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Abstract: This study considers the influence of signal sampling on the characteristics of target detectors and range finders, which
form parts of radar systems. Quasi-optimal algorithms for target detection and range measurement are analysed, which
demonstrate close to optimal performance even if low-performance signal processing equipment is used. Special attention is
given to stroboscopic sampling. In the case of a high signal-to-noise ratio, stroboscopic sampling can provide better detection
performance than traditional, or real-time, sampling. The accuracy of range finders with stroboscopic signal sampling is
estimated. The considered method allows for a reduction in both instrumental range measurement error and random error of
tracking compared with traditional sampling methods, without an increase in requirements of the range finders’ performance.
1 Introduction

In ultra-wideband radar systems, limited system performance
can prevent the use of optimal algorithms of real-time digital
signal processing [1]. This paper considers the quasi-optimal
algorithms of target detection and range measurement, which
demonstrate near optimal characteristics when using low-rate
signal sampling.
In order to increase radar system performance, parallel

sampling and parallel data processing can be used [2, 3].
However, such methods lead to significantly higher
hardware costs. In this paper, we will focus on algorithms
that provide higher radar system performance at a low cost.
Such algorithms include:

† low-digit (including binary) signal and coefficients
quantisation [4, 5];
† under sampling, that is, the sampling below the Nyquist
frequency [5, 6];
† algorithms of a quasi-optimal signal filtering [7];
† special methods of reducting instrumental range
measurement errors, including two-step range estimation
(rough and precise) [5], the vernier method [8] and
stroboscopic sampling (use of sliding time samples) [2, 9].

In this paper, we will analyse the influence of sampling
frequency on the characteristics of target detectors and
range finders as well as the characteristics of target
detectors and range finders with stroboscopic sampling.
Finally, recommendations for the practical use of
stroboscopic signal sampling are developed.
The remainder of this paper is organised as follows. In

Section 2, the radar target detector with a stroboscopic
signal sampling algorithm is described and the detection
performance is estimated; Section 3 presents a radar range
finder that utilises stroboscopic sampling, together with
analysis and characteristics; simulation results are presented
in Section 4 and the conclusion is formulated.
2 Radar target detectors

The optimal algorithm for detecting a pulsed signal in a
background of stationary noise with a random, but the
known power spectral density or autocorrelation matrix,
represents a calculation of the correlation integral of the
received signal within each range resolution cell and
compares it to the threshold, which is specified according to
the desired false alarm probability [10].
2.1 Real-time signal sampling

Let us start with an analysis of real-time signal sampling, that
is, sampling at the Nyquist rate. If the number of pulses in a
train is not too large, but sufficient for target detection in
many practical cases (several hundred), the optimal
algorithm of detection can be implemented using modern
digital signal processors [11]. For the processing of a larger
number of pulses, it is possible to use multiprocessor
systems or quasi-optimal algorithms, that is, simplified
optimal detection algorithms where the symmetry of the
signal envelope and equilibrium summing of signal samples
are assumed. This allows for the enhancement of the target
detector’s performance.
To answer the question of the quality of the quasi-optimal

digital target detectors, the power losses because of signal
sampling have to be investigated.
451
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For the analysis of target detector performance it is usually

assumed that the noise on its input is normally distributed [12]

pj(u) =
1

sj

����
2p

√ exp − u2

2s2
j

( )
(1)

where σξ
2 is the variance of the noise. In case of matched

filtering of a rectangular pulse, the input signal has a
triangular shape

u(t) = U 1− t| |/t( )
, if |t| , t

0, if |t| ≥ t

{
(2)

with an amplitude of the maximum signal samples distributed
according to the expression

ps(u) =
2

T

t

U
, when U 1− T

2t

( )
, u , U

0, when u ≥ U or u ≤ U 1− T

2t

( )
⎧⎪⎪⎨
⎪⎪⎩ (3)

whereU is the signal amplitude, T is the sampling interval and
t is the pulse width, as illustrated in Figs. 1a–c.
The real-time signal sampling causes the reduction in the

signal-to-noise ratio (SNR), which can be estimated by
comparing the signal amplitude U with the mean value of
the signal sample nearest to the maximum

r = 1− T

4t
(4)

