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Abstract
In Part II of this series of papers, we consider an
initial-boundary value problem for the Kolmogorov–
Petrovskii–Piscounov (KPP)-type equation with a dis-
continuous cut-off in the reaction function at concentra-
tion 𝑢 = 𝑢𝑐. For fixed cut-off value 𝑢𝑐 ∈ (0, 1), we apply
the method of matched asymptotic coordinate expan-
sions to obtain the complete large-time asymptotic form
of the solution, which exhibits the formation of a per-
manent form traveling wave (PTW) structure. In par-
ticular, this approach allows the correction to the wave
speed and the rate of convergence of the solution onto
the PTW to be determined via a detailed analysis of the
asymptotic structures in small time and, subsequently,
in large space. The asymptotic results are confirmed
against numerical results obtained for the particular
case of a cut-off Fisher reaction function.
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1 INTRODUCTION

Traveling waves arise as the long-time solution to many reaction–diffusion models and are rele-
vant to a broad range of applications in chemistry, biology, ecology, epidemiology, and genetics.1,2
The most celebrated model where such waves emerge is the Kolmogorov–Petrovskii–Piscounov
(KPP) or Fisher-KPP model named after the pioneering work by Fisher3 and Kolmogorov, Petro-
vskii, Piscounov.4 In one spatial coordinate (𝑥) this model describes the temporal (𝑡) evolution of
the concentration of a chemical or biological substance 𝑢(𝑥, 𝑡) as

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢), (𝑥, 𝑡) ∈ ℝ × ℝ+, (1a)

subject to an initial condition

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ ℝ (1b)

and boundary conditions

𝑢(𝑥, 𝑡) →

{
1, as 𝑥 → −∞

0, as 𝑥 → ∞,
(1c)

with the limits being uniform for time 𝑡 ∈ [0, 𝑇] and any 𝑇 > 0.
Here, 𝑢0 ∶ ℝ → ℝ is taken to be piecewise continuous, nonnegative, and nonincreasing with

lim𝑥→∞ 𝑢0(𝑥) = 0 and lim𝑥→−∞ 𝑢0(𝑥) = 1. The function 𝑓 ∶ ℝ → ℝ is a normalized KPP-type
reaction function that satisfies 𝑓 ∈ 𝐶1(ℝ) with

𝑓(0) = 𝑓(1) = 0, 𝑓′(0) = 1, 𝑓′(1) < 0 (2a)

and

0 < 𝑓(𝑢) ≤ 𝑢 for all 𝑢 ∈ (0, 1), 𝑓(𝑢) < 0 for all 𝑢 ∈ (1,∞). (2b)

A prototypical example of such a KPP reaction function is the Fisher reaction function3 given by

𝑓(𝑢) = 𝑢(1 − 𝑢). (3)

The initial-boundary value problem (1) has a classical and global solution 𝑢 ∶ ℝ × [0,∞) → ℝ.
In addition, on using the classical maximum principle and comparison theorem (see, for exam-
ple, Refs. 5 and 1), 0 < 𝑢(𝑥, 𝑡) < 1 and 𝑢𝑥(𝑥, 𝑡) < 0 for all (𝑥, 𝑡) ∈ ℝ × ℝ+. The conditions (2) on 𝑓
imply also that the initial-boundary value problem (1) admits a one-parameter family of perma-
nent form travelingwave (PTW) solutions𝑢(𝑥, 𝑡) = 𝑈𝑣(𝑥 − 𝑣𝑡) that are strictlymonotone decreas-
ing, with 𝑈𝑣 ≥ 0, 𝑈𝑣 ∶ ℝ ∶ ℝ such that 𝑈𝑣 > 0 with lim𝑦→−∞ 𝑈𝑣(𝑦) = 1 and lim𝑦→∞ 𝑈𝑣(𝑦) = 0.
The parameterization is through the propagation speed 𝑣, with a unique (up to translation) PTW
for each 𝑣 where 𝑣 satisfies 𝑣 ≥ 𝑣𝑚 = 2.
A central question is whether a PTW evolves in the solution to (1) at large times and if so what

is its speed of propagation. It is well established4,6,7 that for Heaviside initial conditions:

𝑢0(𝑥) =

{
1, for 𝑥 < 0

0, for 𝑥 ≥ 0,
(4)
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the solution to (1) converges onto the PTWsolutionwithminimumpropagation speed 𝑣 = 𝑣𝑚 = 2,
in the sense that there exists a function 𝑠𝑚(𝑡) such that as 𝑡 → ∞, 𝑠𝑚(𝑡)∕𝑡 → 2 and

𝑢(𝑧 + 𝑠𝑚(𝑡), 𝑡) → 𝑈2(𝑧), (5)

uniformly for 𝑧 ∈ ℝ.
A more detailed asymptotic description was provided by McKean8,9 and Bramson10,11 who,

using a probabilistic approach, obtained that the rate of convergence of the solution to the
initial-boundary value problem (1) to the PTW is algebraically small in 𝑡 as 𝑡 → ∞, specifically
𝑂(�̇�𝑚(𝑡) − 2), where

�̇�𝑚(𝑡) = 2 −
3

2
𝑡−1 + 𝑜(𝑡−1) as 𝑡 → ∞ (6)

with the dot denoting differentiation with respect to 𝑡. More recently, the same result has been
established using a range of alternative approaches, based on a point patching procedure,12,13
the theory of matched asymptotic expansions,14,15 and rigorous bounds.16 All of these approaches
involve the solution to a linearized version of (1) that describes the behavior at the leading edge of
the front and is obtained by replacing 𝑓(𝑢)with 𝑓′(0)𝑢. The common observation is that, with the
appropriate boundary conditions, the linear version of (1) mainly determines the large-𝑡 structure
of the solution to (1).
A linearized approach is not available to apply in the case of the cut-off KPPmodel that Brunet

and Derrida12 proposed and considered, and was the focus of a companion paper17 (hereafter
referred to as Part I). In this model, the cut-off value 𝑢𝑐 ∈ (0, 1) is introduced by replacing 𝑓(𝑢) in
the initial-boundary value problem (1) with 𝑓𝑐(𝑢) where

𝑓𝑐(𝑢) =

{
𝑓(𝑢), 𝑢 ∈ (𝑢𝑐,∞)

0, 𝑢 ∈ (−∞, 𝑢𝑐]
(7)

and 𝑓(𝑢) continues to satisfy the KPP conditions (2). The discontinuity in 𝑓𝑐(𝑢) at 𝑢 = 𝑢𝑐 sug-
gests that the corresponding initial-boundary value problem is expressed as a moving boundary
problemwith the location of the moving boundary given by 𝑠(𝑡)where 𝑠(𝑡) satisfies 𝑢(𝑠(𝑡), 𝑡) = 𝑢𝑐
for 𝑡 > 0 (see Part I). For Heaviside initial conditions (4), this boundary separates the domain 𝐷𝐿

where 𝑢 > 𝑢𝑐 from the domain 𝐷𝑅 where 𝑢 < 𝑢𝑐. A simple coordinate transformation (𝑥, 𝑡) →

(𝑦, 𝑡) with 𝑦 = 𝑥 − 𝑠(𝑡) fixes the boundary at the origin and transforms the domains 𝐷𝐿 and 𝐷𝑅

into 𝑄𝐿 = ℝ− × ℝ+ and 𝑄𝑅 = ℝ+ × ℝ+ and the moving boundary problem becomes the follow-
ing equivalent initial-boundary value problem that we refer to as QIVP (with a detailed derivation
given in Part I):

𝑢𝑡 − �̇�(𝑡)𝑢𝑦 = 𝑢𝑦𝑦 + 𝑓𝑐(𝑢), (𝑦, 𝑡) ∈ 𝑄𝐿 ∪ 𝑄𝑅, (8a)

𝑢 ≥ 𝑢𝑐 in �̄�𝐿, 𝑢 ≤ 𝑢𝑐 in �̄�𝑅, (8b)

𝑢(𝑦, 0) =

{
1, 𝑦 < 0

0, 𝑦 ≥ 0
(8c)

𝑢(𝑦, 𝑡) →

{
1, as 𝑦 → −∞

0, as 𝑦 → ∞
(8d)
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uniformly for 𝑡 ∈ [0, 𝑇] for all 𝑇 > 0. At the boundary,

𝑢(0, 𝑡) = 𝑢𝑐, 𝑡 ∈ (0,∞), (8e)

𝑢𝑦(0
+, 𝑡) = 𝑢𝑦(0

−, 𝑡), 𝑡 ∈ (0,∞). (8f)

𝑠(0+) = 0. (8g)

In Part I, we stated regularity conditions (see Equation 18) for the solution 𝑢(𝑦, 𝑡) and 𝑠(𝑡) to be
classical for all 𝑡 > 0, and on using the classicalmaximumprinciple and comparison theorem (see,
for example, Refs. 5 and 1), obtained that 0 < 𝑢(𝑦, 𝑡) < 𝑢𝑐 for all (𝑦, 𝑡) ∈ 𝑄𝑅, 𝑢𝑐 < 𝑢(𝑦, 𝑡) < 1 for all
(𝑦, 𝑡) ∈ 𝑄𝐿, and 𝑢𝑦(𝑦, 𝑡) < 0 for all 𝑡 > 0 and 𝑦 ∈ ℝ with [𝑢𝑦𝑦(𝑦, 𝑡)]

𝑦=0+

𝑦=0−
= 𝑓+𝑐 for all 𝑡 ∈ ℝ+ with

𝑓+𝑐 = 𝑓𝑐(𝑢
+
𝑐 ).We then established that in the presence of a cut-off, the initial-boundary value prob-

lem (8) admits exactly one PTW solution (up to translation) 𝑢(𝑦, 𝑡) = 𝑈𝑇(𝑦) that is strictly mono-
tone decreasing and positive, with lim𝑦→−∞ 𝑈𝑇(𝑦) = 1 and lim𝑦→∞ 𝑈𝑇(𝑦) = 0, where the speed
𝑣 = 𝑣∗(𝑢𝑐) is, for fixed 𝑢𝑐 ∈ (0, 1), uniquely defined. An explicit expression of 𝑣∗(𝑢𝑐) is in gen-
eral not known. It is however straightforward to establish that 𝑣∗(𝑢𝑐) is a continuous, monotone
decreasing function of 𝑢𝑐 ∈ (0, 1), with 𝑣∗(𝑢𝑐) → 2− as 𝑢𝑐 → 0+ and 𝑣∗(𝑢𝑐) → 0+ as 𝑢𝑐 → 1−.17
Brunet and Derrida12 predicted that the difference between 𝑣∗(𝑢𝑐) and 𝑣𝑚 = 2 is strongly influ-
enced at small values of 𝑢𝑐, being only logarithmically small in 𝑢𝑐 as 𝑢𝑐 → 0+. This behavior was
rigorously verified by Dumortier, Popovic, and Kaper,18 with higher order corrections obtained in
Part I. This behavior is in contrast with the behavior of 𝑣∗(𝑢𝑐) obtained as 𝑢𝑐 → 1− in which case
it vanishes algebraically in (1 − 𝑢𝑐) (see Part I).
We may now once again enquire as to whether or not a PTW solution evolves in the solution to

(8) for arbitrary cut-off 𝑢𝑐 ∈ (0, 1) at large time, and, if this is the case, what is the rate of conver-
gence onto the PTW solution. In this paper, we observe that a PTW of speed lim𝑡→∞ �̇�(𝑡) = 𝑣∗(𝑢𝑐)

emerges in the solution of (8) for 𝑡 → ∞ via numerical simulations obtained for the specific case of
𝑓𝑐 with 𝑓 given by (3). We then adapt the approach introduced in Ref. 15, where 𝑢𝑐 = 0, to obtain
the detailed description of the large-𝑡 structure of the solution to (8). In particular, we use the the-
ory of matched asymptotic coordinate expansions to establish that for each value of 𝑢𝑐 ∈ (0, 1),
the solution to (8) converges to the PTW solution with propagation speed 𝑣 = 𝑣∗(𝑢𝑐) at a rate that
is linearly exponentially small in 𝑡 as 𝑡 → ∞, specifically 𝑂(�̇�(𝑡) − 𝑣∗(𝑢𝑐)), where

�̇�(𝑡) = 𝑣∗(𝑢𝑐) + 𝑂

(
𝑡𝛾 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

))
, as 𝑡 → ∞, (9)

(with 𝛾 = −1∕2 or−3∕2depending on the structure of𝑓(𝑢), specifically𝑓′(𝑈𝑇), which determines
the solution to (172) on which the choice in the value of 𝛾 depends) so that convergence slows
down as 𝑢𝑐 increases. Thus, introducing an arbitrary cut-off into the reaction function changes
the rate of convergence of the large-time solution onto the PTW fromalgebraic to exponential. The
paper is organized as follows: In Section 2, we present numerical results for the specific case of
the cut-off Fisher reaction function with 𝑓 given by (3). Sections 3 and 4 are, respectively, devoted
to the small-𝑡 (𝑦 ∈ ℝ) and large-|𝑦| (𝑡 ≥ 𝑂(1)) structure of the solution to QIVP. These are used
in Section 5 to develop the complete asymptotic structure to QIVP as 𝑡 → ∞, uniformly in 𝑦 ∈ ℝ.
At the end of Sections 3 and 5, we illustrate the theory for the specific case of the cut-off Fisher
reaction function (for which 𝛾 = −3∕2). The paper ends with the concluding Section 6.
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F IGURE 1 A graph of the solution 𝑢(𝑦, 𝑡) to QIVP as it evolves over time. Results are obtained numerically
for (A) 𝑢𝑐 = 0.1, (B) 𝑢𝑐 = 0.5, and (C) 𝑢𝑐 = 0.9 for 𝑡 = 0, 0.1, 1, 10 and 𝑡 = 30with the arrow pointing in the direction
of increasing 𝑡. Panel (C) includes additional graphs of solutions obtained at 𝑡 = 100, 200, 300, 350, and t=400

2 NUMERICAL SOLUTION TO QIVP

In this section, we consider a numerical solution to QIVP to indicate whether the solution con-
verges onto a PTW solution at large times. We present results for the particular case of the cut-off
Fisher reaction function, namely,

𝑓𝑐(𝑢) =

{
𝑢(1 − 𝑢), 𝑢 ∈ (𝑢𝑐,∞),

0, 𝑢 ∈ (−∞, 𝑢𝑐],
(10)

for fixed cut-off value 𝑢𝑐 ∈ (0, 1). We adopt an explicit finite difference scheme, detailed in the
Appendix. We choose this scheme over an implicit scheme despite the severe numerical stability
restrictions on the time step. This is because an explicit scheme is very straightforward to use:
At each time step, the associated numerical calculation requires the solution of a linear algebraic
system (rather than a nonlinear algebraic system that would be required for an implicit scheme).



TISBURY et al. 335

F IGURE 2 A graph of the solution 𝑠(𝑡) to
QIVP obtained numerically for 𝑢𝑐 = 0.1 (top),
𝑢𝑐 = 0.5 (middle), and 𝑢𝑐 = 0.9 (bottom)

We examine the behavior of 𝑢(𝑦, 𝑡), 𝑠(𝑡), and �̇�(𝑡), obtained numerically for illustrative values
of 𝑢𝑐 ∈ (0, 1). Figures 1–3, respectively, focus on the structure of 𝑢(𝑦, 𝑡), 𝑠(𝑡), and �̇�(𝑡) obtained
for 𝑢𝑐 = 0.1, 0.5, and 0.9. These confirm all of the qualitative properties obtained in Part I (see
Equation 20) and described in Section 1. Figure 1 indicates that a PTW develops in the large-
time structure of the solution to QIVP, that is, as 𝑡 → ∞. Moreover, the rate of convergence of the
solution to the PTW depends on the value of 𝑢𝑐 (compare Panel A with Panel C). Figures 2 and 3
show that this PTW will have propagation speed given by lim𝑡→∞ �̇�(𝑡) = 𝑣∞(𝑢𝑐) and in this case,
this limit has

𝑣∞(𝑢𝑐) ≃

⎧⎪⎨⎪⎩
1.248, for 𝑢𝑐 = 0.1,

0.558, for 𝑢𝑐 = 0.5,

0.100, for 𝑢𝑐 = 0.9.

