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Abstract: Aliphatic polycarbonates have gained increased attention as biomaterials largely owing to their 
biocompatibility and tunable degradation. Moreover, the ability to introduce functional handles in the 
polymer backbone through careful design of cyclic carbonate monomers or copolymerization with other 
biodegradable polymers, has significantly contributed to the interest in exploiting this class of materials for 
biomedical applications. Such investigations have enabled their utility to be expanded to a wide variety of 
applications in the biomedical field, from drug delivery to tissue regeneration and the design of vascular 
grafts. Herein, we review the synthesis, degradation and studies into biomedical applications of aliphatic 
polycarbonates obtained by ring-opening polymerization of cyclic carbonate monomers (ring sizes between 
6 and 8). While all synthetic methods will be covered, particular emphasis will be given to materials that 
have been exploited for therapeutic applications in vitro and in vivo.  
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1. Introduction 

An important target for biomaterials research is the preparation of materials that display biocompatibility, 
controlled degradation, and high performance for their chosen application. Creating the perfect balance 
between these characteristics, and still generating biomaterials tailored to the target tissue, remains a critical 
challenge in the field of biomaterials chemistry. The wide variety of chemistries currently available for the 
synthesis of materials in which the physical and mechanical properties can be tuned, makes synthetic 
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polymers more attractive than natural ones, also as a consequence of their easier manipulation and high 
batch-to-batch reproducibility. Among them, aliphatic polycarbonates (APCs) have been identified as a 
promising class of materials, as they can be obtained from a range of resources, including natural and 
renewable sources, as well as being biodegradable.1-3 As such, APCs have received extensive attention as 
biocompatible materials for drug delivery, polymer-based therapeutics, and imaging contrast agents (Figure 
1).4 The true potential of  this polymer platform lies in its versatility with respect to chemical structure and 
handles that can be placed within the polymer structure with precision.  

 
Figure 1. Summary of the unique features and biomedical applications of aliphatic polycarbonates. 

Three synthetic routes have been explored for the synthesis of APCs: polycondensation of aliphatic polyol 
and diallyl carbonates, copolymerization of carbon dioxide (CO2) with an epoxide, or ring-opening 
polymerization (ROP) of cyclic carbonate (CC) monomers.5 Polycondensation involves a two-step process: 
i) an initial condensation to get an oligomer, and ii) the transesterification or carbonate metathesis 
polymerization to achieve high molar mass polymers.6, 7 Copolymerization of carbon dioxide with an 
epoxide represents a greener alternative for the polycarbonate synthesis, yielding polymers with tunable 
properties from an inexpensive, nontoxic, renewable feedstock.8-10 However, this polymerization technique 
has typically not been used for the synthesis of polycarbonates for biomedical applications, most likely on 
account of the need for high pressure reactors and limited reports of functional polymers from this route. 
Using advanced, yet simple, living ROP of CCs by cationic, anionic, coordination-insertion, organocatalytic, 
and enzymatic methods,11-14 biomedically relevant polycarbonates can be accessed with high levels of 
control over polymer molar mass, dispersity and end-group fidelity. Perhaps one of the most attractive 
aspects of this platform is reflected by the way in which the preparation of functional polycarbonates has 
opened the possibility to the synthesis of biocompatible materials with tunable degradation rates and 
mechanical performance. Together with copolymerization or blending with other biodegradable polymers, 
such as poly(lactide), poly(glycolide), poly(caprolactone), the introduction of functional handles has been 
used as an alternative method to finely tune the properties of polycarbonates, precisely tailoring the polymer 
structure to enable specific interactions with cells or tissues.15-17 

Herein, we highlight the potential for APCs in biomedical applications by reviewing the biomedical 
applications reported for these materials alongside studies that have reported their synthesis, focusing on 
ROP of 6-8 CCs and their degradation behavior. Notably, the synthetic methods section will aim to 
highlight the potential of the platform, many of which have not been used in biomedically-focused studies. 
This shows the huge potential of APCs to be adapted for a wide range of applications. When discussing 
the biomedical applications, emphasis is given to materials for which biological effect has been investigated 
at least in vitro, with particular attention given to reports where in vivo biocompatibility and efficacy have 
been explored. 
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2. Synthetic methods for the preparation of cyclic carbonate monomers and corresponding 
polymers 

2.1 Synthesis of 6-8 membered ring cyclic carbonates from phosgene and its derivatives 

APCs have received considerable attention as biocompatible materials for drug delivery, polymer-based 
therapeutics, and imaging.18 Access to cyclic monomers that present a wide variety of functional groups 
and can be synthesized in a simple and cost-effective manner has been exploited over the past few decades 
to expand the versatility of CCs and correspondent polycarbonate materials.19 Unlike 5-membered ring 
carbonates, 6-8 membered CCs are more susceptible to polymerization, as a consequence of their higher 
ring strain.20 Traditionally, CCs are synthesized using phosgene from a diverse range of precursors, from 
glycerol to amino acids and sugars.3, 21-26 Despite being high yielding, the use of phosgene is highly toxic 
and laborious, as reactions are performed at -78 °C with exhaustive workups, rendering this chemistry 
difficult to scale up. As such, the use of phosgene alternatives, such as various chloroformates, nitro-
substituted diphenylcarbonates, and carbonyl diimidazole, have been suggested to overcome some of these 
synthetic issues.27-31 However, phosgene derivatives come with their own challenges, as they often lead to 
unwanted side reactions and subsequent difficult purification procedures, as a consequence of their lower 
reactivity. In this section, we report a comprehensive list of the different synthetic methods that have been 
described for the synthesis of 6-8 membered ring CCs using phosgene and its derivatives (Table 1). 

 

2.1.1 Synthesis of 6 membered ring cyclic carbonates from glycerol and derivatives 

Glycerol is an abundant, inexpensive compound sourced from biomass feedstock, which makes it an ideal 
starting material for CC synthesis. It can be reduced to a diol through a palladium/carbon (Pd/C) catalyzed 
reduction with hydrogen gas to make the precursor for 6 membered ring CCs.32, 33 1,3-Propanediol can be 
converted into the simplest 6 CCs, trimethylene carbonate (TMC), as demonstrated by Endo and coworkers 
who used ethyl chloroformate alongside a catalytic amount of triethylamine (TEA) in tetrahydrofuran 
(THF) to afford a 62% yield of TMC.34  

A range of functionalized CCs have been synthesized from glycerol and derivatives with the aim to afford 
functionalized APCs via ROP. Burk and coworkers used triphosgene with pyridine as a catalytic base to 
synthesize a range of substituted 6CCs from substituted 1,3-pentanediols in dichloromethane. Low 
temperatures of -70 °C were employed in order to eliminate competing chlorination side reactions.35 Zhuo 
and coworkers synthesized 5-benzyloxyl trimethylene carbonate (BTMC) through a multi-step procedure 
starting with a glycerol that was protected and then cyclized through a reaction with ethyl chloroformate 
and TEA in THF.36 Moreover, Parzuchowski and coworkers synthesized the 6CC monomer 5-(3-[(2-
hydroxyethyl)thio]propoxy)-1,3-dioxan-2-one (HETTMC) from a protected glycerol. The three-step 
reaction included the addition of the allyl functional group to the secondary alcohol in the glycerol, 
deprotection of the resultant compound, cyclization of the glycerol with ethyl chloroformate and TEA in 
THF and finally conversion of the allyl group to a 2-mercaptoethanol group.37 

 

2.1.2 Synthesis of 6 membered ring cyclic carbonates from pentaerythritol, trimethylolethane and 
their derivatives 

Synthesis of functional monomers derived from pentaerythritol is typically realized by partial 
functionalization/protection of two of the hydroxyl functionalities leaving a 1,3-diol that can be cyclized 
using a phosgene derivative. This route provides an excellent opportunity to introduce two hydroxyl groups 
per monomer unit into the polycarbonate backbone. Pentaerythritol was used by Vandenberg and Tian to 
synthesize the 6CC, 2,2-dimethyl-5,5-bis(hydroxymethyl)-1,3-dioxane from pentaerythritol and then 
cyclized by ethyl chloroformate and TEA in THF to afford the 6CC.38 The Zhong group synthesized two 
similar 6CCs, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC) and mono-4-
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methoxybenzylidene-pentaerythritol carbonate (MBPEC). These were derived from the reaction of 
pentaerythritol and 2,4,6-methoxybenzaldehyde or p-methoxybenzaldehyde respectively followed by 
cyclization of the resultant diols by ethyl chloroformate and TEA in THF.39 Using a similar chemistry, 
Dove and coworkers reported the synthesis of a norbornene-functionalized spirocyclic carbonate, 9-
norbornene-2,4,8,10-tetraoxaspiro[5,5]undecan-3-one (NTC) from pentaerythritol and 5-norbornene-2-
carboxaldehyde, followed by ring-closure using ethyl chloroformate and TEA.40  

A similar synthetic strategy can be applied to trimethylolethane and its derivatives. This can be used as a 
starting material to prepare 6CCs, by protecting two hydroxyl groups and allowing the third one to react. 
Indeed, initially Akashi and coworkers41 and subsequently Amsden and coworkers42 reported the synthesis 
of a 6CC bearing a methoxyethoxy side group from trimethylolethane. In the monomer synthesis, two 
hydroxyl groups were protected through the formation of an acetal ring using benzaldehyde, while the third 
one was reacted with a triethylene glycol monomethyl ether. The protected hydroxyl groups were then 
deprotected in an acidic environment and reacted with 1,1-carbonyldiimidazole (CDI) to obtain the 6CC. 
In a similar fashion, dimethyl carbonate and diethyl carbonate have also been used to protect 
trimethylolethane derivatives by forming acetal or ether functionalities, affording 6CCs with pendant 
functional groups.43-45 

 

2.1.3 Synthesis of 6 membered ring cyclic carbonates from amino acid derivatives 

Amino acids are natural products indispensable for life processes, hence highly attractive, biocompatible 
starting materials for the synthesis of CCs. Originally, the synthesis of CC monomers derived from L-
serine and L-threonine, reported by Sanda et al. and by Gross and coworkers, was realized by protection of 
these amino acids via conversion of the amino groups to carbamic acid benzyl esters or carbamic acid tert-
butyl esters (Boc) followed by reduction and carbonate formation with triphosgene.46, 47 In an alternative 
report, a serine-derived CC was prepared from the alcohol analogue of serine, serinol, as reported by the 
Zhuo and Zhong groups for the synthesis of 2-(dimethylamino)trimethylene (DMATC). Serinol was 
methylated to form an intermediate that underwent cyclization when reacted with triphosgene and TEA. 
The purpose of the methylation step was to allow the monomer to undergo controlled ROP, as the 
unprotected amine functionality can potentially interfere with the ROP catalyst. The result was a 6CC that 
contained a protected secondary amine functionality.48 Moreover, Jing and coworkers described another 
route for the synthesis of the 6CC (2-oxo[1,3]dioxan-5-yl)carbamic acid benzyl ester (CAB) from serinol. 
Serinol was reacted with benzyl chloroformate to produce a protected intermediate that underwent a 
cyclization with ethyl chloroformate and TEA in THF at room temperature to afford the 6CC.49 Finally, a 
route to a 6CC bearing an amine functionality was shown by Endo and coworkers. Serine was protected 
using benzyloxycarbonyl and TEA or using NaHCO3 and zinc chloride, and then reacted with triphosgene 
to produce an amine-functionalized 6CC.46   

 

2.1.4 Synthesis of 6 membered ring cyclic carbonates from 2-(dihydroxymethyl)-propanoic acid 

A number of synthetic pathways for the preparation of functionalized CCs starting from 2,2-
bis(hydroxymethyl)-propionic acid (bis-MPA) have been reported (Scheme 1). The functionalization of the 
carboxylic acid group under acidic or basic conditions, followed by the carbonate ring-closure, was 
presented as a straightforward method to obtain functional 6CC (path A).  Although alternative pathways 
enable coupling of more sensitive functional groups, steps such as protection/deprotection are required 
prior to polymerization (paths B and C). 
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Scheme 1. Reported synthetic routes to functionalized cyclic carbonate monomers. Reprinted with 
permission from reference 50. Copyright (2010) American Chemical Society. 