Therefore with five or six samples per signal, the losses do not
exceed 10%, which is acceptable for many practical cases.
In case of insufficient performance of the target detector,
the maximum achievable number of samples can be less
than 5 or 6. In Section 2.2, the stroboscopic sampling will
be considered, which allows improvement of the detection
characteristics in low-performance detector.
The key characteristics of target detection are detection

probabilities and false alarm rates. For the development of
quasi-optimal target detection algorithms, the effect of the
Fig. 1 Signal representation in the impulse radar

a Transmitted train of pulses
b Received pulses
c Real-time sampling
d Stroboscopic sampling of the received signal
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signal sampling rate on these characteristics should be
evaluated.
In this paper, the detection characteristics for a

non-fluctuating or a slowly fluctuating signal will be
obtained. This assumption is applicable for cases where the
scattering surface of the target changes slightly between
pulses. The probability density function of the signal and
noise compound is given as a convolution

psj(u) =
∫1
−1

pj(u− x)ps(x) dx (5)

Substituting (1) and (3) into (5), we can obtain

psj(q) =
2t

TU
F (q− l)−F q 1− T

2t

( )
− l

[ ]{ }
(6)

where

F (x) = 1����
2p

√
∫x
−1

e−t2/2 dt (7)

is the probability integral, q =U/σξ is the SNR, λ = u/σξ is the
relative threshold defining the false alarm probability [10]

PFA = 1−F (l) (8)

The detection probability is then defined as

PD =
∫1
l

psj(q) dq (9)

Expression (9) allows for finding the detection probability
against SNR with a fixed false alarm rate PFA for the
considered detector (Fig. 2). The curves shown in Fig. 2 as
dashed lines correspond to the case of one sample per pulse
in real-time sampling, that is, T = 2t (values q are given in
an absolute scale). The characteristics of an analogue
detector for the known signal detection [10] are shown here
as dotted lines. The detection characteristics in case of
stroboscopic sampling, which will be considered further in
the paper, are shown as solid lines.
Fig. 2 Detection performance of analogue and digital target
detector

IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
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Fig. 3 Range finder block diagram
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In order to ensure the same detection probability as in the

case of an analogue detector, it is necessary to increase the
SNR. For example, for PD = 0.5 and PFA = 10− 4, SNR
should be increased from 3.3 to 7.5 and, moreover, PD is
limited by about 0.75 even at q = 14.

2.2 Stroboscopic signal sampling

Real-time sampling requires the use of a high-speed
analogue-to-digital converter, which can be both expensive
and power consuming. To increase the performance of the
detector, stroboscopic sampling of signals [13] can be
exploited. The procedure is illustrated in Fig. 1d. This
method leads to the increasing of target detection time by
taking smaller number of samples for each received pulse,
but after every pulse repetition interval TR the sampling
time should have a small offset

d = TS/N (10)

where N is the number of transmitted pulses needed to build
the signal profile and TS is the stroboscopic sampling interval.
The implementation of stroboscopic sampling does not
require additional hardware and it is only necessary to
provide sampling frequency stability (low clock drift) [14].
Furthermore, we will show that detectors with stroboscopic

sampling can provide better detection performance than
detectors with traditional sampling in the case of small
numbers of samples within the pulse. We will consider the
maximum amplitude signal sample that is closest to the
centre of the pulse, its distance from the centre of the signal
is equal to ϑ and the probability density equals to

p(q) = 1/T , if q| , T/2
0, if q| ≥ T/2

{
(11)

For stroboscopic sampling with large N the sum of signal
samples, which are uniformly distributed on the interval
[(ϑ− T/2), (ϑ + T/2)], will be close to the average value of
the signal envelope

u(q) = 1

TS

∫q+T/2

q−T/2
u(t) dt

Let us consider a case of one sample per pulse, that is, TS =
T = 2t. Substituting the expression for the envelope of the
signal and calculating the integral from ϑ − T/2 to 0 and
then from 0 to t, we obtain

u(q) = U
1

2
− q2

4t2

( )
(12)

The average reduction in the SNR for the considered case of
stroboscopic sampling exceeds the corresponding values (4)
of the traditional (real-time) sampling

r = 1

TU

∫+T/2

−T/2
�u(q) dq = 1− T

3t
(13)

