
 
 

University of Birmingham

Nanoparticle-based autoantigen delivery to Treg-
inducing liver sinusoidal endothelial cells enables
control of autoimmunity in mice
Carambia, Antonella; Freund, Barbara; Schwinge, Dorothee; Bruns, Oliver T; Salmen,
Sunhild C; Ittrich, Harald; Reimer, Rudolph; Heine, Markus; Huber, Samuel; Waurisch,
Christian; Eychmüller, Alexander; Wraith, David C; Korn, Thomas; Nielsen, Peter; Weller,
Horst; Schramm, Christoph; Lüth, Stefan; Lohse, Ansgar W; Heeren, Joerg; Herkel, Johannes
DOI:
10.1016/j.jhep.2015.01.006

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Carambia, A, Freund, B, Schwinge, D, Bruns, OT, Salmen, SC, Ittrich, H, Reimer, R, Heine, M, Huber, S,
Waurisch, C, Eychmüller, A, Wraith, DC, Korn, T, Nielsen, P, Weller, H, Schramm, C, Lüth, S, Lohse, AW,
Heeren, J & Herkel, J 2015, 'Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal
endothelial cells enables control of autoimmunity in mice', Journal of Hepatology, vol. 62, no. 6, pp. 1349-1356.
https://doi.org/10.1016/j.jhep.2015.01.006

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 19. Apr. 2024

https://doi.org/10.1016/j.jhep.2015.01.006
https://doi.org/10.1016/j.jhep.2015.01.006
https://birmingham.elsevierpure.com/en/publications/7c3763fa-4810-44b3-b662-fde351cb9ed3


Research Article
Nanoparticle-based autoantigen delivery to Treg-inducing
liver sinusoidal endothelial cells enables control of autoimmunity

in mice
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Background & Aims: It is well-known that the liver can induce spleens of mice treated with autoantigen peptide-loaded NPs

immune tolerance, yet this knowledge could, thus far, not be were significantly higher than those in vehicle-treated mice.

translated into effective treatments for autoimmune diseases.
We have previously shown that liver sinusoidal endothelial cells
(LSECs) could substantially contribute to hepatic tolerance
through their ability to induce CD4+ Foxp3+ regulatory T cells
(Tregs). Here, we explored whether the Treg-inducing potential
of LSECs could be harnessed for the treatment of autoimmune
disease.
Methods: We engineered a polymeric nanoparticle (NP) carrier
for the selective delivery of autoantigen peptides to LSECs
in vivo. In the well-characterized autoimmune disease model of
experimental autoimmune encephalomyelitis (EAE), we investi-
gated whether administration of LSEC-targeting autoantigen pep-
tide-loaded NPs could protect mice from autoimmune disease.
Results: We demonstrate that NP-based autoantigen delivery to
LSECs could completely and permanently prevent the onset of
clinical EAE. More importantly, in a therapeutic approach, mice
with already established EAE improved rapidly and substantially
following administration of a single dose of autoantigen peptide-
loaded NPs, whereas the control group deteriorated. Treatment
efficacy seemed to depend on Tregs. The Treg frequencies in the
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Moreover, NP-mediated disease control was abrogated after
Treg depletion by repeated administration of Treg-depleting
antibody.
Conclusion: Our findings provide proof of principle that the
selective delivery of autoantigen peptides to LSECs by NPs can
induce antigen-specific Tregs and enable effective treatment of
autoimmune disease. These findings highlight the importance
of Treg induction by LSECs for immune tolerance.
� 2015 European Association for the Study of the Liver. Published
by Elsevier B.V. Open access under CC BY-NC-ND license.
Introduction