(11)

Figure 3 also illustrates that �̇�(𝑡) appears to have a (integrable) singularity at 𝑡 = 0+ when 𝑢𝑐 ≠
0.5. This is further supported in Figure 4, which shows the behavior of �̇�(𝑡) when 𝑢𝑐 = 0.45 and
𝑢𝑐 = 0.55. For 𝑢𝑐 = 0.5, Figure 3 suggests that �̇�(𝑡) is regular in this limit, tending to 0 from above.
Figures 3 and 4 show that the sign of �̇�(𝑡) as 𝑡 → 0+ depends upon 𝑢𝑐, with �̇�(𝑡) initially positive

(B)(A)

F IGURE 3 A graph of �̇�(𝑡) to QIVP obtained numerically for cut-off value 𝑢𝑐 = 0.1 (top), 0.5 (middle), and
0.9 (bottom) plotted for a (A) small and (B) large range of values of 𝑡
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(A) (B)

F IGURE 4 Same as Figure 3 but this time 𝑢𝑐 = 0.45 (top) and 𝑢𝑐 = 0.55 (bottom)

F IGURE 5 A graph of
lim𝑡→∞ �̇�(𝑡) = 𝑣∞(𝑢𝑐) obtained from the
numerical solution to QIVP for selected values
of 𝑢𝑐 ∈ (0, 1)

when 0 < 𝑢𝑐 < 0.5 and initially negative when 0.5 < 𝑢𝑐 < 1. Moreover, when 0 < 𝑢𝑐 ≲ 0.2, then
�̇�(𝑡) is monotonic decreasing for all 𝑡 > 0; when 0.2 ≲ 𝑢𝑐 < 0.5, then �̇�(𝑡) decreases to a minimum
value, before increasing to 𝑣∞(𝑢𝑐); and when 0.5 < 𝑢𝑐 < 1, then �̇�(𝑡) is monotonic increasing for
all 𝑡 > 0. Finally, the correction to �̇�(𝑡) as 𝑡 → ∞ appears to be exponentially small in 𝑡. These
features are persistent for all considered values of 𝑢𝑐 ∈ (0, 1).
We conclude that the numerical solution of QIVP involves the formation of a PTW as 𝑡 → ∞,

which has propagation speed 𝑣∞(𝑢𝑐) for all values of 𝑢𝑐 ∈ (0, 1). A graph of numerically calcu-
lated values 𝑣∞(𝑢𝑐) for 𝑢𝑐 ∈ (0, 1) is given in Figure 5, which indicates that 𝑣∞(𝑢𝑐) is monotone
decreasingwith𝑢𝑐 ∈ (0, 1). Thenumerical cost increases drastically as𝑢𝑐 → 0+ and𝑢𝑐 → 1−. Nev-
ertheless, we expect that 𝑣∞(𝑢𝑐) → 2− as 𝑢𝑐 → 0+, while, 𝑣∞(𝑢𝑐) → 0+ as 𝑢𝑐 → 1−. Finally, it is
instructive to compare the traveling wave speed obtained in the large-time limit of the numerical
solution to QIVP, namely, 𝑣∞(𝑢𝑐), with a PTW propagation speed, 𝑣∗(𝑢𝑐), obtained numerically
in Part I. As anticipated, we find that, with a significant degree of accuracy (at least up to two
decimal places), 𝑣∞(𝑢𝑐) ≈ 𝑣∗(𝑢𝑐).
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F IGURE 6 A sketch of the structure of the solution to QIVP as 𝑡 → 0+

3 ASYMPTOTIC SOLUTION TO QIVP AS 𝒕 → 𝟎+

We now develop the asymptotic structure to QIVP as 𝑡 → 0+ via the method of matched asymp-
totic coordinate expansions. We anticipate that the structure of the solution to QIVP as 𝑡 → 0+

will have two asymptotic regions in 𝑦 < 0, and two asymptotic regions in 𝑦 > 0. An examination
of the leading order balances in Equation (8a), together with the initial condition (8c) and the
connection conditions (8e), (8f) determine the asymptotic structure as:

region 𝐈𝐋 ∶ 𝑦 = 𝑂(𝑡
1

2 ) < 0 with 𝑢 = 𝑂(1) as 𝑡 → 0+, (12a)

region 𝐈𝐑 ∶ 𝑦 = 𝑂(𝑡
1

2 ) > 0 with 𝑢 = 𝑂(1) as 𝑡 → 0+, (12b)

region 𝐈𝐈𝐋 ∶ 𝑦 = 𝑂(1) < 0 with 𝑢 = 1 + 𝑜(1) as 𝑡 → 0+, (12c)

region 𝐈𝐈𝐑 ∶ 𝑦 = 𝑂(1) > 0 with 𝑢 = 𝑜(1) as 𝑡 → 0+. (12d)

The situation is illustrated in Figure 6 (for any variable 𝜆, we will henceforth write 𝜆 = 𝑂(1) > 0
as 𝜆 = 𝑂(1)+, and correspondingly, 𝜆 = 𝑂(1) < 0 as 𝜆 = 𝑂(1)−). It follows from the small-time
asymptotic structure (12) of QIVP that we anticipate an asymptotic expansion for 𝑠(𝑡) of the form

𝑠(𝑡) = 𝑠0𝑡
𝛼 + 𝑠1𝑡

𝛽 + 𝑜(𝑡𝛽) as 𝑡 → 0+, (13)

where the constants 𝑠0, 𝑠1, 𝛼, and 𝛽(> 𝛼) are to be found. The initial condition (8g), together with
a leading order balance in Equation (8a) determines

𝛼 =
1

2
. (14)

3.1 Regions 𝐈𝐋 and 𝐈𝐑

We begin in region 𝐈𝐋, following (12a), where we introduce the coordinate 𝜂 = 𝑦𝑡
−

1

2 = 𝑂(1)− as
𝑡 → 0+ and where 𝑢 = 𝑢(𝜂, 𝑡) satisfies, from (8a),

𝑢𝑡 −
1

𝑡

𝜂

2
𝑢𝜂 −

�̇�(𝑡)

𝑡
1

2

𝑢𝜂 =
1

𝑡
𝑢𝜂𝜂 + 𝑓(𝑢), 𝜂 < 0. (15)

We expand 𝑢(𝜂, 𝑡) in the form,

𝑢(𝜂, 𝑡) = 𝑢𝐿0(𝜂) + 𝜙𝐿(𝑡)𝑢𝐿1(𝜂) + 𝑜(𝜙𝐿(𝑡)) as 𝑡 → 0+, (16)
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with 𝜂 = 𝑂(1)− and 𝜙𝐿(𝑡) = 𝑜(1) as 𝑡 → 0+ to be determined. On substituting expansions (13) and
(16) into Equation (15), we obtain at leading order as 𝑡 → 0+,

𝑢′′
𝐿0

+
1

2
(𝜂 + 𝑠0)𝑢

′
𝐿0

= 0, 𝜂 < 0, (17a)

whichmust be solved subject to the boundary condition (8e) at 𝜂 = 0, together with the matching
condition with region 𝐈𝐈𝐋 as 𝜂 → −∞. Using (12c) and (16), these conditions require,

𝑢𝐿0(0) = 𝑢𝑐, (17b)

𝑢𝐿0(𝜂) → 1 as 𝜂 → −∞. (17c)

Due to the coupling condition (8f) across 𝑦 = 0, it is necessary now to consider region 𝐈𝐑, inwhich,
via (12b), 𝜂 = 𝑂(1)+ and 𝑢 = 𝑂(1) as 𝑡 → 0+ and where 𝑢 = 𝑢(𝜂, 𝑡) satisfies, from (8a),

𝑢𝑡 −
1

𝑡

𝜂

2
𝑢𝜂 −

�̇�(𝑡)

𝑡
1

2

𝑢𝜂 =
1

𝑡
𝑢𝜂𝜂, 𝜂 > 0. (18)

We expand 𝑢(𝜂, 𝑡) in the form,

𝑢(𝜂, 𝑡) = 𝑢𝑅0(𝜂) + 𝜙𝑅(𝑡)𝑢𝑅1(𝜂) + 𝑜(𝜙𝑅(𝑡)) as 𝑡 → 0+, (19)

with 𝜂 = 𝑂(1)+ as 𝑡 → 0+. Here, 𝜙𝑅 = 𝑜(1) as 𝑡 → 0+, and is to be determined. Now, substituting
expansions (13) and (19) into Equation (18), we obtain at leading order as 𝑡 → 0+,

𝑢′′
𝑅0

+
1

2
(𝜂 + 𝑠0)𝑢

′
𝑅0

= 0, 𝜂 > 0, (20a)

whichmust be solved subject to the boundary condition (8e) at 𝜂 = 0, together with the matching
condition with region 𝐈𝐈𝐑 as 𝜂 → ∞, which requires,

𝑢𝑅0(0) = 𝑢𝑐, (20b)

𝑢𝑅0(𝜂) → 0 as 𝜂 → ∞. (20c)

Finally, the boundary value problems (17) and (20) must be solved subject to the coupling condi-
tion (8f) across 𝜂 = 0, which requires

𝑢′
𝐿0
(0) = 𝑢′

𝑅0
(0). (21)

The solutions to (17) and (20), respectively, are readily obtained as

𝑢𝐿0(𝜂) =
𝑢𝑐

(
1 + erf (

𝜂+𝑠0

2
)
)
− erf (

𝜂+𝑠0

2
) + erf (

𝑠0

2
)(

1 + erf (
𝑠0

2
)
) , 𝜂 ≤ 0, (22a)

𝑢𝑅0(𝜂) = 𝑢𝑐

1 − erf (
𝜂+𝑠0

2
)

1 − erf (
𝑠0

2
)
, 𝜂 ≥ 0. (22b)

Finally, an application of condition (21) to (22) determines

𝑠0 = 2 erf
−1
(1 − 2𝑢𝑐), (23)
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and thus, the leading order terms in region 𝐈𝐋 and region 𝐈𝐑, respectively, are given by

𝑢𝐿0(𝜂) =
1

2

[
1 − erf

(𝜂
2
+ erf

−1
(1 − 2𝑢𝑐)

)]
, 𝜂 ≤ 0, (24a)

𝑢𝑅0(𝜂) =
1

2

[
1 − erf

(𝜂
2
+ erf

−1
(1 − 2𝑢𝑐)

)]
, 𝜂 ≥ 0. (24b)

We now proceed to the correction terms in expansions (13), (16), and (19). A balancing of terms
requires 𝜙𝐿(𝑡) = 𝜙𝑅(𝑡) = 𝑂(𝑡) as 𝑡 → 0+ and 𝛽 =

3

2
. Thus, we set 𝜙𝐿(𝑡) = 𝜙𝑅(𝑡) = 𝑡, without loss

of generality. On substitution from expansions (13), (16), and (19) into Equations (15) and (18), we
obtain the coupled problem for 𝑢𝐿1(𝜂)(𝜂 < 0), 𝑢𝑅1(𝜂)(𝜂 > 0), and 𝑠1, namely,

𝑢′′
𝐿1

+
1

2
(𝜂 + 𝑠0)𝑢

′
𝐿1

− 𝑢𝐿1 = −
3

2
𝑠1𝑢

′
𝐿0

− 𝑓(𝑢𝐿0(𝜂)), 𝜂 < 0, (25a)

𝑢′′
𝑅1

+
1

2
(𝜂 + 𝑠0)𝑢

′
𝑅1

− 𝑢𝑅1 = −
3

2
𝑠1𝑢

′
𝑅0
, 𝜂 > 0, (25b)

subject to the coupling conditions

𝑢𝐿1(0) = 𝑢𝑅1(0) = 0, (25c)

𝑢′
𝐿1
(0) = 𝑢′

𝑅1
(0), (25d)

and the matching conditions to region 𝐈𝐈𝐋 and to region 𝐈𝐈𝐑, respectively, which are readily
obtained as,

𝑢𝐿1(𝜂) → 0 as 𝜂 → −∞, (25e)

𝑢𝑅1(𝜂) → 0 as 𝜂 → ∞. (25f)

In considering the coupled problem (25), we first observe that 1 + 1

2
(𝜂 + 𝑠0)

2 is a solution to the
homogeneous part of both (25a) and (25b). With this observation, together with the method of
variation of parameters, we can write the general solutions to (25a) and (25b) as,

𝑢𝐿1(𝜂) = 𝑑1�̂�(𝜂) + 𝑑2�̄�(𝜂) −
𝑠1

2
√
𝜋
exp

(
−
(𝜂 + 𝑠0

2

)2)
+ 𝑢𝑝2(𝜂), 𝜂 ≤ 0, (26a)

𝑢𝑅1(𝜂) = 𝑑1�̂�(𝜂) + 𝑑2�̄�(𝜂) −
𝑠1

2
√
𝜋
exp

(
−
(𝜂 + 𝑠0

2

)2)
, 𝜂 ≥ 0, (26b)

where 𝑑1, 𝑑2, 𝑑1, and 𝑑2 are arbitrary constants to be determined and the function 𝑢𝑝2(𝜂) is given
by

𝑢𝑝2(𝜂) =
�̂�(𝜂)

2 ∫
0

𝜂

𝐼1(𝜆)𝑑𝜆 −
�̄�(𝜂)

2 ∫
0

𝜂

𝐼2(𝜆)𝑑𝜆, 𝜂 ≤ 0, (27)

with functions

�̂�(𝜂) =
√
𝜋

(
1 +

(𝜂 + 𝑠0)
2

2

)
erf

(𝜂 + 𝑠0
2

)
+ (𝜂 + 𝑠0) exp

(
−
(𝜂 + 𝑠0

2

)2)
, (28a)
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�̄�(𝜂) = 1 +
(𝜂 + 𝑠0)

2

2
, (28b)

𝐼1(𝜂) = exp

((𝜂 + 𝑠0
2

)2)
�̄�(𝜂)𝑓(𝑢𝐿0(𝜂)), (28c)

𝐼2(𝜂) = exp

((𝜂 + 𝑠0
2

)2)
�̂�(𝜂)𝑓(𝑢𝐿0(𝜂)). (28d)

Next, an application of condition (25c) requires

𝑑2 =

(
𝑠1√
𝜋
− 2𝑑1𝑠0

)
𝑒
−

𝑠0
2

4(
𝑠0
2 + 2

) − 𝑑1
√
𝜋 erf

( 𝑠0
2

)
, (29)

𝑑2 =

(
𝑠1√
𝜋
− 2𝑑1𝑠0

)
𝑒
−

𝑠0
2

4(
𝑠0
2 + 2

) − 𝑑1
√
𝜋 erf

( 𝑠0
2

)
, (30)

while, applying the matching conditions (25e) and (25f) requires

𝑑2 =
√
𝜋

(
𝑑1 +

1

2
𝑑1

)
, (31)

𝑑2 = −
√
𝜋𝑑1, (32)

with the constant 𝑑1 given by

𝑑1 = ∫
0

−∞

(√
𝜋𝐼1(𝜆) + 𝐼2(𝜆)

)
𝑑𝜆. (33)

As 𝑢′
𝑝2
(0) = 0, an application of the coupling condition (25d) determines 𝑑1 = 𝑑1 (and thus 𝑑2 =

