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Abstract
E. coli nitroreductase NfsB (also called NfnB) has been studied extensively, largely due to its potential for cancer gene ther-
apy. A homodimeric flavoprotein of 216 residues, it catalyses the reduction of nitroaromatics to cytotoxic hydroxylamines by 
NADH and NADPH and also the reduction of quinones to hydroxyquinones. Its role in vivo is not known but it is postulated 
to be involved in reducing oxidative stress. The crystal structures of the wild type protein and several homologues have been 
determined in the absence and presence of ligands, including nicotinate as a mimic of the headpiece of the nicotinamide 
cofactors. There is little effect on the overall structure of the protein on binding ligands, but, from the B factors, there appears 
to be a decrease in mobility of 2 helices near the active site. As a first step towards examining the dynamics of the protein in 
solution with and without ligand, we have assigned the backbone 13C, 15N, and 1HN resonances of NfsB and examined the 
effect of the binding of nicotinate on the amide 15N, and 1HN shifts.

Keywords  Nitroreductase · Flavoprotein · Nicotinic acid · Titration

Biological context

E. coli nitroreductase NfsB is a member of a large superfam-
ily of nitroreductases of over 24,000 sequences, with diverse 
enzymatic activities, that are being studied for rational 
enzyme design (Akiva et al. 2017). The E. coli enzyme (also 
called NfnB) was initially discovered as it causes bacteria to 
be sensitive to nitrofuran antibiotics, such as nitrofurantoin 
and nitrofurazone (McCalla et al. 1978). Nitrofurantoin is 
still recommended for use against urinary infections, while 
nitrofurazone was used topically in skin wounds. Little 
resistance to these antibiotics has developed, despite several 
decades of use. The sensitivity of bacteria to these nitroaro-
matics is because nitroreductases catalyse their reduction to 

highly cytotoxic hydroxylamines, by NADH and NADPH. 
This reaction is the basis for the potential use of NfsB in 
cancer gene therapy. Introduction of the nfsB gene into can-
cer cells, for instance by use of a viral vector, followed by 
treatment with prodrugs such as CB1954 (5-aziridin-1-yl, 
2, 4, dinitrobenzamide) has been shown to kill the cells and 
neighbouring cells (Searle et al. 2004). Similarly, delivery 
of nfsB followed by treatment with metronidazole has been 
used for selective cell ablation in the study of animal devel-
opment (Curado et al. 2007). The NfsB homologue from 
Enterobacter cloacae, in turn, has been studied for use in 
bioremediation of TNT and in chemical transformations 
(Miller et al. 2018). In addition to reduction of nitroaromat-
ics, NfsB reduces quinones to quinols, in a 2-electron step, 
without producing radicals. It has been postulated therefore 
to be involved in reducing oxidative stress. In support of a 
role in this, its expression is upregulated by the transcription 
activator MarA (Barbosa and Levy 2002).

The nfsB gene encodes 217 amino acids, but, like many 
E. coli proteins, the first methionine, residue is cleaved 
in vivo so the protein contains 216 amino acids per subu-
nit. It is a homodimer with a tightly bound FMN cofactor 
in each subunit. The crystal structures of the wild type 
NfsB protein (Lovering et al. 2001; Parkinson et al. 2000), 
mutants, and several homologues have been determined 
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(Fig. 1). Each subunit contains 11 helices and 5 highly 
twisted β-strands with an extensive subunit interface. 
The FMN cofactors lie on opposite sides of the long, G 
helices, that cross each other, and each cofactor contacts 
both subunits. There is little effect on the overall struc-
ture of the protein on binding ligands, but, from the B 
factors, there seems to be a decrease in mobility at the 
end of helix E and throughout helix F, residues 105–132 
(Lovering et al. 2001; Parkinson et al. 2000). These two 
helices protrude from the core of the protein but are near 
the active site. Protein flexibility has been postulated to 
be important for the catalytic activity of many enzymes, 
including the homologous NADH oxidase (NOX) from 
Thermus thermophilus. The NMR relaxation proper-
ties of NOX, have been determined (Miletti et al. 2011) 
and molecular dynamics simulations have compared the 
dynamics of NOX, a thermophilic enzyme, to those of 
the mesophilic NfsB as a function of temperature, sug-
gesting again that helices E and F may influence stability 
and activity (Merkley et al. 2010). There have been other 
molecular dynamics calculations of E. coli NfsB (Christ-
offerson et al. 2012) and the homologous Enterobacter 
cloacae enzyme (Christofferson 2020), to try to resolve 
the molecular mechanism of nitroaromatic reduction. As 
a first step towards examining the dynamics of the pro-
tein in solution with and without ligand, we have assigned 
the backbone 13C, 15N, and 1HN resonances of NfsB and 
examined the effect of the binding of sodium nicotinate, 

