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ntroduction

Ovine footrot (FR) is an infectious bacterial disease that
ses lameness and affects sheep flocks worldwide (Kaler

 Green, 2008; Hussain et al., 2009; König et al., 2010).

Damage to the interdigital skin is thought to be required
for disease to occur (Beveridge, 1941). Early stages of FR
present as an inflammation of the interdigital skin
(interdigital dermatitis (ID)) and later stages present with
sloughing of necrotic epithelium (severe footrot (SFR))
(Beveridge, 1941; Egerton et al., 1969). In some sheep this
is followed by inflammation of the epidermis below the
horn that causes the horn capsule to separate from the
epithelium leading to severe footrot (SFR) (Beveridge,
1941). The primary causative agent of ovine FR is
Dichelobacter nodosus (Beveridge, 1941; Kennan et al.,
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A B S T R A C T

Analysis of bacterial populations in situ provides insights into pathogen population

dynamics and potential reservoirs for disease. Here we report a culture-independent study

of ovine footrot (FR); a debilitating bacterial disease that has significant economic impact

on sheep farming worldwide. Disease begins as an interdigital dermatitis (ID), which may

then progress to separation of the hoof horn from the underlying epidermis causing severe

footrot (SFR). Dichelobacter nodosus is the causative agent of ovine FR, however, the role of

Fusobacterium necrophorum and other bacteria present in the environment and on the feet

of sheep is less clear. The objective of this study was to use fluorescence in situ

hybridisation (FISH) to detect, localise and quantify D. nodosus, F. necrophorum and the

domain Bacteria from interdigital skin biopsies of healthy, ID- and SFR-affected feet. D.

nodosus and F. necrophorum populations were restricted primarily to the epidermis, but

both were detected more frequently in feet with ID or SFR than in healthy feet. D. nodosus

cell counts were significantly higher in feet with ID and SFR (p < 0.05) than healthy feet,

whereas F. necrophorum cell counts were significantly higher only in feet with SFR

(p < 0.05) than healthy feet. These results, together with other published data, indicate

that D. nodosus likely drives pathogenesis of footrot from initiation of ID to SFR; with D.

nodosus cell counts increasing prior to onset of ID and SFR. In contrast, F. necrophorum cell

counts increase after SFR onset, which may suggest an accessory role in disease

pathogenesis, possibly contributing to the severity and duration of SFR.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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2001, 2010). Fusobacterium necrophorum is commonly
detected in FR lesions and is reported to be essential for
disease initiation (Egerton et al., 1969; Roberts and Egerton,
1969). However, changes in D. nodosus and F. necrophorum

populations detected by qPCR indicate that F. necrophorum

load increases after SFR has occurred suggesting that it is an
opportunistic, secondary pathogen (Witcomb et al., 2014).
This is supported by a plethora of studies investigating
D. nodosus, ranging from molecular infection trials (Kennan
et al., 2001, 2010) to molecular genetic epidemiological
studies correlating genotype with clinical presentation
(Kennan et al., 2014; Stäuble et al., 2014).

D. nodosus and F. necrophorum have been detected using
a range of culture-dependent and -independent techni-
ques from both swabs and biopsies collected from the
interdigital skin of sheep with ID and SFR (Bennett et al.,
2009; Calvo-Bado et al., 2011; Witcomb et al., 2014). The
advantages and disadvantages of culture-dependent and -
independent methods have been discussed elsewhere
(Rogers et al., 2009), but due to the fastidious nature of
both anaerobes, PCR is more sensitive than culturing
methods (Moore et al., 2005). Additionally problematic is
the marked pleomorphism of F. necrophorum and other
bacteria and the limited morphologies presented within a
genus; making reliable identification of F. necrophorum and
D. nodosus using morphology alone prone to error (Hofstad,
2006; Young, 2007). In contrast, fluorescence in situ

hybridisation (FISH) can be used to detect bacteria in
their natural environment, providing information regard-
ing bacterial load and localisation (Baumgart et al., 2007;
Amann and Fuchs, 2008). The use of specific fluorescently
tagged oligonucleotide probes provides a sensitive and
specific improvement on conventional light microscopy,
which relies on phenotypic recognition of bacterial species.
FISH has recently been used to detect D. nodosus and
F. necrophorum in cases of ovine and bovine foot disease
(Rasmussen et al., 2012; Klitgaard et al., 2013; Knappe-
Poindecker et al., 2014) but no study to date has used FISH
to investigate bacterial load and localisation patterns for
cases of ID and SFR in sheep.