 

 

Bisht and coworkers synthesized the 6CC, 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) from a 
bis-MPA, benzyl 2,2-bis(hydroxmethyl)propionate, ethyl chloroformate and TEA in THF in a one-pot 
reaction.51 Further work undertaken by the group included the synthesis of 5-methyl-5-carboxyl-1,3-
dioxan2-one (MCC) from MBC by reducing MBC with hydrogen gas (0.414 MPa) and a Pd/C catalyst in 
anhydrous ethyl acetate, affording MCC with a 98% yield.52 Pratt et al. substituted the hydroxyl group in 
MCC with a range of different functionalities through two different synthetic routes, either via direct 
coupling with N,N’-dicyclohexylcarbodiimide (DCC) or through the formation of an acyl chloride 
intermediate.31 Hedrick and coworkers synthesized CCs bearing a broad range of functionalities in high 
yields, using a common and versatile pentafluorophenyl ester intermediate. Reaction of bis-MPA with 
commercially available bis(pentafluorophenyl)carbonate (PFC) resulted in the one-pot transformation of 
the carboxylic acid into a pentafluorophenyl ester group and ring-closure of the 1,3-diol to generate a CC. 
The pentafluorophenyl ester intermediate and the PFC have the advantage of being easy to store and handle 
on the benchtop, as opposed to phosgene.50  

The Jing group synthesized the 6CC, 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC), from 
a reaction between 2-(dihydroxymethyl)-propanoic acid, potassium hydroxide, and 2-nitrobenzyl bromide 
in DMF followed by cyclization of the resultant diol with ethyl chloroformate and TEA in THF.53 The 
Zhuo group synthesized the 6CCs 5-methyl-5-methoxycarbonyl-1,3-dioxan-2-one (MMTC) and 5-methyl-
5-ethoxy carbonyl-1,3-dioxan-2-one (EMTC) via the cyclization of their analogues 2-(dihydroxymethyl)-
propanoic acids using ethyl chloroformate and TEA in THF.29 Finally, the Malkoch group synthesized a 
range of 2,2-bis(methylol) propionic acid carbonates (bis-MPA-carbonates) and trimethylolpropane 
carbonates (TMP-carbonates) from 2,2-bis(methylol) propionic acid and trimethylpropane feedstocks 
respectively. 1.1’-carbonyldiimidazole (CDI) was used as the cyclization reagent owing to its low cost and 
safety.54  

 

2.1.5 Synthesis of 6 membered ring cyclic carbonates from other sources 

Chen and Gross synthesized the 6CC, 1,2-o-isopropylidene-D-xylofuranose-3,5-cyclic carbonate (IPXTC), 
from the natural sugar 1,2-o-isopropylidene-[D]-xylofuranose and ethyl chloroformate and TEA in THF in 
a one-pot reaction, affording IPXTC in 41% yield.55 Wooley and coworkers prepared bicyclic carbonate 
monomer of a D-glucal derivative, which originated from the natural product D-glucose, in an efficient 
three-step procedure, involving a Ferrier rearrangement, a deprotection step, and a ring-closure reaction, 
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with an overall 38% yield.56 The same group also used methyl-4,6-o-benzylidene-α-D-glucopyranoside as a 
starting materials to achieve substituted 6CCs. By convenient functionalization of the hydroxyl groups in 2 
and 3 position and subsequent removal of the benzylidene followed by ring-closure, a series of 4,6 CCs, 
such as the methyl-2,3-O-n-ethyloxycarbonyl-4,6-O-carbonyl-α-D-glucopyranoside (GC(EEC)) could be 
obtained.57-59 Wang, Cheng and Zhuo synthesized the 6CC 2,2-ethylenedioxypropane-1,3-diol carbonate 
(EOPDC) with a 47% yield from an ethylene ketal dihydroxyacetone. Diethyl malonate was oxidized to 
diethyl ketomalonate with ceric ammonium nitrate as a catalyst. Diethyl ketomalonate was then cyclized 
with ethyl chloroformate and TEA in THF.60 Endo and coworkers synthesized the bis-(cyclic carbonate), 
5-(2-oxo-1,3-dioxolan-4-yl)methyl-5-propyl1,3-dioxan-2-one (65CCP), which contains both a 5- and 6-
membered carbonate ring through a multi-step reaction from allylmalonic acid diethyl ester.61 Chen, 
McCarthy and Gross synthesized the 6CC, 2,2-(2-pentene-1,5-diyl)trimethylene carbonate (cHTC), by a 
one-pot reaction of cyclohexene-4,4-dimethanol with ethyl chloroformate and TEA in THF conducted at 
0 °C.62 The Cramail group synthesized the bis-(cyclic carbonate), Und-6CC, from methyl undecenoate. The 
methyl undecenoate was used to produce an Und-malonate, this was reduced to a 1,3-diol and then cyclized 
using ethyl chloroformate and TEA in THF to afford Und-6CC.63   

 

2.1.6 Synthesis of 7 and 8 membered ring cyclic carbonates 

Endo and coworkers synthesized the simplest 7CC, 1,3-dioxepan-2-one, from 1,4-diols and triphosgene 
using pyridine as a catalytic base, with an overall yield of 30%.64 Further work by the same group 
demonstrated a synthesis of methyl- and phenyl-substituted 7CCs from substituted 1,4-butanediols that 
were in turn synthesized from the reduction of analogous acids. In the synthesis of the 7CCs from their 
respective 1,4-diol analogues, triphosgene in anhydrous chloroform was used as a carbonyl source and 
antipyrine as the base, affording 11-30% yields.65 The Carpentier and Guillaume group synthesized the 
methyl-substituted 7CCs, 4-methyl- and 5-methyl-1,3-dioxepan-2-one, from their respective 1,4-diols. 
Triphosgene, anhydrous chloroform and pyridine were used for the cyclization and yields of up to 70% 
were reported. Lower temperatures employed in the reaction led to a higher yield of the 7CC by minimizing 
side-formation of oligocarbonates.66 An allyl-substituted 7CC, 5-allyl-1,3-dioxepan-2-one, was also reported 
by Endo and coworkers, using 2-allylbutane-1,4-diol as a precursor obtained from the reduction of allyl 
succinic anhydride with LiAlH4. Triphosgene and antipyrine in THF were then used for the cyclization, 
affording the desired product in 79% yield.67 Bisht and coworkers synthesized a 7CC, (5S,6S)-dimethyl-5,6-
isopropylidene-1,3-dioxepin-2-one (ITC), from L-tartaric acid in three steps. First the secondary alcohol 
groups were protected, then the ketone groups were converted to alcohol groups and finally the resultant 
diol was cyclized with triphosgene and pyridine in THF.68  

While research has mostly focused on the synthesis of N-substituted 8CC intended for the preparation of 
polyurethanes,69 there are a few reports on the synthesis of 8CC intended for the preparation of APCs. A 
methyl-substituted 8CC, 6-methyl-1,3,6-dioxazocan-2-one, was synthesized by Pascual et al.  through a 
reaction between N-methyl diethanolamine, ethyl chloroformate, and TEA in dichloromethane, achieving 
a yield of 84%.70 Moreover, Venkataraman et al. synthesized a range of N-substituted 8CCs from their 
respective N-substituted diethanolamines through cyclization reactions promoted by either ethyl 
chloroformate or triphosgene in the presence of a base, with yields varying from 21 to 53%.22 The same 
group also reported step-efficient routes to access N-substituted 8CCs directly incorporating tertiary 
amines, without any requirement for post-polymerization modification steps, for a wide range of biomedical 
applications.71  
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Table 1. 6-8 membered ring cyclic carbonates synthesized using phosgene and its derivatives. 

 
 

2.2 Synthesis of 6-8 membered ring carbonates from diols or sugars using carbon dioxide as a C1 
source 

As previously outlined, the production of CCs has typically relied on the utilization of phosgene and its 
derivatives. As a consequence of the impracticalities and safety concerns of using highly toxic phosgene on 
a laboratory scale, alternative sources of starting materials have recently begun being investigated for the 
synthesis of CCs. Carbon dioxide represents an ideal starting material for the cyclization of a diol into a CC, 
owing to its lack of toxicity, abundance, and renewability.72 The direct coupling of carbon dioxide with 
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different starting materials is now also a well-established reaction that has been exploited to yield CCs (Table 
2).73 

 

Table 2. Synthesis of various cyclic carbonates from 1,3-diols and CO2. Adapted with permission from 
reference 74. Copyright (2015) The Royal Society of Chemistry. 

 
 

Tomishige and coworkers used CeO2 as a catalyst and 2-cyanopyridine as a dehydrating agent to synthesize 
a range of 6CCs from 1,3-diols and CO2 gas (5 MPa) with yields of 62-99% for the resultant products. 
Carbon dioxide was inserted into the Ce-O bond, then an intramolecular nucleophilic attack of the other 
alcohol group on the carbonyl in the intermediate leads to the CC and the elimination of a water molecule. 
Hydration of 2-cyanopyridine with water affords the corresponding amine as a by-product.75 Bobbink et al. 
performed a carbene-catalyzed fixation of carbon dioxide (1 atm) with a phenyl-substituted 1,3-propanediol 
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using a carbene catalyst, excess nBuBr, and Cs2CO3 in DMF solvent to give the corresponding CC with a 
53% yield. The base and alkyl halide were essential for this reaction as no carbonate product was formed 
in their absence.76  

Buchard and coworkers reported a milder route to achieve CCs from a 1,3-diol, using 1,8-diazabicyclo-
[5.4.0]-undec-7-ene (DBU) as a catalytic promoter and carbon dioxide (1 atm). Ester and ether functional 
groups were well tolerated under these conditions. The disadvantage of this reaction is that DBU is a strong, 
moisture sensitive base and hence this synthesis has to be performed in air-free conditions and requires two 
sequential steps.73 To address these concerns, further work by the group reported the production of CCs 
from milder bases and only stoichiometric amounts of tosyl chloride in a one-step, one-pot reaction. This 
led not only to the synthesis of 6CCs but also the first 7CCs and 8CCs synthesized directly from CO2. The 
simplest 7CC was afforded from the analogous 1,4-diol at a 45% conversion from the same procedure, 
while 38% of the 1,4-diol was converted to oligomers. A methyl-substituted 8CC was afforded with a 73% 
conversion of 1,5-diol.77  

Sun and coworkers used urea and 1,3-propanediols to synthesize 1,3-propylene carbonate. The reactions 
were performed in the presence of a variety of metal oxide catalysts and carbon dioxide. In all cases, the 
selectivity of 5CCs, up to 99%, was greater than the selectivity of 6CCs, 83%.78 

 

2.3 Synthesis of 6-8 membered ring carbonates from other sources using carbon dioxide as a C1 
source 

 

2.3.1 Homoallylic alcohol-derived cyclic carbonates 

Alcohols are ubiquitous compounds in nature and offer modular building blocks for synthetic chemistry. 
As such, different classes of alcohols have been used to afford linear and CCs by coupling with carbon 
dioxide, highlighting the potential of this chemistry to recover a waste carbon feedstock. Cardillo et al. 
reported a one-pot, three-component reaction between homo-allylic alcohols, carbon dioxide and 
molecular iodine. The synthesis was regio- and stereo-selective and was catalyzed by nBuLi used as a base 
in dry THF, followed by the addition of iodine. The proposed mechanism involved a carbon dioxide 
addition to the alkoxide group to produce an intermediate followed by electrophilic iodo-cyclization.79 
Minakata et al. developed a metal-free, base-free synthesis of 6CCs from a homoallylic acid and carbon 
dioxide (1 atm). Carbon dioxide first reacted with the homoallylic acid to form an intermediate that further 
reacted with the iodonium source, tBuOI, so that an iodocyclization could take place to afford the 6CC.80 
The Johnston group enantioselectively synthesized a range of 6CCs via a dual Brønsted acid/base 
organocatalyzed reaction between a range of homoallylic alcohols, carbon dioxide (1 atm), and N-
iodosuccinimide. Fluoro, chloro, bromo and alkoxy functional groups on the homoallylic acid were well 
tolerated during the reaction.81  

 

2.3.2 Oxetane-derived cyclic carbonates 

The organocatalytic coupling of oxetanes and carbon dioxide offers a sustainable route to poly(trimethylene 
carbonate)s and/or functional six-membered CC monomers. Pioneering work by Baba et al. reported the 
synthesis of TMC from oxetane by ring expansion with carbon dioxide (4.9 MPa) and Ph4SbI as an 
iodonium source for cyclization. Notably, this reaction was performed under solvent-free conditions at 100 
°C, affording TMC in 96% yield.82 The same group further explored the synthesis of TMC via cycloaddition 
of carbon dioxide and oxetane catalyzed by Bu3SnI and hexamethylphosphoric triamide (HMPA), which 
delivered TMC at 100% yield.83 Further work explored the synthesis of 6CCs from mono- and di-
substituted oxetanes using Ph4SbI. As expected, yields for mono-substituted 6CCs were greater than those 
for di-substituted 6CCs.84 Darensbourg et al. achieved a 95% yield of TMC using VO(acac)2/n-Bu4NBr as 
the catalyst system in toluene at 60 °C and a carbon dioxide pressure of 3.5 MPa.85 Kleij et al. synthesized 
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substituted 6CCs from a range of 2-,3- and 3-,3-disubstituted oxetanes and carbon monoxide (1-4 MPa). 
The mechanism followed a ring expansion of the oxetane with carbon dioxide (0.2 MPa) mediated by the 
catalyst [Fe(TPhOA)]2 (0.5 mol%) and iodonium source Bu4NI (5 mol%) in methyl ethyl ketone at 85 °C 
yielding 98% TMC, with the yields of the disubstituted CCs being 28% and 38%, respectively.86 Further 
investigation by the group found that replacing [Fe(TPhOA)]2 with an aluminum triphenolate catalyst 
resulted in a lower yield.87 Buckley et al. described the first attempt of TMC synthesis by electrochemistry. 
An electrochemical cell with a copper cathode and a magnesium anode was used and 1 equivalent of Bu4NI 
as a supporting electrolyte in acetonitrile. Reaction conditions of 50 °C and 0.1 MPa carbon dioxide pressure 
afforded a 70% yield of TMC.88 More recently, Coulembier, Dove and coworkers reported a metal-free 
procedure to synthesize TMC using carbon dioxide and commercially available organocatalysts in a 
temperature-selective process. An extremely high level of TMC selectivity with good conversion was 
achieved from the catalytic coupling of oxetane and carbon dioxide under mild conditions using iodine in 
combination with tetrabutylammonium acetate at low temperatures.89  

 

2.4 Synthesis of cyclic carbonates from other sources 

Inoue and coworkers synthesized highly substituted 6CCs from the reaction of 3,4-alkadienols and carbon 
dioxide. Phenyl iodide was used as a halide source and a palladium complex catalyst mediated the reaction 
through a π-allylic palladium intermediate species.90 Zhang and coworkers synthesized a range of 6CCs 
from commercially available 3-(pseudo)halo-1-propanols and carbon dioxide through a Cs2CO3-catalyzed 
intermolecular ring-closing strategy, under mild reaction conditions. Other bases such as K2CO3 and 
tBuOK were also found to promote reaction but in lower yields. This strategy was also tested for 7 and 8 
membered CCs but these reactions were not successful.91 This is not unexpected taking into account that 
7- and 8-membered rings are kinetically not favored. In addition, the carbonyl bond distorts the ring which 
most likely decreases the thermodynamic stability.  