as a mimic of the NAD(P)H headpiece, on the amide 15N 
and 1HN shifts.

Methods and experiments

Protein expression and purification

Although NfsB expressed well in minimal M9 medium 
from the trp-promoter in plasmid pPM24 in E. coli DH5α 
(Michael et al. 1994), no expression was found when the 
strain was grown in D2O in this medium. The nfsB gene 
was amplified from E. coli DH5α and cloned into pET11c, 
expressed without tags from E. coli BL21 in M9 medium, 
and purified as described previously (Lovering et al. 2001). 
Prior to the NMR experiments it was dialysed into 20 mM 
sodium phosphate buffer, pH 7.0, 0.05 mM EDTA. For 
assignment, the sample was 13C/15N/2D labelled by growth 
of the E. coli in M9 medium containing 1 g/l 15N-NH4Cl, 
and 2 g/l 13C6-glucose as the only nitrogen and carbon 
sources and 80% D2O. For the titration experiments with 
nicotinic acid, the protein was labelled with 15N only. The 
expressed protein contained FMN but, to maintain full 
saturation with the cofactor, 20 µM FMN was added to 
all buffers throughout protein purification, apart from the 
final dialysis. That the protein was fully bound with FMN 
was verified by measuring the ratio of absorbance of the 
protein preparation at 373 nm and 454 nm (where only 
the FMN absorbs) and at 280 nm (where both FMN and 
protein absorb).

NMR spectroscopy

For assignment of the spectrum of the protein in the 
absence of ligand, HNCOCACB and HNCACB spec-
tra were recorded on a Varian 800 MHz spectrometer at 
37 °C. HNCOCA, HNCA, HNCO and HNCACO spectra 
were taken on a Varian 600 MHz spectrometer at 30 °C or 
37 °C, all with the triply labelled protein and deuterium 
decoupling. Assignments were confirmed where possi-
ble, by looking for sequential NH-NH NOEs in a 15N-1H 
NOESY-HSQC taken at 600 MHz using a 15N-labelled 
sample.

Spectra were processed with NMRPipe (Delaglio et al. 
1995) and analysed with CCPN software (Vranken et al. 
2005), or with NMRView5 (Johnson and Blevins 1994) 
and UCSF SPARKY (Goddard and Kneller 2008).

In the titrations, small aliquots from a stock solution of 
89 mM sodium nicotinate in the same buffer as the protein, 
were added to (0.4 ml) of 0.53 mM protein. 1D 1H NMR 
spectra and 2D 15N-1H HSQC spectra were taken after 
each addition, using a Varian 600 MHz spectrometer at 