The aim of this study was to use FISH to investigate the
spatial distribution and load of the domain Bacteria, D.

nodosus and F. necrophorum populations from all four feet
of six sheep (n = 24 biopsies) with a range of non-
experimentally induced disease states (healthy (H), ID
and SFR). Results demonstrate that changes in D. nodosus

and F. necrophorum cell counts correlate with changes in
disease state.

2. Methods

2.1. Collection of interdigital skin biopsies and swabs

A flock of 99 ewes with 146 lambs were monitored for
10 months (Smith et al., 2014). At the end of the 10-month
study, six sheep were selected based on disease history
(healthy n = 2, ID n = 2, SFR n = 2) and for those with
disease, the disease severity was recorded (Foddai et al.,
2012) at the time of slaughter. Interdigital swabs (n = 24)
were collected from feet prior to biopsy punch, and
chromosomal DNA extracted as previously described
(Moore et al., 2005). F. necrophorum (rpoB) and D. nodosus

(rpoD) amplicons were then detected and quantified by
qPCR as done elsewhere (Witcomb et al., 2014).

Interdigital skin punch biopsies (n = 24) were collected
from all four feet of these six sheep using disposable sterile
Biopsy Punches (8 mm diameter) (Stiefel Laboratories, UK)
immediately post mortem at the EU-licensed red meat
abattoir at Bristol Veterinary School. There were n = 12
biopsies from healthy feet, n = 6 biopsies from feet with ID
and n = 6 biopsies from feet with SFR. A total of 4/12 healthy
foot biopsies came from sheep with other feet affected by ID
and/or SFR, the remaining samples belonged to sheep with all
feet being classified as healthy. Biopsies were fixed immedi-
ately in 3.8–4.0% (w/v) neutral buffered formalin (NBF)
overnight and embedded and sectioned at Bristol Pathology
Laboratory (Bristol Veterinary School, University of Bristol,
Langford, UK). Collection of ovine clinical material was
approved by the University of Bristol local ethical committee.

2.2. Fluorescence in situ hybridisation (FISH) probes and

protocol

The D. nodosus probe (50-TCGGTACCGAGTATTTCTAC-30)
was modified from the Cc primer sequence (La Fontaine
et al., 1993) targeting the 16S rRNA gene sequence
positions 821–840 (Dewhirst et al., 1990). The F. necro-

phorum_183 probe (Boye et al., 2006), the EUB338 probe
set (-I, -II, -III) consisting of three probes (Alm et al., 1996;
Daims et al., 1999) and the EUK1195 probe (Giovannoni
et al., 1988) were also used for this study. The EUB338-I
probe covers 90% of the domain Bacteria, and EUB338-II
and -III were included to extend coverage (Alm et al., 1996;
Daims et al., 1999). The EUK1195 probe was used to
provide definition to eukaryotic cell junctions (Supple-
mentary Fig. 1). Bacterial probes and the EUK1195 probe
were labelled at the 50-end with Cy3 and FITC, respectively.

Supplementary Fig. 1 related to this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.
vetmic.2015.01.022.