However, even in this case the stroboscopic sampling can
provide better results than the traditional sampling.
Calculating pS(�u) = 2p (q) (dq(�u))/(d �u)

∣∣ ∣∣ and substituting
(1) into (5) we obtain an expression for the probability
IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
doi: 10.1049/iet-rsn.2012.0272
density of the signal and noise compound psξ(q) in case of
stroboscopic sampling and to obtain PFA and PD by (8) and (9).
In Fig. 2, the detection performance in case of stroboscopic

sampling is shown (solid lines) in addition to the previously
considered analogue and traditional sampling. It is clear that
the stroboscopic sampling has an advantage to traditional
sampling in cases when it is necessary to provide a
high detection probability. For example, when PD = 0.8 and
PFA = 10− 2, this method requires approximately 1.5 times
less SNR.
Thus, the analysis of the detection performance shows that

the stroboscopic sampling has an advantage over the
traditional sampling in terms of SNR when the sampling
period is equal to or exceeds the pulse duration. In the case of
small values of threshold λ, or a high acceptable probability
of false alarm, the detection probability for a given SNR
value in the target detector with stroboscopic sampling is
higher than in the detector with traditional sampling.

3 Range finders

When a target is detected, the range finder should provide the
distance to the target. The radar range finder represents a
non-linear discrete automatic tracking system, the behaviour
of which depends on the parameters of signal digitising.
The range finder block diagram is shown in Fig. 3 and
consists of a delay measuring system, a low-pass filter and
a gate generator producing a reference signal with the
delay, which is proportional to the low-pass filter output
signal delay. The optimum delay measuring system contains
an optimum time gate and integrator, or generalised time
discriminator.
Range tracking is carried out in pulsed radar by the direct

matching of a range gate position to the delayed echo pulse.
The usual technique is a split gate range tracker, which is a
form of range tracker with a pair of time gates called an
early gate and a late gate, contiguous or partly overlapping
in time [10, 12]. Deviation of the pair of gates from the
proper tracking position increases the signal energy in one
gate and decreases it in the other, producing an error signal.
The range difference channel is formed by subtracting the
late gate output from the early gate output and integrating
the result, to form a time discriminator response. The error
signal from the discriminator provides the input to an
electronic tracking loop that controls the timing of the gates.
3.1 Losses because of real-time signal sampling

In order to analyse the impact of signal digitising on the
characteristics of the time discriminator, we will consider
the time discriminator based on the early and late gate
techniques. Although the discriminator characteristic is
nonlinear in general, the discriminator will operate in its
linear regime if the difference between the estimated delay
and the true delay (delay measurement error) is small.
453
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Fig. 4 SNR loss because of signal sampling
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In the considered case of matched filtering of the

rectangular pulse the number of samples per each pulse is
equal to

n = 2t/T (14)

The signal at the time discriminator output in case the time
delay measurement error equals j·T is

Q(jT ) = −
∑j+n/2−1

i=j

u(iT )+
∑j+n−1

i=j+n/2

u(iT ),

j = 0, + 1, + 2. . .

(15)

where u(iT) are samples of the input signal. Therefore if j = 0
(zero error)

Q(0) = −
∑n/2−1

i=0

u(iT )+
∑n−1

i=n/2

u(iT ) (16)

Assuming that at the input of the discriminator there is only a
stationary Gaussian noise with a variance σξ

2, the value of the
output noise is equal to

s2
j out = Q(0)

[ ]2
(17)

Substituting (16) into (17) after appropriate calculations [15]
we can obtain

s2
j out = s2

jw (n, r) (18)

In (18), the function j(n, r) describes the dependence of the
output noise on the number of samples per pulse and on the
autocorrelation properties of the input noise

w (n, r) = n+ 4
∑n/2−1

i=1

n

2
− i

( )
r(iT )− 2

∑n/2
i=1

ir(iT )

− 2
∑n/2−1

i=1

n

2
− i

( )
r

n

2
+ i

( )
T

[ ] (19)

where r(iT) is the normalised autocorrelation function of input
noise, defined by the amplitude–frequency response
characteristic of the radar receiver.
In the linear model the time discriminator can be presented

by the linear gain term with a steepness of Kd =
((dQ(x))/(dx)) x=0

∣∣ . In the considered case of matched
filtering, the input signal has a triangular shape with the
amplitude U