Fig. 1   Crystal structure of E. coli NfsB bound to nicotinate. Ribbon 
diagram of the 3D structure of E. coli NfsB bound to nicotinate (from 
1ICR (Lovering et  al. 2001)). One subunit is coloured  in rainbow 
colours, blue to red, from the N-terminus to the C-terminus, with the 
helices labelled A-K and the strands numbered 1–5. The other subunit 
is in beige and labelled A′-K′ and 1′-5′. The FMN cofactor and nico-
tinate are shown as sticks, with FMN carbon backbone in yellow, the 
nicotinate in grey and other atoms in CPK colours
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30 °C and, in a separate titration, at 35 °C. The concentra-
tion of ligand ranged from 0 to 8.9 mM. 15N-1H NOESY-
HSQC spectra, with a mixing time of 0.1 s, were taken 
before and after the titration. The spectra were assigned 
by following the shift changes over the titration at both 
temperatures and assignments confirmed, where possible, 
by comparing the 1H-15N-HSQC NOESY spectra of the 
protein with and without ligand. The changes in 15N shifts 
between the free protein and protein in the presence of 10 
equivalents of ligand were weighted by a factor of 0.15 
relative to the 1HN shifts as in Mulder et. al (Mulder et al. 
1999).

The shifts of each nicotinate proton (y) as a function of 
ligand concentration (x) were fitted to a simple hyperbola to 
estimate the bound shift (y0)

where a is the difference between the bound and the free 
shift and Kd is the apparent dissociation constant.

Extent of assignments and data deposition

Free protein

The expressed protein is a dimer with 216 residues per 
monomer, of which 9 are proline. The high molecular mass 
(48 kDa) meant that the protein needed to be deuterated 
for good signal in triple resonance experiments and the 
spectra were taken at relatively high temperature to reduce 
the rotational correlation time. Figure 2 shows the 1H-15N 
HSQC spectrum of the protein with the assignments. 200 
NH residues were assigned in the triple resonance spectra. 
NH peaks for the first residue Asp 2 (not expected), and for 
His 11, Thr 41, Asn 67, Asp 92, Ala 109, and Val 196 were 
not observed, while some other peaks had very low intensity 
in the spectra (Fig. 3a). Cα, Cβ and C′ peaks were assigned 
for all residues. These assignments have been deposited in 
the BioMagResBank, with ID 50476. 

In addition to the backbone resonances, NH peaks were 
assigned to the indole NH groups of the three tryptophan 
residues but were not assigned further. These are at 11.80, 
135.0; 9.93, 129.8; and 10.96, 130.7  ppm, 1H and 15N 
shift, respectively.

His 195 NH, which is hydrogen-bonded to Asp 160, and 
Ser 185 NH, which is hydrogen-bonded to Asp 163 and 
close to Phe 167, have 1H shifts greater than 10 ppm, and 

(1)y = y0 +
a ∗ x

Kd + x

Ser 185 also has a high 15N shift. Ala 78 NH is close to Phe 
16 which may cause its 1H shift close to 6 ppm. Met 75 NH 
has an unusually low 15N shift. It is close to the backbone 
carbonyl oxygen of both Glu 72 and Arg 73.

The secondary structure of the protein was determined 
based on the chemical shifts, using DANGLE (Cheung et al. 
2010) and agrees well with the crystal structure (1ICR (Lov-
ering et al. 2001)), Fig. 3b. The NH order parameters for the 
protein were also calculated from the chemical shifts, using 
the RCI method (Berjanskii and Wishart 2008) in TALOS-N 
(Shen and Bax 2013), Fig. 3c. Most of the order parameters 
are above 0.8, apart from a few residues in loops, suggesting 
that the protein is structurally quite rigid, as found for NOX 
(Miletti et al. 2011). The calculated order parameters do not 
suggest greater flexibility of helices E and F as shown by the 
B factors of the free protein (Parkinson et al. 2000) and by 
the molecular dynamics simulations (Merkley et al. 2010). 
Instead the low order parameters, Fig. 3b, seem to correlate 
with low NH peak intensities, Fig. 3a. This suggests that 
the weaker intensities for loop NH resonances are due to 
enhanced fast motion, and thus more NH exchange.

Nicotinic acid binding

The shifts of the aromatic protons of the ligand were fol-
lowed in 1D 1H NMR spectra taken on titration of nicotinate 
into 15N-labelled NfsB (Fig. 4a, Table 1), while the shifts of 
the amide groups were followed using 15N-1H HSQC experi-
ments. (Fig. 4b).