The liver is well-known for its ability to promote immune toler-
ance rather than inflammation. This capability is of importance to
prevent inadequate inflammatory immune responses against
harmless gut-derived bacterial or nutritional antigens that con-
stantly reach the liver via the portal blood [1]. Various liver-
resident antigen-presenting cells, including liver dendritic cells
(DCs), Kupffer cells and liver sinusoidal endothelial cells (LSECs)
are involved in the maintenance of hepatic tolerance [2].
Notably LSECs have a well-described capability to suppress pro-
inflammatory activities of CD4+ and CD8+ T cells [3–5]. Hepatic
tolerance can be relevant for the control of inflammatory immune
responses even outside of the liver, as indicated by the finding
that hepatic expression of a myelin antigen facilitated protection
from autoimmune neuroinflammation [6]. Notwithstanding the
accumulated knowledge of the tolerance-inducing properties of
the liver and LSECs in particular, efficient methods that could
translate this knowledge into effective therapies for autoimmune
diseases are still lacking.
15 vol. 62 j 1349–1356
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Currently, causative treatments for autoimmune diseases are

not established, and the available symptomatic treatments
mainly rely on generalized immune suppression, producing sys-
temic and often severe side effects, notably after long-term treat-
ment [7,8]. In an attempt to develop more specific treatments of
autoimmune diseases, therapies based on CD4+ Foxp3+ reg-
ulatory T cells (Tregs), which have a profound ability to control
immune responses [9], are being explored. Tregs are also being
considered for treatment of autoimmune liver inflammation
[10–12]. However, a major obstacle to the clinical application of
Tregs for therapy is the lack of efficient techniques for inducing
antigen-specific Tregs in vivo [8,13]. We reasoned that this obsta-
cle could be overcome by harnessing LSECs for antigen-specific
Treg induction, as we had recently demonstrated that LSECs are
efficient inducers of CD4+ Foxp3+ Tregs [14]. Therefore, we
explored whether nanoparticle (NP)-based delivery of autoanti-
gen peptides to Treg-inducing LSECs might serve the specific
treatment of autoimmune disease.

Many types of NPs are known to accumulate in the liver
shortly after administration in vivo [15], most of which are
actively taken up by Kupffer cells. These liver-resident macro-
phages are major scavenger cells that phagocytose preferentially
larger particles [16]. LSECs are a second type of scavenger cell in
the liver that endocytose preferentially soluble macromolecules
and small particles [16]. We reasoned that the differential
scavenger preference of these liver cells could allow for the
development of an NP carrier that might facilitate selective
delivery of autoantigen peptides to LSECs in vivo.

We show that a small polymer-coated NP can facilitate rapid
and selective delivery of autoantigen peptides to LSECs in vivo.
In the well-established and clinically relevant mouse model of
multiple sclerosis, experimental autoimmune encephalomyelitis
(EAE) [17], which is marked by ascending paralysis, only a sin-
gle administration of such LSEC-targeting NPs loaded with
autoantigen peptides provided potent disease protection and
therapy of established disease. Therefore, targeted delivery of
autoantigen peptides to Treg-inducing LSECs by NPs represents
a novel approach for the antigen-specific treatment of autoim-
mune diseases. Moreover, these findings demonstrate that
LSECs seem to be major inducers of peripherally derived
Tregs, and emphasize the importance of LSECs for maintaining
immune tolerance.
Material and methods

Mice

B10.PL mice, tg4 mice [18], C57BL/6 mice, FVB mice, Foxp3gfp.KI mice [19] and
hCD2-DkTbRII mice [20] were bred and kept in the animal facility of the
University Medical Centre Hamburg-Eppendorf under specific pathogen-free con-
ditions. F1 mice were generated by mating of Foxp3gfp.KI mice with tg4 mice.
Mice were 6–12 weeks old at the start of experiments. Animal experiments were
conducted in accordance with institutional guidelines and approved by the
review board of the State of Hamburg, Germany.
Antibodies

For cell isolation and flow cytometry, fluorochrome-labelled antibodies were pur-
chased from Miltenyi (Germany) (CD146), eBioscience (Germany) (Foxp3), BD
Biosciences (Germany) (Syndecan-4) or Biolegend (Germany) (CD4, CD25,
CXCR4).
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Cell isolation and in vitro Treg conversion assay

