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Abstract  
 
The paper proposes and investigates vibrations mitigation strategies of an externally harmonically 
excited pendulum. This problem is relevant to the crane’s payload behavior, which dynamics is 
typically described by a lumped-mass pendulum model. Currently, there are various active 
control strategies to mitigate swinging vibrations of the payload, but there are no passive 
measures to achieve vibration mitigation. The proposed strategies involve the utilization of 
another pendulum which mass and length can be adjusted to hypothetically reduce the vibrations 
of the main system. Implementation of these strategies leads to the study of a double pendulum 
system. The paper presents results of the analytical study for the linearized model and numerical 
studies for the nonlinear model of the double pendulum system, describing their features.   

Keywords 

Tower cranes, Offshore cranes; Pendulum, Double pendulum, Pendulum tuned mass dampers, 
Nonlinear energy sink, Passive absorber, Vibrations mitigation  
 

 

1 Introduction 
 
Cranes remain an indispensable tool for heavy lifting in the construction sector as well as loading 
and unloading various cargos and goods from/to ships or lorries. Cranes are also actively used on 
ships and helicopters to conduct launch and recovery or rescue operations, which are the integral 
part of their daily routine. In fact, according to statistics about 35% of worldwide weather 
conditions have sea state 3 and higher, and in these conditions 50% of launch and recovery 
missions have to be suspended or aborted [1]. Moreover, in recent years many countries have 
been actively working on the development of unmanned boats and ships, where the onboard 
supervision of various routine processes and activities is simply impossible. Thus, these activities 
will have to be controlled and supervised remotely, which requires auxillary video monitoring 
systems, multiple sensors, data transmission units and other equipment to provide enough 
information about the ongoing and planned activities. Development of autonomous systems, 
including ROVs and UAVs has substantially increased the dependence on and role of cranes as 
well as their capabilities of performing routine operations remotely or completely autonomously. 
This is a highly challenging task, since nowadays all cranes operations are physically supervised 
by a crane operator, who heavily relies on his/her experience, knowledge and ability to 
adequately perceive the surrounding environment, including wind gusts, existing and/or suddenly 
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appearing static or moving obstacles, current position and velocity of the payload, etc. The 
situation aggravates substantially if the crane is positioned on a ship, operating in sea, where the 
roll, pitch and heavy motions of the ship are directly transmitted to the motion of the crane and 
crane’s boom, exciting parametric vibrations [2],[3],[4]. It should be stressed that currently there 
are no systems that allow cranes to operate autonomously even in the perfectly calm sea. 
 
Cranes can be classified by the degrees of freedom they have [5] and typically the payload 
motion is modelled as a lumped-mass system or mathematical pendulum. When the payload is 
moved by the crane or is excited by wind, it starts swinging oscillations, which may lead to 
various adverse effects, including cable breakdown or collision of the payload against other 
nearby objects. Controlling these oscillations is a difficult and may even seem as a 
counterintuitive task especially for an unexperienced operator. Indeed, the available control 
parameters, which can be adjusted, are the cable length and its reeling velocity, which both can 
influence the payload response parametrically by changing the cable length. Depending on the 
crane type various control strategies have been proposed and validated numerically and/or 
experimentally. Strategies based on H∞ [6],[7], Neural Network [8],[9], nonlinear control 
[10],[11],[12], adaptive and input shaping control [13],[14],[15],[16],[17] optimal control 
[18],[19], vision control [20], sliding and saturated control [21],[22],[23],[24] PD control [25], 
hoisting control [26],[27] and combination of some of the above strategies [28],[29] were 
investigated and presented in the literature. The review papers [30],[31],[32], which 
comprehensively cover the existing literature up to 2017 and in the book [33] published in 2019 
and references therein.  It should be stressed that this topic, based on the number of publications 
in last three years, keeps attracting the attention of researchers all over the world due to the 
complex and nonlinear behavior of the payload, seeking for advanced and efficient mitigation 
strategies. Despite all these amazing control concepts, some effective control strategies are rather 
complex and assumes the existence of sensors that provides required information on the system 
state for decision making. In many practical applications the required sensors or sensor networks 
will be almost impossible to retrofit to the existing cranes. In some cases the processing and 
reaction time will be above the time required to make a decision. After all, any electronic system 
can fail leaving a crane operator to deal with the swinging payload. Thus, it seems reasonable to 
look for other possible options of mitigating swings of the payload, and one of such option can be 
a passive absorber. 
 
Pendulum Tuned Mass Damper (PTMD) is a dynamic absorbing mechanism similar to a Tuned 
Mass Damper (TMD) [34],[35],[36], which can be used to absorb vibrations of an original system 
subjected to a harmonic or stochastic excitation. The tuning of a TMD is implemented by adding 
a secondary mass to the original oscillatory single-degree-of-freedom system, where the mass and 
the stiffness of the TMD are selected appropriately. In the case of a PTMD the tuning is not that 
obvious because, firstly the PTMD is inherently nonlinear since represents a pendulum, and 
secondly the natural frequency of the PTMD depends on its length, thus the original device 
should have enough space to accommodate the PTMD. The use of nonlinear isolators or energy 
sinks to mitigate adverse vibrations has been previously discussed [37],[38], however not in the 
context of the payload vibrations mitigation. The obvious advantage of such a passive device 
would be its ability to mitigate vibrations independently of a presented active control strategy and 
can improve the payload dynamics for remotely operating cranes.  
 
Thus, the main motivation for this work is the aspiration of developing a passive vibration 
mitigation mechanism that can help conducting crane operations in safe and reliable manner. The 
basic idea behind the application of the PTMD for the payload vibration mitigation is shown in 
Figure 1, where the blue block is the original payload, and the orange block represents the PTMD. 
The original crane with the payload (Figure 1 left) of mass M, which represents the hook and the 
payload together, hanging at distance L from the suspension point. It is proposed to implement a 
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PTMD in two different ways:  
 
1) Case I: the PTMD is suspended between the payload and the suspension point, so that L=L1+L2. 
In this case the payload has a hole where the main cable is going through and it can be controlled 
by an independent motor, thereby it can be retrofitted to an existing crane system. Moreover, the 
overall length of the cable is not increased, as can be seen in Figure 1 (middle), therefore this 
strategy can be very useful. 
2) Case II: the PTMD is connected under the primary mass, so that L=L1 and L2 should be 
adjusted through the analysis. Since the PTMD is connected to the payload this approach can also 
be retrofitted to the existing crane systems, however, the overall length of the system will 
increase, creating problems with its handling and landing. Moreover, the overall mass of the 
payload will increase adding the PTMD mass and it will not be engaged at the beginning of 
lifting up when the secondary mass will be resting on the floor or floating on water. 
   