𝑑2), which finally requires that

𝑠1 =
1

4

(√
𝜋(𝑠0

2 + 2)
(
1 − erf

( 𝑠0
2

))
𝑒
𝑠0
2

4 − 2𝑠0

)
𝑑1, (34)

after which (using (23)), 𝑑1, 𝑑1, 𝑑2, 𝑑2 follow from (29), (30), (31), and (32).
Thus, we have determined that the two-term expansions for 𝑢(𝜂, 𝑡) in region 𝐈𝐋 and region 𝐈𝐑

are given by

𝑢(𝜂, 𝑡) =
1

2

[
1− erf

(𝜂 + 𝑠0
2

)]
+ 𝑡

(
𝑑1�̂�(𝜂) + 𝑑2�̄�(𝜂) −

𝑠1

2
√
𝜋
exp

[
−
(𝜂 + 𝑠0

2

)2]
+ 𝑢𝑝2(𝜂)

)
+ 𝑜(𝑡),

(35)
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as 𝑡 → 0+ with 𝜂 = 𝑂(1)−, and

𝑢(𝜂, 𝑡) =
1

2

[
1 − erf

(𝜂 + 𝑠0
2

)]
+ 𝑡

(
𝑑1�̂�(𝜂) + 𝑑2�̄�(𝜂) −

𝑠1

2
√
𝜋
exp

[
−
(𝜂 + 𝑠0

2

)2])
+ 𝑜(𝑡), (36)

as 𝑡 → 0+, with 𝜂 = 𝑂(1)+, while the two-term expansion for 𝑠(𝑡) is given by

𝑠(𝑡) = 𝑠0𝑡
1

2 + 𝑠1𝑡
3

2 + 𝑜(𝑡
3

2 ), (37)

as 𝑡 → 0+. Here, the constants 𝑑1, 𝑑2, 𝑠0, and 𝑠1 are given by (31), (29), (23), and (34), respectively,
and the functions �̂�(𝜂), �̄�(𝜂), 𝐼1(𝜆), 𝐼2(𝜆), and 𝑢𝑝2(𝜂) are given by (28) and (27), respectively. It is
worth noting that we have obtained the two-term small-time expansions for 𝑠(𝑡)without needing
to know the precise asymptotic structure of the solution in regions 𝐈𝐈𝐋 and 𝐈𝐈𝐑. Thematching con-
ditions with regions 𝐈𝐋 and 𝐈𝐑, respectively, were sufficient. The asymptotic expansion in regions
𝐈𝐈𝐋 and 𝐈𝐈𝐑 are now obtained to complete the small-time asymptotic structure.

3.2 Region 𝐈𝐈𝐋

First, from (35) and (36), we observe that for (−𝜂) ≫ 1,

𝑢(𝜂, 𝑡) ∼ 1 −
1√
𝜋

1|𝜂 + 𝑠0| exp
(
−
(𝜂 + 𝑠0

2

)2)
(1 − 𝑂((𝜂 + 𝑠0)

−2)), (38)

as 𝑡 → 0+, and for 𝜂 ≫ 1,

𝑢(𝜂, 𝑡) ∼
1√
𝜋

1

(𝜂 + 𝑠0)
exp

(
−
(𝜂 + 𝑠0

2

)2)
(1 − 𝑂((𝜂 + 𝑠0)

−2)), (39)

as 𝑡 → 0+. Now, as 𝜂 → −∞, wemove out of region 𝐈𝐋 and into region 𝐈𝐈𝐋, in which, via (12c), 𝑦 =

𝑂(1)− and 𝑢(𝑦, 𝑡) = 1 + 𝑜(1) as 𝑡 → 0+. The structure of the expansion in region 𝐈𝐋, for (−𝜂) ≫ 1

(given by (38)), suggests that in region 𝐈𝐈𝐋 we write

𝑢(𝑦, 𝑡) = 1 − 𝑒
−

𝐻(𝑦,𝑡)

𝑡 , (40)

and expand in the form,

𝐻(𝑦, 𝑡) = 𝐻0(𝑦) + 𝑡
1

2 𝐻1(𝑦) + 𝑡 ln 𝑡𝐻2(𝑦) + 𝑡𝐻3(𝑦) + 𝑜(𝑡), (41)

as 𝑡 → 0+ with 𝑦 = 𝑂(1)− and𝐻0(𝑦) > 0 (the 𝑡 ln 𝑡 term arises from the algebraic prefactor of the
exponential term in (38)). We substitute expansions (40) and (41) into Equation (8a) to obtain (on
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solving at each order of 𝑡 in turn)

𝑢(𝑦, 𝑡) =1 − exp
⎛⎜⎜⎝ −

𝑦2

4𝑡
−

1

𝑡
1

2

(
𝑠0
2
𝑦 + 𝐷1(−𝑦)

1

2

)
− 𝐷2 ln 𝑡

−
⎛⎜⎜⎝
(1 − 2𝐷2)

2
ln(−𝑦) +

𝑠0𝐷1

2

1

(−𝑦)
1

2

+
𝐷1

2

4

1

𝑦
+ 𝐷3

⎞⎟⎟⎠ + 𝑜(1)
⎞⎟⎟⎠ ,

(42)

as 𝑡 → 0+, with 𝑦 = 𝑂(1)−, and where 𝐷1, 𝐷2, and 𝐷3 are arbitrary constants to be determined. It
remains to match expansion (42) in region 𝐈𝐈𝐋 (as 𝑦 → 0−) with expansion (38) in region 𝐈𝐋 (as
𝜂 → −∞). On applying Van Dyke’s matching principle,19 we readily obtain that

𝐷1 = 0, 𝐷2 = −
1

2
, 𝐷3 =

1

2
ln𝜋 +

𝑠0
2

4
. (43)

Thus, the expansion in region 𝐈𝐈𝐋 is given by

𝑢(𝑦, 𝑡) = 1 − exp

(
−
𝑦2

4𝑡
−

𝑦𝑠0

2𝑡
1

2

+
1

2
ln 𝑡 −

(
ln(−𝑦) +

1

2
ln𝜋 +

𝑠0
2

4

)
+ 𝑜(1)

)
, (44)

as 𝑡 → 0+, with 𝑦 = 𝑂(1)−. Furthermore, we conclude from (44) that this expansion remains uni-
form for (−𝑦) ≫ 1 as 𝑡 → 0+.

3.3 Region 𝐈𝐈𝐑

Next, as 𝜂 → ∞, we move out of region 𝐈𝐑 and into region 𝐈𝐈𝐑, in which, via (12d), 𝑦 = 𝑂(1)+ and
𝑢(𝑦, 𝑡) = 𝑜(1) as 𝑡 → 0+. The structure of the expansion in region 𝐈𝐑, for 𝜂 ≫ 1 (given by (39)),
suggests that in region 𝐈𝐈𝐑 we write

𝑢(𝑦, 𝑡) = 𝑒
−

�̄�(𝑦,𝑡)

𝑡 , (45)

and expand in the form,

�̄�(𝑦, 𝑡) = �̄�0(𝑦) + 𝑡
1

2 �̄�1(𝑦) + 𝑡 ln 𝑡�̄�2(𝑦) + 𝑡�̄�3(𝑦) + 𝑜(𝑡), (46)

as 𝑡 → 0+ with 𝑦 = 𝑂(1)+ and �̄�0(𝑦) > 0 (the 𝑡 ln 𝑡 term arises from the algebraic prefactor of the
exponential term in (39)). Substitution of (45) and (46) into Equation (8a) gives (on solving at each
order of 𝑡 in turn)

𝑢(𝑦, 𝑡) = exp
⎛⎜⎜⎝ −

(
𝑦2

4𝑡

)
−

1

𝑡
1

2

(
𝑠0
2
𝑦 + �̄�1𝑦

1

2

)
− �̄�2 ln 𝑡

−
⎛⎜⎜⎝
(1 − 2�̄�2)

2
ln 𝑦 +

𝑠0�̄�1

2

1

𝑦
1

2

+
�̄�2
1

4

1

𝑦
+ �̄�3

⎞⎟⎟⎠ + 𝑜(1)
⎞⎟⎟⎠ ,

(47)
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as 𝑡 → 0+, with 𝑦 = 𝑂(1)+, and where �̄�1, �̄�2 and �̄�3 are arbitrary constants to be determined. It
remains to match expansion (47) in region 𝐈𝐈𝐑 (as 𝑦 → 0+) with expansion (39) in region 𝐈𝐑 (as
𝜂 → ∞). On applying Van Dyke’s matching principle,19 we readily obtain that

�̄�1 = 0, �̄�2 = −
1

2
, �̄�3 =

1

2
ln𝜋 +

𝑠0
2

4
. (48)

Thus, the expansion in region 𝐈𝐈𝐑 is given by

𝑢(𝑦, 𝑡) = exp

(
−
𝑦2

4𝑡
−

𝑦𝑠0

2𝑡
1

2

+
1

2
ln 𝑡 −

(
ln 𝑦 +

1

2
ln𝜋 +

𝑠0
2

4

)
+ 𝑜(1)

)
, (49)

as 𝑡 → 0+ and 𝑦 = 𝑂(1)+. Furthermore, we conclude from (44) that this expansion remains uni-
form for 𝑦 ≫ 1 as 𝑡 → 0+.
The asymptotic structure of the solution toQIVP as 𝑡 → 0+ is nowcompletewith the expansions

(44), (35), (36), and (49) in regions 𝐈𝐈𝐋, 𝐈𝐋, 𝐈𝐑, and 𝐈𝐈𝐑. We next use this information to enable us
to develop the asymptotic structure of the solution to QIVP as |𝑦| → ∞ with 𝑡 = 𝑂(1). However,
before proceeding to this, it is of interest to examine the form of �̇�(𝑡) in the small-time limit for all
𝑢𝑐 ∈ (0, 1). It follows from expression (37) that

�̇�(𝑡) ∼
1

2
𝑠0𝑡

−
1

2 +
3

2
𝑠1𝑡

1

2 as 𝑡 → 0+, (50)

with 𝑠0 and 𝑠1 given by Equations (23) and (34), respectively. In particular, we observe from (23)
that 𝑠0 is monotonic decreasing in 𝑢𝑐 with

𝑠0 → ∞ as 𝑢𝑐 → 0+, 𝑠0 = 0 when 𝑢𝑐 =
1

2
, and 𝑠0 → −∞ as 𝑢𝑐 → 1−. (51)

Thus, the leading term in (50) reveals that �̇�(𝑡) has an integrable singularity as 𝑡 → 0+, with

�̇�(𝑡) → +∞ as 𝑡 → 0+, (52)

when 0 < 𝑢𝑐 < 1∕2, while,

�̇�(𝑡) → −∞ as 𝑡 → 0+, (53)

when 1∕2 < 𝑢𝑐 < 1. When 𝑢𝑐 = 1∕2, a transition occurs with �̇�(𝑡) not singular and

�̇�(𝑡) → 0 as 𝑡 → 0+. (54)

3.4 The case of a cut-off Fisher reaction

We observe that (52), (53), and (54) agree with the numerical solutions for QIVP obtained for
the cut-off Fisher reaction function in Section 2, as illustrated in Figures 3 and 4. Moreover,
it is straightforward to establish (via (33) and (34)) that for 𝑢𝑐 = 1∕2, 𝑠1 = 𝑠∗

1
> 0. Therefore,

�̇�(𝑡) → 0+ as 𝑡 → 0+. In addition, it is interesting to note from expression (50) that when 𝑢𝑐 is
close to 1∕2 a local minimum point in the graph of �̇�(𝑡) against 𝑡 bifurcates singularly from
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𝑡 = 0 as 𝑢𝑐 decreases through 𝑢𝑐 = 1∕2. In particular, the local minimum point when 𝑢𝑐 < 1∕2

is located when 𝑡 = 𝑡𝑚 ∼
1

3
𝑠0∕𝑠1 > 0. As 𝑢𝑐 →

1

2

−
, 1

3
𝑠0∕𝑠1 ∼

2

3

√
𝜋(1 − 2𝑢𝑐)∕𝑠

∗
1
+ 𝑂((1 − 2𝑢𝑐)

2),
where 𝑠∗

1
≃ 0.28 is approximated numerically using (33) and (34). The location of the minimum

point increases as 𝑢𝑐 decreases, until 𝑢𝑐 ≈ 0.2when 𝑡𝑚 is no longer small and in fact the local min-
imum point ceases to exist at this sufficiently low value of 𝑢𝑐. This is also in agreement with the
numerical solution of Section 2 and in particular Figures 3 and 4. A comparison of �̇�(𝑡) and 𝑢(𝑦, 𝑡)
as computed from (35), (36), (44), and (49) with the full numerical solution to QIVP obtained for
the cut-off Fisher reaction function is readily made (but for brevity is not presented here). This
demonstrates the full agreementwith the small-time asymptotic structure of the solution obtained
in this section and the numerical solution obtained in Section 2 for 𝑡 small.

4 ASYMPTOTIC SOLUTION TO QIVP AS |𝒚| → ∞WITH 𝒕 = 𝑶(𝟏)

We now develop the structure of the solution to QIVP as |𝑦| → ∞ with 𝑡 = 𝑂(1).

4.1 Region 𝐈𝐈𝐈𝐋

We begin in region 𝐈𝐈𝐈𝐋, where 𝑦 → −∞ with 𝑡 = 𝑂(1). The structure of the expansion in region
𝐈𝐈𝐋, for (−𝑦) ≫ 1, (given by (44)) suggests that in region 𝐈𝐈𝐈𝐋 we write

𝑢(𝑦, 𝑡) = 1 − 𝑒−𝑦
2Φ(𝑦,𝑡), (55)

and expand in the form,

Φ(𝑦, 𝑡) = Φ0(𝑡) +
1

𝑦
Φ1(𝑡) +

ln(−𝑦)

𝑦2
Φ2(𝑡) +

1

𝑦2
Φ3(𝑡) + 𝑜

(
𝑦−2

)
, (56)

as 𝑦 → −∞with 𝑡 = 𝑂(1) andΦ0(𝑡) > 0. On substitution from expansions (55) and (56) into Equa-
tion (8a), we obtain a system of equations at successive orders, which we solve in turn to give

Φ0(𝑡) =
1

(4𝑡 + 𝐶0)
, Φ1(𝑡) =

(2𝑠(𝑡) + 𝐶1)

(4𝑡 + 𝐶0)
, Φ2(𝑡) = 𝐶2, (57a)

Φ̇3(𝑡) = �̇�(𝑡)

(
2𝑠(𝑡) + 𝐶1

4𝑡 + 𝐶0

)
+
(2 + 4𝐶2)

(4𝑡 + 𝐶0)
−

(
2𝑠(𝑡) + 𝐶1

4𝑡 + 𝐶0

)2

− 𝑓′(1), (57b)

where 𝐶0, 𝐶1, 𝐶2, and the constant associated with integrating Equation (57b), 𝐶3, are constants
to be determined. Note that Φ1(𝑡) and Φ3(𝑡) both depend on the function 𝑠(𝑡), which remains
undetermined when 𝑡 = 𝑂(1). We now match the expansion in region 𝐈𝐈𝐈𝐋, given by substituting
expressions (56) and (57) into (55) (as 𝑡 → 0+), with expansion (44) in region 𝐈𝐈𝐋 (as 𝑦 → −∞). On
applying Van Dyke’s matching principle,19 we find

𝐶0 = 0, 𝐶1 = 0, 𝐶2 = −1, 𝐶3 =
1

2
ln𝜋. (58)
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Thus, the expansion in region 𝐈𝐈𝐈𝐋 is given by

𝑢(𝑦, 𝑡) = 1 − exp

(
−
𝑦2

4𝑡
− 𝑦

𝑠(𝑡)

2𝑡
− ln(−𝑦) −

(
𝑠(𝑡)2

4𝑡
−
1

2
ln 𝑡 − 𝑓′(1)𝑡 +

1

2
ln𝜋

)
+ 𝑜(1)

)
, (59)

as 𝑦 → −∞with 𝑡 = 𝑂(1). Furthermore, we note that the uniformity of expansion (59) as 𝑦 → −∞

when 𝑡 ≫ 1 is dependent on the order of 𝑠(𝑡) as 𝑡 ≫ 1. This will be discussed further in Section 5
when we investigate the asymptotic solution to QIVP as 𝑡 → ∞.

