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RESTRICTED SHIFTED YANGIANS AND RESTRICTED

FINITE W -ALGEBRAS

SIMON M. GOODWIN AND LEWIS TOPLEY

Abstract. We study the truncated shifted Yangian Yn,l(σ) over an alge-
braically closed field k of characteristic p > 0, which is known to be isomorphic
to the finite W -algebra U(g, e) associated to a corresponding nilpotent element
e ∈ g = glN (k). We obtain an explicit description of the centre of Yn,l(σ),
showing that it is generated by its Harish-Chandra centre and its p-centre.

We define Y
[p]
n,l (σ) to be the quotient of Yn,l(σ) by the ideal generated by the

kernel of trivial character of its p-centre. Our main theorem states that Y
[p]
n,l (σ)

is isomorphic to the restricted finite W -algebra U [p](g, e). As a consequence
we obtain an explicit presentation of this restricted W -algebra.

1. Introduction

Let G be a reductive algebraic group over an algebraically closed field k of
characteristic p > 0, with Lie algebra g = LieG. The centre of U(g) admits a
large p-centre Zp(g) which is G-equivariantly isomorphic to the coordinate ring of
(the Frobenius twist of) g∗. For χ ∈ g∗ the reduced enveloping algebra Uχ(g), is
defined to be the quotient of U(g) by the ideal generated by the maximal ideal
of Zp(g) corresponding to χ. The most important aspects of the representation
theory of g are understood by studying Uχ(g)-modules, and the early work of Kac–
Weisfeiler, in [KW], shows that it suffices to consider the case χ nilpotent, meaning
χ identifies with a nilpotent element e ∈ g under some choice of G-equivariant
isomorphism g ∼= g∗ (we assume the standard hypotheses). We refer to [Ja] for a
survey of this theory up to 2004, and also to [BM] for major developments based
on deep connections with the geometry of Springer fibres. In [Pr1] Premet made a
significant breakthrough: he showed that any such Uχ(g) is Morita equivalent to a

certain algebra U [p](g, e), now known as the restricted finite W -algebra.
In this paper, we consider the case G = GLN (k), so that g = glN (k). Our

main theorem provides an explicit presentation for the restricted finite W -algebra
U [p](g, e). This is achieved by exhibiting an isomorphism with a restricted version
of a truncated shifted Yangian, as stated in Theorem 1.1 below. In future work we
will employ this presentation in studying the representation theory of Uχ(g). The
fundamental advantage of studying Uχ(g)-modules via these Yangians is that the

rank of the Yangian associated to U [p](g, e) corresponds to the number of Jordan
blocks of the nilpotent p-character. For example, the g-modules with a two-block
nilpotent p-character are described via a Yangian that is computationally accessible.
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Before we proceed, we recall some relevant history. In [Pr1, Section 4] Premet
constructed finite W -algebras over fields of characteristic zero, and since then these
algebras have found many deep applications to classical problems surrounding the
representations of complex semisimple Lie algebras; see [Pr3] and [Lo] for surveys
on this theory.

In [BK1], Brundan–Kleshchev made a breakthrough by providing a presentation
of the complex finite W -algebra for the case g = glN (C) by defining an explicit
isomorphism with a certain quotient of a shifted Yangian. This allowed them to
make an extensive study of the representation theory of these finite W -algebras in
[BK2].

Building on Premet’s seminal work using the method of modular reduction of
finiteW -algebras, first considered in [Pr2] and exploited further in [Pr4], the authors
developed a direct approach to theory of finite W -algebras U(g, e) over k in [GT1].
Very briefly, for a choice of nilpotent e ∈ g corresponding to χ ∈ g∗, the algebra
U(g, e) is a filtered deformation of a good transverse slice χ + v̌ to the coadjoint
orbit G ·χ. Further, U(g, e) admits a p-centre Zp(g, e) isomorphic to the coordinate

algebra of (the Frobenius twist of) χ+v̌. Then the restricted W -algebra U [p](g, e) is
the quotient of U(g, e) by the ideal generated by the ideal of Zp(g, e) corresponding
to χ.

In joint work with Brundan [BT] the second author developed the theory of
shifted Yangians Yn(σ) over k. One of the key features which differs from char-
acteristic zero is the existence of a large central subalgebra Zp(Yn(σ)), called the
p-centre, which is constructed using some very natural power series formulas.

In subsequent work [GT2], the authors showed that Brundan–Kleshchev’s iso-
morphism descends to positive characteristic. To explain this, we require a little
notation, and from now on we take g = glN (k). To each nilpotent element e ∈ g

with Jordan type p = (p1 ≤ · · · ≤ pn), we may associate a choice of shift matrix
σ = (si,j)1≤i,j≤n, and thus a shifted Yangian Yn(σ), which is a subalgebra of the
Yangian Yn. The beautiful formulas introduced in [BK1] lead to a surjective algebra

homomorphism φ̃ : Yn(σ) → U(g, e). Unsurprisingly the kernel of φ̃ has the same
description as in characteristic zero, and so there is an isomorphism

φ : Yn,l(σ)
∼−→ U(g, e),

where Yn,l(σ) is the truncated shifted Yangian of level l, first defined in character-
istic zero in [BK1, Section 6].

Making use of the explicit presentation of U(g, e) obtained through the isomor-
phism φ, it was proved in [GT2] that every Uχ(g)-module of minimal dimension
is parabolically induced. This result is a modular analogue of Mœglin’s famous
theorem on completely prime primitive ideals, see [Mœ], and some of our methods
adapt those in the proof given by Brundan in [Br].

In this paper we define the p-centre Zp(Yn,l(σ)) of Yn,l(σ) to be the image of
Zp(Yn(σ)) under the quotient map Yn(σ) � Yn,l(σ). This leads to a restricted

truncated shifted Yangian Y
[p]
n,l (σ) by taking the quotient of Yn,l(σ) by the ideal

generated by the generators of Zp(Yn,l(σ)).
We emphasise here that the origin of Zp(Yn(σ)) is totally distinct from the con-

struction of Zp(g, e). Nevertheless, our main theorem states that the isomorphism
φ factors through the restricted quotients.
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Theorem 1.1. The isomorphism φ : Yn,l(σ)
∼−→ U(g, e) factors to an isomorphism

φ[p] : Y
[p]
n,l (σ)

∼−→ U [p](g, e).

Since Y
[p]
n,l (σ) is defined by generators and relations, the above theorem provides

an explicit presentation for U [p](g, e).
The main ingredients of the proof are a detailed study of the centres of Yn,l(σ)

and U(g, e) together with an analysis of highest weight modules for both algebras.
We emphasise that Theorems 4.2 and 4.7 are significant results in their own right,
describing the structures of the centres of Yn,l(σ) and U(g, e) explicitly. Further-
more, we expect the development of highest weight modules in Section 5 will play
an important role in future work.

Below we give an outline of the paper, in which we point out the most important
steps.

In Section 2, we recall some relevant preliminaries, and introduce the combinato-
rial notation that we require. There are new results in §2.6, where we consider the
centre Z(ge) of the universal enveloping algebra of the centralizer of e. In particu-
lar, we use [BB] to give precise formulas for the generators of Z(ge), sharpening the
main results of [To]. Also in §2.7, we observe that ge is isomorphic to a truncated
shifted current Lie algebra, which is helpful later in the sequel.

In Section 3, we recall the structural features of the shifted Yangian Yn(σ) and
the finite W -algebra U(g, e), drawing on [BT], [GT1] and [GT2]. The key tools in-
troduced here are the various filtrations on these algebras, and a precise description
of their associated graded algebras. We also recall the definition of the map φ̃ lying
at the core of our main theorem. In §3.3 we introduce the truncation Yn,l(σ) at level
l, and use the shifted current algebra to simplify the proof of the PBW theorem
for Yn,l(σ), see Theorem 3.1. The main benefit of this slight simplification is that
we may then apply the same argument to the integral forms of the Yangian and
truncated shifted Yangian Y Z

n (σ) and Y Z

n,l(σ). These integral forms, introduced in
§3.4, are useful tools in some of our later proofs as they allow us to reduce modulo
p certain formulas from the characteristic zero case, see Corollary 3.4. We expect
these forms to find some independent interest, beyond the purposes of the present
article.

Section 4 is devoted to describing the centres of Yn,l(σ) and U(g, e). Our re-
sults are perfect analogues of Veldkamp’s classical description of the centre Z(g)
of U(g); see for example [BG, Theorem 3.5] and the references there. We give
definitions of the Harish-Chandra centres of Yn,l(σ) and U(g, e); these are denoted
by ZHC(Yn,l(σ)) and ZHC(g, e), and they are defined so that they “lift” the centre
in characteristic zero. The p-centres Zp(Yn,l(σ)) and Zp(U(g, e)) of Yn,l(σ) and
U(g, e) are also introduced here. In Theorem 4.2 we give a detailed description
of the centre of Yn,l(σ), in particular showing that is generated by Zp(Yn,l(σ))
and ZHC(Yn,l(σ)). The next significant result is Theorem 4.7 in which we deduce
an analogous result for the centre Z(g, e) of U(g, e). We mention that in recent
work, Shu–Zeng have stated a more general result about the centre of modular
finite W -algebras associated to arbitrary connected reductive groups, under certain
hypotheses, see [SZ, Theorem 1]. The more detailed description we give here is a
necessary step in the proof of our main theorem, and will play a role in future work.
A precise description of a set of generators for Zp(g, e) is given in §4.4, and this is
important in the sequel. We also draw attention to Corollary 4.5 which shows that
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φ preserves the Harish-Chandra centres. In §4.3 and §4.5 we discuss the restricted

quotients Y
[p]
n,l (σ) and U [p](g, e) and their PBW bases.

In Section 5 we develop some highest weight theory for Yn,l(σ) and study the
action of U(g, e) on highest weight modules through the Miura map. One of the
key ingredients of this theory is the use of a certain torus acting by automorphisms
on both algebras, which is explained in detail in §5.1. The key results after that
are Lemmas 5.4 and 5.6(c) which describe how the generators of the p-centres
Zp(Yn,l(σ)) and Zp(g, e) act on highest weight modules. Other important results
for us are Corollaries 5.5 and 5.7, which concern analogues of Harish-Chandra
homomorphisms for Yn,l(σ) and U(g, e).

Finally, in Section 6, we combine our results to observe that the generators of
φ(Zp(Yn,l(σ))) act on highest weight vectors in precisely the same manner as the
generators for Zp(g, e). We use results from Section 5 to show that the ideal of
Yn,l(σ) generated by the kernel of the trivial character of Zp(Yn,l(σ)) is mapped to
the ideal of U(g, e) generated by the kernel of the trivial character of Zp(g, e), and
the main theorem follows quickly. We remark that our proof does not show that
φ : Zp(Yn,l(σ)) → Zp(g, e), and so it remains an interesting open problem to decide
if these centres really do line up.

2. Preliminaries and recollection

Throughout this paper, let p ∈ Z≥1 be a prime number, let Fp be the field of p
elements and let k be an algebraically closed field of characteristic p.

2.1. A useful identity. We require a standard identity in the polynomial ring k[t]
for the proof of Lemma 5.4, and we recall it here. Each x ∈ Fp satisfies xp − x = 0,
so for an indeterminate t, we deduce that

(2.1)

p−1∏
j=0

(t− j) = tp − t

in Fp[t]. More generally, for any a ∈ k, we have the following equality in k[t]

(2.2)

p−1∏
j=0

(t− a− j) = (t− a)p − t− a = tp − t− (ap − a).

Observe that for 1 ≤ r ≤ p the coefficient of tp−r in the left hand side of (2.1) is
(−1)rer(0, 1, . . . , p− 1), where er(t1, . . . , tp) denotes the rth elementary symmetric
polynomial in indeterminates t1, . . . , tp. It follows that er(0, 1, . . . , p− 1) = 0 in Fp

for r = 1, . . . , p− 2; this gives a short alternative proof of [BT, Lemma 2.7].

2.2. Some standard results on algebras and modules. We require a few el-
ementary results from commutative and non-commutative algebra, which we state
and prove for the reader’s convenience. The first lemma is well-known. Let A be
a commutative k-algebra and B,C ⊆ A subalgebras. If A is generated by B ∪ C
then it follows that there is a surjective homomorphism φ : B ⊗B∩C C � A.

Lemma 2.1. Suppose that there exist elements c1, . . . , cm ∈ C such that:

(a) the B-module generated by c1, . . . , cm is free on c1, . . . , cm; and
(b) C is generated by c1, . . . , cm as a B ∩ C-module.

Then φ : B ⊗B∩C C
∼−→ A is an isomorphism.
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Proof. We just have to prove that φ is injective, so we let y ∈ kerφ. It follows from
(b) that y =

∑m
i=1 bi ⊗ ci, for some bi ∈ B. Then we have 0 = φ(y) =

∑m
i=1 bici,

and this implies bi = 0 for all i = 1, . . . ,m by (a), so that y = 0. �

The next result concerns free modules for a commutative k-algebra A. It is
well-known that a surjective endomorphism of a finitely generated A-module is
an isomorphism; this can be proved using Nakayama’s lemma, see for example
[Ma, Theorem 2.4].

Lemma 2.2. Let M be a free A-module of rank n and let m1, . . . ,mn ∈ M . Suppose
that M is generated by m1, . . . ,mn as an A-module. Then M is free on m1, . . . ,mn.

Proof. Let x1, . . . , xn ∈ M be free generators of M as an A-module. Consider
the endomorphism θ : M → M defined by θ(xi) = mi. Since M is generated by
m1, . . . ,mn, we have that θ is surjective, and thus an isomorphism. Hence, M is
free on m1, . . . ,mn. �

The final result in this subsection is required several times in the sequel, and
included for convenience of reference. Let A be a non-negatively filtered (not nec-
essarily commutative) k-algebra with filtered pieces FiA for i ∈ Z≥0. Also let M be
a non-negatively filtered A-module with filtered pieces FiM for i ∈ Z≥0. We write
grA for the associated graded algebra of A and grM for the associated graded
module of M . If m ∈ FiM then the notation gri m := m + Fi−1M ∈ grM is
used throughout the paper. The following lemma can be proved with a standard
filtration argument.

Lemma 2.3. Suppose that grM is free as a graded grA-module with homogeneous
basis {grdi

mi | i ∈ I}, where I is some index set, di ∈ Z≥0 and mi ∈ Fdi
M . Then

M is a free A-module with basis {mi | i ∈ I}.

2.3. Algebraic groups and restricted Lie algebras. We introduce some stan-
dard notation for algebraic groups and their Lie algebras, which is used in the
sequel. Let H be a linear algebraic group over k, and let h = LieH be the Lie
algebra of H. We write U(h) for the universal enveloping algebra of h, and Z(h) for
the centre of U(h). We denote the ith filtered piece of U(h) in the standard PBW
filtration by FiU(h). The associated graded algebra grU(h) is identified with S(h),
the symmetric algebra of h.

The adjoint action of H on h extends to an action on U(h). Also S(h) has
adjoint actions of H and h. We use the standard notation (h, u) 
→ Ad(h)u and
(x, u) 
→ ad(x)u for these actions, where h ∈ H, x ∈ h, and u ∈ U(h) or u ∈ S(h).
For a closed subgroup K of H and K-stable subspace A of U(h) or of S(h), we
write AK for the invariants of K in A and Ak for the invariants of k in A. Given
x ∈ h, we write hx for the centralizer of x in h, and we write Hx for the centralizer
of x in H.

We have that h is a restricted Lie algebra and we write x 
→ x[p] for the p-
power map. The p-centre of U(h) is the subalgebra Zp(h) of Z(h) generated by

{xp−x[p] | x ∈ h}. There is a H-equivariant isomorphism ξ = ξh : S(h)(1) → Zp(h),

determined by ξh(x) = xp −x[p] for x ∈ h; here S(h)(1) denotes the Frobenius twist
of S(h).

2.4. Combinatorial notation. We require various pieces of combinatorial nota-
tion, which we set out below.
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By a composition we simply mean a sequence q = (q1, q2, . . . ), where qi ∈ Z≥0

and only finitely many are nonzero. When q is a composition, l ∈ Z≥0 and qi = 0 for
all i > l, we write q = (q1, . . . , ql). Given a composition q, we define |q| =

∑
i≥1 qi

and say that q is a composition of |q|. Also we define �(q) = |{i ∈ Z≥1 | qi > 0}|. In
this paper a composition p is called a partition if 0 < pi ≤ pi+1 for all 1 ≤ i < �(p).
Given two compositions m and p, we say that m is a subcomposition of p if mi ≤ pi
for all i ∈ Z≥1, and in this case we write m ⊆ p.