Non-parenchymal liver cells were isolated as described [4] and further separated
by MACS into CD146+ LSECs according to the manufacturer’s instructions
(Miltenyi Biotec, Germany). Treg conversion assays were performed with mod-
ifications as described [21]. CD4+CD25�Foxp3� T cells from
(tg4 � Foxp3gfp.KI) F1 mice were sorted with a FACSaria (BD Biosciences,
Germany). Treg conversion assays were performed in serum-free Panserin med-
ium (Pan Biotech, Germany) by co-culture of non-Tregs (5 � 105/well) with
LSECs, which had been pre-cultured for 24 h in collagen treated 96-well cell cul-
ture plates (1 � 105/well) in IMDM/10% FCS (Life technologies, PAA, Germany), in
the presence of 2 ng/ml recombinant human TGF-b1 (R&D Systems, Germany).
Myelin basic protein (MBP) peptide (Ac-ASQYRPSQR-COOH; Panatecs, Germany)
coupled to NPs (MBP-NP) or, as controls, NPs without peptide load or free MBP
peptide were used for T cell stimulation by LSECs. At day four of culture, T cells
were stained for Foxp3 (Foxp3 Staining Buffer Set; eBioscience, Germany) and
analysed with a LSRII cytometer (BD Bioscience, Germany).

Experimental autoimmune encephalomyelitis

200 lg MBP peptide (Panatecs, Germany) in PBS was emulsified with complete
Freund’s adjuvant containing 4 mg/ml heat-killed Mycobacterium tuberculosis,
strain H37RA (Difco, USA) and administered subcutaneously to B10.PL mice as
described [6]. As indicated, B10.PL mice were splenectomised seven days before
EAE induction. C57BL/6 mice were inoculated subcutaneously with 100 lg
emulsified myelin oligodendrocyte glycoprotein (MOG) peptide
(MEVGWYRSPFSRVVHLYRNGK, Panatecs, Germany). Additionally, 200 ng pertus-
sis toxin (Sigma-Aldrich, Germany) was injected intraperitoneally at the time of
immunisation and 48 h later. EAE was monitored daily and clinical symptoms
were scored as follows: 0, no detectable signs of EAE; 1, tail atony; 2, partial hind
limb paralysis; 3, complete hind limb paralysis; 4, fore limb and hind limb paraly-
sis; 5, moribund.

Preparation of polymer-coated peptide-coupled NPs

59Fe-labelled [22] and unlabelled [23] superparamagnetic iron oxide nanocrystals
or CdSe/CdS/ZnS-core-shell-shell quantum dots [24] were encapsulated into an
amphiphilic polymer (poly(maleic anhydride-alt-1-octadecene)) as described
[25]. Coupling of NPs (6 lmol/L) to peptides with 1-Ethyl-3-(3-dimethylamino-
propyl)-carbodiimide (6 mmol/L) was conducted as described [26]. A 1000-fold
(MBP) or 100-fold (MOG) excess of the peptide was added and incubated over-
night. Free peptide was removed under centrifugal force in a filter device
(10 times, 100 kDa, 2500 g, 4 �C).

Determination of peptide-nanoparticle coupling efficiency

Using different excesses of 14C-labelled MBP peptide, the amount coupled to the
NPs was calculated on basis of the initial amount used, the amount of 14C-labelled
peptides coupled to NPs pelleted by ultracentrifugation and the amount of free
14C-labelled peptide in the filtrate, as determined by liquid scintillation counting.

Turnover studies and organ distribution of nanoparticles

Anaesthetized mice were intravenously injected with 200 ll of a solution of
59Fe-labelled NPs coupled to unlabelled MBP peptide or unlabelled NPs coupled
to 14C-MBP peptide. Plasma clearance was determined from 10 ll (14C) or all
gained (59Fe) plasma 2, 5, 15, and 30 min after injection. After 60 min,
blood was removed by cardiac puncture, and, after perfusion with PBS containing
50 U/ml heparin, organs were solubilized in Solvable (PerkinElmer) (0.1 ml/10 mg
organ) for the measurement of 14C-radioactivity in scintillation fluid. Uptake was
calculated as percentage of activity in all measured organs. 59Fe-activity was
measured using the large volume Hamburg whole body radioactivity counter [27].