4.2 Region 𝐈𝐈𝐈𝐑

We next consider the corresponding region 𝐈𝐈𝐈𝐑 where we determine the structure of the solution
to QIVP as 𝑦 → ∞ with 𝑡 = 𝑂(1). The structure of the expansion in region 𝐈𝐈𝐑, for 𝑦 ≫ 1, (given
by (44)) suggests that in region 𝐈𝐈𝐈𝐑 we write

𝑢(𝑦, 𝑡) = 𝑒−𝑦
2Φ̄(𝑦,𝑡), (60)

and expand in the form,

Φ̄(𝑦, 𝑡) = Φ̄0(𝑡) +
1

𝑦
Φ̄1(𝑡) +

ln 𝑦

𝑦2
Φ̄2(𝑡) +

1

𝑦2
Φ̄3(𝑡) + 𝑜

(
𝑦−2

)
, (61)

as 𝑦 → ∞ with 𝑡 = 𝑂(1) and Φ̄0(𝑡) > 0. On substitution from expansions (60) and (61) into Equa-
tion (8a), we obtain a system of equations at successive orders of 𝑦, which we solve in turn to
give

Φ̄0(𝑡) =
1

(4𝑡 + �̄�0)
, Φ̄1(𝑡) =

(2𝑠(𝑡) + �̄�1)

(4𝑡 + �̄�0)
, Φ̄2(𝑡) = �̄�2, (62a)

̇̄Φ3(𝑡) = �̇�(𝑡)

(
2𝑠(𝑡) + �̄�1

4𝑡 + �̄�0

)
+
(2 + 4�̄�2)

(4𝑡 + �̄�0)
−

(
2𝑠(𝑡) + �̄�1

4𝑡 + �̄�0

)2

, (62b)

where �̄�0, �̄�1, �̄�2, and the constant associated with integrating equation (62b), �̄�3, are constants
to be determined. We now match the expansion in region 𝐈𝐈𝐈𝐑, given by substituting expressions
(62) and (61) into (60) (as 𝑡 → 0+), with expansion (49) in region 𝐈𝐈𝐑 (as 𝑦 → ∞). On applying Van
Dyke’s matching principle19 we find

�̄�0 = 0, �̄�1 = 0, �̄�2 = −1, �̄�3 =
1

2
ln𝜋. (63)

Thus, the expansion in region 𝐈𝐈𝐈𝐑 is given by

𝑢(𝑦, 𝑡) = exp

(
−
𝑦2

4𝑡
− 𝑦

𝑠(𝑡)

2𝑡
− ln 𝑦 −

(
𝑠(𝑡)2

4𝑡
−
1

2
ln 𝑡 +

1

2
ln𝜋

)
+ 𝑜(1)

)
, (64)
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as 𝑦 → ∞ with 𝑡 = 𝑂(1). As before, the uniformity of expansion (64) as 𝑦 → ∞ when 𝑡 ≫ 1 is

dependent on the order of 𝑠(𝑡) as 𝑡 ≫ 1. Finally, we are now in a position to consider the structure
of the solution to QIVP as 𝑡 → ∞.

5 ASYMPTOTIC SOLUTION TO QIVP AS 𝒕 → ∞

We now develop the structure of the solution to QIVP as 𝑡 → ∞. Guided by the numerical results
in Section 2, we anticipate that

𝑠(𝑡) =

3∑
𝑖=0

𝑐𝑖𝜙𝑖(𝑡) + 𝑜(𝜙3(𝑡)) as 𝑡 → ∞, (65)

where 𝜙0(𝑡) = 𝑡, 𝜙1(𝑡), 𝜙2(𝑡) = 1, and 𝜙3(𝑡) are a gauge sequence as 𝑡 → ∞, and the constants 𝑐0,

𝑐1, 𝑐2, 𝑐3 are to be determined, with 𝑐0 > 0. We begin by developing the structure of the solution
to QIVP as 𝑡 → ∞ at leading order, uniform for 𝑦 ∈ ℝ. We anticipate that the structure of the
solution to QIVP as 𝑡 → ∞will have two principal asymptotic regions in 𝑦 < 0, and two principal
asymptotic regions in 𝑦 > 0. An examination of the leading order balances in the exponent of
expansions (59) and (64) when 𝑡 ≫ 1 (using (65)), together with the connection conditions (8e)
and (8f) determine the principal asymptotic structure as:

region 𝐈𝐕𝐋 ∶ 𝑦 = 𝑂(𝑡)− with 𝑢 = 1 + 𝑜(1) as 𝑡 → ∞, (66a)

region 𝐈𝐕𝐑 ∶ 𝑦 = 𝑂(𝑡)+ with 𝑢 = 𝑜(1) as 𝑡 → ∞, (66b)

region 𝐕𝐋 ∶ 𝑦 = 𝑂(1)− with 𝑢 = 𝑂(1) as 𝑡 → ∞, (66c)

region 𝐕𝐑 ∶ 𝑦 = 𝑂(1)+ with 𝑢 = 𝑂(1) as 𝑡 → ∞. (66d)

5.1 Regions 𝐈𝐕𝐋, 𝐕𝐋, 𝐈𝐕𝐑, and 𝐕𝐑

The expansion (59) in region 𝐈𝐈𝐈𝐋 will remain uniform for 𝑡 ≫ 1 provided that (−𝑦) ≫ 𝑡, but fails
when 𝑦 = 𝑂(𝑡)− as 𝑡 → ∞. Hence, we begin in region 𝐈𝐕𝐋, in which, via (66a), we introduce the
scaled coordinate 𝑤 =

𝑦

𝑡
= 𝑂(1)− as 𝑡 → ∞. The structure of the expansion in region 𝐈𝐈𝐈𝐋, for

𝑡 ≫ 1 (given by (59)), suggests that in region 𝐈𝐕𝐋, we write

𝑢(𝑤, 𝑡) = 1 − exp (−𝑡(𝐺0(𝑤) + 𝑜(1))), (67)

as 𝑡 → ∞ with 𝑤 = 𝑂(1)− and 𝐺0(𝑤) > 0. On substitution of expansions (65) and (67) into Equa-
tion (8a) we obtain the following boundary value problem, namely,

(
𝐺′
0

)2
− (𝑤 + 𝑐0)𝐺

′
0
+ 𝐺0 = −𝑓′(1), 𝑤 < 0, (68a)
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𝐺0(𝑤) > 0, 𝑤 < 0, (68b)

𝐺0(𝑤) ∼
(𝑤 + 𝑐0

2

)2
− 𝑓′(1) as 𝑤 → −∞, (68c)

𝐺0(𝑤) = 𝑂(𝑤) as 𝑤 → 0−. (68d)

Here, condition (68c) represents the matching condition between expansion (67) in region 𝐈𝐕𝐋

when (−𝑤) ≫ 1, and expansion (59) in region 𝐈𝐈𝐈𝐋 as 𝑡 → ∞with (−𝑦) ≫ 𝑡 while condition (68d)
represents the matching condition between expansion (67) in region 𝐈𝐕𝐋 when𝑤 = 𝑂(𝑡−1)−, and
region 𝐕𝐋 when 𝑦 = 𝑂(𝑡)− via (66c). Equation (68a) has a family of linear solutions

𝐺0(𝑤) = 𝑎1(𝑤 + 𝑐0 − 𝑎1) − 𝑓′(1) ∀𝑤 < 0, (69)

for any 𝑎1 ∈ ℝ, and an envelope solution

𝐺0(𝑤) =
(𝑤 + 𝑐0

2

)2
− 𝑓′(1) ∀𝑤 < 0. (70)

It is also possible for a combination of (69) and (70) to represent “envelope-linear” solutions to
Equation (68a), which also remain continuous and differentiable. Applying the matching condi-
tions (68c) and (68d) determines that for each 𝑐0 > 0, the solution to the boundary value problem
(68) is given by the “envelope-linear” solution

𝐺0(𝑤) =

⎧⎪⎪⎨⎪⎪⎩

(
𝑤+𝑐0

2

)2
− 𝑓′(1), 𝑤 < −

√
𝑐2
0
− 4𝑓′(1),(

𝑐0−
√

𝑐2
0
−4𝑓′(1)

2

)
𝑤, −

√
𝑐2
0
− 4𝑓′(1) ≤ 𝑤 < 0.

(71)

A sketch of𝐺0(𝑤), for a fixed 𝑐0 > 0, is given in Figure 7A. For completeness we note that although
𝐺0(𝑤) and𝐺′

0
(𝑤) are continuous,𝐺′′

0
(𝑤) is discontinuous at the point𝑤 = −

√
𝑐2
0
− 4𝑓′(1). There-

fore, a thin transition region must exist about the point 𝑤 = −
√
𝑐2
0
− 4𝑓′(1) where the second

derivative in Equation (8a) is retained at leading order to smooth out this discontinuity. More-
over, region 𝐈𝐕𝐋 will then be replaced by three regions, namely, region 𝐈𝐕𝐚

𝐋
, with −∞ < 𝑤 <

−
√
𝑐2
0
− 4𝑓′(1) − 𝑜(1)+, region 𝐓𝐋, a thin transition region about the point 𝑤 = −

√
𝑐2
0
− 4𝑓′(1)

and region 𝐈𝐕𝐛
𝐋
, with −

√
𝑐2
0
− 4𝑓′(1) + 𝑜(1)+ < 𝑤 < 0. As we are only interested in the leading

order structure in each expansion for now, we will return to consider these regions in more detail
in Section 5.3.
Now, as 𝑤 → 0− we move out of region 𝐈𝐕𝐋 and into region 𝐕𝐋, in which, via (66c), 𝑢 = 𝑂(1)

with 𝑦 = 𝑂(1)− as 𝑡 → ∞. In this region, we therefore expand as

𝑢(𝑦, 𝑡) = �̂�𝐿0(𝑦) + 𝑂(𝜓𝐿(𝑡)) as 𝑡 → ∞, (72)
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(A) (B)

F IGURE 7 (A) A sketch of the leading order term 𝐺0(𝑤) in the exponential expansion of the large-time solu-
tion to QIVP when 𝑦 = 𝑂(𝑡)−. (B) A sketch of the leading order term �̄�0(𝑤) in the exponential expansion of the
large-time solution to QIVP when 𝑦 = 𝑂(𝑡)+

with 𝑦 = 𝑂(1)−, �̂�𝐿0(𝑦) > 0 (Ref. 17, eq. (22b)) and where 𝜓𝐿(𝑡) = 𝑜(1) as 𝑡 → ∞. On substitution
from expansions (65) and (72) into Equation (8a), we obtain at leading order as 𝑡 → ∞,

�̂�′′
𝐿0

+ 𝑐0�̂�
′
𝐿0

+ 𝑓(�̂�𝐿0) = 0, (73a)

whichmust be solved subject to the boundary condition (8e) at 𝑦 = 0, together with the matching
condition with region 𝐈𝐕𝐋 as 𝑦 → −∞. Using (72) and (71), these conditions require,

�̂�𝐿0(0
−) = 𝑢𝑐, (73b)

�̂�𝐿0(𝑦) → 1 as 𝑦 → −∞. (73c)

Due to the coupling condition (8f) across 𝑦 = 0, it is necessary now to formulate the leading order
problem in the corresponding regions when 𝑦 > 0 as 𝑡 → ∞.
The expansion (64) in region 𝐈𝐈𝐈𝐑 will remain uniform for 𝑡 ≫ 1 provided that 𝑦 ≫ 𝑡, but fails

when 𝑦 = 𝑂(𝑡)+ as 𝑡 → ∞. Hence, we now consider region 𝐈𝐕𝐑, in which, via (66b), we introduce
the scaled coordinate𝑤 =

𝑦

𝑡
= 𝑂(1)+ as 𝑡 → ∞. The structure of the expansion in region 𝐈𝐈𝐈𝐑, for

𝑡 ≫ 1, (given by (64)) suggests that in region 𝐈𝐕𝐑, we write

𝑢(𝑤, 𝑡) = exp
(
−𝑡

(
�̄�0(𝑤) + 𝑜(1)

))
, (74)

as 𝑡 → ∞ with 𝑤 = 𝑂(1)+ and �̄�0(𝑤) > 0. On substitution of expansion (74) into Equation (8a),
we obtain the following boundary value problem, namely,

(
�̄�′
0

)2
− (𝑤 + 𝑐0)�̄�

′
0
+ �̄�0 = 0, 𝑤 > 0, (75a)

�̄�0(𝑤) > 0, 𝑤 > 0, (75b)

�̄�0(𝑤) ∼
(𝑤 + 𝑐0

2

)2
as 𝑤 → ∞, (75c)
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�̄�0(𝑤) = 𝑂(𝑤) as 𝑤 → 0+. (75d)

Here, condition (75c) represents the matching condition between expansion (74) in region 𝐈𝐕𝐑

when 𝑤 ≫ 1, and expansion (64) in region 𝐈𝐈𝐈𝐑 as 𝑡 → ∞ when 𝑦 ≫ 𝑡 while condition (75d) rep-
resents the matching condition between expansion (74) in region 𝐈𝐕𝐑 when 𝑤 = 𝑂(𝑡−1)+, and
region 𝐕𝐑 when 𝑦 = 𝑂(𝑡)+ via (66d). For each 𝑐0 > 0, the boundary value problem (75) has the
unique solution

�̄�0(𝑤) =

⎧⎪⎨⎪⎩
(
𝑤+𝑐0

2

)2
, 𝑤 > 𝑐0,

𝑐0𝑤, 0 < 𝑤 ≤ 𝑐0.