Finally, functional 6CCs have been synthesized from the upcycling of a commodity polymer, bisphenol-A 
polycarbonate (BPA-PC), using a variety of diols and an ionic organocatalyst based on triazabicyclodecene 
(TBD) and methane sulfonic acid (MSA). The glycolysis of BPA-PC yielded 6CCs with a wide range of 
substituents that could be used to generate high added value polycarbonate-based materials (Figure 2).92 

 

 

Figure 2. BPA-PC depolymerization with different diols yields substituted 6-membered cyclic carbonates. 
Reprinted with permission from reference 92. Copyright (2020) American Chemical Society. 
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2.5 Ring-opening polymerization of cyclic carbonates 

APCs are of interest in biomedical applications as a consequence of their controlled polymer structure and 
tunable hydrolytic degradation.93 ROP of 6-8CCs allows for an effective and reproducible way to afford 
polycarbonates with high molar mass and low dispersities, which is crucial to obtain materials with 
properties tailored to the desired application.5 ROP provides the best route for the introduction of 
functional groups into the polycarbonate backbone and for controlling the afforded polycarbonate’s molar 
mass and dispersity through changing the monomer/initiator ratio, as typical of a living polymerization 
where the rate of initiation is greater than the rate of propagation. ROP requires a catalyst (Figure 3) or 
initiator and acts through four different mechanisms: cationic, anionic, coordination, and enzymatic. 
Originally, metal-based catalysts were developed for the synthesis of APCs. However, the presence of 
residual metals in the afforded polymers, which can lead to cytotoxicity, encouraged the development of 
more biocompatible catalysts, including metal-free and enzymatic catalysts. Metallo-organic catalysts are 
among the most used for the preparation of APCs, owing to their high activity. While metal-free catalysts 
are also widely employed, they need high loadings (often too high for industrial applications) to achieve 
efficiencies comparable to their metallo-organic analogues. 

 

 
Figure 3. Representative catalysts for the ROP of cyclic carbonates. Adapted from reference 94. Copyright 
(2019) American Chemical Society. 

 

2.5.1 Cationic ROP 

The dipolar moment of the CC group allows the monomer to act as a Lewis base in a reaction with an 
electrophilic initiator. As such, the cationic ring-opening polymerization of CCs can be achieved using 
Brønsted or Lewis acids. The cationic ROP of TMC, the simplest 6 CCs, was first reported by Kricheldorf 
et al. The mechanism was shown to proceed by the methyl triflate initiator alkylating the carbonyl moiety 
of the monomer, thus generating a trioxocarbenium cation. The counter ion then ring-opened the 
monomer, establishing an equilibrium with the triflate. Either the trioxocarbenium ion can attack another 
monomer leading to alkyl-oxygen (alkyl-O) cleavage and alkylation of the carbonyl moiety of the 
nucleophile or the covalent triflate can react with the monomer to produce the same propagating species. 
The polymerization was hindered by a decarboxylation side reaction which led to the presence of 3-10% 
mole concentration of ether groups in the afforded polycarbonate.95 Ether linkages in the afforded polymer 
are highly undesirable, owing to their faster degradation when compared to carbonate bonds. 
Decarboxylation and hence ether linkages were also present in the cationic bulk ROP of TMC by Albertson 
et al., where the use of BF3·OEt2 was reported to afford PTMC (Mn = 129,000 g mol-1, ÐM = 1.88). It was 
also established that solvent choice affected the polymerization, as the limited solubility of PTMC can lead 
to phase separation of the reaction mixture and hence the formation of oligomers instead of the desired 
high molar mass polycarbonates.96 Endo et al. avoided decarboxylation during the cationic ROP of TMC 
by using alkyl halides, but only afforded low molar mass polycarbonates (Mn up to 3700 g mol-1).5 Using 
molecular orbital calculations it was shown that decarboxylation occurs when the monomer attacks the 
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propagating end in preference to the attack of the polymer at the propagating end. This is because the 
monomer is more nucleophilic than the polymer. Thus, decarboxylation competes with propagation. This 
is why an alkyl halide propagating species with a lower reactivity, such as methyl iodide and benzyl bromide, 
affords polycarbonates without ether linkages.9 Kricheldorf et al. produced high molar mass polycarbonates 
(Mw = 250,000 g mol-1, ≥90% yield) without decarboxylation from cationic ROP of TMC with butyltin 
chloride initiators.97  

Hyun et al. reported the cationic ROP of 6CCs such as TMC, using (semi-)telechelicpoly(ethylene 
glycol)/HCl·Et2O initiator systems.98 Subsequently, Endo et al. reported the same method using different 
alcohol/ HCl·Et2O systems.99, 100 This synthesis proceeds by the activated monomer (AM) mechanism that 
suppresses unfavorable reactions such as backbiting (intermolecular transesterification). HCl·Et2O 
predominantly interacts with the carbonyl oxygen of the TMC monomer rather than the corresponding 
polymer carbonyl. Thus, the hydroxyl end-group of the initiator can attack the carbonyl of the protonated 
TMC rather than that of the PTMC polymer. This is in comparison with the active chain-end (ACE) 
mechanism, where the CC is protonated in the absence of hydroxyl groups and reacts with non-protonated 
monomers to give a trialkylcarbenium ion located at the end of the growing chain. Competition between 
AM and ACE may exist in ROP of CCs.101 Delcroix et al. investigated ROP of TMC in toluene at 30 °C 
using n-pentanol and methyl sulfonic acid (MSA) as initiator and catalyst respectively, to gain insight on the 
two mechanisms. MSA was shown to be effective for the synthesis of PTMCs with controlled molar masses 
(Mn < 9,000 g mol-1) and narrow dispersity (ÐM < 1.12). It was determined that the TMC monomer when 
activated by MSA undergoes nucleophilic attack by the alcohol at an early stage of the polymerization, thus 
confirming AM mechanism occurred. The activated monomer began ring-opening by O-alkyl cleavage as 
a result of the nucleophilic attack of non-activated TMC. Competing ACE mechanism meant that 
spontaneous decarboxylation occurred, leading to the propagating species becoming a bifunctional initiator 
that can enable polymer growth via two different mechanisms: AM from the hydroxyl chain-end and ACE 
from the oxonium chain-end. The undesirable ACE mechanism could be reduced by decreasing the 
instantaneous TMC concentration, thus achieving well-controlled ROP with MSA catalyst.  

Weakly acidic fumaric acid102 and diphenyl phosphate103 are also widely used in the cationic ROP of CCs. 
Diphenyl phosphate catalyst with 3-phenyl-1-propanol yielded polycarbonates from a wide range of CCs: 
TMC, 5,5-dimethyl-1,3-dioxan-2-one, 5,5-dibromomethyl1,3-dioxan-2-one, 5-benzyloxy-1,3-dioxan-2-one, 
5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one, and 5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one 
with no backbiting, decarboxylation or transesterification. Moreover, low dispersity (ÐM ≤ 1.2) was 
achieved in all polymerizations. Among other acid catalysts for cationic ROP, Brønsted acids, such as 
phosphoramidic acid, were employed to catalyze the living ROP of TMC.104 Furthermore, Barker and Dove 
reported the use of triarylsulfonium hexafluorophosphate salts as photoactivated acidic catalysts for ROP. 
When excited with UV light, these catalysts generate free protons which initiate the ROP of TMC.105  

In order to better understand how acidity affected catalytic activity, Hedrick and coworkers used molecular 
modelling to calculate reaction mechanism energetics.106 Their studies demonstrated that the catalysis is 
actually dependent on both acid strength and the ability of the conjugate base to act as a hydrogen-bond 
acceptor, suggesting a bifunctional activation. Phosphoric acid and imidodiphosphoric acids were thus 
employed as bifunctional catalysts for the ROP of TMC.107, 108 A bifunctional acid-base catalyst system of 
7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD) and TFA with benzyl alcohol (BnOH) as a coinitiator 
was also employed to afford PTMC with low dispersity (Mn = 14,390 g mol-1, ÐM = 1.10) through a living 
mechanism.109 Single-group bifunctional hydrogen-bonding catalysts based on thiazolium were used for the 
ROP of TMC affording polycarbonates with low molar mass and narrow dispersities (Mw = 3,300 g mol-1, 
ÐM = 1.28).110 Finally, bifunctional catalysts of squaramide and amine were also used for the ROP of TMC 
with BnOH as initiator.111  

 

2.5.2 Anionic ROP 
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Carbonate monomers are also susceptible to anionic ring-opening polymerization on account of the 
electrophilic nature of the carbonyl group. Here, the initiation and propagation steps are induced by the 
nucleophilic addition of anionic initiator and anionic chain-end, respectively. The first ROP of a 6 CCs, 
TMC, was reported using K2CO3 as an anionic initiator in the 1930s.112, 113 TMC undergoes spontaneous 
bulk anionic ROP above 100 °C producing high molar mass PTMC (Mw = 210,000 g mol-1) in high yields 
(90%). Once the TMC is cleaved, a zwitterion intermediate of the trioxocarbenium ion and an alkoxide ion 
is formed, which is stabilized through delocalization. However, a dimethyl substituted TMC, 2,2-
dimethyltrimethylene carbonate (DTC), does not spontaneously polymerize as the monomer’s cyclic 
structure is stabilized by two geminal methyl groups and thus equilibrium is shifted to the CCs.114 The 
advantage of spontaneous polymerization is the absence of a potentially toxic catalyst that provides good 
biocompatibility for the afforded polycarbonate. Macroinitiators such as polymeric lithium, sodium, and 
potassium alcoholates have been employed to afford the highest polycarbonate yields, with the lithium-
oxygen bond having a more covalent character and thus the lithium alcoholate having lower 
nucleophilicity.115-117 Takojima et al. used alkali metals in conjunction with alcohol initiator 3-phenyl-1-
propanol (PPA) in solvent-free conditions for the ROP of TMC. These included sodium acetate 
(CH3COONa) and sodium benzoate (PhCOONa) which are used as food additives so already meet 
industrial standards for safety and implementation. Sodium acetate only required a catalyst loading of 0.001 
mol% to efficiently afford polycarbonates at 70 °C (Mn = 9,780 g mol-1, ÐM = 1.23), much lower than 
standard organocatalytic catalyst loadings of 0.1-5 mol%, thus addressing the problem of very high catalytic 
loadings for industry. Higher molar mass polycarbonates were afforded from higher catalyst loadings (Mn 
up to 34,200 g mol-1). As the catalysts are mildly basic, no ether linkages were observed from 
decarboxylation in the polymer backbone.118 

Many alkoxide and alkyllithium initiators have been employed for anionic ROP of polycarbonates including 
n-BuLi119, lithium alkoxides120, sec-butyllithium121, 122, sodium methoxide122 and potassium 
dihydronaphthylide122 but their instabilities and high reactivities limit their industrial application. Thus, 
attention turned to alternative anionic initiators. Brønsted base initiators 1,8-diazabicyclo[5.4.0]undec-7-ene 
(DBU), quinuclidine, 1,4-diazabicyclo[2.2.2]octane (DABCO) and 4-(dimethylamino)pyridine (DMAP) 
were found to successfully afford polycarbonates from the ROP of 5,5-(bicyclo[2.2.1]hept-2-en-5,5-
ylidene)-1,3-dioxan-2-one (NBC). DBU was shown to be the most active catalyst and afforded poly(NBC) 
with a Mn = 6,500 g mol-1 after 1 h at 120 °C. Triethylamine was found not to afford polycarbonates as a 
consequence of the steric hindrance around the central nitrogen atom. Similarly, aromatic amines such as 
aniline, N,N-dimethylaniline, and pyridine, owing to their low nucleophilicities, did not promote ROP of 
CCs.123 Hedrick and coworkers reported the ROP of TMC using DBU, 1,5,7-triazabicyclo-[4.4.0]dec-5-ene 
(TBD), 7-methyl-1,5,7-triazabicyclo-[4.4.0]dec-5-ene (MTBD) and (-)-sparteine as amine-based catalysts 
coupled with a primary alcohol initiator. With the exception of (-)-sparteine, these catalyst systems afforded 
PTMC with high molar mass (≤ 50,000 g mol-1) and high end-group fidelity without decarboxylation 
occurring. DBU mediated the synthesis of PTMC with low dispersity (ÐM < 1.1). TBD was found to be a 
superior catalyst to DBU in catalytic activity.13, 124 The bulk ROP of TMC with TBD catalyst and a large 
excess of a chain transfer agent alcohol (5 ≤ [ROH]0/[TBD]0 ≤ 200) at 110 °C afforded the corresponding 
polycarbonate in high molar mass (Mn = 44,850 g mol-1, ÐM = 1.52). Conducting the polymerization at 150 
°C led to low molar mass polymers as a consequence of a loss of control during the polymerization.125  

Phosphazene bases are another example of a highly active catalyst for the ROP of CCs. The bulk ROP of 
TMC with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) with 
an alcohol initiator afforded high molar mass PTMC at 100 °C (Mn = 45,800 g mol-1, ÐM = 1.49). BEMP 
gives lower molar mass and lower dispersity polymers at lower temperatures (60 °C), but the control over 
polymerization is lost at higher temperatures leading to greater dispersities.125, 126 N-heterocyclic carbenes 
(NHCs) have been applied to the ROP of CCs as Lewis base initiators. Nederberg et al. investigated two 
NHCs, 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene and 1,3-bis(2,6-diisopropylphenyl)-imidazol-2-
ylidene, which were found to be active for the ROP of TMC. Both achieved similar molar mass 
polycarbonates but the high basicity of the alkylated NHC contributed to a rapid ROP process (0.1 min for 
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a DP of 50), which was accompanied by the loss of polymerization control and broad dispersity (ÐM > 2). 
In contrast, the less basic aryl-substituted NHC achieved PTMC with a low dispersity (ÐM ∼ 1.06).13 Three 
substituted imidazole-2-ylidene carbenes in THF achieved the high catalytic activity for the ROP of DTC 
to afford poly(DTC) (Mn = 28,000 g mol-1, ÐM ∼ 1.3). A first order rate was observed by kinetic studies in 
both the monomer and NHC suggesting that a monomer-activated process occurs.127 