Obviously in both the cases implementing a PTMD creates a double-pendulum or two-degree-of-
freedom system, which has naturally nonlinear behaviour. Thus, the adjustment or tuning of the 
parameters of the PTMD requires understanding the nonlinear dynamics of a double-pendulum 
system for adjusting the parameters of the PTMD in each case. It should be stressed that the 
typical goal of a TMD is to reduce the vibrations of the main mass, whereas the goal of a PTMD 
in the current application is to reduce the vibrations of both the systems, because large response 
of either mass can cause significant problems to a crane operator and the surrounding structures. 
 

 

 
Double-pendulum system has been intensively investigated by a number of authors in last several 
decades, including the presence of a chaotic response in some cases, which were experimentally 
observed and reported [39],[40].  Later, it has been shown [41],[42],[43] that a double pendulum 
is a non-integrable system that has a transversal homoclinic trajectory for any non-zero values of 
the parameters. Two integrable limiting cases were studied for the case of zero gravity and the 
case when the pendulums are uncoupled using Melnikov’s approach [44], [45]. Influence of the 
double-pendulum variable mass, mass exchange and initial velocity were investigated in 
[46],[47],[48]. The behaviour of a parametrically excited double pendulum was studied in [49], 
whereas the energy harvesting using a double pendulum was reported in [50]. Despite all these 
advanced studies, none of the above works has explicitly studied a pendulum vibrations 
mitigation strategy using another pendulum i.e. PTMD.  This paper proposes to study the effect 
of a pendulum absorber on other pendulum vibrations, including the characteristics features of 
classical linear and nonlinear responses and the influence of the given parameters on vibrations 
mitigation.  
 
In this paper, the proposed passive absorbing methodology is studied analytically in the case of 
small vibrations, and numerically in the nonlinear case. In Section 2 the governing equations of 

L  
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Figure 1. The original system (left), Case I (middle) and Case II (right). 
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motion for a double pendulum system are derived using Newtonian approach. Section 3 studies 
Case I, where the PTMD is introduced between the payload and the suspension point. Section 4 
studies Case II, where the PTMD is introduced below the payload, which resembles the case of a 
classical TMD. In Section 5 the approach similar to one developed in Section 4 is presented using 
a tri-pendulum system. The conclusions are presented in the last section of the paper.  
 
2 External	excitation	of	a	payload	
 
In this study it is assumed that the vibrations of the payload occurs due to a harmonic external 
force, applied to it, therefore one has to derive the equations of motion of the proposed TDOF 
system for both the cases. Thus, two forces F1 and F2 are introduced in Figure 2, which depicts 
the free body diagram of the model. Assume that 𝜃 and 𝜃  are the inclination angles of M1 and 
M2 correspondingly. 
 
 

 

Figure 2. Free body diagram of the two-mass pendulum system 

 
Following the notation and coordinated in Figure 2, the equations of motion for the first mass can 
be written as following: 

 
𝑀 𝐿 𝜃 𝑐𝑜𝑠𝜃 𝜃 𝑠𝑖𝑛𝜃 𝑇 𝑠𝑖𝑛𝜃 𝑇 𝑠𝑖𝑛𝜃 𝐹 𝑐𝑜𝑠𝜃

𝑀 𝐿 𝜃 𝑠𝑖𝑛𝜃 𝜃 𝑐𝑜𝑠𝜃 𝑇 𝑐𝑜𝑠𝜃 𝑇 𝑐𝑜𝑠𝜃 𝐹 𝑠𝑖𝑛𝜃 𝑀 𝑔
                  (1) 

 
Thus, simplifying this expression by multiplying the corresponding equations by sine and cosine 
functions, the first and second derivatives of the first angle can be expressed as: 

 

𝐿 𝜃 𝑠𝑖𝑛 𝜃 𝜃 𝑔𝑠𝑖𝑛𝜃

𝐿 𝜃 𝑐𝑜𝑠 𝜃 𝜃 𝑔𝑐𝑜𝑠𝜃
                                  (2) 

 
Now, let’s consider the second mass:  
 

𝑀 𝐿 𝜃 𝑐𝑜𝑠𝜃 𝐿 𝜃 𝑠𝑖𝑛𝜃 𝐿 𝜃 𝑐𝑜𝑠𝜃 𝐿 𝜃 𝑠𝑖𝑛𝜃 𝑇 𝑠𝑖𝑛𝜃 𝐹 𝑐𝑜𝑠𝜃
𝑀 𝐿 𝜃 𝑠𝑖𝑛𝜃 𝐿 𝜃 𝑐𝑜𝑠𝜃 𝐿 𝜃 𝑠𝑖𝑛𝜃 𝐿 𝜃 𝑐𝑜𝑠𝜃 𝑇 𝑐𝑜𝑠𝜃 𝐹 𝑠𝑖𝑛𝜃 𝑀 𝑔

(

3) 
 
These equations can be used to derive the expression for the first and second derivative of the 
second angle in terms of the forces, suing the expressions (2): 
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T2 
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𝐿 𝜃 𝑠𝑖𝑛 𝜃 𝜃 𝑐𝑜𝑠 𝜃 𝜃

𝐿 𝜃 𝑐𝑜𝑠 𝜃 𝜃 𝑠𝑖𝑛 𝜃 𝜃
                                   (4) 

 
Using the first equations in (2) and (4) one can express the tensions T1 and T2: 
 

𝑇

𝑇
     (5) 

 
and substitute them into the second equations of (2) and (4) to arrive to the following equations of 
motion: 
 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐿 𝜃