Apoptosis assay

Terminal deoxynucleotidyl transferase–mediated dUTP nick end labelling (TUNEL)
was performed with the In Situ Cell Death Detection Kit, TMR-Red (Roche) on for-
malin-fixed liver sections of C57Bl/6 mice seven days after intravenous injection
of MOG-NPs or PBS; cells were counterstained with Hoechst 33258 nuclear dye
(Invitrogen). As positive control DNAse I-treatment was used (Roche).
vol. 62 j 1349–1356
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In vivo imaging studies

Magnetic resonance imaging (MRI) and electron microscopy was performed as
described [28,29]. The MRI parameters are described in Supplementary Table 1.
For electron microscopy, 60 min after intravenous injection of MBP-NPs or NPs,
mice were perfused with 2% glutaraldehyde in PBS, washed and post-fixed for
30 min with 1% OsO4 in PBS. Intravital microscopy was performed as described
[29] with a confocal microscope equipped with a resonant scanner (Nikon A1R).

Nanoparticle-based autoantigen peptide delivery to LSECs in EAE

One day after EAE induction by immunisation to MBP or MOG peptide (B10.PL or
C57BL/6 background, respectively), MBP- or MOG-loaded NPs (equivalent of 7 lg
peptide/mouse as assessed by radioactive binding assays) were administered into
the tail vein. Control mice were treated with equivalent doses of unloaded NPs or
uncoupled peptide or PBS. Alternatively, MOG peptide-immunised mice were
injected with MOG-NPs or PBS at the time of disease manifestation (day 8–12
post immunisation).

Treg depletion in vivo

B10.PL mice, which were treated with MBP peptide-coupled NPs or PBS after EAE
induction, were intraperitoneally injected with 500 lg depleting antibody to
CD25 (clone PC61, BioXcell, USA) or isotype-matched control antibody twice
per week starting from day two post EAE induction.

Statistics

Statistical significance of differences between two data sets was calculated by the
Mann-Whitney test; for comparison of multiple groups, the one-way ANOVA test
and Tukey’s post test were performed. A p value of less than 0.05 was considered
significant.
%
 F

ox 10

0 NP MBP MBP-NP-
200 nm 200 nm 

Fig. 1. Selective delivery of MBP peptide antigens to Treg-inducing LSECs
in vivo by nanoparticles. (A) Plasma clearance rates of MBP peptide coupled to
59Fe-NPs (MBP-59Fe-NP) and 14C-MBP peptide coupled to unlabelled NPs
(14C-MBP-NP). (B) Organ distribution of MBP-59Fe-NPs and 14C-MBP-NPs
60 min after intravenous injection into mice. Mean values ± SEM are shown. (C)
Representative coronal (left) and transversal (right) MR images of mice before
and after injection of unloaded NPs or MBP-NPs. (D) Intravital confocal
microscopy of the liver showing uptake of MBP-NPs or unloaded NPs by LSECs.
Blue, nuclei; green, LSECs (FITC-dextran); red, quantum dot-labelled NPs. Scale
bar: 20 lm. (E) Electron microscopy of liver, 60 min after intravenous injection of
MBP-NPs or unloaded NPs showing NP uptake into endosomal compartments of
LSECs. (F) Splenic CD4+Foxp3� T cells from tg4 � Foxp3gfp.KI mice were co-
cultured in vitro with LSECs in the presence of TGF-b (2 ng/ml) and free MBP
peptide (5 ng/ml) or an equivalent dose of MBP peptide coupled to nanoparticles
(MBP-NP) for four days; as controls, no peptide or empty NPs were added for T
cell stimulation. Foxp3 induction in CD4+ T cells was then analysed by flow
cytometry (unstimulated (�): 0.5 ± 0.004; empty NP: 0.5 ± 0; free MBP peptide:
28.3 ± 0.84; MBP-NP: 29.13 ± 1.751; p <0.0001).
Results

To select a NP that is selectively taken up by LSECs, we performed
preliminary experiments with several types of NPs with a
fluorescent quantum dot core [24], testing their uptake into
mouse liver cells after intravenous administration by intravital
microscopy. We found that a small NP with a poly(maleic anhy-
dride-alt-1-octadecene)-coat [25,30] seemed to accumulate
selectively in liver sinusoidal endothelium (Supplementary
Fig. 1A). To generate an effective antigen carrier system, we chose
a simple one-step coupling strategy using a carbodiimide
crosslinking approach [26] to attach an autoantigen peptide to
the polymer-coated NP with a superparamagnetic iron oxide core
[23]. As a prototypic autoantigen, we used the multiple sclerosis-
associated antigen MBP [18]. Each NP was loaded maximally with
100 peptide molecules per NP as demonstrated by binding assays
with 14C-radiolabelled MBP peptide (Supplementary Fig. 1B).
Peptide loading did not influence charge, size, and shape of NPs
as determined by measurement of the Zeta potential, size exclu-
sion chromatography and electron microscopy (Supplementary
Fig. 1C–E).

