used to obtain the frequency domain dataset. This will

have removed the unwanted frequency bands within the frequency data, giving a

frequency dataset which contains nothing but the important features which are

distinct for each weight without the noise pattern which are identical in each given

data.

ACKNOWLEDGMENT

The authors also wish to thank the European Commission for the financial

sponsorship of the H2020-RISE Project no.691135 “RISEN: Rail Infrastructure

Systems Engineering Network”, which enables a global research network that

addresses the grand challenge of railway infrastructure resilience and advanced

sensing in extreme environments (www.risen2rail.eu).

References

1. Reform, R., Charges for the Use of Infrastructure. ECMT. 2005, Published by OECD Publishing.

2. Office of Rail and Road, UK rail industry financial information 2017-18. 2019.

3. Žnidarič, A., et al., Railway bridge weigh-in-motion system. Transportation Research Procedia, 2016. 14: p.

4010-4019.

4. Powrie, W., A Guide to Track Stiffness: August 2016. 2016: University of Southampton Department of

Civil & Enviromental Engineering.

5. Steffens, D.M., Identification and development of a model of railway track dynamic behaviour. 2005,

Queensland University of Technology.

6. Géron, A., Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and

techniques to build intelligent systems. 2019: O'Reilly Media.

7. Probst, P., A.-L. Boulesteix, and B. Bischl, Tunability: Importance of Hyperparameters of Machine Learning

Algorithms. J. Mach. Learn. Res., 2019. 20(53): p. 1-32.

8. Feurer, M. and F. Hutter, Hyperparameter optimization, in Automated Machine Learning. 2019, Springer,

Cham. p. 3-33.

9. Bowles, M., Machine Learning with Spark and Python: Essential Techniques for Predictive Analytics. 2019:

John Wiley & Sons.

10. Satyan, S. What is Mean Squared Error, Mean Absolute Error, Root Mean Squared Error and R Squared? 2019;

Available from: https://www.studytonight.com/post/what-is-mean-squared-error-mean-absolute-

error-root-mean-squared-error-and-r-squared.

11. Barkan, C. Introduction to Rail Transportation. 2012. Railroad Engineering Education Symposium (REES).

12. Liu, J. and X. Yang, Learning to see the vibration: a neural network for vibration frequency prediction. Sensors,

2018. 18(8): p. 2530.

13. Nussbaumer, H.J., The fast Fourier transform, in Fast Fourier Transform and Convolution Algorithms. 1981,

Springer. p. 80-111.

http://www.studytonight.com/post/what-is-mean-squared-error-mean-absolute-error-root-mean-squared-error-and-r-squared
http://www.studytonight.com/post/what-is-mean-squared-error-mean-absolute-error-root-mean-squared-error-and-r-squared