Kd = 2Ukd (20)

where kd = 0.5n/t. In order to compare the digital time
discriminator with the analogue device, expression (18)
may be rewritten as

s2
j out = 2s2

jk
2
dt

2q(n, r) (21)

where

q(n, r) = 2w (n, r)/n2 (22)
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Since the model is linear, the noise can be recalculated at the
input of the discriminator after scaling by the discriminator
steepness s2

j in = s2
j out/K

2
d . Comparison with the analogue

device [15] shows that signal sampling leads to an increase
of output noise in the case of the digital range finder. The
digital discriminator losses are illustrated in Fig. 4 for the
case where the equivalent bandwidth of the receiver is
matched to the pulse duration. When the number of samples
per pulse is more than six, the losses do not exceed 1 dB.
Thus, to reduce the losses in SNR because of sampling, it
is necessary to increase the number of samples per pulse,
that is, the sampling rate.

3.2 Stroboscopic sampling errors

3.2.1 Instrumental errors: A higher sampling rate leads
not only to the increase of SNR, but also to the decrease of
the instrumental error of the range measurement in digital
range finders, which can significantly degrade the accuracy
of tracking. Instrumental errors are because of the finite
resolution of the digital representation of the range and are
the difference between the exact range and the digitised
range. An instrumental error can be considered as additional
noise because of its stochastic behaviour. It varies from − T/
2 to T/2 at the discriminator input; therefore its variance is [16]

s2
i = T2/12 (23)

For the reduction of instrumental errors it is necessary to
increase the sampling rate. The use of stroboscopic sampling
allows for achieving similar results as with an increase in the
sampling rate but without any higher requirements to the
digital range finders’ performance. The instrumental error
decreases when the number of transmitted pulses needed to
build the signal profile increases. From expressions (10), (14)
and (23), we can derive the instrumental error in case of
stroboscopic sampling

s2
i =

d2

12
= t2

3n2N 2
(24)

Despite the obvious advantage of lowering the instrumental
error in range measurement, stroboscopic sampling has a
number of inherent shortcomings. Further on we will
IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
doi: 10.1049/iet-rsn.2012.0272



Fig. 5 Block diagram of range finder with stroboscopic sampling
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consider and discuss the dynamic error and the additional range
measurement errors, such as errors because of target
fluctuation, target shift and input noise in case of
stroboscopic sampling.
3.2.2 Dynamic errors: Dynamic errors occur because of
the inability of the radar to follow the target echo accurately
and depend on target speed, acceleration and the parameters
of the range finder. Generally, the Wiener filter is widely
used in tracking systems, with constant coefficients
providing a minimum of a root mean square error of
tracking in static mode [17]. It provides a zero dynamic
error of tracking in the case of object movement with
constant speed and a constant dynamic error in the case of
object movement with constant acceleration.
The range finder can be analysed using standard

discrete-time analysis (i.e. z-transform) techniques [16].
A block diagram of the considered range finder with
stroboscopic sampling utilising a Wiener filter of a second
order is shown in Fig. 5, where R(z) is the actual distance
to the target, Y(z) is the estimated distance, X(z) is the
measurement error, K is the feed-forward coefficient (gain)
and M is the feed-backward coefficient, defined by filter
parameters.
Using final value theorem [1] we can express the dynamic

error as

mx = lim
z�1

z− 1( )X (z) = lim
z�1

z− 1( )R(z) 1− Kc(z)
[ ]

(25)

where Kc(z) is the transfer function of a closed-loop tracking
system. The closed-loop transfer function Kc(z) can be
calculated from the open-loop transfer function Ko(z) as [1]
Kc(z) =Ko(z) [1 +Ko(z)].
If we consider the range finder in Fig. 5 as a series of

interconnections of the two first-order systems, the
open-loop and closed-loop transfer functions of the tracking
system with stroboscopic sampling can be expressed in
accordance with the general rules of z-transform as

Ko(z) =
K zN (M + 1)−M
[ ]

(zN − 1)2
(26)

Kc(z) =
K zN (1+ K)−M
[ ]

z2N + z(K + KM − 2)+ 1− KM
(27)

When the target moves with constant acceleration a
the distance to it changes with time as r(t) = at2/2.
Its z-transform is, therefore R(z) = aT2