Let n ∈ Z≥0. By a shift matrix of size n we mean a n×n matrix σ = (si,j) with
entries in Z≥0 such that si,j = si,k + sk,j whenever i ≤ k ≤ j, or i ≥ k ≥ j. We
note that this implies that si,i = 0 for all i, and that σ is completely determined
by the entries si,i+1 and si+1,i for i = 1, . . . , n− 1.

Let N ∈ Z≥0 and let q = (q1, . . . , ql) be a composition of N such that for some
j we have 0 < q1 ≤ · · · ≤ qj ≥ · · · ≥ ql > 0, and let n := qj = maxi qi. We define
the pyramid π = π(q) to be the diagram made up of N boxes stacked in columns
of heights q1, . . . , ql. We let p = p(q) be the partition of N giving the row lengths
of π from top to bottom; note that the number pn = l is often referred to as the
level. The boxes in π are labelled with 1, . . . , N along rows from left to right and
from top to bottom. The columns of π are labelled 1, 2, . . . , l from left to right and
the rows are labelled 1, 2, . . . , n from top to bottom. The box in π containing i is
referred to as the ith box, and we write row(i) and col(i) for the row and column of
the ith box respectively. We define the shift matrix σ = σ(q) from π by setting sj,i
to be the left indentation of the ith row of π relative to the jth row, and si,j to be
the right indentation of the ith row of π relative to the jth row, for 1 ≤ i ≤ j ≤ n.

As an example we consider q = (1, 3, 3, 2, 1). The pyramid is

π =

1 2
3 4 5

6 7 8 9 10
.

Then we obtain the partition p = (2, 3, 5), and the shift matrix

σ =

⎛
⎝ 0 1 2

0 0 1
1 1 0

⎞
⎠ .

Evidently the data encoded in the composition q is equivalent to the data given
by the pyramid π. We have explained how to construct a shift matrix and a level
(σ, l) from a pyramid. To complete the picture we observe that we can build the
pyramid π from knowledge of (σ, l), by starting with a bottom row of length l,
and indenting the higher rows according to σ. The partition p can be explicitly
recovered from (σ, l) by the rule

(2.3) pi := l − si,n − sn,i

Therefore, the combinatorial data q, π and (σ, l) are all equivalent.
Let π = π(q) be a pyramid. A π-tableau is a diagram obtained by filling the

boxes of π with elements of k. The set of all tableaux of shape π is denoted Tabk(π).
For A ∈ Tabk(π), we write ai for the entry in the ith box of A; alternatively we
sometimes write ai,1, . . . , ai,pi

for the entries in the ith row of A from left to right.
Two π-tableaux are called row-equivalent if one can be obtained from the other by
permuting the entries in the rows.
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2.5. Nilpotent elements in glN (k) and their centralizers. Let π be a pyramid
with partition p = (p1, . . . , pn), such that |p| = N . LetG = GLN (k), so g = glN (k),
which is a restricted Lie algebra with p-power map given by the pth matrix power.
We write {ei,j | 1 ≤ i, j ≤ N} for the standard basis of g consisting of matrix units.

The pyramid π is used to determine the nilpotent element

(2.4) e :=
∑

row(i)=row(j)
col(i)=col(j)−1

ei,j ∈ g,

which has Jordan type p. Note that e depends only on p and not the choice of
pyramid π.

The centraliser ge of e in g has a basis

(2.5) {c(r)i,j | 1 ≤ i, j ≤ n, si,j ≤ r < si,j + pmin(i,j)}

where

c
(r)
i,j :=

∑
1≤h,k,≤N

row(h)=i,row(k)=j
col(k)−col(h)=r

eh,k ∈ glN .

This is stated for example in [GT2, Lemma 2.1], although we warn the reader that
the notation used here and there differs by a shift by one in the superscripts. In
[GT2, Lemma 2.1] it is also stated that the Lie brackets are given by

(2.6) [c
(r)
i,j , c

(s)
k,l ] = δj,kc

(r+s)
i,l − δi,lc

(r+s)
k,j .

It is straightforward to see that the p-power map on ge is given by

(2.7) (c
(r)
i,j )

[p] = δi,jc
(rp)
i,j .

To make sense of these formulas we adopt the convention, here and throughout,

that c
(r)
i,j = 0 when r ≥ si,j + pmin(i,j).

We note here that the labelling of the basis of ge given in (2.5) does depend
on the choice of pyramid π. However, the elements in the basis only depends on
the partition p, and relabelling between different choices of pyramids just involves
shifting the superscripts.

2.6. The centre of the enveloping algebra of the centralizer. We now go
on to describe the centre Z(ge) of U(ge). Such a description was first obtained
by the second author in [To], however we need a much more precise formulation
of this result which is compatible with the theory of Yangians. As such we draw
heavily on the description of Z(ge) given by Brown–Brundan [BB, Main theorem] in
characteristic zero. In loc. cit., the statement is given for the case that the pyramid
π is left justified, which is equivalent to the condition that σ is upper triangular.
From there it is easy to deduce a description of Z(ge) in terms of the basis of ge

corresponding to any pyramid, as this involves is a trivial change of notation. For
this reason we assume that π is left justified up to and including Lemma 2.4, so
that our notation is aligned with that of [BB].

We begin by stating some formulas for elements of U(ge) which appeared in
[BB, (1.3)] over C. Define the elements

c̃
(r)
i,j := c

(r)
i,j − δr,0δi,j(i− 1)pi ∈ U(ge)
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over the indexing set {(i, j, r) | 1 ≤ i, j ≤ n, 0 ≤ r < pmin(i,j)}. Then define the
sequence

(2.8) (d1, . . . ., dN ) = (1, . . . ., 1︸ ︷︷ ︸
pn times

, 2, . . . , 2︸ ︷︷ ︸
pn−1 times

, . . . , n, . . . , n︸ ︷︷ ︸
p1 times

).

This sequence is known to give the total degrees of a set of homogeneous generators
of S(ge)G

e

, as is explained in [To, Section 3].
For a subcomposition m of p such that �(m) = d|m|, with nonzero entries

mi1 , . . . ,mid , where d = d|m| we define the m-column determinant of (c̃
(r)
i,j ) to be

(2.9) cdetm(c̃
(r)
i,j ) =

∑
w∈Sd

sgn(w)c̃
(mi1

−1)
iw1,i1

· · · c̃(mid
−1)

iwd,id
,

where Sd denotes the symmetric group of degree d. It is shown in [BB, Lemma

3.8] that all c̃
(mij

−1)

iwj ,ij
involved in the above definition of cdetm(c̃

(r)
i,j ) are defined, i.e.

that siwj ,ij = pij − pmin(iwj ,ij) < mij ≤ pij = piwj + siwj ,ij .
Finally for s = 1, . . . , N we define

(2.10) zs :=
∑
m⊆p

|m|=s, �(m)=ds

cdetm(c̃
(r)
i,j ).

We move on to state Lemma 2.4, which can essentially be deduced from [To,
Theorem 3]. As our statement is slightly different and more explicit, we include an
outline of the proof.

Lemma 2.4.

(a) The elements z1, . . . , zN are algebraically independent generators of U(ge)G
e

;

(b) Z(ge) is a free Zp(g
e)-module of rank pN with basis {zk1

1 · · · zkN

N | 0 ≤ ki <

p}, and ZHC(g
e) is a free Zp(g

e)G
e

-module with the same basis.

(c) The multiplication map Zp(g
e) ⊗Zp(ge)Ge U(ge)G

e → Z(ge) is an isomor-
phism.

Proof. We begin the proof by briefly considering the situation when k has char-
acteristic 0. In this case, using the fact that Ge is connected, we have that
Z(ge) = U(ge)G

e

. Since π is assumed to be left justified, the statement (a) in
characteristic 0 is precisely [BB, Main Theorem]. Now a reduction modulo p ar-
gument, identical to that given in the proof of [To, Corollary 1], can be used to
deduce that zs ∈ U(ge)G

e

for k of characteristic p.
By the definition given in (2.10) we have that zs ∈ Fds

U(ge) in the PBW filtra-
tion, for all s, and

grds
zs =

∑
m⊆p

|m|=s, �(m)=ds

cdetm(c
(r)
i,j ) ∈ S(ge).

In [To, Theorem 9] it was demonstrated that {grds
zs | s = 1, . . . , N} are alge-

braically independent generators of S(ge)G
e

. We should warn the reader that the
notation in loc. cit. was different: the partition p was denoted λ, the element

c
(r)
i,j was denoted ξ

i,r+pj−pi

j , and the notation xs was used to denote the element
determined by the formula for grds

zs above. Now standard filtration arguments

show that z1, . . . , zN are algebraically independent, and generate U(ge)G
e

. This
completes the proof of (a).
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Taking associated graded algebras we have grZp(g
e) = S(ge)p and grZ(ge) ⊆

S(ge)g
e

, however this inclusion is actually an equality thanks to the proof of
[To, Theorem 3]. It follows from [To, Theorem 9] that {(grd1

z1)
k1 · · · (grdN

zN )kN |
0 ≤ ki < p} generates S(ge)g

e

as a S(ge)p-module. and also that S(ge)g
e

is free
of rank pN over S(ge)p. Therefore, {(grd1

z1)
k1 · · · (grdN

zN )kN | 0 ≤ ki < p}
is in fact a basis of S(ge)g

e

over S(ge)p by Lemma 2.2. Now we can use that

(grd1
z1)

k1 · · · (grdN
zN )kN = grk1d1+···+kNdN

(zk1
1 · · · zkN

N ) for any choice of k1, . . . , kN
and apply Lemma 2.3 to obtain the first assertion in (b).

Next we observe that U(ge)G
e ∩ Zp(g

e) = Zp(g
e)G

e

, and that grZp(g
e)G

e

=

(S(ge)G
e

)p. It is clear that S(ge)G
e

is free as an (S(ge)G
e

)p-module with basis

{gr zk1
1 · · · gr zkN

N | 0 ≤ ki < p}. Therefore, using Lemma 2.3, we deduce that

U(g)G
e

is free as a Zp(g
e)G

e

-module with basis {zk1
1 · · · zkN

N | 0 ≤ ki < p} giving
the second assertion in (b). Now we can apply Lemma 2.1 to obtain (c). �

We consider the special case where e = 0, i.e. when p = (1, . . . , 1). Here we
can be more explicit about the generators of U(g)G as we explain below, where we
observe that these generators arise from the Capelli identity. These generators of
U(g)G are well-known in characteristic zero, see for example [BK2, §3.8], and we
expect it is also known in positive characteristic, so we just give a short justification
for convenience.

Recall that the column determinant cdet(A) of a square N × N -matrix A =
(ai,j)1≤i,j≤N with coefficients in an associative algebra is defined by

(2.11) cdet(A) =
∑

w∈SN

sgn(w)aw(1),1 · · · aw(N),N .

Let u be a formal variable and consider the determinant

Z∗(u) = uN +

N∑
r=1

Z(r)uN−r

:= cdet

⎛
⎜⎜⎜⎝

e1,1 + u e1,2 · · · e1,N
e2,1 e2,N−1 + u− 1 · · · e2,N
...

...
. . .

...
eN,1 eN,2 · · · eN,N + u−N + 1

⎞
⎟⎟⎟⎠ ,(2.12)

where the entries of the matrix are considered as elements of U(g)[u].
For m ⊆ p, we let z0m be the matrix formed by the rows and columns indexed

by the set of i such that mi = 1 of the matrix appearing in (2.12), after replacing
a diagonal entry ei,i + u − i + 1 by ei,i − i + 1. Using the formula for calculating
the column determinant in (2.11) we can get the decomposition

Z∗(u) =
∑
m⊆p

uN−|m| cdet z0m.

Now we observe that cdet z0m is equal to cdetm(c̃
(r)
i,j ) as defined in (2.9), noting that

in the present case where p = (1, . . . , 1), we have c̃
(0)
i,j = ei,j − δi,j(i− 1).

Putting this all together, we can deduce that zr as defined in (2.10) is equal to
Z(r) as defined in (2.12). Consequently, the statements in Lemma 2.4 hold for U(g)
with Z(r) in place of zr.
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We return to the case of general e, and we record an important technical lemma
characterising the p-centre of U(ge), which is crucial to our later arguments. Before
this is stated in Lemma 2.5, we need to give some more notation. We let π be the
pyramid obtained from π by adding an extra row on the bottom with pn boxes.
Then let g = glN+pn

(k), and let e ∈ g be the nilpotent element corresponding

to π. The centralizer g
e has basis given by {c(r)i,j | 1 ≤ i, j ≤ n + 1, si,j ≤ r <

si,j + pmin(i,j)}, where we extend the notation used in (2.5), setting pn+1 := pn.
Inspecting (2.6) and (2.7) we see that ge identifies naturally with a restricted sub-
algebra of g

e. In slightly more detail we have ge ⊆ glN , g
e ⊆ glN+pn

and the

inclusion ge ⊆ g
e is induced by the top left embedding of matrices glN ⊆ glN+pn

.

Lemma 2.5. Zp(g
e) = U(ge) ∩ Z(U(ge)).

Proof. Clearly we have Zp(g
e) ⊆ U(ge) ∩ Z(U(ge)). Suppose that this inclusion

is strict and let z ∈ U(ge) ∩ Z(U(ge)) \ Zp(g
e) such that z ∈ FdU(ge) with d as

small as possible. If grd z = yp ∈ S(ge)p where y ∈ S(ge), then z − ξge(y) ∈
U(ge) ∩ Z(U(ge)) \ Zp(g

e) and z − ξge(y) ∈ Fd−1U(ge). Thus we have that grd z ∈
S(ge) ∩ S(ge)g

e \ S(ge)p �= ∅.

Let y ∈ S(ge) ∩ S(ge)g
e \ S(ge)p. Since S(ge) is a free S(ge)p-module we may

define I = {(i, j, r) | 1 ≤ i, j ≤ n, si,j ≤ r < si,j + pmin(i,j)}, and write y =∑
m fm

∏
(i,j,r)∈I(c

(r)
i,j )

m(i,j,r), for certain elements fm ∈ S(ge)p, where the sum

is taken over all maps m : I → {0, . . . , p − 1}. Since y /∈ S(ge)p there exists
an m0 : I → {0, . . . , p − 1} and a tuple (i0, j0, r0) ∈ I such that fm0

�= 0 and
m0(i0, j0, r0) �= 0. Using (2.6) we can write

ad
(
c
(sn+1,i0

)
n+1,i0

)
y

= fm0
m0(i0, j0, r0)c

(sn+1,i0
+r0)

n+1,j0
(c

(r0)
i0,j0

)m0(i0,j0,r0)−1
∏

(i0,j0,r0) 	=(i,j,r)

(c
(r)
i,j )

m0(i,j,r)

+ fm0
(c

(r0)
i0,j0

)m0(i0,j0,r0) ad
(
c
(sn+1,i0

)
n+1,i0

) ∏
(i0,j0,r0) 	=(i,j,r)

(c
(r)
i,j )

m0(i,j,r)

+
∑

m 	=m0

fm ad
(
c
(sn+1,i0

)
n+1,i0

) ∏
(i,j,r)∈I

(c
(r)
i,j )

m(i,j,r).

Since r0 ≤ si0,j0 + pmin(i0,j0) and sn+1,i0 + si0,j0 ≤ sn+1,j0 it follows that sn+1,i0 +

r0 ≤ sn+1,j0 + pmin(n+1,j0). In particular, c
(sn+1,i0

+r0)
n+1,j0

�= 0 and so the summand

occurring in the first line of the above expression for ad(c
(sn+1,i0

)
n+1,i0

)y is non-zero.
Now it remains to observe that the non-zero monomial summands occurring in the
expressions

{ad
(
c
(sn+1,i0

)
n+1,i0

) ∏
(i,j,r)∈I

(c
(r)
i,j )

m(i,j,r) | m : I → {0, 1, . . . , p− 1}}

are all distinct; this follows readily from (2.6). We conclude that ad(c
(sn+1,i0

)
n+1,i0

)y �= 0

which contradicts the assumption y ∈ S(ge)g
e

.

This contradiction confirms that the inclusion Zp(g
e) ⊆ U(ge) ∩ Z(U(ge)) is

actually an equality. �
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2.7. The truncated shifted current Lie algebra. Let n ∈ Z≥0. The current
Lie algebra of gln(k) is the Lie algebra cn := gln(k) ⊗ k[t]. For x ∈ gln(k) and
f ∈ k[t] we abbreviate our notation by writing xf for x⊗ f ∈ cn, and observe that
cn has a basis

{ei,jtr | 1 ≤ i, j ≤ n, r ≥ 0},
The commutator between basis elements is given by

(2.13) [ei,jt
r, ek,lt

s] = (δj,kei,l − δi,lek,j)t
r+s.

