

Fuel Cells & Hydrogen – Research Needs in Times of Technology Roll-Out

Prof Dr Robert Steinberger-Wilckens Centre for Fuel Cell & Hydrogen Research University of Birmingham

Centre of Fuel Cell & Hydrogen Research

(MICRO:CAB)

H4 002

hydrogen fuel cell

Hydrogen production

- from renewables, green hydrogen
- high efficiency electrolysis
- synthetic fuels

PEFC development

- reduction of platinum loading (e.g. using nano particles, μorganisms etc.)
- increase in operating temperature (IT-PEFC)
- optimisation of components (BiP coatings, GDL, etc.)

UNIVERSITYOF BIRMINGHAM

FC integration

- LDV/HDV, offroad vehicles
- marine & rail
- aircraft, UAV

SOFC development:

- planar and microtubes
- fuel impurity tolerance
 - improved internal reforming of HC
- reducing degradation & improving lifetime

Socio-economic studies

- understanding FC market uptake
- environmental impact assessment
 - nano-particle health impact

Centre of Fuel Cell & Hydrogen Research and Centre of Doctoral Training (CDT)

35 PhD students, 5 post-docs, 5 staff

Starting Oct 2021: blended learning (online) MSc programme in Fuel Cells and Hydrogen Technologies

University of Birmingham

Introducing New Technologies

20 years
15 years
12.5 years
10 years

5 years 0

FP 7 EU-Approach FCH JU

University of Birmingham

5/27

Technology Development Phasing

EU Technology Development Ladder

TRL 9 – large demo

trucks 20 MW ELY

TRL 8 - demo

ships MRL 8 – supply chain

TRL 7 field test

remote pwr

MRL x – cost reduction

MRL 4 - manufacturability

TRL 6 prototype verification

biogas SOFC

TRL 5 full prototype

MRL 5 – manufacturing

TRL 4 lab validation

NxtGen autom MEA

aerial FC

TRL 3 experimental

GameCh autom stack

TRL 1/2 principles

solar thermolysis

PNR: road tunnels

X-Cut: admixing, ALT, schools

University of Birmingham

7/27

PURECELL® FUEL CELL SYSTEM

Flexible fuel cell application and varied experience

Assured Power

First National Bank of Om aha Nebraska

On-Line Emergency Power

Verizon Communications New York

Green CHP Power

Whole Foods Market Connecticut

Renewable Fuel (ADG)

Wastewater treatment plants New York, New York

Mohegan Sun Resort & Casino Connecticut

University of Birmingham

Off-Grid Power

Central Park Police Station

New York

source: UTC 2009

8/27

Cost development PAFC Purecell

source: Pehnt

UNIVERSITYOF

Hype-Cycles

According to Ph.Doran

University of Birmingham

13/27

Disruptive Technology

The Lemmings Principle

University of Birmingham

15/27

What Happens When Industry Roll-Out and Science Get Disconnected?

- lack of supporting university creativity
- decrease in publications → less interest in the scientific community, no awareness of issues
- divergence in research topics
- no kick-off in development of next and next-but-one generations of technology
- subsequent lack of serendipity, and SME and supplier-base input
- → industry needs to support a certain level of 'free research' and demo/field test projects need to publicise results

Consolation of Conflicting Properties

for instance: redox stable materials (SrTi, LSMC), with low conductivity and brittle structure

University of Birmingham

17/27

Interaction of Materials Developers and Manufacturers

building a bridge from materials research to component manufacturing

materials

nt topics

developme

Development Aim: Increased Stack Lifetime

- long-term stable electrode materials
 - * thermodynamically stable, or slow stabilisation kinetics, slow de-mixing and volatisation
 - * low tendency to particle agglomeration
 - * high inner surface and porosity
 - * high electrical and ionic conductivity
 - * low/no reactivity with other stack materials
- long-term stable electrolytes
- long-term stable interconnect materials
- protective coatings for steels
- · methodologies: accelerated testing
- operational strategies: keeping the system happy

University of Birmingham

19/27

Future Focus of European SOFC Development

Lower degradation, lower temperatures, more compact design

New materials and processing routes

Reliable stack assembly

Robust designs

Understanding degradation

Accelerated testing methods

Development of lifetime models

Balance of Plant components, industrial manufacturing

System control & diagnostics

Large units

 2007
 2010
 2015
 2020

20/27

R&D Development Goals

Materials

- currently best performing materials have already been known for many years (no surprises)
- optimisation with respect to processing and cost necessary
- Lifetime is still insufficient (but: trade-off with cost)
- breakthroughs are nevertheless necessary (new materials integrated with processing and manufacturing)

RTD challenges

- purpose-designed materials incl. ab-initio understanding
- low-cost, standardised, mass-production oriented manufacturing
- extended lifetime of components, robustness
- sufficient testing capacity for reliably & rapidly predicting materials performance (optimisation loops!)

University of Birmingham

21/27

What Happens When Industry Roll-Out and Regulatory and Economic Framework Disconnect?

- 'surprise' at high cost of hydrogen
- lack of level playing field destroys immediate economic prospects
- lack of immediate customers due to high initial cost destroy interest of management
- lack of follow-up investments due to lack of credible business cases
- → level playing field approach to energy cost and environmental costing is a requirement for market roll-out

Cost Projections – Moving Targets

free market vs. regulatory vs. subsidy approach

University of Birmingham

23/27

Dominance of 'Large Scale' Projects

- there is a continued confusion about 'field tests' (necessary to prove technology) and 'demo' (public demonstration – but often used as a replacement market introduction tool)
- demo projects have been used to 'spark off' developments certainly rather successfully although projects are often 'one of a kind' (novelty-based)
- result 1: only first runners are funded by and large, predominately large OEMs
- result 2: all the large bus demos since 1999 were based on one OEM who still does not have a commercial product; second runners have now taken over through the repeated demo projects -> can this be justified?

Learn to Walk Before You Run

- stop the large scale demos this is the task for dedicated market introduction tools
- create scope for 'repetition' projects/topics to get on board more, different and smaller industry; esp. thinking of low TRL, 'NextGen', 'Game Changer' and 'Disruptive' projects
- more preparation for the market in the sense of 'market readiness' instead of only TRL (building supply chains and reducing costs); introduce MRL KPI's
- more alignment with e-mobility and renewable energy/storage programmes (such as within NOW in Germany), also thinking of hybrid systems with batteries

University of Birmingham

25/27

Summary

Hydrogen (less so fuel cells) is a 'hype' topic currently.

In order to avoid disappointment

- product development needs to be sufficiently supported by (free) research,
- the regulatory framework needs to reflect the environmental benefits,
- sustainable business cases need to be clearly visible,
- public funds are required for market introduction support and supporting research, not for large scale 'demonstration' projects.

Prof Dr Robert Steinberger-Wilckens

Upcoming events:

r.steinbergerwilckens@bham.ac.uk

Fuel Cell & Electrolyser Degradation Workshop, 5 May 2021, Webinar.

Fuel Cell Systems Workshop – 19/21 May 2021, Bruges, Belgium (?).

EFCF 2021 – Low Temperature Fuel Cells, Electrolysers, and Hydrogen Handling – **29 June to 2 July 2021**, Lucerne, Switzerland.

JESS 2021 - Joint European Summer School,

6 to 12 & 13 to 18 Sept 2021, Athens.