The FISH procedure was performed as described
previously (Amann et al., 1996; Peters et al., 2011). Briefly,
after dehydration steps in an ethanol series, slides were
incubated with hybridisation buffers for 4 h at 46 8C.
Hybridisation reactions contained 50–60 ng ml�1 FISH
probe (D. nodosus, F. necrophorum or EUB338 probe set
in conjunction with EUK1195); an equimolar mixture of
the EUB338-I, -II, -III probes was used. After washing, the
slides were dried using pressurised air canisters and
mounted in VectaShield Mounting Medium containing
40,60-diamidino-2-phenylindole (DAPI) (H-1200). All tissue
sections were pre-treated with proteinase K (5 mg ml�1)
for 10 min at room temperature (20–22 8C) (Peters et al.,
2011). Tissue sections to be screened with the EUB338
probe set were pre-treated with lysozyme (10 mg ml�1).
Lysozyme pre-treatment was not required for the
D. nodosus or F. necrophorum screens.

2.3. FISH optimisation

The in silico specificity of the D. nodosus probe
was determined using probeCheck (http://www.
microbial-ecology.net/probecheck) (Loy et al., 2008).

http://dx.doi.org/10.1016/j.vetmic.2015.01.022
http://dx.doi.org/10.1016/j.vetmic.2015.01.022
http://www.microbial-ecology.net/probecheck
http://www.microbial-ecology.net/probecheck
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eries of positive and negative control microorganisms
 14) were then screened using the D. nodosus oligonu-
tide to assess the specificity of the probe. The
roorganisms screened were selected because they
 previously been detected on the ovine foot by pyro-
uencing (Calvo-Bado et al., 2011) or isolation (Nicky
ler, personal communication) or they represented
ironmentally relevant non-target microorganisms
ble 1). Empirical optimisations were carried out for
h probe/probe set to determine specificity and optimal

amide concentrations (0–35% [v/v]) to adjust the
ngency of the hybridisation. Biopsies from healthy feet
re subcutaneously inoculated using sterile 25 gauge (G)
dles (BD MicrolanceTM 3, BD, Drogheda, Ireland) with

 ml of either F. necrophorum (BS-1) or D. nodosus

S1703A) at several sites to distribute the inocula evenly
 incubated at 37 8C under anaerobic conditions for 1 h
 24 h to act as spiked positive controls (data not
wn). Tissue controls were then screened using the
vant bacterial probe and the EUB338 probe set.

 Confocal microscopy and image analysis

Images were obtained using a scanning confocal Leica
 SP5 microscope (Leica Microsystems Ltd., Milton
nes, UK) equipped with Blue Diode (405 nm), Argon gas
8 nm), Ti sapphire (561 nm) and Orange HeNe (596 nm)
rs. Pre-set narrow bandwidth settings were used to
lyse the DAPI, FITC and Cy3 signals. Image processing

s performed using the Leica LAS image analysis software
 open source ImageJ software (http://rsb.info.nih.gov.ij)
ramoff et al., 2004). Multiple images/fields of view (FOV)

 9–12) were taken from each foot biopsy for localisation
poses. Bacterial counts and localisation patterns were
orded per image and each image standardised to

 mm2 (Davenport and Curtis, 2004; Baumgart et al.,
7); this FOV size was used to accurately identify
ividual bacterial cells for quantification. Bacterial counts
re then +1 log10 transformed for downstream analysis

 data expressed as log10 bacterial count/FOV.

 Statistical analysis and multinomial modelling

Bacterial counts were +1 log10 transformed (to reduce
w) and then averaged for each biopsy. A mixed effect

continuous outcome model was used to estimate log10

mean load of the bacteria by disease state adjusted for
clustering of feet within sheep. An unordered multinomial
mixed effects model accounting for clustered feet within
sheep in MLwiN 2.21 software, Bristol, UK (Rasbash et al.,
2005) was used to examine the associations between
D. nodosus and F. necrophorum log10 load by disease status.
The outcome variable had three categories; healthy, ID- and
SFR-affected feet. The explanatory variables were D. nodosus

and F. necrophorum log10 load. The model was built using a
forward stepwise approach. The equation took the form:

Logðp1jk=pi0jkÞ ¼ b0k þ
X

b0xjk þ
X

b0xj þ v0k

Logðp2jk=pi0jkÞ ¼ b1k þ
X

b1xjk þ
X

b1xj þ v1k

where log(p1jk/pi0jk) = the probability of ID versus healthy
and log(p2jk/pi0jk) = the probability of SFR versus healthy,
b0k and b1k are constants for ID and SFR, b0x and b1x are
vectors of fixed effects for ID and SFR varying at level 1 and
2, where level 1(j) = feet and level 2(k) = sheep, where v0k

and v1k are level 2 residual variances and level 1 is assumed
to take a binomial error distribution. The model was
developed using RIGLS (Restricted Iterative Generalised
Least Squares) and then MCMC (Markov Chain Monte
Carlo) was used to adjust for the possibility of overinflated
standard errors. A burn in of 5,000 followed by 50,000
iterations was done. Significance was determined using
the Wald’s statistic, where 95% confidence intervals (CI)
did not include unity. The model fit was tested by
outputting the predictions from the model and comparing
sum ranked fitted quintile estimates against the summed
observations for the number of cases of ID and SFR
combined each week using the Hosmer Lemeshow test
(Doohoo et al., 2003).

3. Results

3.1. In vitro and ex vivo optimisation of FISH protocol

The D. nodosus oligonucleotide probe was determined
to be specific and produce the highest signal-to-noise ratio
with 25% formamide in the hybridisation buffer (data not
shown), with no binding to non-specific microorganisms
observed (Table 1). In addition, the FISH protocols were
tested empirically both in vitro and on tissue biopsies

le 1

ificity of D. nodosus oligonucleotide probe (modified from the Cc forward primer) (La Fontaine et al., 1993). Binding conditions altered by increasing

amide within the hybridisation buffer.

odosus strain (positive controls) Result Negative controls Result

S1703A + Aeromonas hydrophilaa �
-1 + Aeromonas mediaa �
-6 + Arcanobacterium pyogenes (DS7M 20–630) �
98 + Bacillus circulans (WL-12)b �
rogroup A + Citrobacter freundiia �

Escherichia coli (K12) �
Fusobacterium necrophorum (BS-1) �
Klebsiella pneumoniaea �
Macrococcus caseolyticusc �

Environmental isolate (river water), United Kingdom.
Environmental isolate (soil), United Kingdom.

Bovine isolate (milk), United Kingdom.

http://rsb.info.nih.gov.ij/


L.A. Witcomb et al. / Veterinary Microbiology 176 (2015) 321–327324
spiked with D. nodosus or F. necrophorum cells (data not
shown).

3.2. Tissue observations and detection of bacterial

populations from interdigital swabs and biopsies

For healthy feet, 1/12 and 6/12 swabs were positive for
F. necrophorum (rpoB) and D. nodosus (rpoD), respectively.
Samples that were positive were on the limit of detection
(�103 copies swab�1), which is consistent with earlier
findings (Calvo-Bado et al., 2011; Witcomb et al., 2014).
A total of 5/6 and 6/6 swabs from ID feet were positive for
F. necrophorum (rpoB) and D. nodosus (rpoD), respectively.
Similarly, 100% of swabs were positive for both bacterial
species from feet with SFR. Significant necrosis of the
stratum corneum was present in tissue from feet with ID
and SFR and bacterial cells were observed in the sloughed
necrotic tissue, sometimes in large numbers (Fig. 1). In
addition, the infiltration of erythrocytes was associated
with both stages of disease and absent in healthy feet
(Fig. 2). Erythrocytes appeared as auto-fluorescent cells
under all three channels.