Three of the proton resonances of the ligand were in 
fast exchange, while one (H5, a triplet) was severely line-
broadened on binding and so only observed at relatively 
high concentrations of ligand. The nicotinate protons shift to 
lower frequency on binding, apart from the H2 which shows 
a slight shift to higher frequency. The nicotinic acid binds 
parallel to the FMN ring system, and the protons would be 
expected to be greatly affected by this, as well as by protein 
contacts.

For the protein, a few NH peaks were not observed and 
several peaks overlapped either in spectra taken in the 
absence of ligand, or taken in its presence. Where possible, 
the assignments of the ligand-bound protein were confirmed 
by comparing the 1H-15N-HSQC NOESY spectra of the pro-
tein with and without ligand. These assignments have been 
deposited in the BMRB under ID 50576.

Several amide resonances shifted on titration with nicoti-
nate and some changed intensity. Assignments of NH peaks 
from residues Ser 40, Phe 70, Glu 72, Phe 123, Phe 124, Asp 
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Fig. 2   1H-15N HSQC NMR spectrum of E. coli NfsB, taken at 
600  MHz and 35  °C, in 20  mM sodium phosphate buffer, pH 7.0, 
0.05  mM EDTA. a- full spectrum of the amide region, with NH 

assignments labelled, side chains are not assigned. Asterisks indicate 
overlapping peaks. b- inset of central region of the spectrum, with 
NH assignments
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135 and Val 162 remain tentative, because of peak overlap. 
The largest overall shift changes were seen at residues 165 
and 166, and between residues 120–129. Smaller, but sig-
nificant, shift changes were observed at Asn 42, Ser 43, Trp 
138, Val 188 and Asn 200 (Fig. 4b). The amino acids whose 
NH shifts were most affected by titration are shown in the 
crystal structure of the protein complex in Fig. 5. Changes in 
peak intensity, both increases and decreases, were observed 
for many resonances across the whole protein, often for 
amino acids in loops.

Nicotinic acid makes direct contact with Ser 40, Thr 41, 
Phe 124, Glu165, Gly 166, Leu 203 and the FMN cofac-
tor. Thr 41 was not identified in the spectrum, but Ser 40 
and residues 42 and 43 show significant shift changes and 
decrease in intensity on addition of nicotinate. Residues 
120–129 are in helix F, and the largest 15N shift changes in 
the protein are at residues 122, 124 and 125, at or near Phe 
124, the residue directly contacting the nicotinate. Glu 165 
and Gly 166 also form direct contacts with the ligand and 
show the largest weighted shift changes overall and large 
decreases in peak intensity. Leu 203 and Thr 202 show sig-
nificant 15N shifts, but little shift in 1H and hence a small 
weighted overall shift, however Asn 200, which contacts Thr 
202, among other residues, shows a larger 1H shift, giving a 
larger weighted overall shift on binding ligand, despite hav-
ing a small change in 15N shift. The other significant shifts 

are of Trp 138, which is in the active site and contacts Glu 
165 via the indole NH, and Val 188, which contacts Ile 164.

While the largest weighted overall shift changes in helix 
F are at residues 126 and 127, most of the residues of this 
helix, those from 116 to 129, show significant shifts in 1H 
or 15N. This suggests that this helix is affected by more than 
just direct interaction with the ligand, possibly a change in 
mobility as there is no change in the crystal structure of the 
protein with ligand. These residues are in the region with 
higher B factors in the crystal structure of the free protein.