As shown above, organocatalysts for anionic ROP are typically strongly basic. As exceptions, 2-
(dimethylamino)ethanol (DMAE) and 2-(dimethylamino)ethyl benzoate (DMAEB) were both shown to 
control the ROP of TMC, affording polycarbonates with low dispersity (ÐM ≥ 1.21). The afforded polymer 
chains were α,ω-heterotelechelic meaning that they contained the same distinct functional end-groups as 
the DMAE initiator molecule.128 Other milder routes included the use of supramolecular catalysts for ROP. 
Dove et al. first applied a thiourea-based bifunctional catalyst, the Takemoto catalyst developed to exploit 
hydrogen bonding in catalytic processes, to the ROP of lactide.129 The same catalyst was further explored 
in the ROP of TMC affording 88% conversion after 6 days (Mn ∼ 4,500 g mol-1). A more efficient 
bifunctional thiourea/(-)-sparteine catalyst was shown to afford polycarbonates of Mn = 5,000 g mol-1 after 
12 h. The catalyst displays good selectivity for CCs and produces low dispersity PTMC (ÐM ≤ 1.09) thanks 
to the absence of transesterification reactions.13 Todd et al. discovered that (-)-sparteine could be substituted 
for bispidine base in the ROP of TMC to produce comparable activity and low levels of side reactions.130 
Another class of hydrogen-bond donor catalysts are alcohol-containing catalysts such as bisphenols and 
chiral diols reported by Coulembier et al. for the ROP of TMC.14, 131  

 

2.5.3 Coordination-insertion ROP 

Metallo-organic coordination catalysts have two different mechanisms for the ROP of 6CC. One proceeds 
via an insertion mechanism and involves a Lewis acid metal halide, oxide or carbonate in cooperation with 
water or alcohol. Another mechanism, the coordination-insertion, involves metal alkoxides containing free 
p-, d- or f-orbitals of a favorable energy, which first form a complex with the CCs and then undergo a 
rearrangement leading to the cleavage of a metal-oxygen bond of the propagating species and an acyl-
oxygen bond (O-acyl) of the cyclic monomer.21 

Metal-carboxylates used for the ROP of 6CCs have included zinc stearate,132 tin-based catalysts such as the 
di-n-butylstannic diiodide-triphenylphosphine system,133 or porphinatoaluminum compounds like 
(TPP)AlOR134. These catalysts mediate the successful production of polycarbonates without 
decarboxylation. In each case O-acyl cleavage of the cyclic ring produced a metal alcoholate propagating 
species. 

The tin-based catalyst BuSnCl3 was shown to be an incredibly active initiator affording polycarbonates of 
high molar mass and high yields. The bulk ROP of DTC at 120 °C gave poly(DTC) with a Mn up to 150,000 
g mol-1 and high crystallinity (Tm = 127 °C).132 Stannous octoate (SnOct2) is a highly efficient initiator of 
cyclic ester ROP (lactides)135 and was applied to the ROP of DTC to afford polycarbonates with molar 
mass determined by monomer/initiator ratios.132 This initiator is the most commonly used in industry for 
ROP of CCs owing to its approval by the US FDA as a food additive.136 Tin, zinc and aluminum-based 
organometallic catalysts are commonly used in the ROP of cyclic esters. Kuhling et al. investigated the ROP 
of DTC with a range of organometallic catalysts, tri-sec-butoxyaluminum (Al(Osec-Bu)3), diethyl zinc 
(ZnEt2), and dibutyldimethoxytin (Bu2Sn(OMe)2) in toluene. Unlike with aluminum and zinc catalysts, 
which polymerizations are characterized by a rate of propagation much higher than the rate of 
transesterification,137 with the tin catalyst the rate of backbiting is equivalent to the rate of propagation.  

Organometallic weak Lewis acids are effective for the ROP of cyclic esters. Protic species such as alcohols 
act as co-catalytic initiators, forming active metal-alkoxide species in situ. This enables the ROP to be living 
and the molar mass to be controlled by means of the monomer-initiator ratio.136 Aluminum catalysts, 
methylaluminoxane (MAO) and isobutylaminoxane (IBAO) were employed in the bulk ROP of TMC at 
60-140 °C to afford polycarbonates with high molar mass (Mn ≤ 81,700 g mol-1) but broad dispersities (ÐM 
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= 1.9-6.2).138 NHC bis-phenolate aluminum complexes were used as catalysts in the ROP of TMC affording 
high molar mass, low polydensity PTMC (Mn = 31,900 g mol-1, ÐM = 1.15) from a 99% monomer 
conversion at 90 °C in toluene.139 The N,O,N-supported tetracoordinate amidoaluminum (η3(N,O,N)-
(C5H9)N-C6H4)2OAlNMe2 was shown to be effective for ROP of TMC at room temperature in the presence 
of a BnOH co-initiator to successfully afford high molar mass PTMC (Mn = 20,400 g mol-1, ÐM = 1.12).140 
More recently, a highly active and well defined aluminum amide complex supported by a phenylene-diamine 
ligand was used for the ROP of TMC to efficiently afford polycarbonates after 2 min at 70 °C (Mn = 14,000 
g mol-1, ÐM = 1.59-2.10).141 Moreover, bis(phosphinimino)methanide bisborohydride complexes of 
lanthanum, yttrium and lutetium have been investigated in the ring-opening polymerization of TMC. All 
three initiators afforded linear PTMCs in toluene at 23 °C.142 

More biocompatible metals such as Zn, Mg and Ca have been investigated for metallo-organic catalysis. 
Darensbourg et al. used metal Schiff bases of zinc, magnesium and calcium alongside anion initiators to 
effectively catalyze the ROP of TMC at 86 °C. The order of activity for the catalysts as a function of their 
central metal ion was found to be Ca(II) >> Mg(II) > Zn(II). It was determined that O-acyl cleavage 
occurred when the cyclic monomer was ring-opened. Molar mass could be predetermined by the 
monomer/initiator ratio and dispersities were low indicating a highly controlled ROP.143-145 Helou et al. used 
the Coates catalyst, a zinc complex supporting a ß-diiminate ligand, alongside a BnOH co-initiator to 
polymerize TMC between 60 and 110 °C with a living character to afford high molar mass, low dispersity 
polycarbonates (Mn ≤ 185,200 g mol-1, ÐM ≥ 1.10). The activity of the catalyst was good enough that it 
could be used in very low loading, reducing its toxicity.146, 147  

H3PW12O40/CeO2 is an effective heterogeneous catalyst for the ring-opening polymerization of 6-
membered ring carbonates and afforded well-controlled polycarbonates with no ether bonds, a high Mn (up 
to 30,000 g mol-1) with a ÐM of 1.4-1.8. However, this system required methyl iodide as an initiator and was 
not reusable.148 A heterogeneous calcined CeO2 catalyst was used at high temperature (1273 K) for the 
ROP of TMC to exploit the efficiency of an metallo-organic catalyst whilst avoiding contamination of the 
polycarbonate, by keeping the catalyst in a separate phase. In this case, the catalyst system was reusable and 
did not require co-catalysts, achieving in 24 h a polycarbonate with  Mn = 11,000 g mol-1, ÐM = 1.74.149  

 

2.5.4 Enzymatic ROP 

Enzymatic ROP represents an effective alternative to conventional chemically catalyzed polymerizations. 
It offers significant advantages, including mild reaction conditions, low toxicity, and high selectivity, 
resulting in improved quality and performance of the end products. The versatility of lipases to polymerize 
a wide range of monomers, such as large ring systems that are otherwise difficult to polymerize by 
conventional metal-based catalysis, represents a clear advantage. Indeed, different types of bacteria are able 
to synthesize aliphatic polyesters, and isolation of the enzymes responsible for the ROP of cyclic monomers 
has allowed their use as metal-free ROP catalysts. The advantages of enzymatic catalysis compared to all 
the previously mentioned techniques can be found in their relatively mild reaction conditions and 
biocompatibility. As a consequence of these desirable properties, these catalysts do not need to be removed 
from the afforded polymers, can be recycled, can be applied to bulk ROP without the need for an organic 
solvent, and are insensitive to impurities in the reaction mixture.150, 151 However, unlike organocatalytic and 
metal catalysts, enzymes are usually less efficient and allow less control over polymer molar mass and 
dispersity. Kobayashi et al. described for the first time a lipase-initiated polymerization of TMC in bulk 
using a library of different lipases, and the commercial lipase Novozym-435 (from Candida Antarctica B) 
showed to be efficient to catalyze the ROP of TMC.152 

Cyclic lactones and CCs are often copolymerized to improve the mechanical and degradation properties of 
polyesters. In a lipase-based ROP process, the ability to polymerize a CC monomer is dependent on the 
capability of the enzyme to welcome the substrate in its active cavity. Unlike chemical catalysis, controlling 
the polycarbonate composition by random copolymerization of functional cyclic monomers still remains a 
challenge. Al-Azemi et al. showed that MBC was preferably incorporated when copolymerized with TMC 
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in bulk at 80 °C and in the presence of AK lipase, with the polymer composition matching the molar feed 
ratio.153 Copolymerization of CC monomers with lactones was also carried out successfully with lactide154 
or ε-caprolactone,155 broadening the scope of the resulting polymer properties including degradation 
kinetics, thermal properties and mechanical performance. 

Bisht et al. screened several lipases for bulk ROP of TMC at 70 °C for 120 h.156 Novozym-435 from Candida 
antarctica B achieved 97% monomer conversion and PTMC with Mn = 15,000 g mol-1 and ÐM = 2.2. Lipases 
AK and PS-30 derived from Pseudomonas and porcine pancreas lipase (PPL) also afforded monomer 
conversions above 80% but gave lower molar mass polycarbonates with broader dispersities. A Novozym-
435-catalysed polymerization resulted in terminal -CH2OH functionalities at both chain-ends and showed 
chain-type propagation kinetics. ROP at 55 °C was found to be the optimum temperature for highest molar 
mass giving Mn = 24,400 g mol-1. Increasing water content resulted in faster polymerization rates but lower 
molar mass polycarbonates. In a subsequent study, Matsumura et al. obtained contrasting results to Bisht 
and coworkers.157 Novozym-435 could not catalyze the TMC polymerization when used at 100 °C, as a 
consequence of the enzyme inactivity at temperatures higher than 60 °C. PPL gave the highest monomer 
conversion and molar mass of polycarbonate of the lipases screened, with a Mw of up to 170,000 g mol-1 
after 24 h at 100 °C. Immobilizing PPL on celite was shown to increase the yield of PTMC. Indeed, 
compared to native lipases, it was found that a supported lipase catalyst displayed higher thermal stability 
and activity and could be recycled many times.158-163  

For APCs used in biomedical applications, the use of biocompatible initiators is essential. Hematin is an 
insoluble pigment formed from the breakdown of hemoglobin and has been used for the ROP of TMC 
and DTC at 100 °C in bulk. Only ROP of TMC gave high molar mass (up to 75,000 g mol-1) and yields, 
with no ROP occurring in solution.114 

 

2.5.5 ROP of functional monomers 

While a wide range of successful approaches to produce PTMC with controlled molar mass and narrow 
dispersities have been reported, as described in the previous sections, the high hydrophobicity and slow 
degradation rate of this polymer limit its application in the biomedical field. Therefore, the introduction of 
side-chain functionalities such as carboxylic acid51, 52, 153, 164, hydroxyl68, 165-167 or amine46, 48, 168, 169 groups has 
been investigated to generate polycarbonates with tunable degradation and additional pendant groups for 
attachment of drugs, imaging agents, and hydrophilic arms. However, adding reactive substituents to a CC 
can alter the reaction mechanism and thus potentially influence the polymerization kinetics and the 
microstructure of the resultant product. Indeed, Endo and coworkers showed that cationic polymerization 
of an olefin-substituted 1,3-dioxan-2-one led to a distorted and complex polymer structure as a consequence 
of the high reactivity of the unsaturated group, which leads to side reactions in the polymerization 
conditions.34 This is in contrast with unsubstituted 1,3-dioxan-2-one, which polymerization afforded the 
expected polycarbonate.34 In an attempt to suppress the high reactivity of the pendant group, the same 
authors reported the selective ROP of 5-methylene-1,3-dioxan-2-one bearing an exomethylene 
functionality with neighboring deactivating groups. In this case, a linear polycarbonate was afforded when 
the polymerization was initiated in bulk with BF3·OEt2 at 60 °C, as the vinyl reactivity was suppressed by 
the neighboring electron-withdrawing carbonate group.170 It is important to note that, unlike in cationic 
polymerizations, the allyl group does not interfere with the anionic polymerization mechanism.121  

The introduction of pendant unsaturated groups in polycarbonates has received further attention in the 
past few years as a consequence of their capability to undergo orthogonal reactions, such as Michael 
addition, Huisgen 1,3-dipolar cycloaddition, and UV-crosslinking.3 The ROP of allyl ester-functional cyclic 
carbonate 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one (MAC), has been described in the preparation of 
a range of (co)polymers.3, 171-178 However, in all cases polymerizations showed relatively poor control and 
resulted in branched polymers. More recently, Dove and coworkers demonstrated that the ROP of MAC 
using efficient organocatalysts led to a high level of control over the resulting polymer such that the 
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application of the sparteine/TU catalyst system resulted in the isolation of PMAC with Mn up to 13,000 g 
mol-1 and low dispersities (ÐM = 1.12).179  

Al-Azemi et al. were the first to report the preparation of carboxylic acid-containing polycarbonates by 
enzymatic ROP of the MBC followed by debenzylation via catalytic hydrogenation.153 Among the enzymes 
screened, AK lipase from Pseudomonas fluorescens displayed the highest activity and afforded high molar mass 
PMBC (59,000 g mol−1). While this approach enabled direct polymerization to functional polymers, cationic 
ROP was used to polymerize CCs bearing ester groups. 2-Acetoxymethyl-2-methyltrimethylene carbonate 
(AMTC), 2-acetoxymethyl-2-ethyltrimethylene carbonate (AETC), and MMTC were polymerized in 
toluene using sec-BuLi to afford polymers with yields between 78% and 88%.27 Nemoto et al. reported the 
cationic ROP of ester-substituted cyclic carbonates 5-methyl-5-benzoyloxymethyl-1,3-dioxan-2-one and 4-
benzoyloxymethyl-1,3-dioxan-2-one with TfOMe, TfOH, and BF3OEt2 as initiators. The activity order of 
the initiators was identified as TfOMe ~ TfOH > BF3OEt2, as deduced from the monomer conversion. 
Additionally, by using methyl iodide as an initiator, the highest molar mass was achieved (Mn = 11,000 g 
mol-1), with a decrease in decarboxylation.180 Kinetic studies on the polymerization of these ester-
substituted 6CCs revealed that the ester side-chain enhances the propagation rate when compared to the 
polymerization of DTC.  