To investigate whether MBP peptide-loading of the NPs is
stable in vivo or whether the peptide is cleaved off, kinetic turn-
over studies with 14C-radiolabelled MBP peptide-NP conjugates
(14C-MBP-NP) were performed in comparison with 59Fe-radiola-
belled NPs [22] conjugated to non-labelled MBP peptide
(MBP-59Fe-NP). Both radiolabels were rapidly cleared with simi-
lar kinetics (Fig. 1A), predominantly by the liver (Fig. 1B). Low
amounts of radioactivity could be detected in spleen and kidney,
whereas uptake into other organs was negligible. This finding
was in line with our recently published exact quantification of
Journal of Hepatology 2015
organ distribution, using 51Cr-radiolabelled NPs demonstrating
that 91% of the injected radioactivity was taken up by the liver
within 2 h [31]. In addition, we visualized organ uptake by
dynamic MRI (Supplementary Table 1) [28], revealing hepatic tar-
geting of both MBP peptide-loaded and unloaded NPs (Fig. 1C;
Supplementary Movies 1 and 2). Thus, MBP peptides stay
attached to the NPs in vivo and are not cleaved off and excreted
via the kidney, but transported by the desired targeting effect
of our NPs to liver cells.

To further investigate whether MBP peptide-loading altered
the cellular tropism of administered peptide-NP conjugates, we
performed conventional as well as intravital confocal fluores-
cence microscopy of the liver, using NPs with a fluorescent quan-
tum dot core [29]. Prior to administration of fluorescent MBP
vol. 62 j 1349–1356 1351
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peptide-NP conjugates, recipient mice were injected with FITC-
dextran which is rapidly absorbed by LSECs. After intravenous
injection of MBP-NPs or unloaded NPs, we observed a rapid accu-
mulation of both unloaded NPs and MBP-NPs in the liver, which
clearly co-localized with FITC-dextran stained LSECs (Fig. 1D;
Supplementary Movie 3). To further confirm uptake of peptide-
loaded and unloaded NPs by LSECs, we performed transmission
electron microscopy of liver slices, and detected considerable
internalization of MBP peptide-NP conjugates into endosomal
compartments of LSECs (Fig. 1E). Of note, uptake of NPs by
LSECs did not induce apoptosis as assessed by TUNEL staining
of liver slices seven days after in vivo administration of MBP-
NPs (Supplementary Fig. 2). Together, these findings demonstrate
that these NPs, with or without peptide cargo, are selectively
taken up by LSECs, and thus facilitate efficient and selective deliv-
ery of autoantigen peptides to LSECs in vivo.

To assess whether LSECs can present NP-bound antigen
peptides to T cells, thereby inducing antigen-specific Tregs, we
studied Treg conversion of MBP-specific CD4+CD25�Foxp3�

non-Tregs that were obtained from the spleens of
(tg4 � Foxp3gfp.KI) F1 mice. These non-Treg cells are MBP-speci-
fic [18] and were sorted based on the absence of the Foxp3-linked
expression of green fluorescent protein (GFP) [19]. The non-Treg
cells were stimulated by LSECs in vitro in the presence of free
MBP peptide or of MBP peptide bound to NPs (MBP-NPs) and
exogenous active TGF-b, which is required for Treg conversion
[20]. We found that LSEC-induced Treg generation occurred with
similar efficacy in the presence of free MBP peptide or of NP-
bound MBP peptide, but not of unloaded NPs (Fig. 1F), indicating
that NP-bound MBP peptide antigen was presented by LSECs to
facilitate Treg induction.