EUB338-I, -II, -III labelled cells were detected on the
surface of or within the epidermis of 100% of biopsies
(24/24), acting as a positive FISH control (Moter and Göbel,
2000). F. necrophorum cells were detected in 1/12, 4/6 and
5/6 of H, ID and SFR interdigital skin biopsies, respectively.
In contrast, D. nodosus cells were not detected in biopsies
from healthy feet, whether other feet from the sheep were
diseased or not (n = 0/12), but were detected in 50% of
biopsies from feet with ID (n = 3/6) and SFR (n = 3/6). The
vast majority of microorganisms detected by FISH were
located in the epidermis, which is consistent with other
work (Egerton et al., 1969; Rasmussen et al., 2012).
However, one F. necrophorum cell and one D. nodosus cell
were detected in the dermis of two different biopsies
(Supplementary Fig. 2).

Supplementary Fig. 2 related to this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.
vetmic.2015.01.022.

Fluorescently tagged bacterial cells were counted in
individual FOVs for the epidermis (n = 3–4) from each
biopsy per oligonucleotide probe. Quantification was

limited to images of the epidermis, as D. nodosus and
F. necrophorum populations were primarily restricted to
this region. Bacterial cell counts from images were +1 log10

transformed and compared by disease state (H, ID and SFR)
using a mixed effect model accounting for clustering of feet
by ewe (Table 2). Representative images are shown in
Fig. 2. Mean cell counts for the domain Bacteria were not
significantly different (p > 0.05) between disease states. In
contrast, D. nodosus cell counts were significantly higher in
both feet with ID and SFR than healthy feet (p < 0.05) and
F. necrophorum cell counts were only significantly higher in
feet with SFR than healthy feet (p < 0.05).

4. Discussion

This study used FISH to detect, quantify and localise
D. nodosus and F. necrophorum populations from biopsies
collected from healthy, ID- and SFR-affected ovine inter-
digital skin.

The key novel result was that whilst the general
bacterial population remained relatively stable by disease
state, D. nodosus and F. necrophorum populations changed
with clinical presentation. F. necrophorum cell counts were
significantly higher in cases of SFR (p < 0.05), whilst
D. nodosus cell counts were significantly higher in cases
of ID and SFR than in healthy feet (p < 0.05); the model
accounted for dependencies between feet within sheep
(Table 2). These findings suggest a shift in the D. nodosus

and F. necrophorum populations within the interdigital skin
before ID and between ID and SFR and these data are
consistent with Calvo-Bado et al. (2011) and Witcomb et al.
(2014) who both reported that D. nodosus (rpoD) load was
highest before and during an episode of ID and before SFR
by qPCR and that F. necrophorum (rpoB) load instead
increased after SFR (Witcomb et al., 2014). The findings
from the current study therefore provide further evidence
supporting Witcomb et al. (2014) who proposed that an
increase in D. nodosus population numbers drives patho-
genesis of footrot from healthy to ID to SFR whilst
F. necrophorum population increased only after SFR
developed. The causal role of D. nodosus is further
supported by a number of genomic and epidemiological
studies, which correlate D. nodosus genotype with clinical

Fig. 1. Tissue morphology of biopsy sections by disease state (healthy, ID and SFR) (A), and evidence of sloughing of necrotic tissue carrying bacterial cells

(B). Bacterial cells (red), epithelial cells (green), epithelial cell nuclei (blue) and erythrocytes (white – autofluorescence). Stratum corneum (SC), partial

stratum corneum (pSC), stratum spinosum (SS) and extracellular milieu (EM) are shown (red channel images removed from (A) for tissue morphology to be
observed). Scale bars: 25 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

http://dx.doi.org/10.1016/j.vetmic.2015.01.022
http://dx.doi.org/10.1016/j.vetmic.2015.01.022
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sentation (Kennan et al., 2001, 2010, 2014; Stäuble
l., 2014).