6CCs with different protected hydroxyl groups (trimethylsilyl, benzyloxycarbonyl and phenylcarbamoyl) 
were polymerized by anionic ROP with lithium alkoxide at -30 °C. The resultant polymers could be 
subjected to hydrolysis or hydrogenation whereby protective groups were removed, affording the desired 
polycarbonate with pendant hydroxyl groups.120 Zhuo and coworkers compared the use of metal-alkoxide 
catalysts Sn(Oct)2, aluminum isopropoxide (Al(OiPr)3)  and aluminum isobutoxide (Al(OiBu)3) for the ROP 
of a functionalized TMC, BTMC. BTMC is a useful monomer for APC synthesis as deprotection of the 
benzyl group post-polymerization affords a more hydrophilic polymer that can degrade faster than PTMC. 
Polymerization with Al(OiBu)3 yielded the highest molar mass polymers with a Mn of 22,400 g mol-1, when 
compared to polymers obtained using Sn(Oct)2 (Mn = 13,400 g mol-1) or Al(OiPr)3 (Mn = 11,100 g mol-1) as 
catalysts.36 

 

3. Polycarbonate degradation 

The degradation profile of biomaterials is crucial for a better understanding of their route and excretion 
after implantation in the body. Several factors such as stability, toxicity of the degradation products and 
loss of mechanical properties should be taken into consideration before employing a polymer for 
biomedical applications. Generally, a hydrolysable polymer can undergo chemical, mechanical, oxidative, 
photo- and thermal- degradation. However, chemical degradation and, more specifically, hydrolytic and 
enzymatic degradation are arguably the most used for in vitro material degradability assays (Figure 4A).181 

The synthesis of CCs that undergo ring-opening polymerization (ROP) has allowed the synthesis of 
numerous degradable and biocompatible polymers in the last few years.182 The first reports on 
polycarbonate degradation mostly focused on PTMC and its ability to degrade in vivo.183, 184 In contrast to 
the degradation of polyesters in which toxic, acid products are observed upon degradation leading to an 
inflammatory response as a consequence of  the acidification of the surrounding tissue, no carboxylic acid 
products are observed during the degradation of polycarbonates. This makes this class of polymers 
extremely attractive in the biomedical field. As such, the advances in polycarbonates’ synthesis and 
modification, together with their mechanical properties, have increased the number of potential applications 
and interest in this class of polymers for biomedical applications.  

 

3.1 Hydrolytic degradation 

It has been demonstrated that several factors can influence the hydrolysis of polymers, including chemical 
bond type, polymer composition, steric and electronic effects, pH, diffusion rate of reactants and products 
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and the thermodynamics of polymer-water interactions.181, 185 In order to eliminate this last factor, some 
degradation tests use polymers in solution. In this regard, the hydrolysis rate is restrained by the relation 
between the water concentration and chemical bonds, and not diffusion. Nevertheless, most studies utilize 
polymers in bulk, such as films and cylinders, in which case the water is diffused into a polymer material, 
hydrolyzing its chain.185 

The hydrolytic degradation of polymers in bulk can follow two main modes: bulk erosion and surface 
erosion (Figure 4B). One of the driving factors of this mechanism is the water diffusion into the material 
followed by the cleavage of hydrolysable bonds. When polymers degrade via surface erosion, the materials 
gradually decrease their mass from the surface to the inner core while keeping their shape.181 More 
specifically, the water diffusion in the sample is not homogeneous and its rate is usually lower than the rate 
of degradation. In this case, the water molecules will first be in contact with the sample’s surface and, once 
low molar mass products are formed, surface erosion takes place. In contrast, bulk erosion involves mass 
loss and degradation of the whole polymer, not just the surface. In this circumstance, water reaches a 
homogeneous concentration in the sample, avoiding the early erosion of the surface. In bulk degradation, 
molar mass decreases with time, while in surface degradation it remains unchanged.186 Even though water 
diffusion and hydrolysis of the sample play an important role in its degradation, the sample thickness, 
morphology and molar mass are also of great relevance.185, 187  

 

Figure 4. Degradation mechanisms of degradable polymers. A) is adapted with permission from reference 
187. Copyright (2020) Elsevier. B) is adapted from reference 93 with permission from the Royal Society of 
Chemistry. 

Whilst polyesters degrade mainly via bulk degradation, the degradation of polycarbonates is controlled via 
surface erosion, and releases nontoxic products that include alcohols and CO2 (Figure 5A). The degradation 
products play an important role during the process by changing the surrounding pH and hence affecting 
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the degradation rate. In bulk systems, the release of acidic products can accelerate the material degradation. 
However, in the case of surface erosion, degradation products do not accumulate as they are readily released 
from the surface.93, 185 Hence, the changes in the physical and chemical properties of the polymer - such as 
mechanical behavior, drug release and shape - linearly change with time, which makes erosion-degradable 
polymers very attractive for many biomedical applications.185  

PTMC has been extensively explored in recent years and offers an avenue to biodegradable materials owing 
to its excellent biocompatibility, biodegradability, and flexibility. As a result of its hydrolysable bonds, 
PTMC has a slow hydrolysis rate in vitro with no significant degradation over a period of 7 months to 2 
years for homopolymers with a range of different molar masses.183, 184 However, the lack of side functional 
groups limits the application of this polymer in more robust biomedical applications. To meet this 
expectation, copolymerization,188-191 blends,192 crosslinking,193-196 side-chain3, 40, 197-199 and end 
functionalization200 have been devised to tune PTMC properties. Pêgo et al. studied the in vitro degradation 
of P(TMC-co-DLLA) and P(TMC-co-CL) copolymers obtained from ROP using SnOct2 as a catalyst. The 
authors observed complete degradation of amorphous P(TMC-co-DLLA) containing 20 and 50 mol% of 
TMC after 11 months, while semi-crystalline P(TMC-co-CL) copolymers degraded much slower. Moreover, 
the degradation was mainly controlled by the hydrolysis of the ester segment via bulk erosion.190 Han et al. 
prepared P(TMC-LLA) copolymers with different ratios of TMC and a composite of P(TMC-co-LLA) with 
poly(L-lactide-co-glycolide) PLGA fibers. While the composite presented 25% mass loss after 11 months, 
the copolymers were reduced by only 5-9% of their weight in the same period.201 These data demonstrate 
that the degradation profile of PTMC copolymers strongly depends on the chemical structure of the 
components, as well as backbone packing and crystallinity. Numerous other studies displayed an increase 
in the hydrolysis rate of PTMC copolymers when the ester content was raised in the composition, followed 
by a reduction of molar mass and tensile strength with time.202-204   

Polycarbonates bearing hydroxyl and carboxyl groups can undergo rapid hydrolysis and the polymers can 
be further modified by using the pendant functionality. In this instance, a wide range of protected CCs have 
been ring-opened and subsequently hydrogenated to obtain functional polymers.164, 205-207 Hydroxy 
functional poly(5,5-bis(hydroxymethyl)1-3-dioxan-2-one (HPC) obtained from a ketal-protected CC 
showed complete degradation after 16h in phosphate-buffered saline (PBS) solution165 while ketal-
protected polymers presented only 7% weight loss after 2 months.208  Benzyl-protected poly(5-benzyloxy-
trimethylene carbonate) PBTMC showed no degradation over a period between 5 and 20 days.209, 210 
However, unprotected poly(5-hydroxyl-trimethylene carbonate) PHTMC polymers bearing hydroxyl 
pendant groups showed rapid hydrolysis after a few days of incubation in PBS (100% weight loss) and while 
the cause was not studied, most likely displayed a bulk erosion-type behavior on account of their ability to 
draw water into the bulk structure.211, 212 Micelles and polymersomes composed of polyethylene glycol 
(PEG) and poly(2,4,6-trimethoxy benzylidene pentaerythritol carbonate) (PTMBPEC) or PEG, PTMBPEC 
and acryloyl carbonate (AC) showed an increase in their size after incubation in different pHs. In harsh 
acidic conditions (pH 4.0 at 37 °C), the acetal groups from PTMBPEC degraded completely in less than 2 
days to form pH-sensitive nanostructures with pendant hydroxyl functionalities.213, 214 Dove and coworkers 
also observed fast acetal group cleavage under acidic conditions for polymers obtained from the ROP of a 
norbornene-cyclic carbonate and post-modified through different chemistries. After modification, the 
materials could self-assemble into micelles leading to a pH-responsive delivery vehicle for triggered 
release.40  

Functional degradable polycarbonates were also obtained from the ROP of 6- or 8 CCs containing amine,193, 

215 amide,216  and fluorine groups.217 In addition, polymers containing pendant guanidine groups were 
obtained after modification of polycarbonates bearing alkyne functionalities via a Cu(I)-catalyzed azide-
alkyne cycloaddition (CuAAC) click reaction.218 Using a different approach, polymers were obtained from 
the ROP of Boc-protected guanidine monomers followed by removal of the Boc groups to achieve water-
soluble guanidinium polycarbonates.219 Although all the polymers underwent fast hydrolysis as a 
consequence of their pendant functionality, they also presented important characteristics that make them 
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suitable for biomaterial applications, such as non- or low toxicity,48, 193, 216, 218, 219 antimicrobial activity,193, 218, 

219 and the ability to self-assembly in nanostructures.216, 217 

 

3.2 Enzymatic degradation 

Enzymes are not capable of diffusing into solid materials to the same extent as water molecules. Therefore, 
the main mechanism of enzymatic degradation involves enzyme adhesion on the polymer surface followed 
by formation of the activated enzyme-polymer complex that consequently leads to chain cleavage. A wide 
range of enzymes has been used to degrade polycarbonates, and several studies demonstrated that they are 
more efficient to mimic polycarbonates in vivo degradation when compared to hydrolysis itself.220 Although 
lipases and esterases are capable of degrading polycarbonates in vitro, it is not yet known which enzyme is 
responsible for their erosion in vivo.  

The enzymatic degradation of copolymers containing carbonates with different functionalities,221, 222 
poly(ester-carbonate)s copolymers,154, 166, 223-228 poly(ester-carbonate)s terpolymers,229 poly(peptide-
carbonate)s copolymers230 and many other combinations have been reported in the literature. Importantly, 
these materials degraded faster in enzymatic solutions when compared to hydrolysis in PBS, and the 
degradation rates were strongly related to their composition and molar mass. It has been stated that high- 
molar mass PTMC degrades faster than low molar mass PTMC via enzyme-mediated degradation. Yang et 
al. observed that the mass loss of PTMC films with number average molar mass (Mn) of 329,000 g mol-1 
and 72,000 g mol-1 was respectively 50.69 and 11.64% after 12 weeks of incubation in Thermomyces lanuginosus 
solution. The authors suggested that the degradation was mainly controlled via surface erosion, once no 
molar mass and pH (in the degradation medium) reduction was observed after incubation.231 Additionally, 
SEM images of the copolymers after incubation in PBS and PBS containing enzyme confirmed the surface 
erosion hypothesis. After a week, the appearance of numerous holes could be observed on the polymer 
surface when incubated in lipase solution, whereas a smooth surface was observed for polymers incubated 
in PBS after 50 weeks (Figure 5B).  

 
Figure 5. Hydrolysis of PTMC (A), scanning electron microscopy (SEM) on the surface of PTMC implants 
before and after degradation without (B) and with lipase (C). B) and C) are adapted from reference 231  “The 
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degradation of poly(trimethylene carbonate) implants: The role of molar mass and enzymes”, Polym. Degrad. 
Stabil. 2015, 122, 77. Copyright (2015), with permission from Elsevier. 

 

The same effects related to low and high molar mass polycarbonates were observed for copolymers 
composed of TMC and 2,2′-dimethyltrimethylene carbonate (DTC). P(TMC-co-DTC) copolymer 
containing 75 mol% of TMC and Mn of 213,000 g mol-1 reduced by nearly 30% of its mass after 24 weeks 
of incubation in Thermomyces lanuginosus solution. Over the same incubation time, the mass loss of P(TMC-
co-DTC) with the same composition but lower Mn (118 kg mol-1) was 16%.221 The enhanced degradation of 
polymers with higher molar mass can be ascribed to the greater affinity of the enzyme active site with more 
hydrophobic components. Tsutsumi et al. reported the influence of different TMC molar ratios on the 
degradation profile of poly(lactide-co-trimethylene carbonate) P(LLA-co-TMC) copolymers. When TMC 
content was raised from 8 mol% (Mn = 171,000 g mol-1) to 72 mol% (Mn = 48,000 g mol-1), the remaining 
polymer mass after incubation in proteinase K was around 0 and 82% after 120 and 240 h, respectively. 
The authors did not observe a reduction in the molar mass within this time and, in tandem with morphology 
images, a surface erosion mechanism was proposed.225 In a subsequent report, Yang et al. demonstrated the 
ability of the Novozym-435 lipase (NVZ 435) to degrade poly(butylene succinate-co-cyclic carbonate)s 
P(BS-co-CC)s copolymers using carbonates with different functionalities, such as pendant double bonds, 
methyl and benzyl groups. Whereas no degradation was observed for poly(butylene succinate) (PBS) when 
incubated in NVZ 435, the remaining weight of copolymers composed of PBS and benzyl protected 
polycarbonate (PBMTC) was respectively 95, 70 and 46% for polymers containing 6.5, 13 and 21.9 mol% 
of BTMC.  In agreement with previous studies, the molar mass remained unchanged after the incubation 
time and the pore cavities formed on the film surface increased their size with degradation time.232  
Designed materials, such as PBMTC, can undergo deprotection to afford polycarbonates with hydroxyl 
pendant functionalities, which are more susceptible to degradation and also enable the covalent attachment 
of different biological species for biomedical applications.  