/ / 𝑐𝑜𝑠 𝜃 𝜃 𝑔𝑐𝑜𝑠𝜃

𝐿 𝜃

/
𝑐𝑜𝑠 𝜃 𝜃 𝑠𝑖𝑛 𝜃 𝜃

            (6) 

 
which can be simplified: 
 

⎩
⎪
⎨

⎪
⎧𝐿 𝜃 𝐿 𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝐿1𝜃1

2
𝑠𝑖𝑛 𝜃 𝜃 𝑔𝑠𝑖𝑛𝜃

𝑀2
1 𝐿 𝜃 𝐿 𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝑐𝑜𝑠 𝜃2 𝜃1

𝐹1

𝑀2 𝑀2
1 𝑔𝑠𝑖𝑛𝜃 𝐿2𝜃2

2
𝑠𝑖𝑛 𝜃 𝜃

    (7) 

 

The first and second equations can be simplified by introducing 𝜇 , 𝜂 𝐿 /𝐿  and 

dividing both sides of the equations correspondingly: 
 

𝜃 𝜂𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝜂𝜃1
2
𝑠𝑖𝑛 𝜃 𝜃 Ω 𝑠𝑖𝑛𝜃

𝜂𝜃 𝜇𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝜇 𝑐𝑜𝑠 𝜃2 𝜃1
𝜇 𝐹1

𝑀2
Ω 𝑠𝑖𝑛𝜃 𝜇𝜃2

2
𝑠𝑖𝑛 𝜃 𝜃

           (8) 

 
where Ω 𝑔/𝐿 . This set of nonlinear ODEs should be solved in order to predict behaviour of 
the payload and to adjust the secondary mass’s parameters and it will be done for each case 
separately. Classical Lagrange approach can be used to derive the system’s governing equations 
of motion and it is presented in Appendix. 
 
3 Case I: the PTMD is above the payload and F1=0 
 
In this case the PTMD mass 𝑀  is on top of the payload mass 𝑀 , and since it is relatively small, 
the force F1 acting on it will be neglected. Moreover, since 𝐿 𝐿 𝐿 , and 𝐿 𝜂𝐿 , then  
𝐿 𝐿 1 𝜂  and 

 

Ω Ω 1 𝜂      (9) 
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where Ω 𝑔/𝐿 is the natural frequency of the original system, i.e. the payload. Taking into 
account the above arguments, adding a linear damping term to the first equation representing 
friction between the cable in the suspension point, one can rewrite the equations of motion as: 
 

𝜃 𝜂𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝑐𝜃1 𝜂𝜃1
2
𝑠𝑖𝑛 𝜃 𝜃 Ω 1 𝜂 𝑠𝑖𝑛𝜃

𝜂𝜃 𝜇𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝜇 𝑐𝑜𝑠 𝜃2 𝜃1 Ω 1 𝜂 𝑠𝑖𝑛𝜃 𝜇𝜃2
2
𝑠𝑖𝑛 𝜃 𝜃

         (10) 

 

3.1 Linearized	dynamics	
 
To study small oscillations one can use the linearized equations (10) assuming 𝑠𝑖𝑛𝜃
𝜃 , cos 𝜃 𝜃 1, i=1,2) and rewrite the equations as following: 
 

𝜂𝜃 𝜇𝜃 Ω 1 𝜂 𝜃 𝑐𝜃1 𝑓 𝜇 

𝜃 𝜂𝜃 Ω 1 𝜂 𝜃 𝑓 , 𝑤ℎ𝑒𝑟𝑒  𝑓 1 𝜂                                (11) 

 
When the excitation is a harmonic process and 𝐹 𝑡 𝑀 𝐿 exp it ,  so that 𝑓
 exp it 1 𝜂 ,  then the solution can be sought in the same form, namely 𝜃 𝑡
𝐴 exp it  and 𝜃 𝐵 exp it , which after substitution yields: 
 

ω  Ω 1 𝜂 𝑖𝑐ω A ω 𝜇 B 𝜇 1 𝜂  
ω 𝜂A ω Ω 1 𝜂 B  1 𝜂    (12) 

 
It is relatively straightforward to find a solution of these two equations: 
 

A
𝜇Ω 1 

  1 𝜇 1  Ω Ω 
 

(13) 

B
 1 𝜂 Ω 1 𝜂 𝜂 1 𝜇 
  1 𝜇 1  Ω Ω 

 

 
The second equation can be further rearranged in the following way for the undamped case: 
 

  
, n     (14) 

 
Obviously, in the resonant case (n=1) the expression in the numerator is not equal to zero, which 
indicates that the use of PTMD in this arrangement does not lead to the desired result, i.e. does 
not reduce the vibrations of the payload to zero. In fact, in this case, the non-dimensional 
amplitude of the payload will be inversely proportional to 1 𝜇 , making it relatively high for 
relatively small values of the PTMD mass: 

   


     (15) 

  
Although this value remains finite for any nonzero value of the PTMD mass, the response may 
still be high. In other cases of near the resonance values of n, the proposed methodology provides 
reduction of the response amplitude compared to the response of the original system. It is well 
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known that the undamped response of the original payload is inversely proportional to Ω   
and will have high but finite response amplitude within the system bandwidth except the 
resonance frequency. The contour plots presented in Figure 3 are produced from (14) for different 
values of n. Each sub-figure has been plotted for different values of the frequency ratio n and 
presents a map in the 𝜇,  -space. One can observe from Figure 3 that the structure of the plot 
changes after crossing the resonance value n=1, although the overall advantageous effect of 
increasing  can be observed throughout all the plots. For the values of the excitation frequency 
below the resonance n<1, shown in Figures 3a-3b the maps have very similar pattern of steeply 
increasing curves with their values increasing to the right. One can also deduce that to increase 
the effect of PTMD its mass should be increased, whereas for a given PTMD mass value the 
value of  should be increased. However, the far from resonance response (n<1) as in Figure 3a, 
one can also see that the response does not depends much, when values of  1, because the 
curves reduces to almost vertical lines. For closer to the resonance values of n (Figure 3b) the 
curves bend to the left more and more providing an optimal pair of , 𝜇 values corresponding to a 
minimal response amplitude. Passing the resonance makes the curves bend to the left more and 
the response values will now decrease with the increase of 𝜇.  

  
a) n=0.9 b) n=0.98  

 

 
c) n=1.0  d) n=1.1  

 
Figure 3. Contour maps of non-dimensional amplitude (14) for Ω 1, and varying 𝜇,  and n.  