The bacterial populations in the ovine interdigital
psies were primarily restricted to the superficial
dermal layers, consistent with previous reports (Eger-

 et al., 1969; Rasmussen et al., 2012). The presence of
odosus by FISH (50% ID and SFR biopsies) was lower

n that detected by qPCR studies, where D. nodosus DNA
D) was detected in 86% and 71% of swabs from feet

h ID and SFR, respectively (Witcomb et al., 2014). The
 data are more in-line with isolation results; with
odosus detected in 67.9% and 55.8% swabs from feet

with ID and SFR, respectively, and not detectable in
samples from healthy feet (Moore et al., 2005). We
postulate that this is due to the higher sensitivity of the
qPCR assays compared with FISH, which is supported by
the increased detection frequency of rpoB/rpoD amplicons
from the interdigital skin. The swab samples gather
superficial bacteria from a wide area of the interdigital
skin, whilst the biopsy only samples an 8 mm region of the
epidermis. D. nodosus may not have been present in the
samples collected, however, we feel this is unlikely
considering the qPCR data and the strong association with
disease. Whilst F. necrophorum was detected in most

2. Representative FISH images from biopsy sections by disease state (healthy, ID and SFR). Bacterial cells (red), epithelial cells (green), epithelial cell

lei (blue) and erythrocytes (white – autofluorescence). Stratum corneum (SC), partial stratum corneum (pSC), stratum spinosum (SS) and extracellular

eu (EM) are shown. Scale bars: 25 mm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

le.)
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biopsies of ID and SFR, load was not significantly associated
with ID, consistent with findings elsewhere (Witcomb
et al., 2014). In addition, a larger bacterial population (as
represented by load or cell count) may indicate a longer
established community, suggesting D. nodosus preceded
F. necrophorum in cases of ID. Other studies that have
reported determining the presence/absence of
F. necrophorum have also reported an increased detection
frequency of F. necrophorum in FR (Bennett et al., 2009),
and concluded that this organism therefore likely contrib-
utes to the pathogenesis of FR. In contrast, Witcomb et al.
(2014) found that both F. necrophorum and D. nodosus are
frequently present, even in healthy feet, and therefore
examining bacterial load is more informative than the
presence/absence in studies of causality.

Erythrocytes were present in diseased tissue sections,
indicative of damage to local capillaries and seepage of
blood out from leaky capillary walls. There was also
evidence of sloughing of epidermal tissue in sections
from diseased biopsies and the tissue included bacterial
cells; which might indicate a route of transfer of infection
between diseased and susceptible feet and sheep
(Beveridge, 1941). D. nodosus and F. necrophorum cells
were detected within the dermal layers in two separate
biopsies. It is possible that these were artefacts produced
during processing of tissue samples, however, once
the tissues are fixed, their architecture is maintained
(Hopwood, 1991) and so the formation of artefacts
affecting bacterial localisation seems unlikely. If this
observation is a true finding, it would suggest that these
anaerobes are able to penetrate the deeper dermal layers
on occasion, which may act as a potential reservoir for
chronic infection. Egerton et al. (1969) also reported that
F. necrophorum was present in the dermis of ovine feet in
cases of FR.

The small sample size is a limitation of this study, which
may have implications for interpretation of results,
however, the data are consistent with a number of other
studies using a variety of culture-dependent and -inde-
pendent methodologies (Moore et al., 2005; Calvo-Bado
et al., 2011; Witcomb et al., 2014). Ideally longitudinal
sampling would also have been performed to follow
disease progression over time in the same individual,

would likely predispose sheep feet to infection and change
the natural progression of disease.

In conclusion, this study describes in detail the
detection, spatial distribution and quantification of
D. nodosus, F. necrophorum and the domain Bacteria within
ovine interdigital skin biopsies and their association with
healthy, ID and SFR using FISH. We also present evidence
that bacterial cell counts change with clinical presentation,
with D. nodosus counts significantly higher in ID and SFR
and F. necrophorum cell counts increasing only after
progression to SFR. This is consistent with previous work
(Calvo-Bado et al., 2011; Witcomb et al., 2014) indicating
that D. nodosus initiates ID and is present before SFR
develops, whilst F. necrophorum cell counts only increase
when SFR is present. Finally, this study supports FISH as an
invaluable tool that can be used to examine the microbial
community associated with ovine FR.
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