The hydrophilic and hydrophobic balance of polymers can also be controlled by changing the polarity of 
the polymer terminal units using functional initiators during the polymerization. Watanabe et al. designed 
PTMC membranes with terminal cholesterol or poly(ethylene glycol) monomethyl ether (mPEG) groups 
to evaluate their surface wettability and weight loss when incubated in porcine pancreas solution. PTMC-
based coatings containing cholesterol-PTMC and mPEG8-PTMC with number average molar mass Mn of 
35,500 and 39,300 g mol-1 showed almost complete enzymatic degradation after 2h of incubation, while no 
significant degradation was observed in the absence of enzyme.233 Together with copolymerization and end 
chain functionalization strategies, crosslinking also pave a route for the design of polycarbonates with 
tailored degradation properties. Crosslinked materials can circulate for longer in the organism as a result of 
their dense network, which can make them attractive for certain applications, such as long-term vehicles 
for drug delivery or long-term implants. Crosslinked PTMC-based materials were obtained in situ during 
the bulk ROP of TMC with bis(trimethylene carbonate) (BTB) or bis(ɛ-caprolactone) (BCP). For non- and 
crosslinked polymer (0.5 mol% of crosslinker) with an initial molar mass of 256,000 g mol-1, a mass loss of 
46% and 30% was observed after 12 weeks of incubation in Thermomyces lanuginosus solution.234  

More recently, reports on polycarbonates and their enzymatic degradation have been directed towards more 
robust applications in the biomedical field. Xiong and coworkers showed the potential of amphiphilic 
polycarbonates with pendant carborane units as carriers for boron neutron capture therapy for cancer. After 
polymer synthesis via ROP using a PEG macroinitiator, the polymers were self-assembled in water to form 
nanoparticles with diameters varying from 50 to 150 nm. In the sequence, the polycarbonate nanoparticles 
were incubated in Thermomyces lanuginosus solution and, after 7 days, total degradation of the polycarbonate 
segment was observed by size exclusion chromatography.235   

 

3.3 Oxidative degradation 
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Macrophages can differentiate on the surface of implanted biomaterials after a few weeks in the organism, 
releasing hydrolytic enzymes and reactive oxygen species (ROs) that agglomerate to form foreign body giant 
cells (FBGCs). FBGC formation is different depending on material type and chemistry and they can secrete 
a great number of enzymes and reactive species. The in vivo degradation of polycarbonates can be controlled 
by many different mechanisms, such as acid-base, enzyme-mediated hydrolysis and oxidation from reactive 
oxygen species.236, 237 Indeed, some works have reported the similarity between the PTMC degradation rate 
in vivo and in vitro when incubated in solutions containing ROs. In aqueous media, superoxide ions act as 
oxygen nucleophile agents to attack the biomaterial surface while stable superoxide solutions can be used 
to simulate in vivo conditions for studies in vitro. 

Chu and coworkers have demonstrated the susceptibility of a commercial absorbable suture composed of 
glycolide (67.5 wt%) and TMC (32.5 wt%) towards superoxide ion-induced degradation. However, the 
authors attributed the initial mass loss to the nucleophilic attack of the glycolide segments, which are more 
reactive.238 Chapanian et al. reported the preparation of PTMC and PTMC-co-CL networks obtained from 
the photopolymerization of modified oligomers via ROP. Although the materials could degrade in 
cholesterol esterase and Thermomyces lanuginosus solution, degradation in a superoxide anion solution showed 
a comparable degradation profile to that performed in vivo in rats. The authors then indicated that oxidation 
was the main dominant mechanism in the degradation process.239 Bat et al. showed that enzyme-mediated 
degradation and also superoxide radical anions played an important role in the degradation rate of γ-
irradiated PTMC films. When the concentration of superoxide radicals was increased (1.0 M), a PTMC 
mass loss of 51.8% was observed after 8 weeks.237  

More recent reports have explored the design of responsive polycarbonate nanocarriers for drug delivery 
applications, and more specifically for guided cancer therapy. Mostly, cancer and inflammatory cells have a 
great number of ROs in their surroundings, which make the design of ROs-responsive nanocarriers 
extremely attractive in biomedical science. Qiu et al. designed oxidation-responsive polycarbonates with a 
pendant phenylboronic pinacol ester group from the ROP of a functional six-membered CC. Nanoparticles 
were then obtained via oil in water emulsion and they showed fast surface degradation when incubated in 
H2O2.240 The same group reported the synthesis of a responsive polymer containing phenylboronic ester, 
but synthesized from the ROP of an eight-membered CCs with a secondary amine. The nanoparticles were 
demonstrated to undergo rapid degradation when incubated in H2O2 while they remained stable in neutral 
pH.241 Other studies have also reported the oxidative degradation of responsive nanocarriers obtained from 
the ROP of CCs containing different ROs-sensitive groups,242, 243 offering an avenue towards the targeted 
delivery of drugs for cancer treatment. 

 

3.4 In vivo degradation 

Notably, there are several reports confirming that, as might be expected, the degradation rate of 
polycarbonates in vivo is considerably faster than their hydrolysis in vitro.244 Macrophage cells significantly 
contribute to PTMC-based materials erosion after their implantation in rats, by releasing hydrolytic enzymes 
and ROs.239 The first work concerning PTMC degradation in vivo was reported in 1991 by Pitt and 
coworkers. Even though no significant weight loss was observed in PBS (after 210 days) or PBS containing-
lipase (after 17 days), PTMC films of 19,800 g mol-1 (Mn) reduced their mass gradually after 6 months in 
vivo. Interestingly, the authors observed molar mass reduction on the polymer surface whereas the inner 
core was kept constant, suggesting a controlled erosion mechanism.184 Conversely, Albertson et al. observed 
no weight loss in PTMC homopolymer with Mn of 75,100 g mol-1 after 180 days post-implantation in rats.183  

In an attempt to understand PTMC degradation in vivo and synthesize polymers with improved stability and 
predictable degradation rates, subsequent reports showed more detailed investigation of PTMC 
homopolymers’ degradation in vivo and their copolymerization with different materials. As previously 
mentioned, the molar mass has a dramatic effect over PTMC degradation via the enzymatic route, and the 
same behavior was also observed in vivo. Feijen and coworkers demonstrated that PTMC homopolymers 
with Mn of 457,000 g mol-1 and 89,000 g mol-1 showed 60% and 20% mass loss after 8 weeks’ implantation 
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in rabbits.244 The same effect was observed by Yang et al. and mass losses of around 3% (PTMC Mn = 
72,000 g mol-1) and 90% (PTMC Mn = 329,000 g mol-1) were found after 12 weeks of PTMC implantation 
in rats.231  

P(LLA-co-1,3-TMC) copolymers were readily prepared via ROP from the respective CCs and showed 35% 
and 5% weight loss after 90 days in vivo for copolymers containing 15 and 60 mol% of LLA, respectively. 
The mechanism of degradation was strongly related to the LLA content and below 40 mol% of LLA the 
polymers degraded via surface erosion rather than bulk.245 Later studies also showed the same dependency 
on the degradation mechanism by varying the ester/TMC initial content.246-248 In a typical study, copolymers 
with higher contents of caprolactone in P(TMC-co-CL) degraded via bulk erosion, while copolymers 
containing higher TMC contents degraded via surface erosion when injected in the back of rats.249 
Moreover, Pêgo et al. have shown that semi-crystalline P(TMC-co-CL) degraded slower than amorphous 
PTMC and P(TMC-co-DLLA) copolymer after implantation in rats (Figure 6).247 In respect of the 
copolymers’ interaction with tissues, materials composed of 50/50 molar ratio of TMC and D,L-LA or 
TMC and L-LA showed reduced cell inflammation in rats when compared to pure PLLA, especially after 
90 days of implantation.250 Presumably, the release of greater concentrations of acidic products from 
polyesters contributes to the inflammation of the tissue surrounding the implant.  

Figure 6. Polymer samples after retrieval from in vivo degradation in rats. Adapted with permission from 
reference 247. Copyright (2003) Wiley Periodicals.  

 

PTMC-based materials have shown excellent histocompatibility as a consequence of their neutral 
degradation. Lee et al. synthesized triblock copolymers containing vitamin D- or vitamin E-functionalized 
polycarbonate and PEG segments (VitDm-PEG-VitDm and VitEm-PEG-VitEm) to form functional 
hydrogels for cancer therapy. When the materials were injected subcutaneously in mice, no acute or chronic 
inflammation was observed, and the hydrogels degraded completely after 6 weeks post-injection.251, 252 
Huang and coworkers designed a PTMC coating on magnesium alloy to reduce its corrosion in stent 
applications. As expected, PTMC-coated Mg materials showed better biodegradation, hemocompatibility 
and protective performance than PCL-coated Mg when implanted in rats. In the first case, the degradation 
was observed from the surface to the inner core rather than non-uniform bulk degradation. Additionally, 
55% of the thickness of PTMC coating was kept after 16 weeks.253  

The use of polycarbonate-based polymers without inconvenient side effects offers a platform towards 
polymer application in the biomedical field. Notably, the number of works regarding the use of 
polycarbonates as biomaterials has increased over the last decades and in vivo degradation studies have been 
fundamental to support their use in substitution to non-degradable and non-compatible polymers. The 
tunable degradation properties of polycarbonates combined with their controlled erosion mechanism 
enhances their potential in applications such as subcutaneous implants and injectable networks. 

 

4. Polycarbonate nanoparticles for drug delivery and imaging 
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The key challenges in the design of diagnostic and therapeutic agents - whether natural drugs based on 
proteins and nucleic acids, or synthetic, polymer-based conjugates, or other systems - are the loss of 
therapeutic activity through rapid clearance or degradation and the inefficient delivery to the desired sites. 
Polymeric nanoparticles are widely investigated, to enhance the selectivity of therapeutics and imaging 
probes to target sites, as well as to increase the circulation lifetime and water solubility of poorly soluble 
drugs (Figure 7). These nanoplatforms, including micelles and polymersomes of different sizes, are generally 
prepared from the self-assembly of amphiphilic block/graft copolymers via a solvent-switch or a direct 
dissolution approach. Among the numerous biodegradable polymeric materials used in drug delivery 
applications, APCs are among the most interesting materials, on account of their outstanding 
biocompatibility, nontoxic degradation products, and ease of functionalization.254-257 Indeed, a range of 
modification strategies have been exploited in polycarbonate-based nanomaterials in an effort to enhance 
drug-loading capacity, nanostructural stability (without aggregation and dissociation in vivo), as well as 
selective drug release to targeted tissues, whether the delivery agents are physically encapsulated or 
chemically conjugated - all of which are discussed below.  

 
Figure 7. Polycarbonate-based amphiphilic polymers can assemble into micelles or vesicles, while small 
drugs are either physically blended or chemically conjugated on those nanoparticles. A variety of 
functionalities can be accessed on polycarbonate segments to enhance nanoparticle stability and provide 
sustained drug release, as well as realize selective drug delivery. 

 

4.1 Delivery of physically encapsulated small drugs  

Most polycarbonate-based micelles have been designed to encapsulate hydrophobic cargoes through 
physical interactions within micellar core segments. This results in the encapsulated drugs being relatively 
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unstable compared to drug-polymer conjugates, where the therapeutic is covalently linked to the polymer 
backbone. Moreover, the instability of the nanocarriers, which are prone to dissociation upon dilution in 
vivo, and non-selective drug delivery are also of concern in such systems, greatly compromising their 
therapeutic efficacy. To retain nanoparticle stability in vivo and realize sustained drug release, strategies such 
as polymer topology optimization, grafting functionalities on hydrophobic segments, as well as crosslinking 
of the micellar core have been exploited. On the other hand, to improve the delivery efficacy to the target 
sites and minimize adverse side effects, stimuli-responsive linkers or targeting ligands can be introduced 
into the polycarbonate delivery system. 

 

4.1.1 Polycarbonate topology 

The rational design of polymer architectures plays a crucial role in controlling drug loading and release 
performance, influencing nanostructure stability and drug encapsulation efficacy. For example, micelles 
derived from a combination of block and graft copolymers such as PEG-b-(polycarbonates-g-
polycarbonates) demonstrated more sustained drug release and improved in vitro stability (with lower critical 
micelle concentration) compared to their diblock counterparts as a consequence of the grafted structure 
enhancing the interaction between hydrophobic chains and encapsulated drugs.258 Analogously, shell 
branched topologies, such as poly(ε-caprolactone)-b-(PC-g-poly(2-hydroxyethyl methacrylate) (PCL-b-(PC-
g-PHEAM)) and PCL-b-(PC-g-PEG), and the star-like architecture derived from the PTMC/PEG 
copolymer were also reported to confer the obtained nanoparticles greater kinetic stability and higher drug 
loading capacity, substantially outperforming their linear analogues.259-261 These examples show that 
branched/grafted topologies from aliphatic polycarbonate-based polymers not only facilitate micelle 
formation and controlled drug release, but also enhance drug encapsulation efficacy, thus improving the 
therapeutic effects. Importantly, this is achieved simply by altering the polymer architectures while 
maintaining the same polymer composition. 