R

( )
/2

( )
z(z+ 1)/
(

z− 1( )3). From (25)–(27), we can obtain the dynamic error

mx =
a NTR
( )2
K

(28)
IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
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This equation shows that stroboscopic sampling leads to an
increase of the dynamic error in N2 times in comparison
with real-time sampling for which N = 1.
3.2.3 Stochastic errors: Let us now consider the
stochastic errors of range measurement in range finders with
stroboscopic signal sampling. This error occurs even at a
zero-tracking error because of target fluctuation so that the
output value of the discriminator will be non-zero. Indeed,
since the amplitude of the signal changes from scan to scan,
its envelope, restored after the stroboscopic sampling, will
be distorted. Consequently, the signal energy in the gates
will be different. In this paper, only simplified target model
is analysed, which does not consider the range fluctuation
of the target.
The variance of the stochastic range measuring error can be

expressed [12] as

s2
x = Sj(0)fe (29)

where Sξ(0) is the noise spectrum density at zero frequency
and

fe =
1

2p

∫p/Tr
−p/Tr

Kc(jv)
∣∣ ∣∣2 dv (30)

is the equivalent bandwidth of the closed-loop tracking
system, Kc( jω) is the transfer function of the closed-loop
tracking system and ω is the angular frequency.
The equivalent bandwidth of the closed-loop tracking

system shown in Fig. 5 is therefore

feS = 1

NTR

2/M + K(1+ 2M )

4− K(1+ 2M )
(31)

A minimum of feS is achieved at M = 1/
��
K

√ − 0.5

feS,min =
��
K

√

NTR

4− ��
K

√

(2− ��
K

√
)2

(32)

Firstly, let us consider the impact of target fluctuation on the
accuracy of tracking. The signal amplitude is distributed
according to Rayleigh [18], with a variance of amplitude
fluctuation of input signal σa

2 and the correlation coefficient
ra(t) = exp(− |t|/ta), where the correlation time of amplitude
fluctuation is ta≤ NTR. At higher ta the fluctuation will
have no effect on the characteristics of the time
discriminator and the signal can be considered as
non-fluctuating.
Similar to (16), we can express the output signal of the

stroboscopic time discriminator based on the early and late
gate algorithms as

QS(0)

=−
∑N−1

j=0

∑(n/2)−1

i=0

u jTR+ iT + jd
( )− ∑n−1

i=n/2

u jTR+ iT + jd
( )[ ]

(33)

This expression can be simplified, taking into consideration
455
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Fig. 7 Distortion of signal envelope (N = 4, n = 1)
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that

u jTR + iT + jd
( ) = a jTR

( )
u iTR + jd
( ) = ajuij (34)

where u(iT + jδ) = uij is the signal envelope and a( jTR) = aj is
the random amplitude fluctuation in sounding pulse periods.
Therefore

QS(0) = −
∑N−1

j=0

aj
∑n/2−1

i=0

uij −
∑n−1

i=n/2

uij

( )
(35)

The expression in brackets represents the output of the
discriminator in jth period. Since the difference between the
estimated and the true distance to the target within the jth
period can be expressed as ej = (N− 2j − 1)δ, (35) can be
reduced to

QS(0) = −
∑N−1

j=0

aj KdSej

( )
(36)

where the discriminator steepness KdS similar to (20) is KdS =
2UkdS and the sampling discriminator gain in case of
stroboscopic sampling is kdS = 0.5 × nN/t. The variance of
the tracking error in this case is

s2
a out = QS(0)

2 = 4s2
a t

2k2dS c(N )/n2 (37)

In (37) ψ(N ) describes the dependence of the tracking error on
the number of transmitted pulses used to build the signal
profile

c(N ) = 1

N2s2
a

∑N−1

j=0

aj
N − 2j − 1

N
U

( )2

(38)

Besides its dependence on N, the function ψ(N ) (38) is
determined by the value of the relative correlation interval
of fluctuations μ = ta/TR. Indeed, in the calculations of this
formula, aja j+L = s2

ara L TR/ta
( ) = s2

a exp −L/m
( )