(76)

A sketch of �̄�0(𝑤) for a fixed 𝑐0 > 0 is given in Figure 7(B). For completenesswe note that although
�̄�0(𝑤) and �̄�′

0
(𝑤) are continuous, �̄�′′

0
(𝑤) is discontinuous at the point 𝑤 = 𝑐0. Hence, a thin tran-

sition region about the point𝑤 = 𝑐0 is required in which the second derivative in Equation (8a) is
retained at leading order to smooth out the discontinuity. This requires that region 𝐈𝐕𝐑 is replaced
by three regions, namely, region 𝐈𝐕𝐚

𝐑
, with 𝑐0 + 𝑜(1) < 𝑤 < ∞, region 𝐓𝐑, a thin transition region

about the point 𝑤 = 𝑐0 and region 𝐈𝐕𝐛
𝐑
, with 0 < 𝑤 < 𝑐0 − 𝑜(1). As before, we will consider these

regions in more detail in Section 5.2.
Now, as 𝑤 → 0+ we move out of region 𝐈𝐕𝐑 and into region 𝐕𝐑, in which, via (66d), 𝑢 = 𝑂(1)

and 𝑦 = 𝑂(1)+ as 𝑡 → ∞. In this region we must therefore expand as

𝑢(𝑦, 𝑡) = �̂�𝑅0(𝑦) + 𝑂(𝜓𝑅(𝑡)) as 𝑡 → ∞, (77)

with 𝑦 = 𝑂(1)+, �̂�𝑅0(𝑦) > 0 (Ref. 17, eq. (22b)) and 𝜓𝑅(𝑡) = 𝑜(1) as 𝑡 → ∞. On substitution from
expansions (65) and (77) into Equation (8a), we obtain at leading order as 𝑡 → ∞,

�̂�′′
𝑅0

+ 𝑐0�̂�
′
𝑅0

= 0, (78a)

whichmust be solved subject to the boundary condition (8e) at 𝑦 = 0, together with the matching
condition with region 𝐈𝐕𝐑 as 𝑦 → ∞. Using (72) and (71), these conditions require,

�̂�𝑅0(0
+) = 𝑢𝑐, (78b)

�̂�𝑅0(𝑦) → 0 as 𝑦 → ∞. (78c)

Finally, the boundary value problems (73) and (78) must be solved subject to the coupling condi-
tion (8f) across 𝑦 = 0, which requires

�̂�′
𝐿0
(0−) = �̂�′

𝑅0
(0+). (79)

The coupled nonlinear boundary value problem, given by (73), (78), and (79), across regions
𝐕𝐋 and 𝐕𝐑 is precisely the nonlinear boundary value problem satisfied by the PTW structure
considered in Part I with 𝑣 replaced by 𝑐0. Thus, we immediately conclude that

�̂�𝑅0(𝑦) = 𝑈𝑇(𝑦), 𝑦 ≥ 0, (80a)
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�̂�𝐿0(𝑦) = 𝑈𝑇(𝑦), 𝑦 < 0, (80b)

and that 𝑐0 is now determined as,

𝑐0 = 𝑣∗(𝑢𝑐), (80c)

where 𝑈𝑇 ∶ ℝ → ℝ is the PTW solution to QIVP at cut-off 𝑢𝑐 ∈ (0, 1), which has propagation
speed 𝑣∗(𝑢𝑐). For convenience, we recall from Theorem 1.1 of Part I that

𝑈𝑇(𝑦) = 𝑢𝑐𝑒
−𝑣∗(𝑢𝑐)𝑦 ∀𝑦 ∈ [0,∞), (81a)

and

𝑈𝑇(𝑦) ∼ 1 − 𝐴−∞𝑒
𝜆+(𝑣

∗(𝑢𝑐))𝑦 as 𝑦 → −∞, (81b)

where 𝜆+(𝑣∗(𝑢𝑐)) =
1

2
(−𝑣∗(𝑢𝑐) +

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)), and 𝐴−∞ is a global constant depending

upon 𝑢𝑐. This completes the asymptotic structure of the solution to QIVP as 𝑡 → ∞ at lead-
ing order.

5.2 Regions 𝐈𝐕𝐚
𝐑
, 𝐓𝐑, 𝐈𝐕𝐛

𝐑
, and 𝐕𝐑

To develop the solution to QIVP to higher order, we must first return to region 𝐓𝐑, the localized
transition region in which 𝑤 = 𝑣∗(𝑢𝑐) + 𝑜(1) as 𝑡 → ∞. It follows from the leading order term in
the expansion in region 𝐈𝐕𝐑 (given by (76), (78), and (80c)) that to examine region 𝐓𝐑 we must

introduce the scaled coordinate 𝜁 = (𝑤 − 𝑣∗(𝑢𝑐))𝑡
1

2 and expand 𝑢(𝜁, 𝑡) in the form

𝑢(𝜁, 𝑡) = (�̄�0(𝜁) + 𝑜(1)) exp

(
−𝑡𝑣∗(𝑢𝑐)

2 − 𝑡
1

2 𝜁𝑣∗(𝑢𝑐)

)
, (82)

as 𝑡 → ∞with 𝜁 = 𝑂(1) and �̄�0(𝜁) > 0. On substitution of expansions (82) and (65) into Equation
(8a), we obtain

𝑡�̇�1(𝑡)(𝑣
∗(𝑢𝑐)𝑐1�̄�0) +

(
−
1

2
𝜁�̄�′

0
− �̄�′′

0

)
+ 𝑜(1) = 0, −∞ < 𝜁 < ∞. (83)

The only nontrivial dominant balance requires that we set, without loss of generality

𝜙1(𝑡) = ln 𝑡. (84)

Thus, the leading order equation in region 𝐓𝐑 is given by

�̄�′′
0
+
1

2
𝜁�̄�′

0
− 𝛾�̄�0 = 0, −∞ < 𝜁 < ∞, (85)

with 𝛾 = 𝑣∗(𝑢𝑐)𝑐1. To obtain the full boundary value problem for �̄�0(𝜁), we require matching con-
ditions as 𝜁 → −∞ with region 𝐈𝐕𝐛

𝐑
and as 𝜁 → ∞ with region 𝐈𝐕𝐚

𝐑
. Therefore, we next return
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to region 𝐈𝐕𝐛
𝐑
. The structure of the expansion in region 𝐕𝐑, for 𝑦 ≫ 1 (given by (77), (80a), and

(81a)), dictates that in region 𝐈𝐕𝐛
𝐑
we expand in the form

𝑢(𝑤, 𝑡) = exp

(
−𝑡

(
𝑣∗(𝑢𝑐)𝑤 −

1

𝑡
�̂�(𝑤) + 𝑜

(
1

𝑡

)))
, (86)

as 𝑡 → ∞with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ). We substitute expansion (86) into Equation (8a) to
obtain, on solving at each order in turn,

𝑢(𝑤, 𝑡) = exp
(
−𝑡𝑣∗(𝑢𝑐)𝑤 + 𝑣∗(𝑢𝑐)𝑐1 ln (𝑣

∗(𝑢𝑐) − 𝑤) + 𝑑 + 𝑜(1)
)
, (87)

as 𝑡 → ∞ with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ) and where the constants 𝑐1 and 𝑑 are to be deter-
mined. Onmatching expansion (87) in region 𝐈𝐕𝐛

𝐑
(as𝑤 → 𝑣∗(𝑢𝑐)

−) with expansion (82) in region
𝐓𝐑 (as 𝜁 → −∞), via Van Dyke’s matching principle,19 we readily obtain that

𝑐1 = 0, (88)

after which we must have

�̄�0(𝜁) = 𝑒𝑑 + 𝑜(1) as 𝜁 → −∞. (89)

To determine 𝑑 we next match expansion (87) (with (88)) in region 𝐈𝐕𝐛
𝐑
(as 𝑤 → 0+) with expan-

sion (81a) in region 𝐕𝐑 (as 𝑦 → ∞). On applying Van Dyke’s matching principle,19 we require
that

𝑑 = ln 𝑢𝑐. (90)

Thus, via (87), (88), and (90), the expansion in region 𝐈𝐕𝐛
𝐑
is given by

𝑢(𝑤, 𝑡) = exp (−𝑡𝑣∗(𝑢𝑐)𝑤 + ln 𝑢𝑐 + 𝑜(1)), (91)

as 𝑡 → ∞ with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ). In addition (89) becomes

�̄�0(𝜁) = 𝑢𝑐 + 𝑜(1) as 𝜁 → −∞. (92)

We next consider region 𝐈𝐕𝐚
𝐑
. The structure of the expansion in region 𝐈𝐈𝐈𝐑, as 𝑡 → ∞with 𝑦 ≫ 𝑡

(given by (64)) and the form of 𝑠(𝑡) as 𝑡 → ∞ (given by (65) with 𝑐1 now determined by (88))
suggests that in region 𝐈𝐕𝐚

𝐑
we write

𝑢(𝑤, 𝑡) = 𝑒−𝑡�̄�(𝑤,𝑡), (93)

and expand in the form,

�̄�(𝑤, 𝑡) =

(
𝑤 + 𝑣∗(𝑢𝑐)

2

)2

+
ln 𝑡

𝑡
�̄�1(𝑤) +

1

𝑡
�̄�2(𝑤) + 𝑜(𝑡−1), (94)
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as 𝑡 → ∞ with 𝑤 > 𝑣∗(𝑢𝑐) + 𝑂(𝑡
−

1

2 ). On substitution from (93) and (94) into Equation (8a) we
obtain a series of boundary value problems, which we solve at each order of 𝑡 in turn to obtain

𝑢(𝑤, 𝑡) = exp

(
−𝑡

(
𝑤 + 𝑣∗(𝑢𝑐)

2

)2

−
1

2
ln 𝑡 − �̄�2(𝑤) + 𝑜(1)

)
, (95)

as 𝑡 → ∞ with 𝑤 > 𝑣∗(𝑢𝑐) + 𝑂(𝑡
−

1

2 ) and where the function �̄�2(𝑤) is indeterminate, being glob-
ally dependent on the evolution at earlier stages when 𝑡 = 𝑂(1) and 𝑦 = 𝑂(1). However, to match
with expansion 𝐈𝐈𝐈𝐑 (as 𝑡 → ∞ with 𝑦 ≫ 𝑡), we require

�̄�2(𝑤) ∼ 𝑐2

(
𝑤 + 𝑣∗(𝑢𝑐)

2

)
+ ln𝑤 +

1

2
ln𝜋 as 𝑤 → ∞. (96)

In addition the structure of the expansion in region 𝐓𝐑, as given by (82), requires, for matching to
be possible, that,

�̄�2(𝑤) ∼ �̄�1 ln (𝑤 − 𝑣∗(𝑢𝑐)) + �̄�2 as 𝑤 → 𝑣∗(𝑢𝑐)
+, (97)

for some constants �̄�1, �̄�2 to be determined. We nowmatch in detail the expansion in region 𝐈𝐕𝐚
𝐑
,

given by (95) and (97) (as𝑤 → 𝑣∗(𝑢𝑐)
+), with expansion (82) in region𝐓𝐑 (as 𝜁 → ∞). On applying

Van Dyke’s matching principle19 we find that

�̄�1 = 1, (98)

after which,

�̄�0(𝜁) = �̄�𝜁−1𝑒
−

𝜁2

4 (1 + 𝑜(1)) as 𝜁 → ∞, (99)

where �̄� = 𝑒−�̄�2 . Hence, on collecting (85), (88), (92), and (99), we obtain the boundary value prob-
lem in region 𝐓𝐑 for �̄�0(𝜁) as,

�̄�′′
0
+
1

2
𝜁�̄�′

0
= 0, −∞ < 𝜁 < ∞, (100a)

�̄�0(𝜁) > 0, −∞ < 𝜁 < ∞, (100b)

�̄�0(𝜁) = �̄�𝜁−1𝑒
−

𝜁2

4 (1 + 𝑜(1)) as 𝜁 → ∞, (100c)

�̄�0(𝜁) = 𝑢𝑐 + 𝑜(1) as 𝜁 → −∞. (100d)

This boundary value problem has a solution only when

�̄� =
𝑢𝑐√
𝜋
, (101)
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F IGURE 8 A schematic representation of the location and thickness of the asymptotic regions in the solution
to QIVP as 𝑡 → ∞. Here, the leading order terms in the exponential form of the solution 𝐺0(𝑤) and �̄�0(𝑤) are
given by (71) and (76), respectively. Additionally, there are thin transition regions at 𝑤 = −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) and

at 𝑤 = 𝑣∗(𝑢𝑐). Note that regions 𝐈𝐈𝐈𝐋 and 𝐈𝐈𝐈𝐑 are far field regions for |𝑤| ≫ 1 as 𝑡 → ∞

with the solution being unique, and given by,

�̄�0(𝜁) =
1

2
𝑢𝑐 erfc

(
𝜁

2

)
∀ −∞ < 𝜁 < ∞. (102)

It follows from (101) that

�̄�2 = − ln
𝑢𝑐√
𝜋
. (103)

It is now instructive to summarize the structure in regions 𝐈𝐕𝐚
𝐑
, 𝐓𝐑, and 𝐈𝐕𝐛

𝐑
. The expansion

in region 𝐈𝐕𝐚
𝐑
is given by (95) together with the asymptotic conditions

�̄�2(𝑤) ∼

⎧⎪⎨⎪⎩
ln (𝑤 − 𝑣∗(𝑢𝑐)) − ln

𝑢𝑐√
𝜋
, as 𝑤 → 𝑣∗(𝑢𝑐)

+
,

𝑐2

(
𝑤+𝑣∗(𝑢𝑐)

2

)
+ ln𝑤 +

1

2
ln 𝜋, as 𝑤 → ∞,

(104)

while in region 𝐓𝐑

𝑢(𝜁, 𝑡) =

(
1

2
𝑢𝑐 erfc

(
𝜁

2

)
+ 𝑜(1)

)
exp

(
−𝑡𝑣∗(𝑢𝑐)

2 − 𝑡
1

2 𝜁𝑣∗(𝑢𝑐)

)
, (105)

as 𝑡 → ∞ with 𝜁 = 𝑂(1), and in region 𝐈𝐕𝐛
𝐑

𝑢(𝑤, 𝑡) = exp (−𝑡𝑣∗(𝑢𝑐)𝑤 + ln 𝑢𝑐 + 𝑜(1)), (106)

as 𝑡 → ∞ with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ). A schematic representation of the location and
thickness of the asymptotic regions as 𝑡 → ∞ is given in Figure 8.
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We next consider the structure of the expansion in region 𝐓𝐑 in more detail. Via (105), we
observe that for (−𝜁) ≫ 1,

𝑢(𝜁, 𝑡) ∼ exp

(
−𝑡𝑣∗(𝑢𝑐)

2 − 𝑡
1

2 𝑣∗(𝑢𝑐)𝜁 + ln

(
𝑢𝑐

(
1 +

1√
𝜋

1

𝜁
𝑒
−

𝜁2

4

)))
, (107)

as 𝑡 → ∞, which demands that in region 𝐈𝐕𝐛
𝐑
, to continue the expansion in (106), we must write

𝑢(𝑤, 𝑡) = 𝑢𝑐𝑒
−𝑡𝑤𝑣∗(𝑢𝑐) + 𝑡

−
1

2 �̄�(𝑤, 𝑡) exp

(
−
𝑡(𝑤 + 𝑣∗(𝑢𝑐))

2

4

)
, (108)

as 𝑡 → ∞with𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ) and �̄�(𝑤, 𝑡) = 𝑂(1) as 𝑡 → ∞. On substituting from
expansion (108) into Equation (8a), and simplifying, we obtain

�̄�𝑡 −
1

2
𝑡−1�̄� − 𝑡−2�̄�𝑤𝑤 = 𝑂

(
𝑡
1

2 �̇�3(𝑡) exp

(
−𝑡

(
𝑤𝑣∗(𝑢𝑐) −

(𝑤 + 𝑣∗(𝑢𝑐))
2

4

)))
, (109)

as 𝑡 → ∞with𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ).Wewill later verify that the right-hand side of Equa-
tion (109) is exponentially small as 𝑡 → ∞ in this region. Hence, to obtain a structured balance in
(109), we must expand �̄�(𝑤, 𝑡) in the form

�̄�(𝑤, 𝑡) = �̄�0(𝑤) + 𝑡−1�̄�1(𝑤) + 𝑜
(
𝑡−1

)
, (110)

as 𝑡 → ∞ with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ) and on substitution into (109) we obtain at leading
order

�̄�′′
0
+ �̄�1 = 0, (111)

with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ). We conclude that �̄�0(𝑤) is indeterminate and represents a
further globally determined function. Therefore, the expansion in region 𝐈𝐕𝐛

𝐑
is, from Equations

(108) and (110),

𝑢(𝑤, 𝑡) = 𝑢𝑐𝑒
−𝑡𝑤𝑣∗(𝑢𝑐) + 𝑡

−
1

2 �̄�0(𝑤)(1 + 𝑂(𝑡−1)) exp

(
−
𝑡(𝑤 + 𝑣∗(𝑢𝑐))