We have that cn is a restricted Lie algebra with the p-power map defined by
(xf)[p] := x[p]fp for x ∈ gln(k) and f ∈ k[t], see for example [BT, Lemma 3.3].
So in particular the p-power map is given on the basis of cn by

(2.14) (ei,jt
r)[p] = δi,jei,jt

pr.

Now let σ = (si,j) be any shift matrix of size n. The shifted current Lie algebra
is defined to be the subspace cn(σ) of cn spanned by

(2.15) {ei,jtr | 1 ≤ i, j ≤ n, r ≥ si,j}.
It is observed in [BT, Lemma 3.3] that cn(σ) is a restricted Lie subalgebra of cn.

We fix an integer l > s1,n+sn,1 which we call the level, following the terminology
of §2.4. Then using (2.3) we define the partition p = (p1, . . . , pn) from the data
(σ, l), and we let N =

∑n
i=1 pi. We define the truncated shifted current Lie algebra

cn,l(σ) to be the quotient of cn(σ) by the ideal in,l generated by {e1,1tr | r ≥ p1}.
We recall from §2.4 that (σ, l) determines a pyramid π, which we can use to define

e ∈ g = glN (k) as in (2.4). The next lemma shows that the truncated current Lie
algebra is isomorphic to the centralizer ge. For the statement we recall that a basis
is given in (2.5).

Lemma 2.6.

(a) A basis of in,l is given by {ei,jtr | 1 ≤ i, j ≤ n, r ≥ si,j + pmin(i,j)}.
(b) The linear map θ̃ : cn(σ) → ge defined by

θ̃(ei,jt
r) =

{
c
(r)
i,j si,j ≤ r < si,j + pmin(i,j)

0 otherwise.

is a surjective homomorphism of restricted Lie algebras with ker θ̃ = in,l.

In particular, θ̃ induces an isomorphism θ : cn,l(σ)
∼−→ ge of restricted Lie

algebras, and a basis of cn,l(σ) is given by

(2.16) {ei,jtr + in,l | 1 ≤ i, j ≤ n, si,j ≤ r < si,j + pmin(i,j)}.

Proof. Let jn,l denote the subspace of cn(σ) with basis {ei,jtr | 1 ≤ i, j ≤ n, r ≥
si,j + pmin(i,j)}. A straightforward calculation with the commutator relations in
(2.13) shows that jn,l is in fact an ideal of cn(σ), and thus we have in,l ⊆ jn,l.

Since e1,1t
p1 ∈ in,l and e1,jt

s1,j+r ∈ cn(σ) for r ≥ 0 we have e1,jt
p1+s1,j+r =

[e1,1t
p1 , e1,jt

s1,j+r]. Similarly ei,1t
p1+si,1+r ∈ in,l for r ≥ 0. Next we observe

[e1,2t
p1+s1,2 , e2,1t

s2,1+r] = (e1,1 − e2,2)t
p2+r for r ≥ 0, where we use that p2 =

p1 + s1,2 + s2,1. Since p1 ≤ p2 we have e1,1t
p2+r ∈ in,l, so we can deduce that

e2,2t
p2+r ∈ in,l for r ≥ 0.

By considering the shifted current Lie algebra spanned by {ei,jtr | 2 ≤ i, j ≤
n, r ≥ si,j}, and applying an inductive argument, we obtain that jn,l ⊆ in,l. Hence,
in,l = jn,l which proves (a).
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The fact that the linear map θ̃ in (b) is a homomorphism of restricted Lie algebras
may be seen by comparing the Lie bracket and p-power map for ge given in (2.6)
and (2.7) with those for cn(σ) given in (2.13) and (2.14).

It is evident that e1,1t
r lies in the kernel of θ̃ for r ≥ p1, so we have that

in,l is contained in ker θ̃. By (a) we see that (2.16) gives a spanning set of cn,l(σ).
Moreover, by (2.5) the elements given in (2.16) are sent to a basis ge by the induced
map θ : cn,l(σ) → ge. From this it follows that θ is an isomorphism, and that (2.16)
is a basis of cn,l(σ). �

Remark 2.7. For later use we observe that the shifted current algebra and its trun-
cation can be defined over the integers. We write cn(σ)Z for the free Z-submodule
of gln(Z)⊗Z Z[t] spanned by the elements (2.15), equipped with its Lie ring struc-
ture. We define cn,l(σ)Z to be the quotient of cn(σ)Z by the ideal generated by
{e1,1tr | r ≥ p1}. Then we observe that the proof of Lemma 2.6 can be applied
verbatim to show that cn,l(σ)Z is a free Z-module spanned by the elements (2.16).

3. Shifted Yangians and W -algebras

In this section we fix n ∈ Z≥1, a shift matrix σ = (si,j) of size n and an integer
l > s1,n + sn,1, which, as usual, we call the level. We define the pyramid π from
(σ, l) as explained in §2.4. The partition p = (p1, . . . , pn) is defined by (2.3), and
we let N =

∑n
i=1 pi. We define e ∈ g = glN (k) as in (2.4), and let G = GLN (k).

3.1. Shifted Yangians. The shifted Yangian (over k) is the k-algebra Yn(σ) with
generators

(3.1)
{D(r)

i | 1 ≤ i ≤ n, r > 0} ∪ {E(r)
i | 1 ≤ i < n, r > si,i+1}

∪ {F (r)
i | 1 ≤ i < n, r > si+1,i}

and relations given in [BT, Theorem 4.15]. The definition of the shifted Yangian
was first given in [BK1] over a field of characteristic zero and then considered in
positive characteristic in [BT].

In order to state the PBW theorem we define the PBW generators of Yn(σ) as
follows. For i = 1, . . . , n− 1 we set

E
(r)
i,i+1 := E

(r)
i ,

F
(r)
i,i+1 := F

(r)
i

and define inductively

E
(r)
i,j := [E

(r−sj−1,j)
i,j−1 , E

(sj−1,j+1)
j−1 ] for 1 ≤ i < j ≤ n and r > si,j ,

F
(r)
i,j := [F

(sj,j−1+1)
j−1 , F

(r−sj,j−1)
i,j−1 ] for 1 ≤ i < j ≤ n and r > sj,i

(3.2)

The loop filtration on Yn(σ) is defined by placing the elements E
(r+1)
i,j , D

(r+1)
i ,

F
(r+1)
i,j in filtered degree r for all r ≥ 0. We write FrYn(σ) for the filtered piece of

degree r, so that Yn(σ) =
⋃

r≥0FrYn(σ), and we write grYn(σ) for the associated

graded algebra. By [BT, Lemma 4.13] there is an isomorphism

(3.3) ψ̃ : U(cn(σ))
∼−→ grYn(σ)



202 SIMON M. GOODWIN ET AL.

defined by

ei,it
r 
−→ grr D

(r+1)
i

ei,jt
r 
−→ grr E

(r+1)
i,j

ej,it
r 
−→ grr F

(r+1)
i,j

for i < j. It follows immediately that the monomials in the elements

(3.4)
{D(r)

i | 1 ≤ i ≤ n, r > 0} ∪ {E(r)
i,j | 1 ≤ i < j ≤ n, r > si,j}

∪{F (r)
i,j | 1 ≤ i < j ≤ n, r > sj,i}

taken in any fixed order give a basis of Yn(σ), and this gives the PBW theorem for
Yn(σ).

3.2. Finite W -algebras. We move on to introduce the W -algebra U(g, e), and be-
gin with the definition stated in [GT1]. This is the positive characteristic analogue
of the definition first given by Premet in [Pr1, Section 4].

Consider the cocharacter μ : k× → G defined by μ(t) = diag(tcol(1), . . . , tcol(n));
here we use the notation diag(t1, . . . , tN ) to mean the diagonal N ×N matrix with
ith diagonal entry equal to ti. Using μ we define the Z-grading

(3.5) g =
⊕
r∈Z

g(r) where g(r) := {x ∈ g | μ(t)x = trx for all t ∈ k
×}.

Since the adjoint action of μ(t) on a matrix unit is given by μ(t)·ei,j=tcol(j)−col(i)ei,j ,
we have g(r) = span{ei,j | col(j)− col(i) = r}.

We define the subalgebras

(3.6) p :=
⊕
r≥0

g(r), h = g(0), and m :=
⊕
r<0

g(r)

of g. Then p is a parabolic subalgebra of g with Levi factor h and m is the nilradical
of the opposite parabolic to p. Let M be the closed subgroup of G generated by
the root subgroups ui,j(k) with col(j) < col(i), where ui,j : k → G is defined by
ui,j(t) = 1 + tei,j . Then we have m = LieM .

We define χ ∈ g∗ to be the element dual to e via the trace form on g. Since
e ∈ g(1), we have that χ vanishes on g(r) for r �= −1. Therefore, χ restricts to
a character of m. We define mχ := {x − χ(x) | x ∈ m} ⊆ U(g), which is a Lie
subalgebra of U(g). By the PBW theorem there is a direct sum decomposition

U(g) = U(g)mχ ⊕ U(p)

and thus a projection

(3.7) pr : U(g) → U(p)

onto the second factor. The twisted adjoint action of M on U(p) is defined by

(3.8) tw(g) · u := pr(g · u),

for g ∈ M and u ∈ U(p); the twisted adjoint action on S(p) is defined analogously.
Then the W -algebra associated to e is defined to be the invariant subalgebra

U(g, e) := U(p)tw(M) = {u ∈ U(p) | tw(g) · u = u for all g ∈ M}.
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We move on to recall a set of generators for U(g, e). These are elements

(3.9)
{D(r)

i | 1 ≤ i ≤ n, r > 0} ∪ {E(r)
i | 1 ≤ i < n, r > si,i+1}

∪ {F (r)
i | 1 ≤ i < n, r > si+1,i}

in U(p) defined using the remarkable formulas, given in [BK1, Section 9]; see also
[GT2, Section 4]. As is shown in [GT2, Theorem 4.3] the elements in (3.9) are
twisted M -invariants, thus elements of U(g, e), and moreover they generate U(g, e).
We note there is an abuse of notation as these generators of U(g, e) have the same
names as the generators for Yn(σ) given in (3.1); this overloading of notation is
justified in the next subsection.

Below we state the formula for D
(r)
i in (3.11), and require some notation for this.

Let t be the Lie algebra of T , and write {ε1, . . . , εN} for the standard basis of t∗.
We define the weight η ∈ t∗ by

(3.10) η :=

N∑
i=1

(n− qcol(i) − · · · − · · · − ql)εi,

where we recall that qi is the height of the ith column in the pyramid π, and we
note that η extends to a character of p. For ei,j ∈ p define

ẽi,j := ei,j + η(ei,j).

Then by definition

(3.11) D
(r)
i :=

r∑
s=1

(−1)r−s
∑

i1,...,is
j1,...,js

(−1)|{t=1,...,s−1|row(jt)≤i−1}|ẽi1,j1 · · · ẽis,js ∈ U(p)

where the sum is taken over all 1 ≤ i1, . . . , is, j1, . . . , js ≤ N such that

(a) col(j1)− col(i1) + · · ·+ col(js)− col(is) + s = r;
(b) col(it) ≤ col(jt) for each t = 1, . . . , s;
(c) if row(jt) ≥ i, then col(jt) < col(it+1) for each t = 1, . . . , s− 1;
(d) if row(jt) < i then col(jt) ≥ col(it+1) for each t = 1, . . . , s− 1;
(e) row(i1) = i, row(js) = i;
(f) row(jt) = row(it+1) for each t = 1, . . . , s− 1.

The expressions for the elements E
(r)
i ∈ U(p) and F

(r)
i ∈ U(p) are given by similar

formulas; see [BK1, Section 9] or [GT2, Section 4]. Then we can define E
(r)
i,j ∈ U(p)

and F
(r)
i,j ∈ U(p) using (3.2). As a consequence of the PBW theorem for U(g, e),

the monomials in

{D(r)
i | 1 ≤ i ≤ n, 1 ≤ r ≤ pi} ∪ {E(r)

i,j | 1 ≤ i < j ≤ n, si,j ≤ r ≤ pi + si,j}
∪ {F (r)

i,j | 1 ≤ i < j ≤ n, sj,i ≤ r ≤ pi + sj,i}

(3.12)

taken in any fixed order form a basis of U(g, e), see [GT2, Lemma 4.2].
There are two filtrations of the W -algebra that we recall here. First we consider

the loop filtration, which is defined by taking the grading of U(p) given by the action
of the cocharacter μ, and then the induced filtration

⋃∞
r=0FrU(g, e) of U(g, e). We

write grU(g, e) ⊆ U(p) for the associated graded algebra.
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As a consequence of [GT2, Lemma 4.2] we haveD
(r+1)
i , E

(r+1)
i,j , F

(r+1)
i,j ∈FrU(g, e)

and

grr D
(r+1)
i = (−1)r(c

(r)
i,i + η(c

(r)
i,i )),(3.13)

grr E
(r+1)
i,j = (−1)rc

(r)
i,j ,(3.14)

grr F
(r+1)
i,j = (−1)rc

(r)
j,i .(3.15)

It follows that the shift automorphism on S−η : U(p) → U(p) defined by x →
x− η(x) for x ∈ p restricts to an isomorphism

(3.16) S−η : grU(g, e)
∼−→ U(ge).

Next we consider the Kazhdan filtration of U(g, e). This is first defined on U(g)
by placing x ∈ g(r) in Kazhdan degree r+1, and as explained in [GT1, Section 7],
the associated graded algebra can be identified with S(p). We write

⋃∞
r=0F ′

rU(g, e)
of U(g, e) for the induced filtration on U(g, e), and gr′ U(g, e) for the associated
graded algebra. Using [GT2, Lemma 7.1] we identify gr′ U(g, e) = S(p)twM , where
the twisted adjoint action of M on S(p) is defined in analogy with (3.8). Further
[GT1, Lemma 7.1] along with [GT2, Lemma 4.2] imply that the PBW generators

D
(r)
i , E

(r)
i,j and F

(r)
i,j given in (3.12) lie in Kazhdan degree r and that gr′r D

(r)
i ,

gr′r E
(r)
i,j and gr′r F

(r)
i,j are algebraically independent generators of gr′ U(g, e).

3.3. The truncated shifted Yangian. Our next step is to recall an algebra iso-
morphism φ from a truncation of the shifted Yangian to the finite W -algebra. This
is done in Theorem 3.1, which also includes the PBW theorem for the truncation.
Although this was proved in [GT2, Theorem 4.3], drawing heavily on the results
of [BK1], we repeat a few of the details here to demonstrate that the proof can be
simplified slightly by using the shifted current algebra.

The algebra homomorphism

(3.17) φ̃ : Yn(σ) → U(g, e)

is defined by sending the generators E
(r)
i , D

(r)
i , F

(r)
i of Yn(σ) to the generators of

U(g, e) with the same names. Then we have that φ̃ is surjective. The fact that
this is a homomorphism justifies the abuse of notation in naming the generators of
Yn(σ) and U(g, e).

The truncated shifted Yangian Yn,l(σ) is defined to be the quotient of Yn(σ) by

the ideal In,l generated by the elements D
(r)
1 with r > p1. It follows directly from

formula [GT2, (4.2)] that the element D
(r)
1 of U(g, e) is equal to zero for r > p1,

and so φ̃ factors through the quotient to give a surjection

(3.18) φ : Yn,l(σ) → U(g, e).

For each element E
(r)
i,j , D

(r)
i , F

(r)
i,j ∈ Yn(σ) we write Ė

(r)
i,j , Ḋ

(r)
i , Ḟ

(r)
i,j for its image in

Yn,l(σ).
The loop filtration on Yn(σ) descends to a loop filtration on Yn,l(σ). We denote

the filtered pieces by FrYn,l(σ) for r ≥ 0, and write grYn,l(σ) for the associated
graded algebra.

We are now ready to show that φ is an isomorphism and deduce the PBW
theorem for Yn,l(σ).
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Theorem 3.1.

(a) φ : Yn,l(σ) → U(g, e) is an isomorphism.

(b) The isomorphism ψ̃ : U(cn(σ))
∼−→ grYn(σ) given in (3.3) induces an

isomorphism

(3.19) ψ : U(cn,l(σ))
∼−→ grYn,l(σ).