 
Passing the resonance, the structure of the contour lines changes drastically, and now it is 
possible to select values of   and 𝜇  such that the response of the payload with the PTMD 
becomes worse than that without PTMD. This effect has not been observed in the pre-resonance 
domain, where any set of parameters  and 𝜇 result in a mitigated response, and is due to the 
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second peak, introduced by implementing the PTMD. 
 
 

3.2 Numerical	analysis	of	the	nonlinear	absorber	
 
To study the effect of the nonlinearity onto the system performance the full set of equations will 
be modelled numerically: 
 

𝜃 𝜂𝜃 𝑐𝑜𝑠 𝜃2 𝜃1
𝐹 1 𝜂

𝑀 𝐿 
𝜂𝜃1

2
𝑠𝑖𝑛 𝜃 𝜃 Ω 𝑠𝑖𝑛𝜃  

𝜂𝜃 𝜇𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝜇
1

𝑐𝑜𝑠 𝜃2 𝜃1 Ω 𝑠𝑖𝑛𝜃 𝜇𝜃2
2
𝑠𝑖𝑛 𝜃 𝜃 (16) 

 
𝐹 𝑡 𝑀 𝐿 sin t  

 
The above equations of motion are analyzed through numerical quasi-static continuation in the 
excitation frequency  . The examined frequency range is selected to cover realistically low 
frequencies, centered around the resonance frequency of the primary system. The latter is 
assumed to correspond to a hanging payload at L=20m. The tracked quantity is the horizontal 
displacement amplitude of the payload, given by 𝑥 𝐿 sin 𝜃 𝐿 sin 𝜃 . 

 

  
 

Figure 4. Frequency response curves for Case I 

 
The numerical results of the payload amplitude shown in Figure 4 reveal that the configuration 
considered in Case I has very limited capacity to suppress the payload vibrations, even if the 
absorber attains unrealistically high weight. This is expected from the linearized analysis, and it is 
due to the fact that the mode shape introduced to the system with the addition of the absorber is 
confined to relatively high frequencies. Figure 4 left demonstrates the response amplitude-
frequency curves of the primary mass xp without absorber and with absorber at different lengths 
with respect to the payload length generated by the nonlinear set of equations (16) for . 
One can see a minor shift in the resonance frequency for the system with the absorber, and very 
insignificant decrease in the response amplitude even for large values of the length ratio Figure 
4 right presents the payload response with the absorber as heavy as the mass of the payload for 
. In this case a significant frequency shift and an amplitude reduction can be seen. Figures 5a 
and 5b demonstrate the contour plots of the absorber and payload correspondingly in the 
plane for the resonant case of n=1. One can see high values of the amplitude of the absorber 

Comment [PA(E2]: Do you mean 
Figure 4 or Figure 5? 
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and payload are concentrated at high values of which corresponds to a low value of the 
absorber mass. Moreover, the payload amplitude is high for any value of the mass ratio and low 
values of  

 
(a) n=1      (b) n=1 

 
(c) =0.75     (d) =0.75 

 

 
(e) =0.95      (f) =0.95 

 

Figure 5. Contour plots for Case I and: the resonant case (a) and (b); value of  =0.75 (c) and (d); 
value of  =0.95 (e) and (f); 

Relative effective energy absorption can be seen at high values of  and  around 3.5, 
corresponding to large yellow region. However, since a high oscillation amplitude of the payload 
may also cause a collision against the ship hull, high swinging amplitudes of the payload and 
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absorber should be avoided. Thus, significant reduction of the amplitude of both the systems can 
be seen only for high absorber mass (low  values). Figure 5 c – 5f demonstrate the contour maps 
-n for values of  =0.75 (middle raw) and =0.95 (bottom raw) correspondingly. The trail of 
yellow in the payload maps, especially bright at the bottom raw, demonstrates the poor 
performance of the absorber at the resonance, although its tilt to the left indicates the frequency 
shift without any amplitude reduction. In general one can conclude that the proposed strategy can 
be effective only for high values of the absorber mass, otherwise it will not be capable of 
mitigating the vibrations by absorbing the payload energy.  
 
4 Case II: The PTMD is below the payload and F2=0  
 
In the second case the secondary mass M2 is connected to the payload, so that the payload 
becomes M1. Moreover, L=L1 and L2 can be any, thus Ω Ω 𝜂 according to its definition. 
Then, the force acting onto the secondary mass is neglected, i.e. F2=0, so that the full set of 
equations is: 

 

𝜃 𝜂𝜃 𝑐𝑜𝑠 𝜃2 𝜃1 𝜂𝜃1
2
𝑠𝑖𝑛 𝜃 𝜃 Ω 𝑠𝑖𝑛𝜃

𝜂𝜃 𝜇𝜃 𝑐𝑜𝑠 𝜃2 𝜃1
𝜇

𝐿
𝐹1

𝑀2
Ω 𝑠𝑖𝑛𝜃 𝜇𝜃2

2
𝑠𝑖𝑛 𝜃 𝜃

 

 
where 𝜇 ≪ 1 now will have to be selected close to zero in order to make the secondary mass 
small, since M2<< M1 following the main idea of the TMD theory and according to the definition 
of 𝜇 above.  
 