2

4

)
, (112)

as 𝑡 → ∞ with 𝑂(𝑡−1) < 𝑤 < 𝑣∗(𝑢𝑐) − 𝑂(𝑡
−

1

2 ). We now match the expansion (112) in region 𝐈𝐕𝐛
𝐑

(as 𝑤 → 𝑣∗(𝑢𝑐)
−), with expansion (107) in region 𝐓𝐑 (as 𝜁 → −∞), in detail. On applying Van

Dyke’s matching principle19 we require

�̄�0(𝑤) = −
𝑢𝑐√
𝜋
(𝑤 − 𝑣∗(𝑢𝑐))

−1 + 𝑜(𝑤 − 𝑣∗(𝑢𝑐))
−1 as 𝑤 → 𝑣∗(𝑢𝑐)

−. (113)

We next return to region𝐕𝐑. First, a balance between expansion (72) in region𝐕𝐋 and expansion
(77) in region 𝐕𝐑, across the connection at 𝑦 = 0, requires

𝜓𝐿(𝑡) = 𝜓𝑅(𝑡) = 𝜓(𝑡), (114)
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where 𝜓(𝑡) = 𝑜(1) as 𝑡 → ∞. Now, the induced correction term in expansion (77) in region 𝐕𝐑

from region 𝐈𝐕𝐛
𝐑
when 0 < 𝑤 ≪ 1, must have, via (112),

𝜓(𝑡) = 𝑂

(
𝑡𝛾𝑒

−
𝑣∗(𝑢𝑐)

2𝑡

4

)
, (115)

as 𝑡 → ∞, with constant 𝛾 to be determined. Thus, without loss of generality we set

𝜓(𝑡) = 𝑡𝛾𝑒
−

𝑣∗(𝑢𝑐)
2𝑡

4 . (116)

Hence, in region 𝐕𝐑 we develop expansion (77) in the form

𝑢(𝑦, 𝑡) = 𝑈𝑇(𝑦) + 𝑡𝛾𝑒
−

𝑣∗(𝑢𝑐)
2𝑡

4 𝑢1(𝑦)(1 + 𝑜(1)), (117)

as 𝑡 → ∞with 𝑦 = 𝑂(1)+. On substitution of expansion (117) into Equation (8a), and canceling at
leading order, we obtain

−
1

4
𝑣∗(𝑢𝑐)

2𝑢1 − 𝑣∗(𝑢𝑐)𝑢
′
1
− 𝑢′′

1
+ 𝑜(1) = 𝑐3𝑈

′
𝑇(𝑦)𝑡

−𝛾�̇�3(𝑡)𝑒
𝑣∗(𝑢𝑐)

2𝑡

4 , (118)

as 𝑡 → ∞ with 𝑦 = 𝑂(1)+. The nontrivial balance in (118) requires that we set, without loss of
generality

�̇�3(𝑡) = 𝑡𝛾𝑒
−

𝑣∗(𝑢𝑐)
2𝑡

4 , (119)

and we note that this now confirms that the right-hand side of (109) is exponentially small as
𝑡 → ∞. The corresponding problem for 𝑢1(𝑦) is then

𝑢′′
1
+ 𝑣∗(𝑢𝑐)𝑢

′
1
+
1

4
𝑣∗(𝑢𝑐)

2𝑢1 = −𝑐3𝑈
′
𝑇(𝑦), 𝑦 > 0, (120a)

𝑢1(0
+) = 0, (120b)

where the condition (120b) is required for the boundary condition (8e) to be satisfied. The prob-
lem for 𝑢1(𝑦), given by (120), must be solved subject to the matching condition with region 𝐈𝐕𝐛

𝐑
.

Before formulating this matching condition, we consider the corresponding structure in regions
𝐈𝐕𝐚

𝐋
, 𝐓𝐋, 𝐈𝐕

𝐛
𝐋
, and 𝐕𝐋. Thus, we now move to region 𝐈𝐕𝐚

𝐋
.

5.3 Regions 𝐈𝐕𝐚
𝐋
, 𝐓𝐋, 𝐈𝐕𝐛

𝐋
, and 𝐕𝐋

The structure of the expansion in region 𝐈𝐈𝐈𝐋 as 𝑡 → ∞with (−𝑦) ≫ 𝑡 (given by (59)), the structure
of 𝑠(𝑡) as 𝑡 → ∞ (given by (65) with 𝑐0 and 𝑐1 given by (80c) and (88), respectively) and the leading
order behavior in regions 𝐈𝐕𝐚

𝐋
and 𝐈𝐕𝐛

𝐋
(given by (67) and (71)), suggests that in region 𝐈𝐕𝐚

𝐋
we
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write

𝑢(𝑤, 𝑡) = 1 − 𝑒−𝑡𝐺(𝑤,𝑡), (121)

and expand in the form,

𝐺(𝑤, 𝑡) =

(
𝑤 + 𝑣∗(𝑢𝑐)

2

)2

− 𝑓′(1) +
ln 𝑡

𝑡
𝐺1(𝑤) +

1

𝑡
𝐺2(𝑤) + 𝑜(𝑡−1), (122)

as 𝑡 → ∞ with 𝑤 < −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) − 𝑂(𝑡

−
1

2 ). On substitution of (121) and expansion (122)
into Equation (8a), we obtain a sequence of boundary value problems, which we solve at each
order to obtain

𝑢(𝑤, 𝑡) = 1 − exp

(
−𝑡

((
𝑤 + 𝑣∗(𝑢𝑐)

2

)2

− 𝑓′(1)

)
−
1

2
ln 𝑡 − 𝐺2(𝑤) + 𝑜(1)

)
, (123)

as 𝑡 → ∞ with 𝑤 < −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) − 𝑂(𝑡

−
1

2 ), and where the function 𝐺2(𝑤) is indetermi-
nate, being globally dependent on the evolution at earlier stages when 𝑡 = 𝑂(1) and 𝑦 = 𝑂(1).
However, to match with expansion 𝐈𝐈𝐈𝐋 (as 𝑡 → ∞ with (−𝑦) ≫ 𝑡), we require

𝐺2(𝑤) ∼ 𝑐2

(
𝑤 + 𝑣∗(𝑢𝑐)

2

)
+ ln(−𝑤) +

1

2
ln𝜋 as 𝑤 → −∞. (124)

We next examine region 𝐓𝐋. It follows from the structure of the expansion in region 𝐈𝐕𝐚
𝐋
, as 𝑤 →

(−
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))− (given by (123)), that in region𝐓𝐋wemust introduce the scaled coordinate

𝜁 = (𝑤 +
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))𝑡

1

2 and expand 𝑢(𝜁, 𝑡) in the form

𝑢(𝜁, 𝑡) =1 − (𝐹0(𝜁) + 𝑜(1)) exp

⎛⎜⎜⎜⎜⎝
−𝑡

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠
2

− 𝑓′(1)

⎞⎟⎟⎟⎟⎠
− 𝑡

1

2 𝜁

⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
, (125)

as 𝑡 → ∞with 𝜁 = 𝑂(1). On substitution of expansion (125) into Equation (8a)we obtain at leading
order

𝐹′′
0
+
1

2
𝜁𝐹′

0
= 0, −∞ < 𝜁 < ∞. (126)

To obtain the full boundary value problem for 𝐹0(𝜁), we require matching conditions as 𝜁 → ±∞.
To that end, the structure of the expansion in region 𝐓𝐋, as given by (125), requires, for matching
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to be possible, with expansions (123) and (124) in region 𝐈𝐕𝐚
𝐋
, that

𝐺2(𝑤) ∼ 𝛼1 ln
|||𝑤 +

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

||| + 𝛼2, (127)

as 𝑤 → (−
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))− for some constants 𝛼1, 𝛼2 to be determined. We now match in

detail the expansion in region 𝐈𝐕𝐚
𝐋
, given by (123) and (127), as𝑤 → (−

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))−, with

expansion (125) in region 𝐓𝐋, as 𝜁 → −∞. On applying Van Dyke’s matching principle,19 it imme-
diately follows that

𝛼1 = 1, (128)

after which we must have

𝐹0(𝜁) = 𝜎𝜁−1𝑒
−

𝜁2

4 (1 + 𝑜(1)) as 𝜁 → −∞, (129)

where 𝜎 = 𝑒−𝛼2 . We next consider the matching condition as 𝜁 → ∞. The structure of the expan-
sion in region 𝐕𝐋, for (−𝑦) ≫ 1 (given by (72), (80b), and (81b)) dictates that in region 𝐈𝐕𝐛

𝐋
, we

must expand in the form

𝑢(𝑤, 𝑡) = 1 − exp

(
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤 + �̃�(𝑤) + 𝑜(1)

)
, (130)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)−. We substitute expansion (130) into
Equation (8a) to obtain, on solving at each order in turn,

𝑢(𝑤, 𝑡) = 1 − exp

(
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤 + 𝑑 + 𝑜(1)

)
, (131)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)− and where the constant 𝑑 is to be
determined. On matching expansion (131) in region 𝐈𝐕𝐛

𝐋
(as 𝑤 → 0−) with expansion (81b) in

region 𝐕𝐋 (as 𝑦 → −∞), via Van Dyke’s matching principle,19 we readily obtain that

𝑑 = ln𝐴−∞. (132)

Thus, via (131) and (132), the expansion in region 𝐈𝐕𝐛
𝐋
is given by

𝑢(𝑤, 𝑡) = 1 − exp

(
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤 + ln𝐴−∞ + 𝑜(1)

)
, (133)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)−. On matching expansion (133) in
region 𝐈𝐕𝐛

𝐋
(as 𝑤 → (−

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))−) with expansion (125) in region 𝐓𝐋 (as 𝜁 → ∞), we

obtain the condition

𝐹0(𝜁) = 𝐴−∞ + 𝑜(1) as 𝜁 → ∞. (134)
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Hence, on collecting (126), (129), and (134), we obtain the boundary value problem in region 𝐓𝐋

for 𝐹0(𝜁) as,

𝐹′′
0
+
1

2
𝜁𝐹′

0
= 0, −∞ < 𝜁 < ∞, (135a)

𝐹0(𝜁) > 0, −∞ < 𝜁 < ∞, (135b)

𝐹0(𝜁) = 𝜎𝜁−1𝑒
−

𝜁2

4 (1 + 𝑜(1)) as 𝜁 → −∞, (135c)

𝐹0(𝜁) = 𝐴−∞ + 𝑜(1) as 𝜁 → ∞. (135d)

This boundary value problem has a solution only when

𝜎 =
𝐴−∞√

𝜋
, (136)

with the solution being unique, and given by,

𝐹0(𝜁) =
1

2
𝐴−∞

(
1 + erf

(
𝜁

2

))
∀ −∞ < 𝜁 < ∞. (137)

It follows from (136) that

𝛼2 = − ln
𝐴−∞√

𝜋
. (138)

It is again instructive to summarize the structure in regions 𝐈𝐕𝐚
𝐋
, 𝐓𝐋, and 𝐈𝐕𝐛

𝐋
. The expansion

in region 𝐈𝐕𝐚
𝐋
is given by (123) together with the asymptotic conditions

𝐺2(𝑤) ∼

⎧⎪⎨⎪⎩
ln |𝑤 +

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)| − ln

𝐴−∞√
𝜋
, as 𝑤 →

(
−

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

)−

,(
𝑤+𝑣∗(𝑢𝑐)

2

)
+ ln |𝑤| + 1

2
ln 𝜋, as 𝑤 → −∞,

(139)
while in region 𝐓𝐋,

𝑢(𝜁, 𝑡) = 1 −

(
1

2
𝐴−∞

(
1 + erf

(
𝜁

2

))
+ 𝑜(1)

)

× exp

⎛⎜⎜⎜⎜⎝
−𝑡

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠
2

− 𝑓′(1)

⎞⎟⎟⎟⎟⎠
− 𝑡

1

2 𝜁

⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
,

(140)
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as 𝑡 → ∞ with 𝜁 = 𝑂(1), and in region 𝐈𝐕𝐛
𝐋

𝑢(𝑤, 𝑡) = 1 − exp

(
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
+ ln𝐴−∞ + 𝑜(1)

)
, (141)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)−. A schematic representation of the
location and thickness of the asymptotic regions as 𝑡 → ∞ is given in Figure 8.
We next consider the structure of the expansion in region 𝐓𝐋 in closer detail. Via (140), we

observe that for 𝜁 ≫ 1,

𝑢(𝜁, 𝑡) ∼ 1− exp

⎛⎜⎜⎜⎜⎝
−𝑡

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠
2

− 𝑓′(1)

⎞⎟⎟⎟⎟⎠
−𝑡

1

2 𝜁

⎛⎜⎜⎜⎝
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1)

2

⎞⎟⎟⎟⎠ + ln

(
𝐴−∞

(
1 −

1√
𝜋

1

𝜁
𝑒
−

𝜁2

4

))⎞⎟⎟⎟⎠ ,
(142)

as 𝑡 → ∞, which demands that in region 𝐈𝐕𝐛
𝐋
, to continue the expansion in (141), we must

write

𝑢(𝑤, 𝑡) = 1 − 𝐴−∞ exp

[
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤

]
+ 𝑡−𝛽𝐺(𝑤, 𝑡)𝑒−𝑡𝐻(𝑤), (143)

as 𝑡 → ∞with−
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)− and 𝐺(𝑤, 𝑡) = 𝑂(1) as 𝑡 → ∞. Here,
𝛽 is a constant to be determined and

𝐻(𝑤) >
1

2

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

)
𝑤, (144)

for all −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) < 𝑤 < 0. On substituting from expansion (143) with (144) into Equa-

tion (8a) we obtain

𝐺
(
𝐻2
𝑤 − (𝑤 + 𝑣∗(𝑢𝑐)𝐻𝑤 + 𝐻 + 𝑓′(1)

)
+ 𝑂(𝑡−1)

= 𝑂

(
𝑡𝛾+𝛽 exp

(
−𝑡

((
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤 +

1

4
𝑣∗(𝑢𝑐)

2 − 𝐻(𝑤)

)))
, (145)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)−. To obtain a nontrivial balance at
leading order as 𝑡 → ∞ we suppose that the function 𝐻(𝑤) is such that the right-hand side of
Equation (145) is exponentially small as 𝑡 → ∞, and we will later verify this as consistent. Thus,
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at leading order, we obtain the following boundary value problem in region 𝐈𝐕𝐛
𝐋
for𝐻(𝑤),

𝐻2
𝑤 − (𝑤 + 𝑣∗(𝑢𝑐))𝐻𝑤 + 𝐻 = −𝑓′(1), (146a)

0 < 𝐻(𝑤) −
1

2

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

)
𝑤 <

1

4
𝑣∗(𝑢𝑐)

2, (146b)

with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) < 𝑤 < 0 and which must be solved subject to

𝐻(𝑤) →
1

4
𝑣∗(𝑢𝑐)

2 as 𝑤 → 0−, (146c)

𝐻(𝑤) ∼
1

4
(𝑤 + 𝑣∗(𝑢𝑐))

2 − 𝑓′(1), as 𝑤 → (−
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))+. (146d)

Here the lower bound of inequality (146b) follows from (144) while the upper bound ensures the
right-hand side of Equation (145) is exponentially small as 𝑡 → ∞. Condition (146c) is required
so that the correction term in expansion (143) is of the appropriate order to enable matching of
(143) in region 𝐈𝐕𝐛

𝐋
(as 𝑤 → 0−) with expansions (72), (80b), (81b), (114)m and (116), in region

𝐕𝐋 (as 𝑦 → −∞). Condition (146d) represents the matching condition between the expansion in
region 𝐈𝐕𝐛

𝐋
as 𝑤 → (−

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))+ (given by (143)) and the expansion in region 𝐓𝐋 as