Consequently, the ordered monomials in the elements
(3.20)

{Ḋ(r)
i | 1 ≤ i ≤ n, 0 < r ≤ pi} ∪ {Ė(r)

i,j | 1 ≤ i < j ≤ n, si,j < r ≤ si,j + pi}
∪ {Ḟ (r)

i,j | 1 ≤ i < j ≤ n, sj,i < r ≤ sj,i + pi}

taken in any fixed order form a basis of Yn,l(σ).

Proof. Using ψ̃ from (3.3) we identify U(cn(σ)) with grYn(σ). The associated
graded ideal gr In,l contains the ideal in,l defined in §2.7, so there is a surjection
U(cn,l(σ)) � grYn,l(σ). It follows from Lemma 2.6(a) and the PBW theorem for
U(cn,l(σ)) that grYn,l(σ) is spanned by the ordered monomials in the elements
(3.20). Now the PBW theorem for U(g, e), given in [GT1, Theorem 7.2], along
with [GT2, Lemma 4.2] imply that the images under φ of these spanning elements
are linearly independent, and so they form a basis. This proves (b).

We have seen that φ sends a basis of Yn,l(σ) to a basis of U(g, e), so that it is
an isomorphism, and we get (a). �

It is helpful for us to give some notation for the PBW basis of Yn,l(σ) given by
Theorem 3.1(c). We fix an order on the sets JF = {(i, j, r) | 1 ≤ i < j ≤ n, sj,i <
r ≤ sj,i + pi}, JD = {(i, r) | 1 ≤ i ≤ n, 0 < r ≤ pi} and JE = {(i, j, r) | 1 ≤ i <

j ≤ n, si,j < r ≤ si,j + pi}. Let IF be the set of all tuples u = (u
(r)
i,j | (i, j, r) ∈ JF )

of non-negative integers, ID be the set of all tuples t = (t
(r)
i | (i, r) ∈ JD) of

non-negative integers, and IE be the set of all tuples v = (v
(r)
i,j | (i, j, r) ∈ JE) of

non-negative integers. For (u, t,v) ∈ IF × ID × IE , we define

ḞuḊtĖv =
∏

(i,j,r)∈JF

(Ḟ
(r)
i,j )

u
(r)
i,j

∏
(i,r)∈JD

(Ḋ
(r)
i )t

(r)
i

∏
(i,j,r)∈JE

(Ė
(r)
i,j )

v
(r)
i,j ,

where the products respect the orders which we have fixed on JF , JD and JE . So
that

(3.21) {ḞuḊtĖv | (u, t,v) ∈ IF × ID × IE}

is a basis of Yn,l(σ).
We can see that the isomorphism φ in (3.17) is filtered for the loop filtration,

as D
(r+1)
i , E

(r+1)
i,j and F

(r+1)
i,j have the same degree, namely r, when considered

as elements of Yn(σ) or as elements of U(g, e). Thus we obtain an isomorphism

grφ : grYn,l(σ)
∼−→ grU(g, e). We also have isomorphisms ψ : U(cn,l(σ))

∼−→
grYn,l(σ) from (3.19) and U(θ) : U(cn,l(σ))

∼−→ U(ge) given by Lemma 2.6, and
we have the isomorphism S−η : grU(g, e) = U(ge). We note however that as

isomorphisms grYn,l(σ)
∼−→ U(ge), we have U(θ) ◦ ψ−1 �= S−η ◦ grφ. To explain

this we note the adjoint action of μ(−1) gives an automorphism U(ge) → U(ge),

which is determined by c
(r)
i,j 
→ (−1)rc

(r)
i,j ; here we recall that μ is the cocharacter
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defining the good grading on g. Then we have

(3.22) Ad(μ(−1)) ◦ U(θ) ◦ ψ−1 = S−η ◦ grφ.
For Theorem 4.2, we need to fix an isomorphism between grYn,l(σ)

∼−→ U(ge). For
consistency with [BB], we use

(3.23) S−η ◦ grφ : grYn,l(σ)
∼−→ U(ge)

which is determined by its effect on the generators as follows

grr Ḋ
(r+1)
i 
→ (−1)rc

(r)
i,i

grr Ė
(r+1)
i,j 
→ (−1)rc

(r)
i,j

grr Ḟ
(r+1)
i,j 
→ (−1)rc

(r)
j,i

3.4. The integral forms of Yn(σ) and Yn,l(σ). We introduce and study the
integral (truncated) shifted Yangian. There are two natural approaches: we can
consider the subring of the complex (truncated) shifted Yangian generated by the
elements listed in (3.1); or we can consider the ring determined by these generators

and the relations in [BT, Theorem 4.15] (along with the relations D
(r)
1 = 0 for

r > p1). Lemmas 3.2 and 3.3 say that these two approaches lead to isomorphic
rings. As explained by Corollary 3.4 this allows us to apply reduction modulo p to
certain formulas in the complex truncated shifted Yangian, which is useful later on.

Let A be a commutative ring. We define the shifted A-Yangian Y A
n (σ) to be

the A-algebra with generators given in (3.1) subject to the relations in [BT, The-
orem 4.15]. Here we are only concerned with the cases where A = Z, C or k. We
note that Y k

n (σ) = Yn(σ), and that Y C
n (σ) is the usual complex shifted Yangian, as

considered in [BK1] and [BK2]. We mildly abuse notation by viewing the elements
in (3.1) simultaneously as elements of Y Z

n (σ), Y C
n (σ) and Yn(σ).

There is a ring homomorphism Y Z
n (σ) → Y C

n (σ) sending a generator of Y Z
n (σ)

to the element of Y C
n (σ) with the same name. This induces a ring homomorphism

Y Z
n (σ)⊗Z C → Y C

n (σ). Similarly, there is a natural homomorphism Y Z
n (σ)⊗Z k →

Yn(σ).

Lemma 3.2.

(a) Y Z
n (σ) is a free Z-module with basis given by ordered monomials in the

elements given in (3.4).
(b) The homomorphism Y Z

n (σ) → Y C
n (σ) is injective and the induced homo-

morphism Y Z
n (σ)⊗Z C

∼−→ Y C
n (σ) is an isomorphism.

(c) The homomorphism Y Z
n (σ)⊗Z k

∼−→ Yn(σ) is an isomorphism.

Proof. As introduced in Remark 2.7 we write the cn(σ)Z for Z-form of cn(σ). The
argument in the penultimate paragraph of the proof of [BT, Theorem 4.3] can be
applied verbatim to show that there is a surjection U(cn(σ)Z) � grY Z

n (σ): to
apply this argument it is necessary to define a loop filtration on Y Z

n (σ), which can

be done by placing E
(r+1)
i,j , D

(r+1)
i , F

(r+1)
i,j in degree r. We can now deduce that the

PBW monomials in the elements in (3.4) form a spanning set of Y Z
n (σ) over Z. By

[BK1, Theorem 2.1] these monomials are sent to C-linearly independent elements
of Y C

n (σ) under the map Y Z
n (σ) → Y C

n (σ). Therefore, they are certainly Z-linearly
independent in Y Z

n (σ). This proves (a). Also we have shown that Y Z
n (σ) → Y C

n (σ)
sends a Z-basis to a C-basis, which implies (b).
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Thanks to [BT, Theorem 4.14], ordered monomials in the elements in (3.4) form
a k-basis of Yn(σ). Thus the map Y Z

n (σ) ⊗Z k → Yn(σ) sends to a k-basis of
Y Z
n (σ)⊗Z k to a k-basis of Yn(σ), and we obtain (c). �

We also want an analogue of Lemma 3.2 in the context of truncated shifted
Yangians. To do this we first define the truncated shifted A-Yangian Y A

n,l(σ) to be

the quotient of Y A
n (σ) by the ideal generated by {D(r)

1 | r > p1}. Similarly to the
non-truncated case we have maps Y Z

n,l(σ) → Y C

n,l(σ), Y
Z

n,l(σ) ⊗Z C → Y C

n,l(σ) and

Y Z

n,l(σ)⊗Z k → Yn,l(σ).

Lemma 3.3.

(a) Y Z

n,l(σ) is a free Z-module with basis given in (3.21).

(b) The homomorphism Y Z

n,l(σ) → Y C

n,l(σ) is injective and the induced homo-

morphism Y Z

n,l(σ)⊗Z C
∼−→ Y C

n,l(σ) is an isomorphism.

(c) The homomorphism Y Z

n,l(σ)⊗Z k
∼−→ Yn,l(σ) is an isomorphism.

Proof. Recall that cn,l(σ)Z is defined in Remark 2.7. The argument at the start
of the proof of Theorem 3.1 can be applied to show that U(cn,l(σ)Z) surjects onto
grY Z

n,l(σ).
Now we can complete the proof of the current lemma using the same steps as

in the proof of Lemma 3.2, employing the PBW theorems for Y C

n,l(σ) and Yn,l(σ),

which are given in [BK1, Corollary 6.3] and Theorem 3.1. �

Thanks to the previous lemma we can employ reduction modulo p to deduce
formulas in Yn,l(σ) from certain types of formulas in Y C

n,l(σ), as explained by the
following corollary.

Corollary 3.4. Let h be a polynomial with coefficients in Z in the non-commuting

indeterminates {f (r)
i | 1 ≤ i < n, r > si+1,i} ∪ {d(r)j | 1 ≤ j ≤ n, r > 0} ∪ {e(r)i |

1 ≤ i < n, r > si,i+1}, and let A be a ring. Write HA for the element of Y A
n,l(σ)

obtained by specialising h via d
(r)
i 
→ Ḋ

(r)
i , e

(r)
i 
→ Ė

(r)
i and f

(r)
i 
→ Ḟ

(r)
i .

(a) Suppose that HC = 0. Then Hk = 0.
(b) Suppose that HC ∈ FrY

C

n,l(σ). Then Hk ∈ FrYn,l(σ).

Proof. By Lemma 3.3(b) we can view Y Z

n,l(σ) ⊆ Y C

n,l(σ). Then we have that

HC = HZ ∈ Y Z

n,l(σ), so that HZ = 0. Further, under the identification Yn,l(σ) ∼=
Y Z

n,l(σ)⊗Z k, given by Lemma 3.3(c), we have Hk = HZ ⊗ 1. Hence, Hk = 0, and

this proves (a)
Using Lemma 3.3(a) may write HZ ∈ Y Z

n,l(σ) as a Z-linear combination of the

PBW basis given in (3.21) given by monomials in the elements from (3.20) in some
fixed order. This also gives the expression for HC in terms of this PBW basis in
Y C

n,l(σ) and for Hk in terms of this PBW basis in Yn,l(σ). Furthermore, the filtered
degree for the loop filtration can be read off directly from these expressions, which
implies (b). �

The observations of the previous lemma are convenient for us at several places
later in this paper. However we should mention that we expect that the formulas
which we verify using this approach can also be established over k by repeating the
known methods over C. Thus the reduction modulo p procedure may be viewed as
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a convenient alternative to reciting certain technical arguments from characteristic
zero.

We end this subsection by explaining that some parts of the the theory of U(g, e)
from §3.2 can be carried out over Z. Let pZ be the parabolic subalgebra gZ = gln(Z)
such that p = pZ ⊗Z k. The element χ ∈ g∗, can be viewed as a function from
gZ → Z, and then we can define a projection

(3.24) prZ : U(gZ) → U(pZ)

in analogy with pr as defined in (3.7).

The isomorphism φ : Yn,l(σ)
∼−→ U(g, e) from (3.17) can be thought of as an

embedding φ : Yn,l(σ) ↪→ U(p). By considering the formulas for of the twisted

M -invariants D
(r)
i , E

(r)
i , F

(r)
i ∈ U(p) given in [BK1, Section 9], see also [GT2,

Section 4], we see that they can be viewed as an elements of U(pZ). Therefore, we
can consider the ring homomorphism defined in the obvious manner

(3.25) φZ : Y Z

n,l(σ) → U(pZ).

We also note here that the procedure of the reduction modulo p given by Corol-
lary 3.4 has an obvious analogue with U(pC), U(p) and U(pZ) in place of Y C

n,l(σ),

Yn,l(σ) and Y Z

n,l(σ); these observations are vital in the proof of Lemma 4.4.

3.5. The T
(r)
i,j generators for Yn,l(σ). We introduce some alternative PBW gen-

erators, which are important later. They were described in [BK2, Section 2.2] over
C. We recap the details for the readers convenience.

Let u be an indeterminate, and consider the power series ring Yn(σ)[[u
−1]]. We

adopt the convention D
(0)
i = 1 for all i and define the power series

Di(u), Ei,j(u), Fi,j(u) ∈ Yn(σ)[[u
−1]](3.26)

by setting Di(u) =
∑

r≥0 D
(r)
i u−r, Ei,j(u) =

∑
r>si,j

E
(r)
i,j u

−r and Fi,j(u)

=
∑

r>sj,i
F

(r)
i,j u

−r. By convention we also set Ei,i(u) = Fi,i(u) = 1.

Next we define the following n× n matrices with coefficients in Yn(σ)[[u
−1]]:

• D(u) is the diagonal matrix with D(u)i,i = Di(u),
• E(u) is the upper unitriangular matrix with E(u)i,j := Ei,j(u) for i ≤ j,
• F (u) is the lower unitriangular matrix with F (u)i,j := Fj,i(u) for i ≥ j.

Now define the matrix T (u) = F (u)D(u)E(u), whose (i, j)-entry can be written as
a power series

(3.27) Ti,j(u) =
∑
r≥0

T
(r)
i,j u

−r :=

min(i,j)∑
k=1

Fk,i(u)Dk(u)Ek,j(u)

for some elements T
(r)
i,j ∈ Yn(σ). The image of T

(r)
i,j in Yn,l(σ) is denoted Ṫ

(r)
i,j .

By direct calculation we easily see that T
(0)
i,j = δi,j and T

(r)
i,j = 0 for 0 < r ≤ si,j .

Also we can see that T
(r+1)
i,j ∈ FrYn(σ) and then using the isomorphism ψ̃ from

(3.3) to identify grYn(σ) ∼= U(cn(σ)) we have

grr T
(r+1)
i,j = ei,jt

r.
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This allows us to deduce that the T
(r)
i,j give alternative PBW generators as stated

in the next lemma; the version of these results in characteristic zero are given in
[BK2, Lemmas 2.1 and 3.6].

Lemma 3.5.

(a) The ordered monomials in the elements {T (r)
i,j | 1 ≤ i, j ≤ n, si,j < r} form

a basis for Yn(σ).

(b) The ordered monomials in the elements {Ṫ (r)
i,j | 1 ≤ i, j ≤ n, si,j < r ≤

si,j + pmin(i,j)} form a basis for Yn,l(σ).

The next result is obtained as an application of reduction modulo p, using Corol-
lary 3.4.

Corollary 3.6. Ṫ
(r)
i,j = 0 in Yn,l(σ) for r > pmin(i,j) + si,j

Proof. The version of this statement in Y C

n,l(σ) is [BK2, Theorem 3.5]. Now we can
apply Corollary 3.4. �

4. Centres and restricted versions

In this section we study the centres of Yn,l(σ) and U(g, e). Both algebras admit
a natural definition of a Harish-Chandra centre and a p-centre arising in different
ways, and we show that in either case the centre is generated by these subalgebras.
We continue to use the notation from Section 3.

4.1. The centre of Yn(σ). We proceed to recall the description of the centre of
Yn(σ) given in [BT]. The power series Di(u) are defined in (3.26). From these we
define

C(u) =
∑
r≥0

C(r)u−r := D1(u)D2(u− 1)D3(u− 2) · · ·Dn(u− n+ 1).

By [BT, Theorem 5.11(1)], the elements in {C(r) | r > 0} are algebraically inde-
pendent and lie in the centre Z(Yn(σ)) of Yn(σ). The subalgebra they generate is
called the Harish-Chandra centre of Yn(σ), and is denoted ZHC(Yn(σ)).

For i = 1, . . . , n, we define

(4.1) Bi(u) =
∑
r≥0

B
(r)
i := Di(u)Di(u− 1)Di(u− 2) · · ·Di(u− p+ 1).