Other residues that show a significant shift only in 15N 
on ligand binding include Tyr 68 and Asn 71 which are both 
close to Gly 166, while Ala 65 and Phe 70, which also shift, 
are close to Tyr 68. Tyr 68 is close to Phe 124 on the oppo-
site subunit, the residue that contacts the ligand directly. The 
side chains of Phe 124 and Tyr 68 are likely to control the 
entry of the ligands into the active site of the protein (Fig. 5). 
A wide range of mutations at both of these amino acids, as 
well as at Phe 70, enhance the activity of the protein for the 
bulky prodrug CB1954 (Grove et al. 2003; Race et al. 2007). 
The residues Glu 165, Trp 138 and Ser 40 have recently been 
proposed to be important in catalysis in Enterobacter cloa-
cae nitroreductase, in stabilising a bound water molecule in 
the correct orientation for donation of a proton in the reduc-
tion mechanism, while His 128 binds the nitro group to be 
reduced (Christofferson 2020). The shift changes observed 
further from the direct site of binding may therefore reflect 
motions affecting ligand binding and ultimately catalysis.
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Fig. 3   NH Peak volumes, secondary structure and S2 values of E. coli 
NfsB, based on the chemical shifts. a Relative peak volumes from 
a 3D HNCO spectrum of E. coli NfsB, taken at 600 MHz and 35 °C, 
in 20 mM sodium phosphate buffer, pH 7.0, 0.05 mM EDTA. Centre- 
Secondary structure from the X-ray crystal structure of the protein, 
from 1ICR (Lovering et al. 2001)- helices shown in grey boxes labelled 
with letters, strands shown in white boxes with numbers. b Compari-
son of secondary structure of the free E. coli NfsB determined from the 
chemical shifts by the program DANGLE (Cheung et al. 2010) and that 
determined by X-ray crystallography from 1ICR (Lovering et al. 2001). 
Circles, phi angle, triangles psi angle, grey symbols values from DAN-
GLE, white symbols values from 1ICR. c S2 values for the NH groups 
based on the chemical shifts, calculated using the RCI method (Berjan-
skii and Wishart 2008) in TALOS-N (Shen and Bax 2013)

◂

Fig. 4   Shifts on binding nicotinate. a Chemical shifts of nicotinate 
on titration into E. coli NfsB. The initial protein concentration was 
0.53 mM. Aliquots from a stock solution of 89 mM sodium nicotinate 
in the same buffer as the protein, were added to 0.4 ml protein solu-
tion. Shifts were followed by 1D 1H NMR spectra after each addition, 
using a Varian 600 MHz spectrometer at 30 °C. The final symbols are 
those of the free ligand in the same buffer. Black circles- H2, white 

circles H6, black inverted triangle H4, white triangle H5. Lines show 
the fit of the data to hyperbolas (Eq. 1). b Changes in NH chemical 
shifts between free protein and protein containing 10 equivalents of 
nicotinate. Positive values, absolute value of 0.15 times the difference 
in 15N shift. Negative values: absolute values of changes in the 1H 
shift. Below: secondary structure from 1ICR- helices shown in grey 
boxes labelled with letter, strands shown in white boxes with numbers

Table 1   Estimated bound shifts, and apparent dissociation constants 
for Nicotinate, using fit of shifts to the equation for a simple hyper-
bola

Proton Estimated bound shift Estimated change 
in shift on binding

Apparent Kd

(ppm) (ppm) (mM)
H2 8.87 ± 0.05 0.050 ± 0.003 3.0 ± 0.8
H6 7.84 ± 0.04 0.83 ± 0.02 2.2 ± 0.4
H4 7.92 ± 0.02 0.35 ± 0.01 1.9 ± 0.3
H5 7.2 ± 0.2 0.3 ± 0.1 2.5 ± 4
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Conclusion

We present nearly complete backbone assignments of E. coli 
NfsB, a 48 kDa homodimeric flavoprotein. The secondary 
structure from the chemical shifts are in good agreement 
with the crystal structure of the free protein, and the NH 
resonances most affected by nicotinate binding are at the 
binding site of the ligand. Additional chemical shift changes 
on ligand binding are seen further from the immediate bind-
ing site which may reflect other motions. These studies lay 
the foundations for studies of the dynamics of the protein or 
of other ligands binding to the protein in solution.
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