𝜁 → ∞ (given by (142)). Recalling that for each 𝑢𝑐 ∈ (0, 1) then 𝑣∗(𝑢𝑐) ∈ (0, 2), the boundary value
problem (146) has the unique solution

𝐻(𝑤) =

⎧⎪⎨⎪⎩
𝐻𝐿1(𝑤), −

√
𝑣∗(𝑢𝑐)

2
− 4𝑓′(1) < 𝑤 < −2

√
−𝑓′(1),

𝐻𝐿2(𝑤), −2
√
−𝑓′(1) ≤ 𝑤 < 0,

(147a)

with

𝐻𝐿1(𝑤) =
1

4
(𝑤 + 𝑣∗(𝑢𝑐))

2 − 𝑓′(1) and 𝐻𝐿2(𝑤) =
1

4
𝑣∗(𝑢𝑐)

2 +

(
1

2
𝑣∗(𝑢𝑐) −

√
−𝑓′(1)

)
𝑤,

(147b)
and where we also determine, via asymptotic matching, that 𝛽 =

1

2
for −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) +

𝑂(𝑡
−

1

2 ) < 𝑤 < −2
√
−𝑓′(1) − 𝑂(𝑡

−
1

2 ). A sketch of the exponents in expansions (95) and (106),
(123), and (141) in regions 𝐈𝐕𝐚

𝐑
, 𝐈𝐕𝐛

𝐑
, 𝐈𝐕𝐚

𝐋
, and 𝐈𝐕𝐛

𝐋
, respectively, is given in Figure 9. We note

that although 𝐻(𝑤) and 𝐻′(𝑤) are continuous for all −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) < 𝑤 < 0, the second

derivative 𝐻′′(𝑤) is discontinuous at the point 𝑤 = −2
√
−𝑓′(1). Hence, a thin transition region

about the point 𝑤 = −2
√
−𝑓′(1) is required in which the second derivative in Equation (8a) is

retained at leading order to smooth out the discontinuity. However, this region is passive, and for
brevity will not be considered here. It remains to determine 𝐺(𝑤, 𝑡) in region 𝐈𝐕𝐛

𝐋
. To that end,

because 𝐺(𝑤, 𝑡) = 𝑂(1) as 𝑡 → ∞ with 𝑤 = 𝑂(1)−, we must expand 𝐺(𝑤, 𝑡) in the form

𝐺(𝑤, 𝑡) = 𝐺0(𝑤) + 𝑡−𝜆𝐺1(𝑤) + 𝑜
(
𝑡−𝜆

)
, (148)

as 𝑡 → ∞ with −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1) and substitute from expansion (143)
(with (147) and (148)) into Equation (8a). When −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) < 𝑤 < −2

√
−𝑓′(1), we

find 𝜆 = 1 and at leading order 𝐺0(𝑤) remains indeterminate when −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) < 𝑤 <
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F IGURE 9 Sketches of the exponent in the large-time solution to QIVP. Sketches of the leading order term
𝐺0(𝑤) when 𝑤 < 0 (brown), in expansions (123) and (141), in regions 𝐈𝐕𝐚

𝐋 and 𝐈𝐕𝐛
𝐋, respectively; sketches of the

leading order term �̄�0(𝑤) when 𝑤 > 0 (blue), in expansions (95) and (106) in regions 𝐈𝐕𝐚
𝐑 and 𝐈𝐕𝐛

𝐑, respectively;
and sketches of the exponential corrections (red) in regions 𝐈𝐕𝐛

𝐋(𝑎 < 𝑤 < 0) and 𝐈𝐕𝐛
𝐑(0 < 𝑤 < 𝑣∗(𝑢𝑐)), respectively.

Here we have used the notation 𝑎 = −
√
𝑣∗(𝑢𝑐)2 − 𝑓′(1) and 𝑏 = −2

√
−𝑓′(1)

−2
√
−𝑓′(1) and represents a further globally determined function.However, when−2

√
−𝑓′(1) <

𝑤 < 0, we require that 𝜆 = 1 and at leading order we obtain(
𝑤 + 2

√
−𝑓′(1)

)
𝐺′
0
= −𝛽𝐺0, (149)

which gives, on integration,

𝐺0(𝑤) =

(
2
√
−𝑓′(1)

)𝛽
𝐴𝐿(

𝑤 + 2
√
−𝑓′(1)

)𝛽 , (150)

with−2
√
−𝑓′(1) < 𝑤 < 0, where𝐴𝐿 ≠ 0 is a globally determined constant. Therefore, the expan-

sion in region 𝐈𝐕𝐛
𝐋
is developed to

𝑢(𝑤, 𝑡) = 1 − 𝐴−∞ exp

(
−𝑡

(
𝑣∗(𝑢𝑐) −

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

2

)
𝑤

)
+ �̂�(𝑤, 𝑡), (151)

as 𝑡 → ∞. Here,

�̂�(𝑤, 𝑡) = 𝑡−𝛽1(𝐺0(𝑤) + 𝑜(1)) exp

(
−𝑡

(
1

4
(𝑤 + 𝑣∗(𝑢𝑐))

2
− 𝑓′(1)

))
, (152)

when −
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < −2
√
−𝑓′(1) − 𝑂(𝑡

−
1

2 ), with

𝐺0(𝑤) ∼
𝐴−∞√

𝜋

(
𝑤 +

√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1)

)−1
, (153)
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as 𝑤 → (−
√
𝑣∗(𝑢𝑐)2 − 4𝑓′(1))+ and

𝛽1 =
1

2
, (154)

on matching with region 𝐓𝐋. However,

�̂�(𝑤, 𝑡) =

(
2
√
−𝑓′(1)

)𝛽2
𝐴𝐿(

𝑤 + 2
√
−𝑓′(1)

)𝛽2 𝑡−𝛽2(1 + 𝑜(1)) exp

(
−𝑡

(
1

4
𝑣∗(𝑢𝑐)

2 +

(
1

2
𝑣∗(𝑢𝑐) −

√
−𝑓′(1)

)
𝑤

))
,

(155)

when −2
√
−𝑓′(1) + 𝑂(𝑡

−
1

2 ) < 𝑤 < 𝑂(𝑡−1)−, and with 𝛽2 undetermined at this stage. It is impor-
tant to recall that the change in structure of �̂�(𝑤, 𝑡) across 𝑤 = −2

√
−𝑓′(1) is accommodated in

a transition region when 𝑤 = −2
√
−𝑓′(1) ± 𝑂(𝑡

−
1

2 ). This region is passive and its details may be
omitted here.
We can now return to region 𝐕𝐋. It follows from (72) with (80b), (81b), (114), and (116), that in

region 𝐕𝐋 we must develop expansion (72) in the form

𝑢(𝑦, 𝑡) = 𝑈𝑇(𝑦) + 𝑡𝛾 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

)
𝑢1(𝑦)(1 + 𝑜(1)), (156)

as 𝑡 → ∞with 𝑦 = 𝑂(1)−. On substituting from expansions (65) and (156) into Equation (8a), and
canceling at leading order, we obtain

𝑢′′
1
+ 𝑣∗(𝑢𝑐)𝑢

′
1
+

(
1

4
𝑣∗(𝑢𝑐)

2 + 𝑓′(𝑈𝑇(𝑦))

)
𝑢1 = −𝑐3𝑈

′
𝑇(𝑦), 𝑦 < 0, (157a)

𝑢1(0
−) = 0, (157b)

where the condition (157b) is required for the boundary condition (8e) to be satisfied. It
remains to match expansion (156) in region 𝐕𝐋 (as 𝑦 → −∞) with expansion (151) in region
𝐈𝐕𝐛

𝐋
(as 𝑤 → 0−). On applying Van Dyke’s matching principle,19 we readily obtain this matching

condition as

𝑢1(𝑦) ∼ 𝐴𝐿 exp

((√
−𝑓′(1) −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
as 𝑦 → −∞, (157c)

with 𝛽2 now determined as

𝛽2 = −𝛾. (158)
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On collecting (120) and (157), in addition to the derivative continuity condition (8f) at 𝑦 = 0, we
obtain the following boundary value problem for 𝑢1(𝑦),

𝑢′′
1
+ 𝑣∗(𝑢𝑐)𝑢

′
1
+
1

4
𝑣∗(𝑢𝑐)

2𝑢1 = −𝑐3𝑈
′
𝑇(𝑦), 𝑦 > 0, (159a)

𝑢′′
1
+ 𝑣∗(𝑢𝑐)𝑢

′
1
+

(
1

4
𝑣∗(𝑢𝑐)

2 + 𝑓′(𝑈𝑇(𝑦))

)
𝑢1 = −𝑐3𝑈

′
𝑇(𝑦), 𝑦 < 0, (159b)

𝑢1(𝑦) ∼ 𝐴𝐿 exp

((√
−𝑓′(1) −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
as 𝑦 → −∞, (159c)

𝑢1(0
−) = 𝑢1(0

+) = 0, (159d)

𝑢′
1
(0−) = 𝑢′

1
(0+), (159e)

which must be solved subject, in addition, to the matching condition on 𝑢1(𝑦) as 𝑦 → ∞ with
expansion (112) in region 𝐈𝐕𝐛

𝐑
. We begin in 𝑦 < 0, with the inhomogeneous linear equation (159b).

Because𝑈𝑇(𝑦) satisfies the equation𝑈′′
𝑇 (𝑦) + 𝑣∗(𝑢𝑐)𝑈

′
𝑇(𝑦) + 𝑓𝑐(𝑈𝑇(𝑦)) = 0, a particular integral

for (159b) is readily deduced to be proportional to𝑈′
𝑇(𝑦), and so the general solution to (159b) may

be written as

𝑢1(𝑦) = 𝐸0𝜙+(𝑦) + 𝐸1𝜙−(𝑦) − 4
𝑐3

𝑣∗(𝑢𝑐)2
𝑈′
𝑇(𝑦), 𝑦 ≤ 0, (160)

with 𝜙+(𝑦), 𝜙−(𝑦) ∶ (−∞, 0] → ℝ basis functions for the homogeneous part of Equation (159b)
chosen so that

𝜙+(𝑦) ∼ exp

((√
−𝑓′(1) −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
, (161a)

𝜙−(𝑦) ∼ exp

(
−

(√
−𝑓′(1) +

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
, (161b)

as 𝑦 → −∞, while 𝐸0 and 𝐸1 are arbitrary constants to be determined. It follows from (81b), (161),
and an application of condition (159c) that we must have

𝐸0 = 𝐴𝐿, 𝐸1 = 0. (162)

Moreover, on applying condition (159d) (where we have evaluated 𝑈′
𝑇(0) via (81a)), we obtain

𝑐3 = −
𝐴𝐿𝑣

∗(𝑢𝑐)𝜙+(0)

4𝑢𝑐
. (163)

Thus, on collecting expressions (160), (162), and (163) we have

𝑢1(𝑦) = 𝐴𝐿𝜙+(𝑦) +
𝐴𝐿𝜙+(0)

𝑣∗(𝑢𝑐)𝑢𝑐
𝑈′
𝑇(𝑦), 𝑦 < 0. (164)
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We next consider 𝑢1(𝑦) with 𝑦 > 0. The general solution to the inhomogeneous linear equation
(159a) (using Equations (81a) and (163)) is readily found to be

𝑢1(𝑦) = (𝐸3 + 𝐸4𝑦)𝑒
−

1

2
𝑣∗(𝑢𝑐)𝑦 − 𝐴𝐿𝜙+(0)𝑒

−𝑣∗(𝑢𝑐)𝑦, 𝑦 ≥ 0, (165)

with arbitrary constants 𝐸3 and 𝐸4 determined, via application of the coupling conditions (159d)
and (159e), as

𝐸3 = 𝐴𝐿𝜙+(0), (166)

𝐸4 = 𝐴𝐿

(
𝜙′+(0) + 𝜙+(0)

(
1

2
𝑣∗(𝑢𝑐) −

𝑓+𝑐
𝑣∗(𝑢𝑐)𝑢𝑐

))
, (167)

with 𝐴𝐿 ≠ 0. Finally, we match the expansion in region 𝐕𝐑 (as 𝑦 → ∞) with the expansion in
region 𝐈𝐕𝐛

𝐑
(as 𝑤 → 0+). Now, when 𝐸4 = 0, we obtain the matching condition

�̄�0(𝑤) ∼ 𝐴𝐿𝜙+(0) as 𝑤 → 0+, (168)

and

𝛾 = −
1

2
(= −𝛽2). (169)

However, when 𝐸4 ≠ 0, we obtain the matching condition

�̄�0(𝑤) ∼ 𝐸4𝑤 as 𝑤 → 0+, (170)

and

𝛾 = −
3

2
(= −𝛽2). (171)

Also, it follows from expression (163) (because𝐴𝐿 ≠ 0) that 𝑐3 = 0 if and only if 𝜙+(0) = 0. There-
fore, we have the following cases, namely,
Case (I) 𝝓+(𝟎) ≠ 𝟎. In this case

𝑐3 ≠ 0,

and

𝐸4 = 0 with 𝛾 = −
1

2
(= −𝛽2) or 𝐸4 ≠ 0 with 𝛾 = −

3

2
(= −𝛽2).

Case (II) 𝝓+(𝟎) = 𝟎. In this case 𝜙′+(0) ≠ 0 and

𝑐3 = 0,

while 𝐸4 ≠ 0, and so

𝛾 = −
3

2
(= −𝛽2).
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Wenext consider the basis function 𝜙+ ∶ (−∞, 0] → ℝ. For fixed 𝑢𝑐 ∈ (0, 1) the initial value prob-
lem for 𝜙+ ∶ (−∞, 0] → ℝ is given by

𝜙′′+ + 𝑣∗(𝑢𝑐)𝜙
′
+ +

(
1

4
𝑣∗(𝑢𝑐)

2 + 𝑓′(𝑈𝑇(𝑦))

)
𝜙+ = 0, 𝑦 < 0, (172a)

𝜙+(𝑦) ∼ exp

((√
−𝑓′(1) −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
as 𝑦 → −∞. (172b)

We reduce the problem (172) to normal form by setting 𝜙+(𝑦) = 𝜓+(𝑦) exp (−
1

2
𝑣∗(𝑢𝑐)𝑦)with 𝜓+ ∶

(−∞, 0] → ℝ now satisfying the initial value problem

𝜓′′
+ + 𝑓′(𝑈𝑇(𝑦))𝜓+ = 0, 𝑦 < 0, (173a)

𝜓+(𝑦) ∼ exp
(√

−𝑓′(1)𝑦
)

as 𝑦 → −∞. (173b)

This can now be solved numerically to find 𝜓+(0) and 𝜓′
+(0), which we then use to obtain 𝜙+(0)

and 𝜙′+(0), after which the occurrence of case (I) or case (II) is determined.
The asymptotic structure of the solution toQIVP as 𝑡 → ∞ is now completewith the expansions

in regions 𝐈𝐕𝐚
𝐋
, 𝐓𝐋, 𝐈𝐕𝐛

𝐋
, 𝐕𝐋, 𝐕𝐑, 𝐈𝐕𝐛

𝐑
, 𝐓𝐑, and 𝐈𝐕𝐚

𝐑
providing a uniform approximation to the

solution of QIVP as 𝑡 → ∞. On collecting expressions (65), (80c), (84), (88), and (119), we have
obtained, in particular, that