By [BT, Theorem 5.11(2)] the elements in

(4.2)
{B(rp)

i | i = 1, . . . , n, r > 0}
∪ {(E(r)

i,j )
p | 1 ≤ i < j ≤ n, r > si,j} ∪ {(F (r)

i,j )
p | 1 ≤ i < j ≤ n, r > sj,i}

are algebraically independent, and lie in Z(Yn(σ)). The subalgebra they generate
is called the p-centre of Yn(σ) and is denoted Zp(Yn(σ)). We note that by [BT,

Theorem 5.8], the elements B
(s)
i can be written in terms of B

(rp)
i for 0 ≤ r ≤ s

p , so

in particular they lie in the p-centre of Yn(σ). Furthermore by [BT, Theorems 5.1,
5.4, 5.8] we have

(4.3) B
((r+1)p)
i , (E

(r+1)
i,j )p, (F

(r+1)
i,j )p ∈ FrpYn(σ),
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and under the identification of grYn(σ) ∼= U(cn(σ)) given by the isomorphism ψ̃
from (3.3) we have

grrp B
((r+1)p)
i = (ei,it

r)p − ei,it
pr ∈ Zp(cn(σ));

grrp(E
(r+1)
i,j )p = (ei,jt

r)p ∈ Zp(cn(σ));(4.4)

grrp(F
(r+1)
i,j )p = (ej,it

r)p ∈ Zp(cn(σ)).

From this it follows that Zp(Yn(σ)) is a polynomial algebra over the generators
given in (4.2).

Though we do not require it in this paper we remark that [BT, Theorem 5.11]
contains more information about the centre of Yn(σ). In particular, it is generated
by ZHC(Yn(σ)) and Zp(Yn(σ)). We also mention that [BT, Corollary 5.13] states
that Yn(σ) is a free module over Zp(Yn(σ)) with basis given by the ordered mono-
mials in the generators in (3.4) in which no exponent is p or more; we refer to such
monomials as p-restricted monomials.

4.2. The centre of the truncated shifted Yangian. In this subsection we prove
Theorem 4.2, giving a precise description of the centre of Yn,l(σ). As in [BK2,
Lemma 3.7] we define the Laurent series

(4.5) Z(u) =
∑
r≥0

Zru
N−r := up1(u− 1)p2 · · · (u− (n− 1))pnC(u) ∈ Yn(σ)((u

−1)).

Following the convention established in §3.1 we use the notation Ḃ
(r)
i , Ċ(r), Żr to

denote the images of B
(r)
i , C(r), Zr ∈ Yn(σ) in the quotient Yn,l(σ); similarly we use

the power series notation Ċ(u), Ż(u).

Lemma 4.1. Ż(u) = uN +
∑N

r=0 Żru
N−r ∈ Yn,l(σ)[u] is a polynomial in u of

degree N .

Proof. We may view Ż(u) as a Laurent series in u−1 with coefficients in the complex
truncated shifted Yangian Y C

n,l(σ), which can be expressed as an integral linear

combination of products of the generators of Y C

n,l(σ). In this setting [BK2, Lemma

3.7] implies that Ż(u) is in fact a polynomial in u of degree N . Now viewing Ż(u)
as a Laurent series in u−1 with coefficients in Yn,l(σ) and using Corollary 3.4, we

deduce that Ż(u) is a polynomial in u of degree N . �

Examining the coefficient of uN−r in (4.5) we see that for r > N the element

Ċ(r) ∈ Yn,l(σ) is a linear combination of Ċ(r−N), . . . , Ċ(r−1). In particular, the

image of ZHC(Yn(σ)) in Yn,l(σ), is generated by {Ċ(r) | r = 1, . . . , N} or equiv-

alently by {Żr | r = 1, . . . , N}. We refer to this subalgebra of Z(Yn,l(σ)) as the
Harish-Chandra centre of Yn,l(σ) and denote it by ZHC(Yn,l(σ)).

Similarly we define the p-centre of Yn,l(σ) to be the image of the p-centre of
Yn(σ) in Yn,l(σ), and denote it by Zp(Yn,l(σ)).

We are now ready to state and prove our description of the centre of Yn,l(σ).

Theorem 4.2.

(a) The elements Ż1, . . . , ŻN are algebraically independent generators for
ZHC(Yn,l(σ)).



RESTRICTED SHIFTED YANGIANS AND FINITE W -ALGEBRAS 211

(b) The elements of

(4.6)

{Ḃ(rp)
i | 1 ≤ i ≤ n, 0 < r ≤ pi}

∪ {(Ė(r)
i,j )

p | 1 ≤ i < j ≤ n, si,j < r ≤ si,j + pmin(i,j)}
∪ {(Ḟ (r)

i,j )
p | 1 ≤ i < j ≤ n, sj,i < r ≤ sj,i + pmin(i,j)}

are algebraically independent generators of Zp(Yn,l(σ)).
(c) Via the isomorphism grYn,l(σ) ∼= U(ge) given in (3.23), we have that

grZp(Yn,l(σ)) identifies with Zp(g
e) ⊆ U(ge).

(d) Z(Yn,l(σ)) is a free module of rank pN over Zp(Yn,l(σ)): a basis is given by

(4.7) {Żk1
1 · · · ŻkN

N | 0 ≤ ki < p}.

Proof. We first prove the theorem under the assumption that σ is upper-triangular,
and then explain how to deduce it in general. So assume for now that σ is upper-
triangular.

We begin by giving an alternative expression for C(u) ∈ Yn(σ)[[u
−1]]. Recall

that column determinants are defined in (2.11), and the power series Ti,j(u) are
defined in (3.27). Viewing C(u) as an element of Y C

n (σ)[[u−1]] we have

C(u) = cdet

⎛
⎜⎜⎜⎝

T1,1(u) T1,2(u− 1) . . . T1,n(u− n+ 1)
T2,1(u) T2,2(u− 1) . . . T2,n(u− n+ 1)

...
...

. . .
...

Tn,1(u) Tn,2(u− 1) . . . Tn,n(u− n+ 1)

⎞
⎟⎟⎟⎠ ∈ Yn(σ).(4.8)

as a consequence of [BK2, (2.79)] and [BB, Theorem 2.2]. Some further explanation
of this is appropriate, as [BK2, (2.79)] shows that (4.8) holds for the (unshifted)
Yangian Y C

n . However, as explained by [BK1, Corollary 2.2], we can view Y C
n (σ) ⊆

Y C
n , and then [BB, Theorem 2.2] implies that (4.8) holds for Y C

n (σ). A subtle

point here is that the elements T
(r)
i,j ∈ Y C

n (σ) depend on σ, as is explained in

[BB, Section 2], and this is where we require that σ is upper triangular. Now using
Corollary 3.4 we have that (4.8) holds in Yn(σ)[[u

−1]].

For the next step we claim that Żr ∈ Fr−dr
Yn,l(σ) and that grr−dr

Żr =

(−1)r−drzr ∈ grYn,l(σ) = U(ge), under the identification grYn,l(σ) ∼= U(ge) given

by (3.23). Thanks to (4.8), the definition of Ż(u) given in (4.5) is the same as that
given in [BB, (3.2)]. Next we observe that the formula given in [BB, Lemma 3.5]

which expresses Żr in terms of the elements Ṫ
(r)
i,j can be expressed as an integral

linear combination of products of the generators of of Y C

n,l(σ) in (3.1). Applying

Corollary 3.4 we conclude that the same formula holds for Żr ∈ Yn,l(σ). Now
the argument used to complete the proof of [BB, Theorem 3.4] can be repeated
verbatim to deduce the claims made at the beginning of this paragraph.

Now we may combine Lemma 2.4(a) with a standard filtration argument to

deduce that Ż1, . . . , ŻN are algebraically independent, proving (a).
Let i = 1, . . . , n and 0 ≤ r < pi. According to (4.3) and (4.4) the element

B
((r+1)p)
i ∈ Yn(σ) lies in loop degree rp and grrpB

((r+1)p)
i = (ei,it

r)p − ei,it
rp,

under the identification grYn(σ) ∼= U(cn(σ)) given by ψ̃ from (3.3). More explic-

itly this means that ψ̃((ei,it
r)p − ei,it

rp) = grrp B
((r+1)p)
i . Using Lemmas 2.6 and

3.2, we deduce that Ḃ
((r+1)p)
i has loop degree rp in Yn,l(σ) and that ψ((ei,it

r)p −
ei,it

rp+ in,l) = grrp Ḃ
((r+1)p)
i , where ψ is defined in (3.19). Now using (3.22), we see
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that grrp Ḃ
((r+1)p)
i = (−1)rp(c

(r)
i,i )

p − (−1)rpc
(rp)
i,i ∈ Zp(g

e) under the identification

grYn,l(σ) ∼= U(ge) given by (3.23).

A similar argument shows that the elements (Ė
(r+1)
i,j )p, (Ḟ

(r+1)
i,j )p ∈ Yn,l(σ) lie

in loop degree rp and satisfy grrp(Ė
(r+1)
i,j )p = (−1)rp(c

(r)
i,j )

p and grrp(Ḟ
(r+1)
i,j )p =

(−1)rp(c
(r)
j,i )

p, under the identification grYn,l(σ) ∼= U(ge). Since these elements are

algebraically independent generators for Zp(g
e), it follows that the elements in (4.6)

are algebraically independent in Zp(Yn,l(σ)).
We next show that Zp(Yn,l(σ)) coincides with the algebra generated by the ele-

ments in (4.6); we denote this latter algebra by Ẑp(Yn,l(σ)).
From the pyramid π associated to (σ, l) we construct the pyramid π by adding

another row to the bottom of length pn, as we did in §2.6. This gives a new
shift matrix σ with sn,n+1 = sn+1,n = 0 and si,i+1 = si,i+1, si+1,i = si+1,i

for i = 1, . . . , n. The defining relations of the truncated shifted Yangian, along
with the PBW theorem given in Theorem 3.1(b) imply that there is an embedding

Yn,l(σ) ↪→ Yn+1,l(σ). Since the elements (Ė
(r)
i,j )

p, (Ḟ
(r)
i,j )

p, Ḃ
(rp)
i ∈ Yn,l(σ) are sent

to the elements of Yn+1,l(σ) with the same names, it follows that these elements
are central in Yn+1,l(σ). We conclude that every element of Zp(Yn,l(σ)) commutes
with every element of Yn+1,l(σ). Following the notation of Lemma 2.5 we identify

grYn+1,l(σ) with U(ge) using the analogue of the isomorphism given in (3.23).

We show that the inclusion Ẑp(Yn,l(σ)) ⊆ Zp(Yn,l(σ)) is an equality by consid-
ering the associated graded algebras. Thanks to our previous observations we have

gr Ẑp(Yn,l(σ)) = Zp(g
e). Suppose that Zp(Yn,l(σ))\ Ẑp(Yn,l(σ)) �= ∅ and choose an

element u of minimal loop degree, say d. By the remarks of the previous paragraph
we see that grd u commutes with everything in U(ge) and applying Lemma 2.5 we
see that grd u ∈ Zp(g

e). As we observed above the generators of Zp(g
e) are all

of the form gr(r−1)pB
(rp)
i , gr(r−1)p(E

(r)
i,j )

p, gr(r−1)p(F
(r)
i,j )

p where the indexes i, j, r

are restricted in accordance with (4.6). Consequently there exists u′ ∈ Ẑp(Yn,l(σ))

of loop degree d such that grd u = grd u
′. Since u /∈ Ẑp(Yn,l(σ)) we deduce that

u− u′ ∈ Zp(Yn,l(σ)) \ Ẑp(Yn,l(σ)) is of strictly lower loop degree. Since the degree
of Z was assumed to be minimal, we have reached a contradiction. This confirms

that Zp(Yn,l(σ)) = Ẑp(Yn,l(σ)), and thus completes the proof of (b).
To prove (c), we start by observing that we have shown

(4.9)

grrp Ḃ
((r+1)p)
i = (−1)rp(c

(r)
i,i )

p − (−1)rpc
(rp)
i,i ,

grrp(Ė
(r+1)
i,j )p = (−1)rp(c

(r)
i,j )

p

and grrp(Ḟ
(r+1)
i,j )p = (−1)rp(c

(r)
j,i )

p

generate both grZp(Yn,l(σ)) and Zp(g
e). Hence, grZp(Yn,l(σ)) = Zp(g

e).
We have seen that grr−dr

Zr = (−1)rzr, and we have also have (4.9). Thus
Lemma 2.4 along with a standard filtration argument implies that Z(Yn,l(σ)) is gen-
erated by ZHC(Yn,l(σ)) and Zp(Yn,l(σ)). Now we can deduce (d) from Lemma 2.3
and Lemma 2.4(b).

We have now completed the proof in case σ is upper-triangular and it remains
to explain how to deduce the theorem for arbitrary σ. First we note that our proof
of (b) and (c) does not actually require the assumption that σ is upper triangular.
So we are left to deal with (a) and (d).
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It follows from [BT, 4.5, (4)] that there exists an upper-triangular shift matrix

σu and an isomorphism ι : Yn(σ)
∼−→ Yn(σu). Each of these algebras has a com-

mutative subalgebra generated by {D(r)
i | 1 ≤ i ≤ n, r ≥ 0}, and the isomorphism

ι fixes this subalgebra pointwise. Consequently, there is an induced isomorphism
Yn,l(σ)

∼−→ Yn,l(σu). This same fact also shows that the coefficients of the series

C(u) are fixed by ι which implies that ι : ZHC(Yn,l(σ))
∼−→ ZHC(Yn,l(σu)) and

that the elements denoted Z1, . . . , ZN in Yn,l(σ) are sent to the elements with the
same names in Yn,l(σu). Furthermore it follows from the definition of ι that the
generators of Zp(Yn(σ)) are sent bijectively to the generators of Zp(Yn(σu)), and

we conclude that ι : Zp(Yn,l(σ))
∼−→ Zp(Yn,l(σu)). Now we can deduce (a) and (d)

for Yn,l(σ) from the same statements for Yn,l(σu). �
In the left-justified case, we saw in the proof above that grZHC(Yn,l(σ)) identifies

with U(ge)G
e ⊆ U(ge) ∼= grYn,l(σ). It would be possible to prove this in general by

using a reduction modulo p argument, but this fact is not required in the sequel.
For later use we record an immediate consequence of Theorem 4.2, which de-

scribes a basis for Z(Yn,l(σ)). To do this we use some notation introduced §3.3.
For u = (u

(r)
i,j ) ∈ IF , t = (t

(r)
i ) ∈ ID, v = (v

(r)
i,j ) ∈ IE and w = (w1, . . . , wN ) ∈

{0, . . . , p− 1}N we define

(4.10) (Ḟ p)uḂt(Ėp)vŻw :=
∏

(Ḟ
(r)
i,j

p)u
(r)
i,j

∏
(Ḃ

(rp)
i )t

(r)
i

∏
(Ė

(r)
i,j

p)v
(r)
i,j

N∏
i=1

Żwi
i .

Corollary 4.3. A basis for Z(Yn,l(σ)) is given by the ordered monomials

(4.11) {(Ḟ p)uḂt(Ėp)vŻw | (u, t,v) ∈ IF × ID × IE ,w ∈ {0, . . . , p− 1}N}

4.3. Restricted (truncated) shifted Yangians. It is well-known that U(g) is a
free module over its p-centre with a basis given by PBW monomials in the standard
basis of g in which every exponent is less than p; we refer to such monomials as
p-restricted monomials. It follows that the restricted enveloping algebra U [p](g) is
spanned by the image of the p-restricted monomials. Analogous statements hold
for Yn(σ) and Yn,l(σ), as we now explain.

As explained at the end of §4.1, we have that Yn(σ) is a free Zp(Yn(σ))-module
with basis given by the p-restricted monomials in the PBW generators of Yn(σ)
given in (3.4). We define Zp(Yn(σ))+ to be the maximal ideal of Zp(Yn(σ)) gener-
ated by the elements given in (4.2). Now we can define the restricted shifted Yan-

gian Y
[p]
n (σ) := Yn(σ)/Yn(σ)Zp(Yn(σ))+. The images in Y

[p]
n (σ) of the p-restricted

monomials in the PBW generators of Yn(σ) given in (3.4) form a basis of Y
[p]
n (σ).

As a consequence of Lemma 2.3 and Theorem 4.2(c), we see that Yn,l(σ) is free
as an Zp(Yn,l(σ))-module. To give a basis for this module we recall that from (3.21)

we have the basis {ḞuḊtĖv | (u, t,v) ∈ IF × ID × IE} of Yn,l(σ). We let Ip be
the set of all tuples (u, t,v) where all entries of u, t and v are less than p. Then

the p-restricted monomials {ḞuḊtĖv | (u, t,v) ∈ Ip} form a basis of Yn,l(σ) as
a free Zp(Yn,l(σ))-module. We define Zp(Yn,l(σ))+ to be the ideal of Zp(Yn,l(σ))
generated by the elements (4.6) of Zp(Yn,l(σ)) and define the restricted truncated

shifted Yangian Y
[p]
n,l (σ) := Yn,l(σ)/Yn,l(σ)Zp(Yn,l(σ))+. Then a basis of Y

[p]
n,l (σ) is

given by

(4.12) {ḞuḊtĖv + Yn,l(σ)Zp(Yn,l(σ))+ | (u, t,v) ∈ Ip}
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In particular, we note that dimY
[p]
n,l (σ) = pdim g

e

.