4.1 Investigation of the linear behavior 
 
In the case of the small oscillations the above equations will be simplified as: 
 

𝜃 𝜂𝜃 Ω 𝜂𝜃  

𝜂𝜃 𝜇𝜃
𝜇𝜂
𝐿

𝐹1

𝑀2
Ω 𝜂𝜃  

Therefore, assuming 𝐹 𝑡 𝑀 𝐿 exp it , one can write the solution in the form of 𝜃 𝑡
𝐶 exp it  and 𝜃 𝐷 exp it , which after substitution results in two algebraic equations: 
 

ω  C ω Ω 𝜂 D 0 
ω 𝜇D ω 𝜂 Ω 𝜂 C 𝜇𝜂 

 
Solution of these equations can be written as: 
 

C
𝜇 Ω 𝜂 

Ω 𝜂  Ω  𝜇
 

(17) 

D
𝜂𝜇

Ω 𝜂  Ω  𝜇
 

 
It can be seen directly from the above expression that the payload amplitude can reach zero when 
the cable length of the secondary mass is equal to that of the payload, e.g. 𝜂 1. This makes 
almost impossible, at least within the linear framework, to effectively mitigate payload vibrations 
since the required length cannot be achieved immediately after the begging of the lifting up 
process.   
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4.2 Nonlinear dynamics of the system 
 
Here, a numerical study of the original nonlinear system will be conducted, with the external 
harmonic excitation in the form 𝐹 𝑡 𝑀 𝐿 sin t  and additional damping terms: 
 

𝜃 𝜂𝜃 𝑐𝑜𝑠 𝜃 𝜃 𝜂𝜃 𝑠𝑖𝑛 𝜃 𝜃 Ω 𝜂𝑠𝑖𝑛𝜃 𝑑 𝜃  

𝜂𝜃 𝜇𝜃 𝑐𝑜𝑠 𝜃2 𝜃1
𝜇 𝐹1

𝑀2
Ω 𝜂𝑠𝑖𝑛𝜃 𝜇𝜃2

2
𝑠𝑖𝑛 𝜃 𝜃 𝑑 𝜃        (18) 

 
 

  

Figure 6. Frequency response curves for Case II 

 

     
a)                                                              b) 
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c)    

Figure 7. Parametric analysis with respect to 𝜼 and 𝝁 for 𝒅𝟐 𝟎. 𝟏. 

Figures 6 left presents the amplitude-frequency curves of the payload without any absorber 
(primary) and with the absorbers in the case of nonlinear oscillations, governed by Eq. (18) for 
𝜇=0.05 and d2=0.1. One can observe that for  =1 the payload amplitude is reduced significantly 
 

 
(a)n=1      (b) n=1 

 

 
(c) 𝜇 =0.05     (d) 𝜇 =0.05 

 

0.07 0.086 0.102 0.118 0.134 0.15

(Hz)

0

1

2

3

4

5

6
displacement (m)

primary
=0.01
=0.02
=0.03
=0.04
=0.05
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(e) 𝜇 =0.25     (f) 𝜇 =0.25 

 

Figure 8. Parametric analysis with respect to 𝜼 and 𝝁 for: (a) n=1 (b) n=1 (c) 𝝁 =0.05 (d) 𝝁 =0.05 
(e) 𝝁 =0.25 (f) 𝝁 =0.25 

at the resonance. Figure 6 right for 𝜇=0.05 and  =1 demonstrate the dependence of the payload 
response amplitude on the non-dimensional damping coefficient d2. One can observe that the 
higher damping ratio can improve the response of the payload by reducing its amplitude. 
However, in this case it is hard to control the damping, since the absorber is connected to the 
payload by a hoist and other additional damping mechanics, will required additional design and 
efforts. Figure 7a and 7b present the payload response for 𝜇=0.05 and values of Ω 0.628 and 
Ω 0.691 correspondingly. One can see that the high value of damping ratio leads to smoother 
response, however, the value of  is extremely important and the system response can be higher 
than that without the absorber if a wrong value of  is selected. In fact, the achieved mitigation at 
different frequencies can be reliant on the designed values, as Figures 7a and 7b show. Note 
that these plots were produced with numerical forward sweep continuation, which gives rise to 
some transient responses around 0.9 and 1.1 in Figure 7a. However, such trajectories out of 
scope for the purpose of this paper. Figure 7c demonstrates the payload amplitude dependence on 
the mass ratio for the optimal linear value of  =1. A reasonable amplitude reduction over the 
entire range was observed for values of  𝜇>0.03. Figure 8 presents a number of maps, which can 
be used for designing the optimal absorber. Figures 8a and 8b demonstrate the absorber and 
payload response in plane for n=1. A large blue strip corresponding to a low amplitude 
response can be found simultaneously at both the maps for the entire range of  values and 
around  =1, which was expected. However, it should be stressed that this strip narrow down for 
low values of giving much less flexibility for the selection ofvalue. Moreover, the absorber 
map demonstrates the peak response amplitude at low values of  and value around 1.5. This 
also should be carefully considered since the absorber is supposed to be below the payload and its 
high amplitude vibrations may cause a collision. Next 4 plots, presented in Figures 8c-8f show 
the results in the -n plane, where the clear amplitude reduction can be seen at the resonance 
(n=1) and  =1. It should be noted that the blue strip, looking like a straight line, can provide 
minimum response amplitude to the left and right from the resonance, pointing toward optimal 
values of the absorber for different frequency ratio. To conclude this part one should remember 
that although a great vibration mitigation can be achieved in this case, keeping the length ratio  
=1 for all the hoisting time, it is simply impossible to keep this ratio at the begging of lifting. The 
reason is that at the begging of lifting the absorber should have the longest length while it is 
resting on the ground, thus practically staying useless up to a certain time instant, when the 
payload reaches its half uplifting distance. Thus, other options have to be investigated to develop 
a better absorber. 

Comment [YD3]: Panos, explain here 
jumps! 
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5 Case III: Effective vibration mitigation strategy using tri-pendulum 
 
It was shown above that neither Case I nor Case II can achieve satisfactory practical result for 
vibration mitigation. In some cases, especially when the launch and recovery operations have to 
be conducted in rough sea, a cage can be used to capture the floating object before lifting it up. 
These cages are large enough to accommodate an ROV, UAV or Tether Management Systems 
(TMSs) and sturdy to hold their weight. Taking into account this fact, next a case of a compound 
pendulum added to the payload cage is proposed. In particular, an N-pendulum [51] is considered 
as a potential candidate for the vibration mitigation of the payload since its natural frequency and 
length can be independently tuned. Moreover, apart from a classical compound pendulum, which 
shape defines the natural frequency, the proposed N-pendulum can be actively tuned to different 
excitation frequencies broadening its frequency range. Figure 9 demonstrates the proposed 
vibration mitigation system with tri-pendulum (N=3). The tri-pendulum consists of 3 separate 
arms situated at 120o from each other and connected to a common hub placed on a bearing, such 
that the arms with a hub can oscillate around its suspension point. Each arm has a mass Mi placed 
at distance hi from the hub. Keeping all three masses the same, the tri-pendulum can be tuned by 
adjusting the corresponding distances. The simplest case of h1>h2=h3, as well as some other cases 
and the dependence of the N-pendulum natural frequency on the number of arms were studied in 
[51]. 
 