. The
diagrams ψ(N ) are illustrated in Fig. 6. For each N
the increase in the number of samples n per pulse leads to
the decrease of the sampling interval T, and therefore to the
reduction of influence of target fluctuation. When ta ≫ TR,
Fig. 6 Influence of target amplitude fluctuation on the
characteristics of time discriminator in case of triangular signal
envelope and n = 2
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the signal can be considered non-fluctuating and ψ(N )≃0.
In case of small values of μ the samples in the adjacent
periods of sounding are not correlated and ψ(N )≃1/(n2N ).
If we recalculate the noise to time discriminator input
s2
a in = s2

a out/K
2
dS, we will find that the maximum variance

of target fluctuation noise is

s2
a in ≃

t2

4n2N
(39)

The stochastic component of the range measurement error
caused by target fluctuation is determined by the formula

s2
xa = s2

a in feTR (40)

where fe is the equivalent bandwidth of a closed-loop tracking
system (31) at N = 1. The second cause of stochastic tracking
error is because of target motion. The target shift in range
measurements within each cycle of stroboscopic sampling
leads to the distortion of the signal envelope, built as a
result of stroboscopic sampling [19].
The signal envelopes in the four adjacent cycles of

stroboscopic sampling are shown in Fig. 7. The target shift
is δv = 2vTR/c, where v is the target speed and c is the speed
of light in free space. The solid lines are the envelopes of
the signal, recovered as a result of stroboscopic sampling. It
shows that the shape deviation from the triangle has a
stochastic character, since the position of the samples
depends on the actual range and can be considered
accidental. Therefore the influence of this effect can be
considered as an additional measurement error.
If we consider the envelope of the signal averaged over N

realisations, its duration will be equal to the duration of the
original signal though the maximum value will be lower
than the amplitude of the original signal. Instantaneous
values of the signal �u(t) are within the range
u(t)− Udv

( )
/ nd( )( ) ≤ �u(t) ≤ u (t)+ Udv

( )
/ nd( )( )

. Such a
distortion of the envelope waveform leads to the reduction
of the discrimination characteristic gain

kdS = kd 1− dv
2nd

( )
(41)

It is clear that dynamic errors will increase with gain decrease.
In an unfavourable case, when tracking is still possible, that
is, when the target moves during measurement on a
IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
doi: 10.1049/iet-rsn.2012.0272
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distance equal to the length of a pulse Nδv = t, the gain will
decrease approximately by a third: kdS≃0.75kd.
The effect of this distortion is equivalent to the appearance

of additional noise at the output of the time discriminator.
Assuming that noise amplitudes are randomly distributed,
the variance of this noise can be written as

s2
v out =

N

3

Udv
nd

( )2

(42)

If we recalculate the noise to the discriminator input
s2
v in = s2

v out/K
2
dS using (41), we will receive the

expression for the variance of the equivalent noise

s2
v in =

1

x2
t2

N
(43)

where

x2 = 3n2
2nd

dv
− 1

( )2

(44)

In the most unfavourable case, when Nδv = t and n = 1, given
the fact that δ = 2t/(nN), we get χ2 = 27. Therefore the
maximum variance of the input noise is

s2
v in =

t2

27N
(45)

The stochastic component of the range measurement error
caused by target motion can be determined by the formula

s2
xv = s2

v in fe TR (46)

Let us now consider the third cause of the stochastic tracking
error – the error caused by stationary Gaussian input noise
with a variance σξ

2. The stroboscopic time discriminator
algorithm is expressed in (33). Making some manipulations
similar to that used for the derivation of (18) and (19), and
assuming that the noise values separated by intervals TR are
uncorrelated, we obtain the value of the output noise

s2
jS out = 4s2

jk
2
dSt

2wS (n, r)/N (47)

In (45), the function jS(n, r) describes the dependence of the
output noise on the number of samples per pulse and the
autocorrelation properties of the input noise. Similar to (19)
it can be expressed as

wS(n, r) = n+ 4
∑n/2−1

i=1

n

2
− i

( )
r(id)− 2

∑n/2
i=1

ir(id)

− 2
∑n/2−1

i=1

n

2
− i

( )
r

n

2
+ i

( )
d

[ ] (48)

In case of N > 4 jS(n, r)≃0.425 [15] and expression (47) can
be simplified

s2
jS out ≃ s2

jk
2
dt

2/N (49)