We let I
[p]
n,l be the ideal of Y

[p]
n (σ) generated by {D(r)

1 + Zp(Yn(σ))+ | r > p1}.
Then using Theorem 4.2(b) we can see that there is an isomorphism

(4.13) Y
[p]
n,l (σ)

∼−→ Y [p]
n (σ)/I

[p]
n,l.

4.4. The centre of U(g, e). We use the description of Z(Yn,l(σ)) given in Theo-

rem 4.2 along with the isomorphism φ : Yn,l(σ)
∼−→ U(g, e) to provide an explicit

description of the centre Z(g, e) of U(g, e) as stated in Theorem 4.7 below.
We recall the map pr : U(g) → U(p) is defined in (3.7) and define the Harish-

Chandra centre ZHC(g, e) of U(g, e) to be the image of U(g)G under pr. It is evident
that ZHC(g, e) is invariant under the twisted adjoint action of M , and that these
elements are central in U(g, e). Our first objective is to show that the isomorphism

φ : Yn,l(σ)
∼−→ U(g, e) from (3.18) preserves the Harish–Chandra centres.

Recall that ZHC(Yn,l(σ)) is generated by the coefficients of the polynomial Ż(u) ∈
Yn,l(σ)[u] defined in §4.2 whilst U(g)G is generated by the coefficients of the Capelli

determinant Z∗(u) =
∑N

r=0 Z
(r)uN−r ∈ U(g)[u] given in (2.12). The following

lemma relates these polynomials.

Lemma 4.4. We have the following equality in U(g, e)[u]

(4.14) pr(Z∗(u)) = φ(Ż(u)).

Proof. Recall that prZ : U(gZ) → U(pZ) is given in (3.24). If we view Z∗(u)
as a polynomial with coefficients in U(gZ) then prZ(Z

∗(u)) is a polynomial with
coefficients in U(pZ). Using Lemma 3.3(b) we view Y Z

n,l(σ) as a subalgebra of

Y C

n,l(σ), and thus view Ż(u) as a polynomial with coefficients in Y Z

n,l(σ). Recalling

the map φZ from (3.25) we obtain two polynomials prZ(Z
∗(u)) and φZ(Ż(u)) with

coefficients in U(pZ). Using the inclusion U(pZ) ↪→ U(pC), [BK2, Lemma 3.7]

implies that the equality prZ(Z
∗(u)) = φZ(Ż(u)) holds in U(pZ)[u]. Now, by taking

the image of this equality under the natural homomorphism U(pZ)[u] → U(pZ)[u]⊗Z

k ∼= U(p)[u], we obtain (4.14). �

We introduce the notation Zr := pr(Z(r)) ∈ U(g, e) for r = 1, . . . , N ; by the

previous lemma we have that Zr = φ(Żr) too.

Corollary 4.5. We have φ : ZHC(Yn,l(σ))
∼−→ ZHC(g, e).

Proof. In §2.6 we demonstrated that U(g)G is generated by the coefficients of Z∗(u),
and it follows that ZHC(g, e) is generated by the coefficients of prZ∗(u), i.e. by

Z1, . . . , Zn. Now Lemma 4.4 implies that the generators Ż1, . . . , ŻN of ZHC(Yn,l(σ))
are sent bijectively to those of ZHC(g, e). �

The p-centre of U(g, e) is defined to be

Zp(g, e) := Zp(p)
tw(M) ⊆ U(g, e).

In the general setting of finite W -algebras associated to reductive groups, this
subalgebra was studied in some detail in [GT1, Section 8]. Using the explicit
formulas for the generators (3.9) of U(g, e) given in §3.2 we now introduce an explicit
generating set for Zp(g, e). Recall that the Kazhdan filtration of U(p) and U(g, e)
was discussed at the end of §3.2; in particular, we identify gr′ U(g, e) ∼= S(p)twM .
Also we remind the reader that ξp : S(p)(1) → Zp(p) is defined in §2.3
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Lemma 4.6.

(a) Zp(g, e) is a polynomial algebra of rank dim ge generated by

{ξp(gr′r D
(r)
i ) | (i, r) ∈ JD} ∪ {ξp(gr′r E

(r)
i,j ) | (i, j, r) ∈ JE}

∪ {ξp(gr′r F
(r)
i,j ) | (i, j, r) ∈ JF }.

(4.15)

(b) Explicitly we have

(4.16)

ξp(gr
′
r D

(r)
i )

=

r∑
s=1

(−1)r−s
∑

i1,...,is
j1,...,js

(−1)|{t=1,...,s−1|row(jt)≤i−1}|(epi1,j1 − e
[p]
i1,j1

)

· · · (epis,js − e
[p]
is,js

)

where the sum is taken over the index set described in (3.11).

Proof. As remarked at the end of §3.2, S(p)tw(M) is a polynomial algebra of rank

dim ge generated by {gr′r D
(r)
i , gr′r E

(r)
i,j , gr

′
r F

(r)
i,j }. Using [GT1, Lemma 7.6] we note

that the restriction of pr : U(g) → U(p) to Zp(g) is the projection Zp(g) → Zp(p)

along the decomposition Zp(g) = Zp(g){xp − x[p] − χ(x)p | x ∈ m} ⊕ Zp(p). It

follows that ξp : S(p)(1) → Zp(p) is equivariant for the twisted action of M , so we
can deduce (a).

Part (b) now follows easily from (a), because the formula for gr′r D
(r)
i is obtained

from (3.11) by replacing each occurrence of ẽil,jl with eil,jl . �

Using the explicit formulas for E
(r)
i and F

(r)
i given in [GT2, Section 4] we can give

precise formulas for the generators ξp(gr
′
r E

(r)
i ) and ξp(gr

′
r F

(r)
i ) analogous to that

given for ξp(gr
′
r D

(r)
i ). In principle, it is also possible, though more complicated, to

provide expressions for the generators ξp(gr
′
r E

(r)
i,j ) and ξp(gr

′
r F

(r)
i,j ) when i < j+1.

We are now ready to prove our main result regarding the centre of U(g, e). For the
statement of this theorem, we consider the intersection ZHC,p(g, e) := ZHC(g, e) ∩
Zp(g, e). It is a direct consequence of the definitions that this intersection is equal
to pr(Zp(g)

G).

Theorem 4.7.

(a) The centre Z(g, e) of U(g, e) is free of rank pN over Zp(g, e) with basis

{Zk1
1 · · ·ZkN

N | 0 ≤ ki < p}.
(b) We have a tensor product decomposition

Z(g, e) = Zp(g, e)⊗ZHC,p(g,e) ZHC(g, e).

Proof. By Lemma 4.6 and the formulas given in (3.13), we have grZp(g, e) = Zp(g
e).

Further, by Theorem 4.2(b) we have grZp(Yn,l(σ)) = Zp(g
e). The isomorphism φ :

Yn,l(σ)
∼−→ U(g, e) is filtered with respect to the loop filtration by Theorem 3.1, and

sends Żr ∈ ZHC(Yn,l(σ)) to Zr ∈ ZHC(g, e). Now (a) follows from Theorem 4.2(c).
To prove (b), we apply Lemma 2.1, withB = Zp(g, e) and C = ZHC(g, e), and the

set of generators {c1, . . . , cm} = {Zk1
1 · · ·ZkN

N | 0 ≤ ki < p}. The first condition that
we need to verify is given in (a), so we are left to verify that ZHC(g, e) is generated as

a ZHC,p(g, e)-module by {Zk1
1 · · ·ZkN

N | 0 ≤ ki < p}. As explained after Lemma 2.4,
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in the case e = 0, we have zr = Z(r). Thus from this lemma we obtain that ZHC(g)
is generated as a Zp(g)

G-module by {(Z(1))k1 · · · (Z(N))kN | 0 ≤ ki < p}. Since pr

sends Z(r) to Zr by Lemma 4.4 we deduce the desired result. �

We set up some notation for a basis of Z(g, e). For (u, t,v) ∈ IF ×ID ×IE and
w ∈ {0, 1, . . . , p− 1}N , we define

ξp(gr
′ F )uξp(gr

′ D)tξp(gr
′ E)vZw

:=
∏

ξp(gr
′ F

(r)
i,j )

u
(r)
i,j

∏
ξp(gr

′ D
(r)
i )t

(r)
i

∏
ξp(gr

′ E
(r)
i,j )

v
(r)
i,j

∏
Zwi
i .

Then the ordered monomials
(4.17)
{ξp(gr′ F )uξp(gr

′ D)tξp(gr
′ E)vZw | (u, t,v,w) ∈ IF × ID × IE ×{0, . . . , p− 1}N}

form a basis for Z(g, e).

4.5. Restricted finite W -algebras. We move on to recall the definition of the
restricted W -algebra U [p](g, e). We write Zp(p)+ for the ideal of Zp(p) generated

by {xp − x[p] | x ∈ p}, so the restricted enveloping algebra of p is U [p](p) =
U(p)/U(p)Zp(p)+. Then the restricted W -algebra is defined as

U [p](g, e) := U(g, e)/(U(g, e) ∩ U(p)Zp(p)+).

Since, the kernel of the restriction of the projection U(p) � U [p](p) to U(g, e) is
U(g, e)∩U(p)Zp(p)+, we can identify U [p](g, e) with the image of U(g, e) in U [p](p).

By [GT1, Theorem 8.4], we have that U(g, e) is free of rank pdim g
e

over Zp(g, e),

and thus that dimU [p](g, e) = pdim g
e

. We note that each of the elements in (4.15)
lies in U(g, e) ∩ Zp(p)+, and we let Zp(g, e)+ be the ideal of Zp(g, e) generated by
these elements. By Lemma 4.6(a), we have that Zp(g, e)+ is a maximal ideal of
Zp(g, e), and it follows that Zp(g, e)+ = U(g, e) ∩ Zp(p)+. By using the formulas
given in (3.13), and a filtration argument we see that U(g, e)/U(g, e)Zp(g, e)+ is
spanned by the p-restricted monomials in the elements in (4.15). Hence, we see
that U(g, e) ∩ U(p)Zp(p)+ = U(g, e)Zp(g, e)+, and obtain the basis

(4.18) {FuDtEv + U(g, e)Zp(g, e)+ | (u, t,v) ∈ Ip}
of U [p](g, e).

5. Highest weight modules for Yn,l(σ) and U(g, e)

For our proof of Theorem 1.1, we require some results about highest weight
vectors in modules for Yn,l(σ) and U(g, e). In this section we cover the required
material, with the key results being Lemmas 5.4 and 5.6. We continue to use the
notation from Sections 3 and 4.

5.1. Torus actions. Before discussing highest weight theory we have to introduce
the underlying torus actions.

Let Tn be the maximal torus of GLn(k) of diagonal matrices. We write {ε1, . . . , εn}
for the standard basis of the character group X∗(Tn) of Tn, i.e. εi : Tn → k× is de-
fined by εi(diag(t1, . . . , tn)) = ti. For the purposes of this paper the positive weights
in X∗(Tn) are X∗

+(Tn) = {
∑n

i=1 aiεi ∈ X∗(T ) | ai ∈ Z, ai ≥ ai+1 for all i and
a1 > an}; the condition a1 > an ensures that one of the inequalities ai ≥ ai+1 is
strict.
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Now let T be the maximal torus of G of diagonal matrices, and let T e be the
centralizer of e in T . We can describe T e explicitly in terms of certain cocharacters.
Define τ1, . . . , τn : k× → T , where τi(t) is the diagonal matrix with jth entry equal
to t if row(j) = i and entry 1 otherwise. Then we have T e = {

∏n
i=1 τi(ti) | ti ∈ k×}.

Thus we have an isomorphism

(5.1) Tn
∼−→ T e

which sends diag(t1, . . . , tn) to
∏n

i=1 τi(ti). From now on we use the above isomor-
phism to identify Te with Tn. It is a straightforward to see that the basis element

c
(r)
i,j of ge is a Tn-weight vector with weight εi − εj .

We note that the adjoint action of T e on U(g) restricts to an adjoint action on

U(g, e), so we have an action of Tn on U(g, e). By inspection of the formula for D
(r)
i

in (3.11), we see that it is fixed by Tn. Similarly, by considering the formula for

E
(r)
i given in [GT2, Section 4], we see that E

(r)
i is a Tn-weight vector with weight

εi − εi+1; and then deduce, using (3.2) that E
(r)
i,j has Tn-weight εi − εj . Similarly,

we see that F
(r)
i,j has Tn-weight εj − εi.

Further, we note that the action on Tn on U(g, e) is filtered for the loop filtration,
so there is an action of Tn on grU(g, e). Under the identification grU(g, e) ∼= U(ge)
given by S−η in (3.16), this action coincides with the natural action of Tn

∼= T e on
U(ge).

By considering the relations for Yn(σ) given in [BT, Theorem 4.15] and the

definitions of E
(r)
i,j and F

(r)
i,j given in (3.2), we see that there is an action of Tn on

Yn(σ) by algebra automorphisms, such that D
(r)
i is fixed by Tn, the weight of E

(r)
i,j

is εi − εj , and the weight of F
(r)
i,j is εj − εi. Further, this action of Tn is filtered

for the loop filtration, and through the isomorphism ψ : U(cn(σ))
∼−→ grYn(σ) in

(3.3) it corresponds to the natural action of Tn on U(cn(σ)).
We note that the ideal In,l is Tn-stable, so that there is an induced action of Tn

on Yn,l(σ). From the description of the action of Tn on Yn(σ) and on U(g, e) above,

we see that the isomorphism φ : Yn,l(σ)
∼−→ U(g, e) in (3.17) is Tn-equivariant.

5.2. Highest weight modules for Yn,l(σ). For our proof of Theorem 1.1, we
require some theory of highest weight modules for Yn,l(σ). We outline what we
need below, much of which is a modular analogue of some results in [BK2, Chapter
6], though here we take a more elementary approach to some of the results we
require. The key result in this subsection is Lemma 5.4, which tells us how the

elements Ḃ
(rp)
i act on highest weight vectors.

We recall that a PBW basis {ḞuḊtĖv | (u, t,v) ∈ IF × ID × IE} of Yn,l(σ) is
given in (3.21). In the discussion below we also require the ordered sets JF , JD

and JE , which are defined before (3.21), and used to fix the order in the PBW

monomials. Since each F
(r)
i,j , D

(r)
i and E

(r)
i,j is a Tn-weight vector we see that the

elements of the above PBW basis of Yn,l(σ) are also Tn-weights. In order to define

Verma modules for Yn,l(σ) we fix a = (a
(r)
i | 1 ≤ i ≤ n, 1 ≤ r ≤ pi) ∈ kN . We use

this tuple to modify the basis given in (3.21) by setting

Ḟu(Ḋ − a)tĖv =
∏

(i,j,r)∈JF

(Ḟ
(r)
i,j )

u
(r)
i,j

∏
(i,r)∈JD

(Ḋ
(r)
i − a

(r)
i )t

(r)
i

∏
(i,j,r)∈JE

(Ė
(r)
i,j )

v
(r)
i,j .
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Then we see that

{Ḟu(Ḋ − a)tĖv | (u, t,v) ∈ IF × ID × IE}.(5.2)

forms a basis for Yn,l(σ). Also we note that these basis elements are Tn-weight

vectors, and that the Tn-weight of Ḟ
u(Ḋ− a)tĖv is the same as that of ḞuḊtĖv.

We define M(a) to be the set of monomials (5.2) for which t �= 0 or v �= 0, and
write I(a) for the subspace of Yn,l(σ), which has these as a basis.

Lemma 5.1. Let a = (a
(r)
i | 1 ≤ i ≤ n, 1 ≤ r ≤ pi) ∈ k

N , and define I(a) as
above. Then:

(a) any Tn-weight vector in Yn,l(σ) with weight in X∗
+(Tn) lies in I(a); and

(b) I(a) is a left ideal of Yn,l(σ).

Proof. For a monomial Ḟu(Ḋ−a)tĖv to have a positive weight, it must have v �= 0,
and thus lies in I(a). From this we can deduce (a) as these monomials give a basis
of Yn,l(σ).

For the proof of (b), we require another filtration of Yn,l(σ), known as the canon-
ical filtration. First we recall that the canonical filtration is defined on Yn(σ) by

placing E
(r)
i,j , D

(r)
i , F

(r)
i,j in filtered degree r, then we get the induced filtration on

Yn,l(σ). We write gr′ Yn(σ) and gr′ Yn,l(σ) for the associated graded algebras for
the canonical filtrations. As is remarked in [BT, §4.2], gr′ Yn(σ) is commutative,
and thus gr′ Yn,l(σ) is also commutative.