The proposed immunosuppressive effect of LSEC-targeting
MBP-NPs in vivo was first tested in MBP-induced EAE in B10.PL
mice (Fig. 2A). Intriguingly, a single intravenous injection of
MBP–NPs one day after EAE induction provoked a lasting and
complete protection from clinical EAE; in contrast, control mice
treated with PBS or with unloaded NPs developed clinical EAE
symptoms, including hind limb paralysis (Fig. 2A). Remarkably,
even tg4 mice [18], which feature MBP-specific CD4+ T cells
and develop more severe EAE than wild-type mice, were pro-
tected from disease by a single MBP-NP injection one day after
EAE induction (Fig. 2B). Control mice receiving an equivalent dose
of free MBP peptide, in contrast, developed severe EAE cumulat-
ing in complete paralysis of all four limbs (Fig. 2B). To confirm the
treatment efficacy of NP-based autoantigen delivery to LSECs in
another independent disease model, we tested the effect of NPs
loaded with MOG peptides on the development of MOG-induced
EAE in C57BL/6 mice. Consistent with our observations in MBP-
induced EAE of B10.PL mice, administration of MOG–NPs to
C57BL/6 mice one day after EAE induction completely protected
recipient mice from developing any clinical disease symptom.
In contrast, control mice receiving unloaded NPs developed EAE
with hind limb paralysis (Fig. 2C).

Although we have shown in Fig. 1B that more than 90% of
injected NPs accumulate in the liver, it was possible that the
spleen, accumulating some 5% of the injected NPs, was responsi-
ble for NP-mediated tolerance. To address this issue, we per-
formed splenectomy in B10.PL mice before EAE induction and
treatment with MBP-NPs. Clearly, MBP-NPs induced disease pro-
tection in splenectomised mice, indicating that the spleen is dis-
pensable for tolerance induction. However, MBP-NP induced
1352 Journal of Hepatology 2015
tolerance was gradually lost in splenectomised mice after day
16, indicating that the spleen is required for the maintenance
of tolerance induced by the liver (Fig. 2D).

Having determined that LSEC-targeting autoantigen peptide-
loaded NPs effectively prevented autoimmune disease develop-
ment, we addressed the even more important issue of whether
autoantigen peptide delivery to LSECs can serve as therapy of
established autoimmune disease. Therefore, we first induced
clinical EAE in C57BL/6 mice by MOG-immunisation. At the time
of treatment, both the recipients of MOG-NPs and control mice
showed clinical symptoms, such as a waggly gait, with similar
disease scores (Fig. 3A). The control group progressed in EAE
severity towards hind limb paralysis; in contrast, the mean clini-
cal scores of MOG-NP treated mice improved rapidly and sub-
stantially towards a normal gait (Fig. 3B and C). Of note,
disease control induced by a single therapeutic injection of
MOG-NPs continued throughout an extended follow-up period
of 9 weeks (Fig. 3B and C). Therefore, NP-mediated autoantigen
delivery to LSECs seemed to provide robust and effective therapy
of established autoimmune disease. To confirm that NP-mediated
antigen delivery to LSECs induced the generation of Tregs in vivo,
we treated MOG-immunised C57BL/6 mice with MOG-NPs or PBS
and analysed the Treg frequencies in the spleen after seven days.
We found that the Treg frequencies in the spleens of MOG-NP
treated mice were significantly higher than those in PBS treated
mice (Fig. 4A). As we have shown before that Treg induction by
LSECs required TGF-b signaling to T cells [14], we reasoned that
NP-based targeting of autoantigen peptides to LSECs should be
ineffective in mice with TGF-b insensitive T cells. Indeed,
vol. 62 j 1349–1356
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MOG–NPs induced only a minor degree of protection from EAE in
hCD2-DkTbRII mice [20], which feature TGF-b insensitive T cells
(Fig. 4B). Thus, we can conclude that the efficacy of NP-mediated
disease protection was dependent on TGF-b signals to T cells,
which are required for peripheral Treg induction. To directly test
whether NP-mediated protection from EAE was dependent on
Treg function in vivo, we depleted Tregs in mice that had received
MBP-NPs by repeated administration of the Treg-depleting PC61
antibody [32] (Fig. 4C); the efficacy of depletion was confirmed
by flow cytometry (Supplementary Fig. 3). Although administra-
tion of MBP-NPs induced protection from EAE in control mice,
MBP-NPs could not prevent the development of disease in Treg-
depleted mice (Fig. 4C). In fact, the disease severity precipitated
by Treg depletion was similar to the disease severity of the con-
trol group receiving PBS instead of MBP-NP (Fig. 4C), demonstrat-
ing that Tregs are critically involved in NP-mediated control of
autoimmune disease.