Again, recalculating noise to the discriminator input its
IET Radar Sonar Navig., 2013, Vol. 7, Iss. 4, pp. 451–458
doi: 10.1049/iet-rsn.2012.0272
variance s2
jS in = s2

jS out/K
2
dS will be

s2
jS in =

1

r2
t2

4N
(50)

where ρ =U/σξ is the input SNR.
Thus the stochastic component of the range measurement

error caused by input noise is

s2
xj = s2

jS in fe TR (51)

If we compare (50) with (39) we can see that target
fluctuations in the most unfavourable cases are equivalent to
the presence of input noise with SNR ρ = n. By comparing
(50) with (45), we can conclude that the maximum range
measurement error caused by target movement is equivalent
to the presence of input noise with SNRρ≃2.6.
Finally, the range measuring error is defined by both the

dynamic error mx and the root mean square value of the
stochastic error

sx =
�����������������������
s2
i + s2

xa + s2
xv + s2

xj

√
(52)

4 Example of a range finder performance

Radar range finders with stroboscopic sampling allow for
reducing the instrumental range measurement error at the
cost of an increased dynamic error. Therefore stroboscopic
sampling is effective in case of a small dynamic error and
big instrumental errors of the initial system, that is, the
range finder without stroboscopic sampling. In order to
illustrate this we will consider the range finder intended for
tracking, if not manoevring, high speed objects. Let us
assume that target fluctuations are insignificant, that is σxa = 0.
The range to the target changes from the starting value to

the minimum distance defined at the moment of the greatest
convergence of the target to the radar r1 (about 30 m).
We will consider an example where the pulse duration t =
30 ns, the pulse repetition period TR = 10 µs, SNR = 20 dB,
target fluctuation is insignificant and its speed v = 3.5 km/s.
The radial acceleration of the object reaches maximum at

the time of closest approach to the radar a(r1) = v2/r1 = 41
km/s². In the example, we will consider one sample per
pulse and the range finder having coefficients K =M = 1.
A maximum dynamic error can be obtained from (26):

mx = a(r1)(NTR)
2. From (50) and (51) we will define the

variance of the input noise error s2
xj. The variance of the

instrumental error (24) in the considered case is σi
2 = t2/

(3N ). The variance of the error caused by signal envelope
distortion because of the target motion shift s2

xv can be
defined by (43)–(46). The results of the calculations are
illustrated in Fig. 8, which shows the dependence of each
error on the number of pulses.
The figure demonstrates that the number of periods N of

stroboscopic sampling affect the stochastic errors in
different ways: if with the increase of N the instrumental
error σi quickly decreases, the error caused by target shift
σxv grows slowly. Therefore in case of N > 10, the main
contribution in the overall stochastic error σx is because of
the noise error component σxξ, which decreases more
slowly than σi.
There are two clear opposite trends for the dynamic and

stochastic errors. While N is below 40–50, the range
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Fig. 8 Dependence of range finder errors on the number of pulses
in the case of stroboscopic sampling
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measurement error is defined chiefly by the stochastic error
which is generally inversely proportional to N.
When N > 60, the dynamic error that increases

proportionally to N2 will mainly contribute to the overall
system error in the case of stroboscopic sampling. Therefore
there is an optimal value of N which corresponds to the
intersection of the stochastic and dynamic error plots. In the
considered case the maximum accuracy of tracking is
reached when N = 64.
The described algorithms with the stroboscopic sampling

have been used in practical range finder systems [20] and
the experimental results agree well with all estimations made.

5 Conclusions

This paper has focused on the detailed analysis of
stroboscopic sampling for digital radar target detectors and
range finders and its performance in cases when it is
difficult to provide the required high sampling rate of
real-time signal sampling.
We have shown that stroboscopic sampling may provide

better detection performance for target detectors than
traditional sampling in cases where the number of samples
per pulse duration is small (two or less). We have also
demonstrated that the advantages of stroboscopic sampling
become greater with an increase of SNR.
An analysis of the characteristics of the range finder with

stroboscopic signal sampling has shown that this technique
allows for reducing the instrumental range measurement
458
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error without increasing the requirements of the digital
range finders’ performance. The presented results
demonstrate how to define optimal stroboscopic sampling
parameters in order to provide maximum accuracy of range
tracking.
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