Let X ′ = Ḟu′
(Ḋ − a)t

′
Ėv′

be in the basis given in (5.2) and X =

Ḟu(Ḋ − a)tĖv ∈ M(a). We write deg′(X ′X) for the canonical degree of X ′X
and proceed to prove that X ′X ∈ I(a) by induction on deg′(X ′X). It is clear that
(b) follows immediately from this.

If deg′(X ′X) = 0, then X ′, X ∈ k (and in fact X = 0) so the claim holds. So we
suppose that deg′(X ′X) > 0.

For our fixed value of deg′(X ′X), we see that we can reduce to the case where

u = 0, by writing Ḟu′
Ḋt′Ėv′

Ḟu as Ḟu′+uḊt′Ėv′
plus a sum of the PBWmonomials

in the basis given in (5.2) of strictly lower canonical degree; here we use that

gr′ Yn,l(σ) is commutative. Thus we assume that X = (Ḋ − a)tĖv. We define
the length �(X ′) to be the sum of the entries of all three tuples u′, t′,v′, and
now work by induction on �(X ′), under the assumption that X is of the form

(Ḋ − a)tĖv ∈ M(a).
If �(X ′) = 0, then X ′ = 1, and trivially X ′X ∈ I(a). So we assume that

�(X ′) > 0.

Suppose that v′ = t′ = 0, then we see that X ′X = Ḟu′
(Ḋ − a)tĖv ∈ M(a).

Next suppose that v′ = 0 and t′ �= 0. Let (i0, r0) be largest with respect to

our fixed order on JD such that t
′(r0)
i0

�= 0. Define s = (s
(r)
i | 1 ≤ i ≤ n, 1 ≤ r ≤

pi) ∈ ID by s
(r)
i = δi,i0δr,r0 . We see that X ′X = (Ḟu′

(Ḋ−a)t
′−s)((Ḋ−a)t+sĖv),

as the D
(r)
i all commute with each other. Since �(Ḟu′

(Ḋ − a)t
′−s) < �(X ′) and

(Ḋ − a)t+sĖv ∈ M(a) is of the required form, we conclude that X ′X ∈ I(a) by
induction on �(X ′).

Last we consider the case v′ �= 0. Let (i0, j0, r0) be largest with respect to our

fixed order on JE such that v
′(r0)
i0,j0

�= 0. Define q = (q
(r)
i,j | 1 ≤ i < j ≤ n, 1 ≤

r ≤ pi) ∈ IE by q
(r)
i,j = δi,i0δj,j0δr,r0 . Also write Ėv = Ev<Ėv≥ , where Ėv< is the
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submonomial of Ėv consisting of the Ė
(r)
i,j for (i, j, r) up to (i0, j0, r0) in our fixed

order of JE , and Ėv≥ is the remaining submonomial. We have

X ′X = (Ḟu′
(Ḋ − a)t

′
Ėv′

)((Ḋ − a)tĖv)

= (Ḟu′
(Ḋ − a)t

′
Ėv′−q)

(
(Ḋ − a)tĖv+q + [Ė

(r0)
i0,j0

, (Ḋ − a)tĖv< ]Ėv≥
)
.

The first term (Ḟu′
(Ḋ − a)t

′
Ėv′−q)((Ḋ − a)tĖv+q) above satisfies �(Ḟu′

(Ḋ −
a)t

′
Ėv′−q) < �(X ′) and (Ḋ − a)tĖv+q ∈ M(a) is of the required form. So we

conclude that this term lies in I(a) by induction on �(X ′). We are left to consider

the term Y = (Ḟu′
(Ḋ − a)t

′
Ėv′−q)([Ė

(r0)
i0,j0

, (Ḋ − a)tĖv< ]Ėv≥). As the associated

graded algebra of Yn,l(σ) for the canonical filtration is commutative, we have that

deg′ Y < deg′ X ′X. Next we see that [Ė
(r0)
i0,j0

, (Ḋ − a)tĖv< ]Ėv≥ has positive Tn-

weight, so lies in I(a) by (a). Therefore, it can be rewritten as a linear combination

of monomials in M(a). Let X̃ be a monomial from M(a) occurring in this sum.

Then we know that (Ḟu′
(Ḋ − a)t

′
Ėv′−s)X̃ ∈ I(a), by induction on deg′(X ′X).

Putting this all together we obtain that X ′X ∈ I(a) as required, which completes
the double induction. �

Now we define the Verma module

M(a) := Yn,l(σ)/I(a).

From the PBW theorem, it is clear that a basis of M(a) is given by {Fu+I(a) | u ∈
IF }. It follows immediately from the definition of I(a) that Ḋ

(r)
i acts on 1 + I(a)

as a
(r)
i for all (i, r) ∈ JD and that Ė

(r)
i,j annihilates 1 + I(a) for all (i, j, r) ∈ JE .

In fact, something much stronger is true.

Lemma 5.2. The following elements of Yn,l(σ) annihilate 1 + I(a) ∈ M(a):

(a) Ė
(r)
i,j for all 1 ≤ i < j ≤ n, r > si,j.

(b) Ḋ
(r)
i for all 1 ≤ i ≤ n, r > pi;

Proof. Since Tn acts on E
(r)
i,j with a positive weight for all 1 ≤ i < j ≤ n, r > si,j ,

part (a) follows from Lemma 5.1(a).
Using (3.27) we calculate that

Ṫ
(r)
i,i = Ḋ

(r)
i +

i∑
k=1

∑
a>si,k,b≥0,c>sk,j

a+b+c=r

Ḟ
(a)
k,i Ḋ

(b)
k Ė

(c)
k,j .

By Corollary 3.6 we know that Ṫ
(r)
i,i = 0 for r > pi. Also by (a), we know that each

Ė
(c)
k,j on the righthand side of the above equation annihilates 1 + I(a). Hence, we

deduce that Ḋ
(r)
i also annihilates 1 + I(a) for r > pi. �

Let M be a Yn,l(σ)-module and let v+ ∈ M . We say that v+ is a highest weight
vector of weight a if I(a) annihilates v+. We say that M is a highest weight module
of weight a if M is generated by some highest weight vector of weight a. The Verma

modules {M(a) | a = (a
(r)
i )1≤r≤pi

1≤i≤n ∈ kN} are defined to be the universal highest
weight modules. Thus if v+ ∈ M is a highest weight vector of weight a, then there
is a unique map M(a) → M sending 1 + I(a) to v+.
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It is helpful for us to relabel the Verma modules, following the approach of
[BK2, Section 6.1]. Suppose we have a highest weight vector v+ with weight a in
some Yn,l(σ)-module. Then by Lemma 5.2 we know that

upiḊi(u)v+ = (upi + a
(1)
i upi−1 + · · ·+ a

(pi−1)
i u+ a

(pi)
i )v+.

By factorising and introducing a shift, we have that

(5.3) upiḊi(u)v+ = (u+(i− 1)+ ai,1)(u+(i− 1)+ ai,2) . . . (u+(i− 1)+ ai,pi
)v+.

These are the formulas given in [BK2, (6.1)–(6.3)].
We let A be the π-tableau with entries {ai,j | j = 1, . . . , pi} on the ith row, and

note that A is only defined up to row equivalence. We denote the row equivalence
class of A by A, and from now on we refer to A as the weight of v+, rather than a.
This allows an alternative parametrization of the Verma modules, where we write
M(A) instead of M(a); we use the notation vA,+ for the highest weight vector of

M(A).
We define Yn,l(σ)

0 to be the (commutative) subalgebra of Yn,l(σ) generated by

{Ḋ(r)
i | 1 ≤ i ≤ n, 0 < r ≤ pi} and note that Yn,l(σ)

0 is in fact a polynomial algebra
on these generators. The next lemma is a direct consequence of the Nullstellensatz,
but we record it for convenience of reference.

Lemma 5.3. Let d ∈ Yn,l(σ)
0. Then dvA,+ = 0 for all A ∈ Tab(π) if and only if

d = 0.

A useful observation for us gives the action of the generators Żr of ZHC(Yn,l(σ))
on a highest weight vector of weight A ∈ Tab(π). We calculate
(5.4)

Ż(u)vA,+ = up1(u− 1)p2 · · · (u− (n− 1))pnḊ1(u)Ḋ2(u− 1) . . . Ḋn(u− (n− 1))vA,+

= up1Ḋ1(u)(u− 1)p2Ḋ2(u− 1) . . . (u− (n− 1))pnḊn(u− (n− 1))vA,+

= (u+ a1,1) . . . (u+ a1,p1
)(u+ a2,1) . . . (u+ an,pn

)vA,+.

Therefore, we see that Żr acts as er(ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ pi), where we recall
that er denotes the rth elementary symmetric polynomial.

Now we want to calculate the scalar by which B
(rp)
i acts on the highest weight

vector vA,+.

Lemma 5.4. Let A ∈ Tab(π), let 1 ≤ k ≤ n and 1 ≤ r ≤ pi. Set s := s(r) =
r + � r−1

p−1� and let Di,r be the set of all sequences d = (d0, d1, d2, . . . , ds) of non-

negative integers such that
∑

j≥0 dj = pi and rp =
∑

j≥1 dj(jp− j + 1). Then

Ḃ
(rp)
i vA,+ =

∑
d∈Di,r

(
∑

j≥1 dj)!∏
j≥1 dj !

e∑
j≥1 dj

(api,1 − ai,1, . . . , a
p
i,pi

− ai,pi
)vA,+(5.5)

Furthermore, there exist elements B̂
(rp)
i ∈ Zp(Yn,l(σ)) related to Ḃ

(rp)
i by a unitri-

angular change of variables, such that

B̂
(rp)
i vA,+ = er(a

p
i,1 − ai,1, . . . , a

p
i,pi

− ai,pi
)vA,+.

Finally, if p > r, then B̂
(rp)
i = Ḃ

(rp)
i .
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Proof. We consider
(∏p−1

j=0(u− j)pi

)
Ḃi(u)vA,+ and calculate⎛

⎝p−1∏
j=0

(u− j)pi

⎞
⎠ Ḃi(u)vA,+ =

⎛
⎝p−1∏

j=0

(u− j)piḊi(u− j)

⎞
⎠ vA,+

=

p−1∏
j=0

pi∏
k=1

(u− j + ai,k)vA,+

=

pi∏
k=1

p−1∏
j=0

(u+ ai,k − j)vA,+

=

pi∏
k=1

((u+ ai,k)
p − (u+ ai,k)) vA,+

=

pi∏
k=1

(up − u+ (api,k − ai,k))vA,+.

We explain some of the steps in the above calculation. The first equality just uses
the definition of Ḃi(u). To go from the first line to the second we use the definition

of the action of Ḋi(u) in (5.3). Then to go from the third line to the fourth we use
(2.2).

Also we have that
∏p−1

j=0(u− j)pi = (up − u)pi by (2.1), so we obtain

(up − u)piḂi(u)vA,+ =

pi∏
k=1

(up − u+ (api,k − ai,k))vA,+

= (up − u)pi

pi∏
k=1

(1 + (api,k − ai,k)(u
p − u)−1)vA,+.

Thus

Ḃi(u)vA,+ =

pi∏
k=1

(1 + (api,k − ai,k)u
−p(1− u−(p−1))−1)vA,+

=

pi∏
k=1

⎛
⎝1 + (api,k − ai,k)u

−p
∑
j≥0

u−j(p−1)

⎞
⎠ vA,+

=

pi∏
k=1

(
1 + (api,k − ai,k)(u

−p + u−(2p−1) + u−(3p−2) + . . .
)
vA,+.(5.6)

The action of Ḃ
(rp)
i on v+ is determined by the coefficient of u−rp in the above

expression.
Let d ∈ Di,r and let (

pi
d0, d1, . . . , ds

)
=

pi!∏
j≥0 dj !

.

be the multinomial coefficient. By choosing the summand 1 in d0 of the multi-
plicands in (5.6) and choosing a summand (api,k − ai,k)u

pj−j+1 in dj of the
multiplicands for each 1 ≤ j ≤ r, we obtain a term which contributes to the
coefficient of u−rp. The contribution from all such terms is a multiple of



222 SIMON M. GOODWIN ET AL.

e∑
j≥1 dj

(apk,1 − ak,1, . . . , a
p
k,pk

− ak,pk
) and a straightforward counting argument

shows that the coefficient on e∑
j≥1 dj

(api,1 − ai,1, . . . , a
p
i,pi

− ai,pi
) which arises from

d ∈ Di,r is (
pi

d0,d1,...,ds

)
(

pi∑
j≥1 dj

) =
(
∑

j≥1 dj)!∏
j≥1 dj !

.

We deduce that each d ∈ Di,r contributes

(5.7)
(
∑

j≥1 dj)!∏
j≥1 dj !

e∑
j≥1 dj

(api,1 − ai,1, . . . , a
p
i,pi

− ai,pi
).

to the coefficient of u−pr in (5.6).
We note that our definition of s is chosen precisely so that all sequences d =

(d0, d1, d2, . . . ) of non-negative integers such that rp =
∑

j≥1 dj(jp − j + 1), have

di = 0 for i > s. So the considerations above give all coefficients of u−rp. Therefore,
the coefficient of u−rp in (5.6) is the sum over all d ∈ Di,r of the terms given in
(5.7), which proves the first claim of the lemma.

Now we observe that (pi − r, r, 0, . . . , 0) ∈ Di,r is the unique element which
maximises

∑
j≥1 dj . It is easily verified that (pi − r, r, 0, . . . , 0) ∈ Di,r. To see that∑

j≥1 dj is maximised we observe that for d ∈ Di,r we have pr =
∑

j≥1 dj(j(p −
1) + 1) ≥ p

∑
j≥1 dj . We now show that this is the unique element of Di,r with∑

j≥1 dj = r. Let d ∈ Di,r. From the equation
∑

j≥1 dj(j−1) = p
∑

j≥1 djj−pr we

deduce that p is a factor of
∑

j≥1 dj(j−1), say mp =
∑

j≥1 dj(j−1) =
∑

j≥2 dj(j−
1). Substituting back into rp =

∑
j≥1 dj(jp− j + 1) we have

(5.8)

mp = p
∑
j≥1

jdj − pr = p

⎛
⎝∑

j≥1

(j − 1)dj +
∑
j≥1

dj − r

⎞
⎠ = p

⎛
⎝mp+

∑
j≥1

dj − r

⎞
⎠

Finally we arrive at r = m(p− 1) +
∑

j≥1 dj , and we conclude that if r =
∑

j≥1 dj
then m = 0, which forces d2 = d3 = · · · = ds = 0. Using

∑
j≥0 dj = pi we deduce

that d = (pi−r, r, 0, . . . , 0). We have now proven that claim that (pi−r, r, 0, . . . , 0)
uniquely maximises

∑
j≥1 dj in Di,r.

Since (
∑

j≥1 dj)!/(
∏

j≥1 dj !) = 1 for d = (pi − r, r, 0, . . . , 0) it follows that for i

fixed there is a upper unitriangular matrix C = (cs,r)1≤s,r≤pi
such that

Ḃ
(rp)
i vA,+ =

∑
s≤r

cs,res(a
p
i,1 − ai,1, . . . , a

p
i,pi

− ai,pi
).

If we take C−1 = (c̃s,r)1≤s,r≤n and define B̂
(rp)
i =

∑
s≤r c̃s,rḂ

(ps)
i then the elements

B̂
(rp)
i act on vA,+ in the manner claimed in the lemma.

To finish the proof, we are left to show that if p > r, then B̂
(rp)
i = Ḃ

(rp)
i , which

follows from showing that Di,r = {(pi − r, r, 0, . . . , 0)} under the assumption that
p > r. So suppose that p > r and let d ∈ Di,r. From equation (5.8) we have

(5.9) p

⎛
⎝∑

j≥1

dj +mp

⎞
⎠ = rp+mp

Since
∑

j≥1 dj > 0 we have p(
∑

j≥1 dj +mp) > mp2 = m(p− 1)p+mp. If m > 0,

then the hypothesis p > r implies that m(p − 1) ≥ r and combining with the
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previous inequality we arrive at p(
∑

j≥1 dj + mp) > rp + mp, which contradicts

(5.9). We conclude that m = 0 and, following the observations made after (5.8),
we deduce that d = (pi − r, r, 0, . . . , 0). This completes the proof. �

Our next corollary implies that certain elements of Z(Yn,l(σ)) are determined
by their action on highest weight vectors. We need to set up some notation for its
statement and proof.