We observed that disease-resistant mice following MBP-NP
treatment exhibited significantly increased cell numbers in the
spleen, as compared to PBS treated mice with disease (Fig. 4D).
Moreover, this increase in cell numbers seemed to depend on
Tregs, as it was not observed in Treg-depleted mice following
MBP-NP treatment (Fig. 4D). These findings indicate that func-
tional Tregs in MBP-NP treated mice seemed to prevent the
egress of effector cells from the spleen. The retention of effector
cells in the spleen was recently published as an important sup-
pressor mechanism by Tregs [33]. Since Treg-induced splenic
retention seems to be associated with a downregulation of
CXCR4 and Syndecan-4 on effector cells [33], we analysed the
expression of these molecules in the spleens of MBP-NP treated
mice. As compared to PBS treated control mice with manifest dis-
ease, splenocytes of MBP-NP treated disease-resistant mice
exhibited significantly lower expression of CXCR4 (Fig. 4E) and
Journal of Hepatology 2015
Syndecan-4 (Fig. 4F). Treg depletion in MBP-NP treated mice
resulted in expression levels of CXCR4 and Syndecan-4 that were
as high as those in the PBS treated controls (Fig. 4E and F). Note
that also the disease severity at the time of analysis of Treg-
depleted mice following MBP-NP treatment (2.3 ± 0.4) was simi-
lar to that of the PBS treated control mice (2.2 ± 0.3), whereas
Treg-replete MBP-NP treated mice did not exhibit severe EAE
(0.6 ± 0.4).
Discussion

A major obstacle to a causative treatment for autoimmune dis-
eases is the lack of efficient techniques to induce specific sup-
pression of the autoreactive T cells that attack the host tissue.
Treg-based therapies have the potential to provide the desired
specific immune suppression, as autoantigen-specific Tregs have
a profound ability to control immune responses to their cognate
self-antigens [8,9]. However, these therapies are greatly limited
by the insufficiency of techniques for inducing antigen-specific
vol. 62 j 1349–1356 1353
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Tregs in vivo [8,13]. Here we show that LSECs can be harnessed to
effectively control the development and progression of autoim-
mune disease. By taking advantage of NPs that are selectively
taken up by LSECs, we developed a tool for efficient and selective
delivery of autoantigen peptides to Treg-inducing LSECs (Fig. 1).
Intriguingly, a single administration of such LSEC-targeting NPs
loaded with autoantigen peptides provided effective disease con-
trol (Figs. 2 and 3) that was mediated by Tregs (Fig. 4). Therefore,
our findings might enable the development of causative treat-
ments for autoimmune diseases that operate through the effi-
cient induction of antigen-specific Tregs in vivo.

The poly(maleic anhydride-alt-1-octadecene)-coated NPs that
we have used in the current study were selected based on their
properties with regard to cellular distribution and processing,
as well as their preferential accumulation in the liver [22].
These NPs accumulated to more than 90% in the liver within
2 h after injection (Fig. 1) [31]. As we could induce full disease
protection with as little as 7 lg NP-bound peptide per mouse,
we can thus deduce that 6.4 lg peptide was taken up by the liver,
whereas only 0.3 lg peptide had been delivered to the spleen and
even less to other organs. To exclude that the spleen, although
accumulating only a minor peptide dose, was responsible for
the induced disease control, we performed splenectomy before
NP-treatment (Fig. 2D). Our finding that MBP-NPs induced dis-
ease protection also in splenectomised mice indicated that the
spleen was dispensable for tolerance induction. As the peptide
dose potentially delivered to lymph nodes was below 0.09 lg,
we believe that the role of lymph nodes in NP-mediated disease
control was negligible. Nonetheless, we cannot fully exclude a
minor participation of non-hepatic cells in tolerance induction.