 

4.1.2 Functionalization of the polycarbonate core 

Despite the advantages previously discussed, adapting the polymer topology is not a suitable strategy for all 
delivery scenarios. Indeed, in certain cases additional chemical modification on hydrophobic domains is 
required to alter the micellar core properties and achieve high drug-loading capacity and prolonged 
circulation time. For example, it was reported that the incorporation of a polycarbonate segment in a PEG-
b-polylactide delivery system (resulting in PEG-b-poly(carbonate-co-lactide)) considerably increased the 
drug-loading capacity, up to four times compared to its diblock counterpart, and imparted sustained drug 
release properties to the resultant micelles, as a consequence of the enhanced hydrophobic interaction 
between the polycarbonate chain and bicalutamide.262 Furthermore, the advantages of this delivery system, 
including high drug loading and sustained drug release, were not only limited to bicalutamide, but also 
applicable to other categories of drugs including microtubule destabilizing agents, antiandrogens and 
cyclopamine for the treatment of different types of cancer.206, 263, 264 

Adding a pendant functionality to the polycarbonate backbone is a widely employed approach to modify 
micellar core properties, owing to the easy incorporation of a wide variety of functionalities by either 
polymerization of a functional carbonate monomer or post-polymerization modification.1, 2, 265, 266 For 
example, Li et al. prepared lipopolymers from PEG-block-poly(2-methyl-2-benzoxycarbonyl-propylene 
carbonate) (PEG-b-PBC). The pendant benzyl group was substituted with dodecanol to allow for the 
attachment and delivery of the anticancer drug embelin. Specifically, owning to the structural similarity 
between embelin and dodecanol grafted on the polycarbonate, which in turn led to improved hydrophobic 
interaction, the lipopolymers demonstrated enhanced drug-loading capacity and sustained drug release 
behavior compared to un-functionalized PEG-b-PBC, resulting in significant inhibition of C4-2 prostate 
cancer cell proliferation.267 In another example, PEG-b-polycarbonate block copolymers designed for the 
delivery of paclitaxel (PTX) were functionalized with cholesterol through esterification of pendant carboxyl 
groups on the carbonate monomer before copolymerization with PEG.268 These PTX-loaded micelles were 
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found to have sub-50 nm size and exceptional kinetic stability. The strong physical interaction between 
cholesterol and PTX substantially improved the loading efficacy from 8 wt%, which represents the standard 
PTX loading efficacy in common polymeric delivery systems, to 15 wt%.269  

The urea group, as one of the most investigated pendant functionalities included on a polycarbonate motif, 
has gained particular attention owing to its ability to enhance micellar stability and the loading capacity of 
carboxylated drugs through hydrogen bonding.169, 270, 271 Indeed, micelles formed from PEG-b-poly(urea-
carbonate), where the urea moiety was conjugated onto the polycarbonate through an ester bond, 
demonstrated lower critical micelle concentration (CMC) in an aqueous environment, enhanced kinetic 
stability in vitro, as well as improved drug loading capacity (from 6.9 wt% to 10.3 wt%) compared to micelles 
obtained from PEG-b-PTMC.270 To expand the application of such delivery vehicles to amine-containing 
cargoes, a carboxyl group was also introduced in the cores of the micelles, by removing the protective 
benzyl group from PBC, to stabilize encapsulated molecules through ionic interactions.272 Specifically, 
doxorubicin-loaded mixed micelles derived from PEG-b-poly(urea-carbonate) and PEG-b-poly(acid-
carbonate) had a desirable size for drug delivery (66 nm), and high doxorubicin levels (28.9 % by weight), 
while the in vitro release studies showed that the doxorubicin release was sustained, without an obvious 
initial burst release. More importantly, in vivo studies demonstrated that the drug-loaded mixed micelles 
inhibited tumor growth more effectively than free doxorubicin without causing significant side effects, such 
as weight loss or cardiotoxicity. Further studies included optimization of the urea/acid group ratio in the 
mixed micelles for further enhancement of drug-loading capacity and micelle stability in vivo, as well as co-
delivery of doxorubicin and thioridazine for targeting both cancer cells and cancer stem cells, to enhance 
the anti-tumor therapeutic efficacy.273-275  

Modifying the micellar core chemistry of polycarbonate-based nanoparticles has been demonstrated to be 
a powerful strategy to tune the physical properties of the micelles’ hydrophobic core, fulfilling different 
drug delivery requirements. However, this strategy also faces some disadvantages: 1. The multi-step 
synthesis and purification route are laborious and time-consuming, which is a limiting step for further 
scalability and potential clinical translation. 2. The advantageous drug delivery effect that arises from such 
chemical modification is normally limited to specific types of drug, limiting the applicability of these systems 
to a wider range of cargoes.   

 

4.1.3 Crosslinking of the polycarbonate core 

Crosslinking of the micelles’ core is an approach that has been used to minimize leakage of encapsulated 
drugs and prolong the blood circulation in vivo. This strategy is considered easy to apply and can be used 
for a wide variety of drugs.276 In early examples, polycarbonates bearing alkene-terminated functional 
groups could be leveraged to produce core-crosslinked micelles via a radical crosslinking process, and 
therefore endowed the resultant crosslinked micelles with advantageous properties including sustained drug 
release, increased thermal stability, and greater resistance to hydrolytic degradation in comparison to their 
non-crosslinked counterparts.102, 214, 277, 278 

More recently, reversible crosslinking based on disulfide bonds has received considerable attention for 
intracellular drug delivery, owing to the capability to be cleaved under reducing conditions within the target 
cell, thus enabling a controlled release and targeted delivery approach.279 A more comprehensive 
introduction of stimuli-responsive delivery systems will be the object of later discussion, while in this section 
we will focus on the role of the disulfide bond as a crosslinker. Jing and coworkers designed a protected-
thiol functional polycarbonate, which was crosslinked, upon deprotection, via oxidation of the free thiol 
groups.280 In another example, a CC monomer with an alkyne pendant group was modified with a lipoic 
motif before PEGylation, and the formed micelles were crosslinked with the addition of dithiothreitol.281 
To further simplify the preparation of such micellar systems containing disulfide bonds, Zhong and 
coworkers designed a dithiolane trimethylene carbonate (DTC) monomer that could be directly 
polymerized and crosslinked in one-pot. The corresponding drug-loaded micelles showed favorable 
features of high stability, minimal drug leakage, long circulation time, and triggered drug release inside the 
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tumor cells in vitro.282 In their following study, the monomer TMC was included in the polymer design, to 
achieve a PEG-b-P(TMC-co-DTC) block copolymer with tunable crosslinking density. Notably, the 
corresponding doxorubicin-loaded micelles showed superior anticancer properties in lung cancer xenograft 
nude mice, resulting in effective tumor suppression, significantly improved survival, and markedly reduced 
adverse effects.282 Subsequently, a wide range of delivery systems based on such polycarbonate 
nanoplatforms were fabricated, demonstrating excellent chemotherapy efficacy towards various cancers: 
glioma,283-285 hepatic cancer,286-289 melanoma,290 multiple myeloma,291, 292 ovarian cancer,293 triple negative 
breast tumor,294 non-small cell lung cancer,295-297 as well as colorectal cancer.298 

The supramolecular interaction between nucleobases was also shown to be a non-covalent core crosslinking 
strategy that improves the micellar stability and drug-release efficacy for anticancer therapeutics.299, 300 
Specifically, adenine (A) and thymine (T) derivatives bearing carboxyl groups were conjugated on the 
polycarbonate backbone of block copolymers PEG-b-poly(lactide-co-carbonate) through esterification. 
Owing to the complementary hydrogen bonds between A and T in the micellar core, the formed 
nanoparticles demonstrated a low CMC value, slow drug release profile, and enhanced stability in aqueous 
solution. More importantly, the pH sensitivity of the hydrogen bonds enabled controlled drug release for 
anti-tumor therapy in vitro. 

 

4.1.4 Active and passive targeting  

Most of the polymeric nanocarriers (including polycarbonate-based nanoparticles) for application in 
nanomedicine are designed to load therapeutic agents for cancer therapy.301 While the polymeric matrix 
allows for increased drug-loading capacity and prolonged circulation time in vivo, non-specific distribution 
of the delivery carrier and its cargo in the body leads to systemic toxicity associated with potentially serious 
side effects. Therefore, the development of drug delivery systems able to target the tumor site is becoming 
a real challenge that still needs to be addressed. Nanoparticles can reach solid tumors passively through the 
leaky vasculature surrounding the tumors. This characteristic is called the Enhanced Permeability and 
Retention (EPR) effect, where ligands grafted at the surface of nanocarriers allow active targeting by binding 
to specific receptors overexpressed by cancer cells.302, 303 Nevertheless, to further improve the selective 
delivery of drugs to the tumor environment, active targeting is needed, with targeting ligands attached either 
to the hydrophobic polycarbonate core or the hydrophilic part of the nanoparticle. For instance, 3-
aminophenylboronic acid, which is able to recognize sugar molecules overexpressed on the membrane of 
hepatic cancer cells, was conjugated to carboxyl-functionalized polycarbonates via an amide coupling. The 
corresponding nanostructures, loaded with the anticancer drug doxorubicin, were able to identify HepG2 
cells and promote drug uptake.304 Moreover, ligands such as carbohydrates and monoclonal antibodies can 
also be incorporated into polycarbonate chains either by post-polymerization modification or by direct 
polymerization of the functionalized monomer, which endowed the corresponding nanocarriers with the 
ability to precisely deliver anti-tumoral therapeutics.257, 305-308 Together with the direct conjugation of 
targeting agents and ligands to the polycarbonate backbone, hydrophilic segments (e.g. PEG) can also be 
used for functionalization. These polycarbonate-based micellar systems can specifically deliver anti-cancer 
drugs to different receptors overexpressed in cancer cells, and, therefore, result in high anti-tumor activity 
as well as negligible adverse effect using a combined passive/active targeting.274, 284, 290, 295, 309-311  

 

4.1.5 Stimuli-responsive polycarbonates 

A well explored and efficient strategy to selectively deliver therapeutics to the desired site of action is the 
use of “activated” nanocarriers. These nanocarriers stay intact when circulating in the blood and, upon 
being triggered by the unique tumoral extracellular environment, allow release of the carried drug or 
interaction with a specific target, which in turn increase their therapeutic efficacy while reducing adverse 
reactions. To this end, polycarbonate-derived nanocarriers have been designed to respond to various stimuli 
for achieving spatio-temporal control of drug release.40, 312-317 For example, an acid-labile acetal linkage was 
incorporated into CC monomers such as TMBPEC, imparting pH-sensitivity to the micellar systems. The 
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hydrolysis of the acetal bond in the polycarbonate segment under mild acidic condition, which characterizes 
the microenvironment of solid tumors, resulted in significant swelling of the nanocarriers and rapid drug 
release.39, 213 The following in vivo study revealed that the doxorubicin-loaded PEG-b-PTMBPEC 
nanoparticles could dramatically reduce the systemic toxicity of the anticancer drug and exert excellent 
tumor-killing activity.318 To further target the delivery system to the site of action, Chen et al. reported the 
synthesis of redox and pH dual-responsive nanoparticles from a PEG-SS-PTMBPEC copolymer. The drug-
loaded micelles responded not only to mildly acidic endosomal compartments but also to the highly 
reducing conditions in the cytoplasm, resulting in superior anti-tumor activity.260 Dove and coworkers 
reported the synthesis of linear poly(NTC) with predictable molar mass and narrow molar mass 
distributions. The norbornene handle was used to conjugate hydrophilic arms (PEG) and imaging agents 
through photoinduced radical thiol-ene addition, 1,3-dipolar cycloaddition, and inverse electron demand 
Diels-Alder. Moreover, the cyclic acetal group allowed release of the attached functionality after exposure 
at pH 5.0 for 12 h.40 Arno et al. reported a cyclic polycarbonate that can undergo a topological change and 
disassembly process in response to an external stimulus, such as reducing environment or low pH.312 
Inspired by the observation that self-assemblies of cyclic graft copolymers were significantly more stable 
than equivalent linear graft copolymer assemblies, the authors exploited this topology effect to trigger 
particle disassembly through incorporation of a cleavable disulfide linkage or an acetal bond in the cyclic 
polymer backbone. Upon cleavage, the cyclic graft copolymer assembly switched to an unstable linear graft 
copolymer assembly, which disassembles, releasing its cargo. When the anticancer drug camptothecin was 
encapsulated in the cyclic polymeric nanostructure, a time-dependent drug release in vitro associated with a 
decrease in cancer cell viability was observed.312 

Polycarbonate copolymers with PEG at the side-chain have been reported to show temperature 
sensitivity.41, 319 For instance, with hydrophobic hydrocarbon and hydrophilic PEG functionalized on 
methyltrimethylcarbonate (MTC) monomers respectively, a thermo-responsive nanocarrier was produced 
after copolymerization. The lower critical solution temperature (LCST) of the system could be tuned in the 
range of 36-60 °C by varying the molar mass of PEG chains and the composition of the copolymers. When 
the temperature is set above the LCST, the hydrophilic shell of the micelles would collapse, leading to 
deformation of the micelles’ structure and thus accelerating drug release. Indeed, paclitaxel-loaded 
nanoparticles affected the proliferation of HepG2 human liver carcinoma cells more efficiently at body 
temperature, above the LCST of the system (36 °C), compared to free paclitaxel and paclitaxel-loaded 
micelles at temperatures below the LCST.60 