Let Yn,l(σ)0 be the subalgebra of Yn,l(σ) of all elements fixed by the action of
Tn. The PBW basis (3.21) is Tn-stable, and Yn,l(σ)0 has a basis consisting of

those monomials such that
∑

(i,j,r)∈JF
u
(r)
i,j (εi−εj) =

∑
(i,j,r)∈JE

v
(r)
i,j (εi−εj). The

subspace Yn,l(σ)0,� of Yn,l(σ)0 spanned by monomials with u �= 0 is equal to the
subspace spanned by monomials with v �= 0, and thus this subspace is an ideal.
Further, we have a direct sum decomposition Yn,l(σ)0 = Yn,l(σ)

0 ⊕ Yn,l(σ)0,�. We
define

ζ : Yn,l(σ)0 → Yn,l(σ)
0,

to be the projection along this direct sum decomposition.
Recall the basis for Z(Yn,l(σ)) given in (4.11), and define Z(Yn,l(σ))

0 to be
the subspace of Z(Yn,l(σ)) spanned by the monomials with u = v = 0. Clearly
Z(Yn,l(σ))

0 ⊆ Yn,l(σ)0. We write Zp(Yn,l(σ))
0 for the subalgebra of Z(Yn,l(σ))

which is generated by {B̂(rp)
i | 1 ≤ i ≤ n, 0 < r ≤ pi}; it is a polynomial algebra

on these generators thanks to Theorem 4.2(b) and Lemma 5.4. We note that
Z(Yn,l(σ))

0 is not a subalgebra of Z(Yn,l(σ)) but nonetheless, Z(Yn,l(σ))
0 is a free

Zp(Yn,l(σ))
0-module with basis given by the restricted monomials given in (4.7).

Corollary 5.5.

(a) The restriction of ζ to Z(Yn,l(σ))
0 is injective.

(b) Let z ∈ Z(Yn,l(σ))
0. Then zvA,+ = 0 for all A ∈ Tab(π) if and only if

z = 0.

Proof. Thanks to Corollary 4.3 and Lemma 5.4 we know that Z(Yn,l(σ))
0 has a

basis consisting of ordered monomials

(5.10) {B̂tŻw | t ∈ ID,w ∈ {0, . . . , p− 1}N}.
Let R = k[xi,j | 1 ≤ i ≤ n, 0 < j ≤ pi] be the polynomial ring in variables xi,j . We
define a linear map ω : Z(Yn,l(σ))

0 → R by setting

ω(Żr) = er(xi,j | 1 ≤ i ≤ n, 0 < j ≤ pi)

ω(B̂
(rp)
i ) = er(x

p
i,1 − xi,1, . . . , x

p
i,pi

− xi,pi
)

and then extending multiplicatively.
Thanks to (5.4) and Lemma 5.4 we know that the action of any element of

Z(Yn,l(σ))
0 on the Verma module M(A) is given by the composition pA ◦ ω where

pA : R → k is the homomorphism determined by xi,j 
→ ai,j . In other words, for
z ∈ Z(Yn,l(σ))

0 and A ∈ Tab(π) we have zvA,+ = (pA ◦ ω(z))vA,+. Since we have
zvA,+ = ζ(z)vA,+ for every z ∈ Yn,l(σ)0, and

⋂
A∈Tab(π) ker pA = 0, we conclude

by Lemma 5.3 that ker ζ|Z(Yn,l(σ))0 = kerω. The rest of the proof is devoted to
showing that kerω = 0, which implies both (a) and (b).

Let S := ω(Z(Yn,l(σ))
0) ⊆ R and Sp := ω(Zp(Yn,l(σ))

0). In order to show
that ω is injective we show that it sends the basis of Z(Yn,l(σ))

0 given in (5.10)
to a basis of S. To this end we show that Sp is a polynomial ring generated by



224 SIMON M. GOODWIN ET AL.

{ω(B̂(rp)
i ) | 1 ≤ i ≤ n, 0 < r ≤ pi}, and that an Sp-basis is given by {ω(Żw) | w ∈

{0, 1, . . . , p− 1}N}.
We place a filtration on R with every xi,j in degree 1, and we have induced

filtrations on S and Sp. We identify the associated graded space of S with a
subspace of R and we see that grr er(xi,j | 1 ≤ i ≤ n, 0 < j ≤ pi) = er(xi,j |
1 ≤ i ≤ n, 0 < j ≤ pi) (as all the monomials lie in filtered degree r), whereas
grpr er(x

p
i,1 − xi,1, . . . , x

p
i,pi

− xi,pi
) = er(x

p
i,1, . . . , x

p
i,pi

) = er(xi,1, . . . , xi,pi
)p; in

particular, we observe that grS is in fact a subalgebra of R. Using Lemma 2.3 it
suffices to show that the p-restricted monomials in {er(xi,j | 1≤ i≤n, 0 < j≤pi) |
r = 1, . . . , N} form a basis for grS over grSp.

At this stage in the proof, we restrict to the case where p = (1N ), because the
other cases follow from this case, whilst the notation in this case is more transparent.
Since n = N and p1 = · · · = pn = 1 we use the notation xi instead of xi,1 for
i = 1, . . . , N and write e1, . . . , eN for the elementary symmetric polynomials in
x1, . . . , xN . The subalgebra grS of R is generated by {xp

i | i = 1, . . . , N} ∪ {er |
r = 1, . . . , N}, and the subalgebra grSp is generated by {xp

i | i = 1, . . . , N}. The
restricted monomials ew1

1 · · · ewN

N withw ∈ {0, . . . , p−1}N clearly generate grS over
Rp so it suffices to show that they are linearly independent. In turn it is enough to
prove that ew1

1 · · · ewN

N are linearly independent over the fraction field of Rp.
To achieve this we apply some field theory that can be found in [Bo, Chapter V].

We write K = k(x1, . . . , xN ) for the fraction field of R, and note that the fraction
field ofRp isKp. Next we observe that {e1, . . . , eN} form a separating transcendence
basis of K over k in the sense of [Bo, Definition V.16.7.1]. Therefore, by [Bo,
Theorem V.16.7.5], we have that {de1, . . . , deN} form a K-basis of the space Ωk(K)
of k-derivations of K. Since any D ∈ Ωk(K) annihilates Kp, we have that ΩKp(K) =
Ωk(K), so that {de1, . . . , deN} is a K-basis of ΩKp(K). Then we can apply [Bo,
Theorem V.13.2.1] to deduce that {e1, . . . , eN} is a p-basis of K over Kp, in the
sense of [Bo, Definition V.13.1.1]. By definition of a p-basis we have that the p-
restricted monomials in {e1, . . . , eN} are a basis of K over Kp, and thus in particular
are linearly independent as required. �

5.3. Highest weight modules for U(g, e). Through the isomorphism φ : Yn,l(σ)
→ U(g, e), which we know is Tn-equivariant, we have a notion of highest weight
modules for U(g, e). We use the notation and terminology introduced in §5.2 also
for U(g, e). We are mainly interested in considering the restriction of highest weight
U(h)-modules to U(g, e), and our main result is Lemma 5.6. We also consider the
action of the Z(g, e)0, which is defined to be the subspace of Z(g, e) spanned by
the PBW monomials appearing in (4.17) such that u = v = 0. In Corollary 5.7
we show that elements of Z(g, e)0 are determined by their action on highest weight
vectors.

We recall the good grading g =
⊕

i∈Z
g(i) from (3.5) and the notation h := g(0)

and p =
⊕

i≥0 g(i) from (3.6). We recall that the heights of the columns in π are

q1, . . . , ql, and so h ∼= glq1(k)⊕ · · · ⊕ glql(k). We let bh be the Borel subalgebra of
h with basis {ei,j | col(i) = col(j), row(i) ≤ row(j)}, which is the direct sum of the
Borel subalgebras of upper triangular matrices in each of the glqi(k).

For A ∈ Tabk(π) we define the weight λA ∈ t∗ by

λA :=

N∑
i=1

aiεi.
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We let

ρh := −
N∑
i=1

(row(i)− 1)εi,

which is a “shifted choice of ρ for the Borel subalgebra bh of h”. Then we define

ρ̃ = η + ρh,

where we recall that η is defined in (3.10).
We define kA to be the 1-dimensional t-module on which t acts via λA − ρ̃, and

view it also as a module for bh on which the nilradical acts trivially. Then we define
the Verma module Mh(A) = U(h)⊗U(bh) kA for U(h), and we write mA := 1⊗ 1A
for the highest weight vector. We may view Mh(A) as a U(p)-module on which the
nilradical

⊕
i>0 g(i) of p acts trivially, and then restrict it to U(g, e) ⊆ U(p). We

write Mh(A) for the restriction of Mh(A) to U(g, e), and write mA for mA viewed

as an element of Mh(A).

The following lemma shows that mA is a highest weight vector in Mh(A) with

weight A, and further gives the action of ξp(gr
′ D

(r)
i ) onmA. We note that a proof of

(b) could be given based on the last paragraph of the proof of [BK2, Theorem 7.9];
however we give a more direct approach here, which can also be used to prove (c).

Lemma 5.6. Let A ∈ Tabk(π) and let Mh(A) and mA be as defined above. Then

(a) E
(r)
i,j mA = 0 for all (i, j, r) ∈ JE;

(b) D
(r)
i mA = er(ai,1 + (i− 1), . . . , ai,pi

+ (i− 1))mA for all (i, r) ∈ JD; and

(c) ξp(gr
′ D

(r)
i )mA = er(a

p
i,1 − ai,1, . . . , a

p
i,pi

− ai,pi
)mA for all (i, r) ∈ JD.

Proof. First we note that Mh(A) is isomorphic as a U(p)-module to U(p)/Ip(A),
where Ip(A) is the left ideal of U(p) generated by {ei,j − δi,j(λA− ρ̃)(ei,i) | col(i) =
col(j), row(i) ≤ row(j)} ∪ {ei,j | col(i) > col(j)}. Next we observe that T e ∼= Tn

acts on p by the adjoint action, and this induces an action of Tn on Ip(A). Using
the same proof as Lemma 5.1(a) we see that any element of U(p) with a positive Tn

weight annihilates mA. Now part (a) follows as E
(r)
i ∈ U(g, e) ⊆ U(p) has positive

Tn-weight.

We move on to prove (b), where we use the explicit formula for D
(r)
i given in

(3.11). We set up some notation to simplify the proof. The formula (3.11) is
given as a sum of terms indexed by integers 1 ≤ i1, ..., is, j1, ..., js ≤ N subject to
conditions (a)–(f). We write i = (i1, ..., is), j = (j1, ..., js) and ẽi,j for the summand
corresponding to i, j.

First we observe that if s < r, then condition (a) ensures that col(jk) > col(ik)
for some k, which implies that ẽi,j kills mA.

Now we consider sequences i, j with s = r. Then we have col(ik) = col(jk) for
all k, so that ẽi,j ∈ U(h). Suppose that ik �= jk for all k. Using conditions (d), (e)
and (f) we see that there is some k such that ik < jk, and we choose the maximal
such k. We certainly have that ẽik,jk = eik,jk kills mA. Further by condition (c)
and (e), we have col(im) > col(ik) for all m > k, so that eik,jk commutes with
ẽim,jm . We deduce ẽi,j kills mA.

Hence, we see that the only summands ẽi,j in D
(r)
i which do not kill mA

correspond to sequences i = j = (i1, ..., ir), where row(ik) = i for all k, and
i1 < i2 < · · · < ir. We have (λA − ρ̃)(ẽk,k) = (λA − ρh)(ek,k) = ak + (row(k) − 1)
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for k = 1, ..., N and it follows that D
(r)
i acts on mA by∑

i1<···<ir
row(ik)=i

(ai1 + (i− 1)) · · · (air + (i− 1)) = er(a1 + (i− 1), . . . , api
− (i− 1)).

To prove (c), we can argue exactly as above and use the formula for ξp(D
(r)
i )

given in (4.16); in fact the argument is easier as the monomials in the expression

for ξp(D
(r)
i ) consist of commuting terms. This shows that ξp(gr

′ D
(r)
i ) acts on mA

via

(λA − ρ̃)

⎛
⎜⎜⎝ ∑

i1<···<ir
row(ik)=i

(epi1,i1 − ei1,i1) · · · (e
p
ir,ir

− eir,ir )

⎞
⎟⎟⎠ .

We have that λA(e
p
ik,ik

− eik,ik) = api,k − ai,k whilst ρ̃(epik,ik − eik,ik) = ρ̃(eik,ik)
p −

ρ̃(eik,ik) = 0. Hence, ξp(gr
′ D

(r)
i ) acts on mA via er(a

p
i,1 − ai,1, . . . , a

p
i,pi

− ai,pi
) as

required. �

To end the subsection, we record a version of Corollary 5.5(b) for the algebra
U(g, e). We recall that Z(g, e)0 is defined to be the subspace of Z(g, e) spanned by
the PBW monomials appearing in (4.17) such that u = v = 0.

Corollary 5.7. Let z ∈ Z(g, e)0. Then zvA,+ = 0 for all A ∈ Tab(π) if and only
if z = 0.

Proof. It follows from Lemma 4.4, along with (5.4), that Zr ∈ ZHC(g, e) acts on
mA via the rth elementary symmetric function in {ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ pi}.
Also by Lemma 5.6(c), we know that ξp(gr

′ D
(r)
i ) ∈ Zp(g, e) acts on mA by the

rth elementary symmetric polynomial in {api,1 − ai,1, . . . , a
p
i,pi

− ai,pi
}. Therefore,

we may apply precisely the same argument as for Corollary 5.5(b) to complete the
proof. �

6. The isomorphism of restricted versions

The main goal of this section is to prove Theorem 1.1. We continue to use that
notation introduced in Sections 3–5.

Lemma 6.1.

(a) φ((Ė
(r)
i,j )

p) ∈ Zp(g, e)+Z(g, e).

(b) φ((Ḟ
(s)
i,j )

p) ∈ Zp(g, e)+Z(g, e).

(c) φ(B̂
(rp)
i )− ξp(gr

′ D
(r)
i ) ∈ Zp(g, e)+Z(g, e).

Proof. Recall from §4.5 that ξp(gr
′ E

(r)
i,j

p), ξp(gr
′ F

(r)
i,j

p) ∈ Zp(g, e)+. The basis ele-

ments of Z(g, e) in (4.17) with nonzero weight have u �= 0 or v �= 0, so that these

elements lie in Zp(g, e)+Z(g, e). Now (a) and (b) follow from the facts that Ė
(r)
i,j

has Tn-weight p(εi − εj) and Ḟ
(r)
i,j has Tn-weight p(εj − εi) along with the fact that

φ is Tn-equivariant.

By Lemmas 5.4 and 5.6 we know that φ(B̂
(rp)
i )− ξp(gr

′ D
(r)
i ) acts trivially on all

highest weight vectors mA for U(g, e). It follows from the definition of Bi(u) that

Ḃ
(rp)
i is fixed by Tn, thus φ(B̂

(rp)
i ) is also fixed. Similarly, ξp(gr

′ D
(r)
i ) is centralized
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by Tn, because D
(r)
i is, and ξp is Tn-equivariant. Therefore, φ(B̂

(rp)
i )− ξp(gr

′ D
(r)
i )

is centralised by Tn. Now writing φ(B̂
(rp)
i ) − ξp(gr

′ D
(r)
i ) as a sum of the basis

elements of Z(g, e) given in (4.17) we deduce that φ(B̂
(rp)
i )− ξp(gr

′ D
(r)
i ) is a span

of elements with u = v = 0 modulo terms lying in Zp(g, e)+Z(g, e). We may now

apply Corollary 5.7 to deduce that φ(B̃
(rp)
i ) − ξp(gr

′ D
(r)
i ) ∈ Zp(g, e)+Z(g, e) as

required. �

We are now ready to deduce our main theorem.

Proof of Theorem 1.1. Using Lemma 6.1 along with the fact that ξp(gr
′ D

(r)
i ) ∈

Zp(g, e)+ we know that φ maps Zp(Yn,l(σ))+ to Zp(g, e)+Z(g, e), and it follows
immediately that φ(Yn,l(σ)Zp(Yn,l(σ))+) ⊆ U(g, e)Zp(g, e)+. We conclude that

φ induces a surjective map φ[p] : Y
[p]
n,l (σ) → U [p](g, e). Moreover, dimY

[p]
n,l (σ) =

pdim g
e

= dimU [p](g, e) by considering the bases given in (4.12) and (4.18). Hence
φ[p] is an isomorphism. �
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