Although LSECs seem to accumulate the majority of the admi-
nistered NPs, it was possible that NPs could be secondarily deliv-
ered to Kupffer cells, e.g. by phagocytosis of apoptotic LSECs after
NP-induced cell death. We therefore assessed the vitality of LSECs
after NP administration by TUNEL assay (Supplementary Fig. 2)
and did not find any increase in apoptosis. Moreover, as assessed
by electron microscopy, NP accumulation did not result in compro-
mised cell integrity or cell death. Indeed, LSECs that had taken up
NPs were detectable by iron accumulation in electron microscopy
even four weeks after NP administration (not shown). Thus, it
was unlikely that uptake of NPs by LSECs had induced significant
cell death, and that Kupffer cells had secondarily accumulated
NPs. Nonetheless, Kupffer cells, like LSECs, have the capability to
induce Tregs [14]; thus, it is reasonable to assume that NP uptake
by Kupffer cells could contribute to NP-induced tolerance.

The mechanisms that govern preferential NP uptake by LSECs
remain to be determined, but one may speculate that the
combination of a negative charge mediated by the polymer coat
with relatively small particle size tags these NPs for uptake by
LSECs, which are believed to be the major scavenger cell type for
small particles [16]. Nanoparticles targeting splenic DCs [34] or
macrophages [35] are also being explored as tools for antigen-
specific tolerance induction. However both, DCs [36] and
macrophages [37], display a high degree of plasticity and readily
can differentiate to inflammatory cells [2], advocating co-delivery
of suppressive immune mediators [34]. In contrast, LSECs display a
robust immunosuppressive phenotype even in the presence of
pro-inflammatory signals [2,38]. Indeed, LSECs are not only potent
inducers of Tregs [14], but also potent suppressors of inflamma-
tory CD4+ and CD8+ T cell effector responses [3–5,39,40].
Therefore, antigen delivery to LSECs may avoid the risk of disease
1354 Journal of Hepatology 2015
exacerbation that remains when attempting to treat individuals
with on-going inflammation by targeting autoantigen to DCs or
macrophages. Indeed, the NP treated mice did not exhibit obvious
signs of toxicity or adverse reactions, at least not within an obser-
vation period of up to nine weeks. An additional safety feature of
the NPs used here is their iron oxide core that could allow MR-
based monitoring of the biodistribution of NP peptide conjugates
in vivo (Supplementary Movies 1 and 2), when therapeutically
applied to patients.

CD4+Foxp3+ Tregs are not only generated in the thymus, but
also in the periphery through TGF-b dependent conversion from
conventional CD4+ T cells. Thymus-derived Tregs and peripher-
ally derived Tregs have dissimilar T cell receptor repertoires
[41], covering different antigen sets. Peripheral Treg generation
is particularly relevant for maintaining tolerance to antigens that
are not represented in the thymus. We found an increase in Tregs
in the spleen of mice after treatment with peptide-loaded NPs
(Fig. 4A). We also found a tendency towards a lower proportion
of Nrp-1 expressing cells [41] in mice treated with peptide-
loaded NPs (not shown), which might indicate a relative increase
in peripherally induced Tregs in the NP treated animals. However,
in-depth analysis of phenotype and function of NP-induced Tregs
could not be performed with the necessary sensitivity, as it was
not possible to separate NP-induced Tregs from the other endoge-
nously induced Tregs. Thus, when resorting to analysis of the
Tregs in bulk, we did not find significant differences in CD39 or
CD73 expression or suppressive capacity between Tregs of NP
treated or PBS treated mice (not shown). Nevertheless, the
NP-induced increase in antigen-specific Tregs seemed to be
instrumental in disease protection (Fig. 4).

Our findings highlight that LSECs are relevant inducers of per-
ipherally derived Tregs. Note that LSECs can take up large
amounts of circulating antigens [42]; therefore, LSECs may
induce Tregs specific for both hepatic and non-hepatic antigens.
As we show here, the potential of Treg induction by LSECs can
be unleashed using an NP carrier for selective transport of pep-
tides to LSECs. Indeed, our data provides proof of principle that
autoimmune diseases can be effectively treated through NP-
based antigen delivery to LSECs. Due to the versatility of peptide
loading onto these NPs, this methodology might be applicable to
a wide range of inflammatory diseases in which the driving anti-
gens have been identified. We therefore believe that our findings
enable the development of a clinically applicable treatment for
various human diseases, including autoimmune diseases like
multiple sclerosis and allergies.
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