 
Using the Lagrange approach one can derive the governing equation of motion (see Appendix for 
derivations), assuming that M1= M2= M3=M, h2= h3. Adding the damping and force terms into 
the equations they can be rewritten as: 
 

𝑚 3𝑀 𝑙 𝜃 𝑀𝑙 ℎ ℎ  𝜃 cos 𝜃 𝜃 𝑀𝑙 ℎ ℎ 𝜃 sin 𝜃 𝜃  
𝑚 3𝑀 𝑔 𝑙 sin 𝜃 𝑐 𝜃 𝐹 𝑙   

ℎ 2ℎ 𝑀𝜃 𝑀𝑙 ℎ ℎ 𝜃 cos 𝜃 𝜃 𝑀𝑙 ℎ ℎ 𝜃 sin 𝜃 𝜃 (19) 
𝑀𝑔 ℎ ℎ sin 𝜃 𝑐 𝜃 0 

 
Introducing a set of non-dimensional parameters: 

Figure 9. Tri-pendulum system 
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𝜇 , 𝛾 , 𝜂 , 𝑓 , 𝑑 , 𝑑   (20) 

 
one can rewrite:  
 

𝜃 𝜇
𝛾 1

𝜂
𝜃 cos 𝜃 𝜃 𝜇

𝛾 1
𝜂

𝜃 sin 𝜃 𝜃 Ω sin 𝜃 𝑑 𝜃 𝑓   

𝜃 𝜃 cos 𝜃 𝜃 𝜃 sin 𝜃 𝜃 Ω sin 𝜃 𝑑 𝜃 0 

 (21) 
 
It should be stressed, that in the previous cases the damping could not be properly controlled due 
to its nature, whereas in this case, the damping of the tri-pendulum can be properly adjusted to 
match the optimal performance, especially in the linear case of small vibrations. 
 
The linearized equations of motion are: 
 

𝜃 𝜇
𝛾 1

𝜂
𝜃 Ω 𝜃 𝑑 𝜃 𝑓   

𝜃 𝜃 Ω 𝜃 𝑑 𝜃 0    (22) 

 
 
 
Assuming that 𝑓 𝐹 𝑒  is harmonic and  𝜃 𝑋 𝑒  and 𝜃 𝑋 𝑒 we get the 
following matrix equations: 
 

Ω 𝜔 𝑖𝜔𝑑

𝜔 Ω 𝑖𝜔𝑑

𝑋
𝑋

𝐹
0

   (23) 

 
Solving the above linear problem we get the amplitude formulas for the payload and the absorber 
respectively: 
 

𝐴 |𝑋 | 𝐹      (24) 

 

𝐴 |𝑋 | 𝐹     (25) 

Where 
 

𝐷 Ω 𝜔 𝑖𝜔𝑑 𝜔 Ω 𝑖𝜔𝑑    (26) 

 
It is well-known that tuning of a tuned mass damper follows the work by Den Hartog [34], 
whereby the frequency ratio of the absorber over the primary system should be equal to 1/ 1 
𝜇 . Applying this condition to the herein absorber, we arrive at the following condition: 
 

𝛾   𝜂 1  𝜇 𝛾  𝜂 1  𝜇  2 0   (27) 
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which has two exact solutions for 𝛾. Figure 10 left presents the curves of 𝛾 𝜂  for three different 
values of μ and indicates that the desirable low values of 𝛾, which is responsible for the size of 
the tri-pendulum, can be attained at high values of 𝜂, responsible for the ratio between the length 
of the payload and the size of the tri-pendulum. For example, 𝜂=10 indicates that ℎ  is one order 
of magnitude smaller than the payload swinging length, and the corresponding 𝛾 around 1.3, 
which is a broadly realistic scenario. It should be stressed that these values can be achieved 
almost independently of the mass ratio, which should be as small as possible in this case. Figure 
10 right shows a parametric plot of the 𝜂, 𝜇  parameter pair. The shaded region denotes the area 
where Eq. (27) has real solutions in 𝛾 , given by 𝜂 2 1 √3 / 1 𝜇 . Essentially, this 
limiting value defines the descent length limits for which the proposed absorber can be 
realistically designed to mitigate the payload vibrations. In the unshaded region, the absorber 
design cannot be realized. Note that this is the limiting case of a realistic design with, 
nevertheless, dubious performance. It does, however, indicate that the absorber is effective for the 
descent lengths that correspond to approximately 𝜂 5.5 for limiting small absorber mass. This 
is favourable for the considered application, since the payload sway becomes more prominent at 
relatively large lengths. 
 

  
 
Figure 10. Values of 𝛾 vs 𝜂 (left) and the minimum 𝜂 values to have the maximum absorber size 
(right). 
 
The tuning procedure has so far considered the well-known Den Hartog approach. However, this 
approach is derived for an undamped primary system, which might lead to significant deviation 
from the desired performance when damping is taken into account. In Figure 11, the optimum 𝛾 
is found by direct assessment of the payload response amplitude for 𝜔 Ω . Whereas Den 
Hartong tuning would recommend 𝛾 1.3456, whereas visual inspection of Figure 11a reveals 
that the optimal value is 𝛾 1.3944. This is also confirmed by the frequency response of the 
coupled system for 𝜇 0.05 in Figure 11b, which shows that numerical tuning leads to more than 
twice more effective reduction of the payload response amplitude. 
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   (a)                 (b) 

 
Figure 11. Figures (a) Response amplitude at 𝜔 Ω against 𝛾 for 𝜇 0.05; (b) Comparison of 
the frequency response for Den Hartog tuning (dashed) and for numerical tuning (solid). 
 