�̇�(𝑡) = 𝑣∗(𝑢𝑐) + 𝑐3𝑡
𝛾 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

)
+ 𝑜

(
𝑡𝛾 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

))
as 𝑡 → ∞, (174)

where the constants 𝑐3 and 𝛾 depend upon whether case (I) or case (II) is pertaining for the given
KPP reaction function and the cut-off value 𝑢𝑐 ∈ (0, 1). Hence, via themethod of matched asymp-
totic coordinate expansions, we have been able to obtain the correction term to the asymptotic
propagation speed 𝑣∗(𝑢𝑐) of the developing PTW structure in the solution to QIVP as 𝑡 → ∞. In
addition, with 𝑢 ∶ ℝ × [0,∞) → ℝ being the solution to QIVP, it follows from expansions (95),
(104), (105), (112), (117), (123), (139), (140), (151), (156) in regions 𝐈𝐕𝐚

𝐋
, 𝐈𝐕𝐛

𝐋
, 𝐈𝐕𝐚

𝐑
, 𝐈𝐕𝐛

𝐑
, 𝐓𝐋, 𝐓𝐑, 𝐕𝐋,

and 𝐕𝐑 that,

𝑢(𝑦, 𝑡) = 𝑈𝑇(𝑦) + 𝐸(𝑦, 𝑡), (175)

as 𝑡 → ∞ for 𝑦 ∈ ℝ, with 𝐸(𝑦, 𝑡) linearly exponentially small in 𝑡 as 𝑡 → ∞, uniformly for 𝑦 ∈ ℝ.
In particular, on any closed bounded interval I,

𝐸(𝑦, 𝑡) = 𝑂

(
𝑡𝛾𝑒

−
1

4
𝑣∗2(𝑢𝑐)𝑡

)
, (176)

as 𝑡 → ∞ uniformly for 𝑦 ∈ I. A significant point to note here, is that, for KPP reaction functions
satisfying (2), in the absence of cut-off, the corresponding correction terms in (174), (175), and
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(176) are only algebraically small in 𝑡 as 𝑡 → ∞, being of 𝑂(𝑡−1) (see, for example, Leach and
Needham15).
To illustrate these results we consider a simple example of KPP reaction function 𝑓 ∶ ℝ → ℝ

which satisfies (2), and has

𝑓(𝑢) = 𝜆(1 − 𝑢), 𝑢 ≥ 1

2

(
1 +

𝜆

(1 + 𝜆)

)
, (177)

with 𝜆 > 0 fixed. With the cut-off value

𝑢𝑐 ∈

([
1

2

(
1 +

𝜆

(1 + 𝜆)

)
, 1

))
, (178)

then, in this example, 𝑓𝑐 ∶ ℝ → ℝ is given by

𝑓𝑐(𝑢) =

⎧⎪⎨⎪⎩
0, 𝑢 ∈ (−∞, 𝑢𝑐],

𝜆(1 − 𝑢), 𝑢 ∈ (𝑢𝑐,∞),
(179)

and

𝑓′(1) = −𝜆, 𝑓+𝑐 = 𝜆(1 − 𝑢𝑐). (180)

For this example, we can readily obtain the PTW explicitly as 𝑈𝑇 ∶ ℝ → ℝ given by

𝑈𝑇(𝑦) =

⎧⎪⎨⎪⎩
1 − (1 − 𝑢𝑐) exp

((√
𝑣∗(𝑢𝑐)

2
+4𝜆−𝑣∗(𝑢𝑐)

2

)
𝑦

)
, 𝑦 ≤ 0,

𝑢𝑐𝑒
−𝑣∗(𝑢𝑐)𝑦, 𝑦 > 0,

(181)

with propagation speed

𝑣∗(𝑢𝑐) =
√
𝜆
(1 − 𝑢𝑐)√

𝑢𝑐
. (182)

Now, via (172), the basis function 𝜙+ ∶ (−∞, 0] → ℝ satisfies

𝜙′′+ + 𝑣∗(𝑢𝑐)𝜙
′
+ +

(
1

4
𝑣∗(𝑢𝑐)

2 − 𝜆

)
𝜙+ = 0, 𝑦 < 0, (183a)

𝜙+(𝑦) ∼ exp

((√
𝜆 −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
as 𝑦 → −∞, (183b)

which has solution

𝜙+(𝑦) = exp

((√
𝜆 −

1

2
𝑣∗(𝑢𝑐)

)
𝑦

)
, 𝑦 ≤ 0. (184)
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Thus, we obtain via (184)

𝜙+(0) = 1, 𝜙′+(0) =
√
𝜆 −

1

2
𝑣∗(𝑢𝑐), (185)

and so,

𝐸4 = 𝐴𝐿

√
𝜆
(
1 −

√
𝑢𝑐
) ≠ 0. (186)

Thus, the particular reaction function (179) falls into case (I), which has

�̇�(𝑡) = 𝑣∗(𝑢𝑐) + 𝑐3𝑡
−

3

2 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

)
+ 𝑜

(
𝑡
−

3

2 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

))
as 𝑡 → ∞, (187)

with 𝑐3 ≠ 0, and 𝑣∗(𝑢𝑐) given by (182). Similarly, in this example, both (175) and (176) have 𝛾 =

−3∕2.

5.4 The case of a cut-off Fisher reaction

To conclude this section we focus on the particular case of the cut-off Fisher reaction function
(10) for fixed cut-off 𝑢𝑐 ∈ (0, 1). For this example, via (173), 𝜓+ ∶ (−∞, 0] → ℝ satisfies

𝜓′′
+ + (1 − 2𝑈𝑇(𝑦))𝜓+ = 0, 𝑦 < 0, (188a)

𝜓+(𝑦) ∼ 𝑒𝑦 as 𝑦 → −∞. (188b)

We obtain numerical approximations of 𝜓+(0) and 𝜓′
+(0) from were we deduce 𝜙+(0) and 𝜙′+(0).

This is readily achieved by solving (188) together with the nonlinear boundary value problem
determining 𝑈𝑇(𝑦) (see Equation (11) in Part I of this series) numerically over an interval 𝑦 ∈

[−𝑀, 0] for𝑀 ∈ ℝ+ using the Matlab initial value solver ode45, taking 𝑣 = 𝑣∗(𝑢𝑐). The values of
𝑣∗(𝑢𝑐) and𝑀 are determined numerically as detailed in Part I of this series of papers. As “initial
condition” we employ (𝑈𝑇,𝑈

′
𝑇, 𝜓+, 𝜓

′
+) = (1 − 𝜖, −𝜆+(𝑣

∗(𝑢𝑐))𝜖, 𝑒
−𝑀, 𝑒−𝑀), where 𝜖 = 10−10 and

prescribe an absolute and relative ODE tolerance of 10−13.
Figure 10 examines the behavior of 𝜙+(0) and 𝐸4∕𝐴𝐿 = 𝜙′+(0) + 𝜙+(0)(1∕2𝑣

∗(𝑢𝑐) − (1 −

𝑢𝑐)∕𝑣
∗(𝑢𝑐)) for a range of values of 𝑢𝑐. It suggests that 𝜙+(0) and 𝐸4 are both nonzero and

therefore the particular reaction function (10) falls into case (I) with 𝑐3 ≠ 0, 𝛾 = −3∕2 and where
�̇�(𝑡) has the asymptotic expression

�̇�(𝑡) ∼ 𝑣∗(𝑢𝑐) −
𝐴𝐿𝑣

∗(𝑢𝑐)𝜙+(0)

4𝑢𝑐
𝑡
−

3

2 exp

(
−
1

4
𝑣∗(𝑢𝑐)

2𝑡

)
as 𝑡 → ∞. (189)

We observe that the asymptotic expression (189) qualitatively agrees with the numerical solutions
for QIVP obtained for the cut-off Fisher reaction function in Section 2: Figures 3 and 4 suggest
that the correction to �̇�(𝑡) is exponentially small in 𝑡 as 𝑡 → ∞while Figure 1 makes clear that the
exponential decay rate decreaseswith the increasing value of𝑢𝑐. However, a quantitative test of the
validity of (189) is challenging because we do not have sufficient precision to allow the numerical
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(A) (B)

F IGURE 10 Agraphof (A)𝜙+(0) and (B)𝐸4∕𝐴𝐿 = 𝜙′+(0) + 𝜙+(0)(𝑣
∗(𝑢𝑐)∕2 − (1 − 𝑢𝑐)∕𝑣

∗(𝑢𝑐)) corresponding
to the cut-off Fisher reaction function (10). These are obtained by solving (188) numerically for a range of values of
𝑢𝑐 ∈ (0, 1) and are used to determine the precise form of the correction to �̇�(𝑡) as 𝑡 → ∞, given by Equation (174)

solver to resolve exponentially small terms in the numerical solution; as such we are unable to
accurately compare (189) directly with numerical solutions to estimate the global constant 𝐴𝐿.

6 CONCLUSIONS

In this series of papers we have considered an evolution problem for a reaction–diffusion pro-
cess when the reaction function is of standard KPP type, but experiences a cut-off in the reac-
tion rate below the normalized cut-off concentration 𝑢𝑐 ∈ (0, 1). We have formulated this evo-
lution problem in terms of the moving boundary initial-boundary value problem QIVP. In the
companion paper, we considered PTW solutions 𝑈𝑇(𝑦) = 𝑢(𝑦, 𝑡) to QIVP. In this paper, we con-
centrated on examining whether a PTW evolves in the large-time solution to QIVP and when this
is found to be the case, determining the rate of convergence of the solution to the PTW. Key to this
study is 𝑦 = 𝑥 − 𝑠(𝑡) = 0, which represents the location of themoving boundarywhere 𝑢 = 𝑢𝑐.We
used themethod ofmatched asymptotic coordinate expansions to develop the detailed asymptotic
structure of the solution to QIVP in the small-time (𝑡 = 𝑜(1)), intermediate-time (𝑡 = 𝑂(1)), and
large-time (𝑡 → ∞) regimes for arbitrary cut-off 𝑢𝑐 ∈ (0, 1). We first determined that the asymp-
totic structure of𝑢(𝑦, 𝑡) in the small-time regimehas two regions in 𝑦 < 0, and two regions in 𝑦 > 0

and is given by expansions (44), (35), (36), and (49). The two-term asymptotic expression (37) for
the function 𝑠(𝑡) can be derived from the inner left and inner right regions, where 𝑦 = 𝑜(1)− and
𝑦 = 𝑜(1)+, in addition to the leading order boundary conditions. This reveals that as 𝑡 → 0+, �̇�(𝑡)
has an integrable singularity, which depends on the cut-off 𝑢𝑐. Here �̇�(𝑡) → +∞when 𝑢𝑐 ∈ (0,

1

2
),

while, �̇�(𝑡) → −∞ when 𝑢𝑐 ∈ (
1

2
, 1) with a transition case where �̇�(𝑡) → 0 when 𝑢𝑐 =

1

2
. We then

employed the asymptotic structure of 𝑢(𝑦, 𝑡) in the outer left and right regions, where 𝑦 = 𝑂(1)−

and 𝑦 = 𝑂(1)+, for 𝑡 = 𝑜(1) to determine the asymptotic structures of 𝑢(𝑦, 𝑡) when |𝑦| → ∞ for
𝑡 = 𝑂(1). The latter is key to deriving the asymptotic structure of 𝑢(𝑦, 𝑡) as 𝑡 → ∞, which consists
of two principal regions in 𝑦 < 0 and two principal regions in 𝑦 > 0 and given by the asymp-
totic expressions (95), (104), (105), (112), (117), (123), (139), (140), (151), (156), with the asymptotic
structure of 𝑠(𝑡) as 𝑡 → ∞ being determined simultaneously and given by the asymptotic expres-
sion (174). This systematic approach allows to establish that the solution to QIVP converges to
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the PTW solution as 𝑡 → ∞ at a rate that is linearly exponentially small in 𝑡 with the exact form
dependent on the particular underlying KPP-type reaction function 𝑓(𝑢) and the cut-off value
𝑢𝑐 ∈ (0, 1). Thus, introducing an arbitrary cut-off into the reaction significantly modifies the rate
of convergence of the large-time solution onto the PTW (from an algebraic to an exponential rate).
Consequently, the presence of a cut-off significantly shortens the time for the solution to QIVP
to converge to the PTW. We anticipate that the approach developed in this paper will be readily
adaptable to corresponding problems, when the KPP-type cut-off reaction function is replaced by
a broader class of cut-off reaction functions.
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APPENDIX A: NUMERICAL SCHEME
We approximate 𝑢(𝑦, 𝑡) and 𝑠(𝑡) by piecewise linear functions 𝑢𝑑(𝑦𝑖, 𝑡𝑗) and 𝑠𝑑(𝑡𝑗), defined on
evenly spaced space and time grids given by {𝑦𝑖 = −𝑀 + 𝑖Δ𝑦}𝐼+

𝑖=0
and {𝑡𝑗 = 𝑗Δ𝑡}𝐽

𝑗=0
with 𝑦𝐼 = 0

and 𝑡𝐽 = 𝑇. We use explicit finite differences to approximate (8a) by

𝑈
𝑗+1

𝑖
− 𝑈

𝑗

𝑖
= 𝜇

(
𝑈

𝑗

𝑖+1
− 2𝑈

𝑗

𝑖
+ 𝑈

𝑗

𝑖−1

)
+ 𝜈

(
𝑆𝑗+1 − 𝑆𝑗

)(
𝑈

𝑗

𝑖+1
− 𝑈

𝑗

𝑖−1

)
+ Δ𝑡𝑓𝑐(𝑈

𝑗

𝑖
), (A.1)

for 𝑖 = 2, … , 𝐼 − 1, 𝐼 + 1,… , 𝐼 +  − 1, 𝑗 = 1,… 𝐽, 𝜇 = Δ𝑡∕Δ𝑦2, and 𝜈 = 1∕(2Δ𝑦), where 𝑈
𝑗

𝑖
=

𝑢𝑑(𝑦𝑖, 𝑡𝑗) and 𝑆
𝑗

𝑖
= 𝑠𝑑(𝑡𝑗), respectively, approximate 𝑢(𝑦𝑖, 𝑡𝑗) and 𝑠(𝑡𝑗). We then use (8d), (8e), and

(8f) to set

𝑈
𝑗

0
= 1, 𝑈

𝑗

2𝐼
= 0, 𝑈

𝑗
𝐼 = 𝑢𝑐, 𝑈

𝑗

𝐼+1
+ 𝑈

𝑗

𝐼−1
= 2𝑢𝑐, for 𝑗 = 1,… 𝐽. (A.2)

We solve the resulting sparse linear algebraic system of equations for the unknowns 𝑈𝑗

𝑖
and 𝑆𝑗

with 𝑖 = 2, … , 𝐼 − 1, 𝐼 + 1,… , 𝐼 +  − 1 and 𝑗 = 1,… , 𝐽 in an evolutionary manner starting from

{𝑈0
𝑖
}𝐼−1
𝑖=1

= 1, {𝑈0
𝑖
}𝐼+
𝑖=𝐼

= 0, 𝑆0 = 0, (A.3)

corresponding to the initial conditions (8c) and (8g). We choose Δ𝑦 = 5 × 10−3 and Δ𝑡 = 0.4Δ𝑦2

to ensure the stability of the explicit method. We take 𝐼 and  sufficiently large to ensure that any
error arising from truncating the right-hand and left-hand boundary does not affect the solution
in the interior. In practice, we have found that choosing 𝐼 and  so that 𝑒𝜆+(𝑣∗(𝑢𝑐))𝑦0 , 𝑒−𝑣∗(𝑢𝑐)𝑦𝐼+ ≲

5 × 10−5 (corresponding to the asymptotic behavior of the PTW as described by Equation (81))
provides reasonable accuracy. Comparison with results obtained for a spatial resolution of Δ𝑦 =

10−3 resulted in a less than 0.5% difference in 𝑢𝑑(𝑦𝑖, 𝑡𝑗) and 𝑠𝑑(𝑡𝑗).
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