The next step in the analysis considers the selection of the absorber damping, 𝑑 . Figure 12 
shows bivariate surface plots of the payload response amplitude against frequency 𝜔  and 
absorber damping, 𝑑 , for three representative values of 𝜂. The surface plots reveal a similar 
pattern across the examined cases of bi-modal response curve in the lightly damped region and a 
transition to a unimodal one as damping increases. In fact, the turning point between the two 
response types carries favourable characteristics for vibration absorption, such as limited peak 
response and nearly flat response curve across the primary resonance frequency range, between 
the peak frequency values. 
 

 
(a)       (b) 

 
 

A
1
 (

ra
d)

A
1
 (

de
gr

ee
s)



18 
 

 
(c) 

Figure 12. Surface plots of the response amplitude 𝐴  versus 𝜔 and 𝑑  for optimal gamma, 
𝐹 =0.002, 𝜇=0.05 and 𝑑 =0.05; (a) 𝜂=10; (b) 𝜂 =15; (c) 𝜂 =20; 
 
Figure 13a reveals the impact of the absorber damping on the structure of the frequency response, 
showing that damping increases towards a critical value where the curve is nearly flat within the 
resonant range (for 𝑑 0.08). Moreover, the maximum amplitude is around 2 degrees whereas 
the primary system without the absorber would sway at more than 11 degrees under the same 
conditions. One can notice though that the optimal damping value is not constant for all 𝜂 values. 
It is evident in Figure 12 that as 𝜂 increases, the critical damping value becomes smaller. This 
poses the question of the absorber performance during the payload descent, and how the optimal 
damping value could impact the payload amplitude reduction. Figure 13b shows frequency 
response curves for 𝑑 0.04  and various descent lengths between 𝜂 10  and 𝜂 20 . 
Although the performance varies, the response amplitude near the resonant region remains 
multiple times lower when compared with the primary system response. This plots injects 
confidence that the proposed pendulum absorber can remain extremely efficient for low-
amplitude vibrations, even if it is designed as a purely passive system. 
 

 
Figure 13. Frequency response curves for 𝐹 =0.002, 𝜇=0.05 and 𝑑 =0.05; (a) 𝜂 10  and 
varying 𝑑 ;(b)  𝑑 0.04 and varying 𝜂. 
 
 
 
 
6 Conclusions 
 
In this work pendulum tuned mass damper was proposed to be utilised as a nonlinear energy 
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absorber for mitigating vibrations of the payload, modelled as a lumped mass pendulum. First, 
the pendulum absorber was proposed to be placed between the payload and the suspension point. 
While this concept was a very attractive option, which required no significant changes to the 
existing crane designs, it proved to be no effective for low mass values of the absorber. Second 
studied concept, which proposed to place the absorber under the payload, proved to be very 
effective when the distance between the suspension point and the payload is equal to the distance 
between the payload and absorber. This concept can significantly mitigate the vibration 
amplitude of the payload, however it has a limited practical application. The reason is that at the 
begging of lifting the absorber will not be effective at all resting on the ground or water, until the 
payload passes the half-distance. Thus, the third design was proposed, which used the concept of 
tri-pendulum connected to a lifting cage. In this case it becomes possible to tune the tri-pendulum 
to a required frequency for mitigating the oscillations by changing the parameters of the tri-
pendulum and embedded damping. In fact, the tri-pendulum can operate form the very beginning 
of hoisting and can be online adjusted by moving the tri-pendulum masses along their arms. 
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APPENDIX  

In this appendix the governing equations of motion will be derived for the undamped systems for 
all three cases considered in the paper. 

The equation of motion for the Case I and Case II. 

To derive the equation of motion of a pendulum with a moving suspension point in vertical (w) 
and horizontal (z) direction one can use the Lagrange approach: 

0, 𝐿 𝑇 𝑈                                                                           (A1) 

with 𝑖 1,2, 𝑞  𝜃 . 
 
From geometry one can write: 
 

𝑥 𝐿 sin𝜃 ,   𝑦 𝐿 cos𝜃                                                        (A2) 
 

𝑥 𝐿 sin𝜃 𝐿 sin𝜃 ,   𝑦 𝐿 cos𝜃 𝐿 cos𝜃                         (A3) 
 
The potential and kinetic energies are: 
 

𝑈 𝑚 𝑀 𝑔𝐿 cos𝜃 𝑀𝑔𝐿 cos𝜃 ,  
𝑇 𝑥 𝑦 𝑥 𝑦                                                      (A4) 

 

𝑇 𝐿 𝜃 𝐿 𝜃 𝑀𝐿 𝐿 𝜃 𝜃 cos 𝜃 𝜃   (A5) 

Then,  
 

𝑚 𝑀 𝐿 𝜃 𝑀𝐿 𝐿 𝜃 cos 𝜃 𝜃                                             (A6) 

 

𝑚 𝑀 𝐿 𝜃 𝑀𝐿 𝐿 𝜃 cos 𝜃 𝜃 𝑀𝐿 𝐿 𝜃  sin 𝜃 𝜃 𝜃 𝜃    (A7) 

 
 

𝑀𝐿 𝜃 𝑀𝐿 𝐿 𝜃 cos 𝜃 𝜃                                  (A8) 

 

 𝑀 𝐿 𝜃 𝐿 𝐿 𝜃 cos 𝜃 𝜃 𝐿 𝐿 𝜃  sin 𝜃 𝜃 𝜃 𝜃               (A9) 

 

𝑀𝐿 𝐿 𝜃 𝜃 sin 𝜃 𝜃                             (A10) 

 

 𝑀𝐿 𝜃 𝐿 𝜃 sin 𝜃 𝜃                    (A11) 

 

0,   𝑚 𝑀 𝑔𝐿 sin𝜃 ,   𝑀𝑔𝐿 sin𝜃                                    (A12) 

 
In the case of a free undamped response the governing equations of motion are: 

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞

𝜕𝐿
𝜕𝑞

𝑚 𝑀 𝐿 𝜃 𝑀𝐿 𝐿 𝜃 cos 𝜃 𝜃  

𝑀𝐿 𝐿 𝜃  sin 𝜃 𝜃 𝑚 𝑀 𝑔𝐿 sin𝜃 =0      (A13)  
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𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞

𝜕𝐿
𝜕𝑞

𝑀𝐿 𝜃 𝑀𝐿 𝐿 𝜃 cos 𝜃 𝜃  

𝑀𝐿 𝐿 𝜃  sin 𝜃 𝜃 𝑀𝑔𝐿 sin𝜃 0                 (A14) 
 
When an external force is applied to each mass the equations, they can be added to the 

corresponding equations. Introducing the nondimensional mass 𝜇  and length 𝜂  ratios                      

and diving equation (A13) by 𝑚 𝑀 𝐿  and equation (A14) by 𝑀𝐿  one arrives to the 
following set of equations (Ω 𝑔/𝐿 : 
 

𝜂𝜃 𝜇𝜃 cos 𝜃 𝜃 𝜇𝜃  sin 𝜃 𝜃 Ω sin𝜃 𝜇 𝑐𝑜𝑠 𝜃2 𝜃1
𝜇 𝐹1

𝑀2
      (A15) 

𝜃 𝜂 cos 𝜃 𝜃 ∙ 𝜃 𝜂𝜃1
2
𝑠𝑖𝑛 𝜃 𝜃 Ω 𝑠𝑖𝑛𝜃                                     (A16) 

 
which agree with the set of equation (8) developed by Newton’s approach. To decouple the 
equations coupled by accelerations, let’s move all the terms except the acceleration to the right 
side of equations: 
 

𝜂𝜃 𝜇𝜃 cos 𝜃 𝜃 𝐹     (A17) 
𝜂𝜃 cos 𝜃 𝜃 𝜃 𝐺                (A18) 

where: 

𝐹 𝜇𝜃 sin 𝜃 𝜃 Ω sin𝜃 𝜇 𝑐𝑜𝑠 𝜃2 𝜃1
𝜇 𝐹1

𝑀2
 (A19) 

 𝐺 𝜂sin 𝜃 𝜃 𝜃 Ω sin𝜃       (A20) 

 
Introducing the variable 𝐽 𝜂 1 𝜇cos 𝜃 𝜃  one can rewrite the equation (A17) and 
(A18) as: 

𝜃                                                                 (A21) 

𝜃       (A22) 

 

The equation of motion for Case III. 

From the geometrical considerations one can express the tri-pendulum dynamic as following: 
 
 

𝑥 𝐿 sin𝜃 ,   𝑦 𝐿 cos𝜃                                                        (A23) 
 

𝑧 𝐿 sin𝜃 ℎ sin𝜃 ,   𝑤 𝐿 cos𝜃 ℎ cos𝜃
𝑧 𝐿 sin𝜃 ℎ cos 𝜃 30 ,   𝑤 𝐿 cos𝜃 ℎ sin 𝜃 30
𝑧 𝐿 sin𝜃 ℎ sin 𝜃 30 ,   𝑤 𝐿 cos𝜃 ℎ sin 𝜃 30

                          (A24) 

 
Differentiating with respect to time each of the above variable to obtain the corresponding 
velocities one can get the following expressions for kinetic and potential energy, assuming that 
M1= M2= M3=M: 

𝑇
𝑚
2

𝑥 𝑦
𝑀
2

𝑧 𝑤
𝑀
2

𝑧 𝑤
𝑀
2

𝑧 𝑤  

𝑚 3𝑀
2

𝐿 𝜃
𝑀
2

ℎ ℎ ℎ 𝜃  

𝑀𝐿 𝜃 𝜃 ℎ cos 𝜃 𝜃 ℎ sin 𝜃 𝜃 30 ℎ sin 𝜃 𝜃 30       (A25) 
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For h2=h3 and using the trigonometric properties the above expression can be reduced to the 
following expression. 
 

𝑇 𝐿 𝜃 ℎ 2ℎ 𝜃 𝑀𝐿 𝜃 𝜃 ℎ ℎ cos 𝜃 𝜃   (A26) 

 
The potential energy of the system is: 
 

𝑈 𝑚 3𝑀 𝑔𝐿 1 cos𝜃 𝑀𝑔 ℎ 1 cos𝜃  
ℎ sin 30 𝜃 sin30 ℎ sin 30 sin 30 𝜃    (A26) 

𝑚 3𝑀 𝑔𝐿 1 cos𝜃 𝑀𝑔 1 cos𝜃 ℎ ℎ  
Then, the  
 

𝑚 3𝑀 𝐿 𝜃 𝑀𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃                                 (A27) 

 
𝑑
𝑑𝑡

𝜕𝑇

𝜕𝜃
𝑚 3𝑀 𝐿 𝜃 𝑀𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃  

𝑀𝐿 ℎ ℎ 𝜃  sin 𝜃 𝜃 𝜃 𝜃        (A28) 
 
 

𝑀 ℎ 2ℎ 𝜃 𝑀𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃                            (A29) 

 
𝑑
𝑑𝑡

𝜕𝑇

𝜕𝜃
 𝑀 ℎ 2ℎ 𝜃 𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃  

𝐿 ℎ ℎ 𝜃  sin 𝜃 𝜃 𝜃 𝜃                 (A30) 
 

𝑀 ℎ ℎ 𝐿 𝜃 𝜃 sin 𝜃 𝜃                             (A31) 

 

 𝑀𝐿 𝜃 ℎ ℎ 𝜃 sin 𝜃 𝜃                    (A32) 

 

𝑚 3𝑀 𝑔𝐿 sin𝜃 ,   𝑀𝑔 ℎ ℎ sin𝜃                         (A33) 

 
In the case of a free undamped response the governing equations of motion are: 

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞

𝜕𝐿
𝜕𝑞

𝑚 3𝑀 𝐿 𝜃 𝑀𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃  

𝑀𝐿 ℎ ℎ 𝜃  sin 𝜃 𝜃 𝑚 3𝑀 𝑔𝐿 sin𝜃 =0      (A34)  
 

𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞

𝜕𝐿
𝜕𝑞

𝑀 ℎ 2ℎ 𝜃 𝑀𝐿 ℎ ℎ 𝜃 cos 𝜃 𝜃  

𝑀𝐿 ℎ ℎ 𝜃  sin 𝜃 𝜃 𝑀𝑔 ℎ ℎ sin𝜃 0                 (A35) 
 