Among all the available stimuli, light has attracted wide attention since it can be spatially and temporally 
controlled, as well as triggered from outside the body.320 A facile approach to construct a light-responsive 
micellar system is to incorporate a photocleavable linker onto a polycarbonate side-chain. 4,5-Dimethoxy-
2-nitrobenzyl has been conjugated to a carbonate monomer via a urethane linker, obtaining a light-
responsive polycarbonate. Under light, the urethane linkage was cleaved, exposing a primary amine 
functionality which could further degrade the polycarbonate backbone and disassemble the micelles. Upon 
encapsulation of a photosensitizer, the light-sensitive micelles represented an intelligent drug delivery 
system for safe and efficient photodynamic therapy.321 Furthermore, light was also used as an indirect 
stimulus for the ROs-responsive delivery of chlorin e6 (Ce6) and doxorubicin from chalcogen-containing 
(selenide and telluride) carbonate monomers. Upon light irradiation, Ce6-sensitised production of 1O2 
triggered the degradation of nanoparticles by oxidation of chalcogen, which altered their hydrophobicity 
resulting in an accelerated payload release. Consequently, the Ce6 and doxorubicin co-loaded nanoparticles 
exhibited a synergistic cell-killing effect against human breast cancer cells.243 

 

4.2 Delivery of conjugated cargoes 

In contrast to the encapsulation of cargo into nanostructures, the conjugation of therapeutic or imaging 
agents directly to the polymer backbone allows better control of the drug loading and selective triggered 
release. Indeed, pendant functional groups on polycarbonates have been widely used to conjugate a range 
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of anti-cancer drugs.322-325 For example, Mondal et al. coupled gemcitabine to polycarbonate chains via an 
amide linkage and prepared self-assembled micelles decorated with a targeting agent. In vivo studies 
demonstrated that such drug-polymer conjugates significantly prolonged gemcitabine circulation time, 
providing sustained drug release and effectively inhibiting tumor growth.311, 326 Additionally, polymer-metal 
complexes generated from the conjugation of oxaliplatin to a carboxyl group on the polycarbonate 
backbone was also exploited to enhance the drug stability in nanoparticles and resulted in improved anti-
tumor efficacy.327 

Stimuli-responsive cleavage of conjugated cargoes can minimize the release of toxic drugs to undesired sites 
and further reduce side effects. pH-sensitive bonds such as hydrazone, acetal, oxime, and boronate ester 
are commonly used to prepare polycarbonate-based prodrugs. Such prodrug micelles are sensitive to 
hydrolysis at acidic pH, and therefore selectively accelerate the drug release in cancer cells rather than 
normal cells.109, 328-332 Yang and coworkers designed bortezomib (BTZ)-polycarbonate conjugate micelles 
using the pH-responsive boronate ester linkage and tested their anti-tumor efficacy in a human breast cancer 
BT-474 xenograft mouse model. In comparison to free BTZ, it was found that the smart delivery system 
not only mitigated hepatotoxicity of BTZ but also inhibited the tumor growth to a greater extent.333 
Moreover, micelles with a similar composition also demonstrated efficacy conjugating drugs for the 
treatment of Parkinson's disease, such as apomorphine.334 Together with pH-labile linkers, disulfide bonds 
that respond to reductive environments can also be readily introduced to polycarbonate side-chains to 
selectively deliver anticancer drugs to cancer cells.310, 335-339 

While polycarbonate-based delivery systems can increase the concentration of chemotherapeutics in tumor 
tissues, cellular resistance mechanisms may still limit the overall effectiveness of the drug. To circumvent 
drug-resistance issues, other cationic groups and nitric oxide were conjugated to polycarbonate backbones, 
overcoming multidrug resistance (MDR) via different mechanisms.340 For instance, tertiary amines attached 
to polycarbonates could be quaternized to fabricate cationic polycarbonate chemotherapeutics, which can 
selectively bind and lyse cancer cell membranes. Nanoparticles that contain the polycarbonate-cationic 
motif demonstrated not only in vitro and in vivo efficacy with negligible toxicity but also the ability to prevent 
cell migration and inhibit proliferation of drug-resistant cell lines and cancer stem cells, including human 
breast cancer, liver cancer, lung cancer, and epidermoid carcinoma.341 In another example, nitric oxide 
(NO), used to improve chemosensitivity by reversing multidrug resistance, could be stabilized as nitrate 
functionality in polycarbonate-based micelles encapsulating doxorubicin, where the nitrate moiety was 
anchored on the CC monomer before polymerization. Notably, accelerated NO release was triggered by 
intracellular reduction conditions leading to rapid doxorubicin release from nanoparticles, which resulted 
in highly selective and combinational cancer treatment of MDR breast tumors in vivo with minimal systemic 
toxicity.342 Micelles derived from polycarbonate were also used to encapsulate carborane for boron neutron 
capture therapy, where the carborane motif was grafted on a CC monomer via azide-alkyne cycloaddition 
before copolymerization with PEG and self-assembly. These nanoparticles could accumulate at the tumor 
site, and exhibited high therapeutic efficacy and low systemic toxicity in vivo upon thermal neutron 
irradiation, showing great promise as boron carriers for cancer therapy.343, 344  

 

4.3 Protein delivery  

Protein-based drugs are a unique and versatile class of biotherapeutics that have not only high biological 
activity but also superb specificity. While many proteins have demonstrated striking anticancer activities 
and have emerged as advanced alternatives to cytotoxic chemotherapeutic agents for cancer therapy, their 
clinical translation is severely hindered by their fast degradation in vivo, poor cell penetration, and inefficient 
intracellular transportation.345 In recent years, polymersomes with large aqueous compartments as well as 
robust hydrophobic membranes have emerged as ideal nanocarriers for encapsulation and controlled 
delivery of proteins.279, 346 Indeed, carboxyl or amine functionalities have been attached via thiol-ene 
chemistry to a polycarbonate backbone to obtain nano-sized polymersomes from PEG-PTMC(COOH) or 
PEG-PTMC(NH2) and featuring an ionizable membrane that substantially enhanced cytochrome C 
encapsulation efficiency over four times compared to the non-charged counterpart.347 Based on this design 
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principle, a similar and more advanced polycarbonate vesicle with a combination of a pH-acetal linker, a 
targeting ligand, as well as carboxyl functionality, was subsequently developed for efficient delivery of 
apoptotic proteins to prostate cancer cells (Figure 8A).348 Remarkably, granzyme B-loaded polymersomes 
caused effective apoptosis of LNCaP cells with a low half-maximal inhibitory concentration (IC50) of 1.6 
nM, while preliminary in vivo experiments demonstrated its long circulation time with a half-life of 3.3 h in 
nude mice. Protein delivery systems with a similar configuration could further extend their therapeutic 
effect to human lung cancer and human multiple myeloma in vivo by replacing suitable targeting agents and 
protein cargoes.349, 350 Moreover, polycarbonate-based polymersomes have also emerged as a highly 
promising delivery system for the treatment of glioblastoma, which is one of the most intractable and high-
mortality malignancy cancers as a consequence of the low accessibility of this type of tumor resulting from 
the blood-brain barrier (BBB). Specifically, featuring angiopep-2 as a targeting ligand, the 76 nm 
polymersome formed from PEG-b-P(TMC-co-DTC)-b-PEI could successfully cross BBB and was 
selectively delivered to glioblastoma cells before releasing the protein toxin chaperone saporin (SAP) as the 
therapeutic agent. The systemic administration of SAP-loaded nanoparticles to U-87 MG orthotopic 
glioblastoma tumors developed in mice led to effective tumor inhibition and significantly improved survival 
rate, with minimal side effects.351, 352 Despite the success of these systems for anti-tumor therapy, reports 
on protein drug delivery using polycarbonate matrices are still very limited.  

 

4.4 Gene delivery  

Gene therapy is a promising approach for the treatment of genetic and intractable diseases, and its success 
relies on the capability of gene vectors to deliver the therapeutic agent to the desired site. Compared to viral 
vectors, non-viral gene carriers have many advantages, such as higher clinical safety, simplicity of 
preparation, and easy large-scale production. In this regard, cationic polymers have been studied as non-
viral gene carriers, owing to their ability to encapsulate and retain the negatively charged gene motifs such 
as plasmid DNA (pDNA), microRNA (miRNA) and small interfering RNA (siRNA), forming gene-
polymer complexes (called “polyplexes”). These nanostructures have the ability to protect the gene cargo 
from enzymatic and hydrolytic degradation as well as effectively facilitate cellular uptake through 
endocytosis. In the case of polycarbonate-based polyplexes, cationic functionalities such as 
polyethylenimine (PEI), guanidinium, and bis-tertiary amines are commonly grafted onto the polycarbonate 
backbone, facilitating gene binding and endosomal escape of the formed nanocarriers.175, 353-360 For instance, 
Ong et al. developed a polycarbonate gene vector through ROP of haloalkyl functionalized CCs, followed 
by functionalization with bis-tertiary amines and quaternization. The cationic polycarbonate effectively 
condensed DNA, generating nanoparticles (ca. 100 nm in diameter) with positive zeta potentials (27 mV). 
Importantly, the polycarbonate delivery agent introduced high gene expression efficiency in four cell lines 
that were comparable, or even superior, to the PEI standard without causing overt cytotoxicity.361 In their 
later studies, the gene transfection efficiency could be further improved by tuning side-chain alkyl spacer 
length between polycarbonate backbone and the bis-tertiary amines, and through the design of triblock 
architectures such as polycarbonate-b-PEG-b-polycarbonate, where the polycarbonate is cationic.362, 363 
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Gene therapy for cancer treatment was recently reported by Zhong and coworkers where the 
polycarbonate-based vector (ca. 100 nm in diameter), obtained from co-assembly of two block copolymers 
PEG-b-P(TMC-co-DTC)-b-PEI and cNCQ-b-PEG-b-P(TMC-co-DTC), could mediate high-efficiency 
targeted delivery of polo-like kinase1 specific siRNA (siPLK1) to orthotopic human lung cancer in nude 
mice. With a PEI moiety conjugated on the polycarbonate chain-end through an amide bond and a ligand 
coupled on the PEG end, the reversibly crosslinked polymersomes efficiently encapsulated siRNA and 
selectively released the payloads to the cytoplasm of A549 lung cancer cells, inducing highly potent and 
sequence-specific gene silencing in vitro. More importantly, the in vivo studies demonstrated that the siRNA 
loaded vehicles could induce increased blood circulation, superb tumor accumulation, and effective 
suppression of tumor growth (Figure 8B).364 Simply by varying the targeting agent, the same delivery carrier 
could also be employed to boost RNA interference therapy for the treatment of orthotopic glioblastoma in 
vivo.365 Aside from anti-cancer applications, Yin and coworkers further leveraged such nanocarriers to 
encapsulate anti-inflammatory siRNA and hydrophilic drugs toward the treatment of inflammatory bowel 
diseases.366 These polycarbonate-based virus-mimicking chimeric polymersomes provided a robust and 
potent platform for targeted siRNA therapy. 

Figure 8. A) Schematic illustration of the prostate specific membrane antigen targeting, pH-sensitive 
biodegradable chimeric polymersomes for active loading and triggered intracellular release of GrB 
(apoptotic protein) into prostate cancer cells. Adapted from reference 348 “Efficacious delivery of protein 
drugs to prostate cancer cells by PSMA-targeted pH-responsive chimaeric polymersomes” J. Control. Release 
2015, 220 (Pt B), 704, Copyright (2015), with permission from Elsevier. B) Efficient and targeted siRNA 
delivery to orthotopic lung tumors in nude mice by cNGQ peptide-directed reversibly crosslinked chimeric 
polymersomes (cNGQ/RCCPs). cNGQ/RCCPs are co-self-assembled from biodegradable PEG-P(TMC-
DTC)-PEI asymmetric triblock copolymers and cNGQ-PEG-P(TMC-DTC) diblock copolymers. 
cNGQ/RCCPs can efficiently load siRNA into their lumen and protect siRNA from degradation. Adapted 
with permission from reference364. Copyright (2017) John Wiley & Sons. 

 

4.5 In vivo imaging 
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Nanostructures formed by polycarbonate-based block copolymers have been employed to conjugate or 
encapsulate fluorophores or tracers for medical imaging, owing to their ability to direct imaging agents to a 
target site. In an early example, PEG-b-(PLA-co-polycarbonate) was used as a platform to attach small-
molecule fluorophores (rhodamine) grafted on the polycarbonate backbone via an ester linkage. Self-
assembled nanoparticles of 60-100 nm in diameter were injected in mice and the relative fluorescence was 
monitored by analyzing organ accumulation ex vivo (Figure 9A).367  

Non-invasive medical imaging, including X-ray computed tomography (CT), magnetic resonance imaging 
(MRI), near-infrared, fluorescence imaging, positron emission tomography (PET), and single photon 
emission computed tomography (SPECT) can be used to monitor the accumulation and progression of the 
polymeric carrier in vivo. Among these, near-infrared and fluorescence imaging are the most widely used in 
vivo imaging techniques as a consequence of their relatively low cost and ease of preparation, where the 
imaging agent could be physically encapsulated in the nanoparticles during the self-assembly process (Figure 
9B).268 Despite the higher cost, PET and MRI have also been widely used to image polycarbonate systems 
where the polymer backbone has been functionalized with specific tracers.4 For example, persistent organic 
radicals (e.g. PROXYL) were conjugated to a polycarbonate system (PEG-b-polycarbonate) via an amide 
linkage, imparting the formed nanoparticles (ca. 100 nm in diameter) with paramagnetic properties. Through 
T1 relaxation NMR studies, as well as MRI studies on mice, these biodegradable nanomaterials exhibited 
excellent imaging performance, simultaneously enabling real-time visualization of bioaccumulation and 
retention of polymeric nanoparticles in vivo.368  

More recently, Zou et al. prepared nanopolymersomes (ca. 100 nm in diameter) from PEG-b-poly(iodine 
trimethylene carbonate) diblock copolymers and subsequently labelled these with radioactive iodine (125I) 
for application in CT diagnosis (Figure 9C).369 The in vivo imaging and pharmacokinetics studies showed 
that these radiopaque nanopolymersomes possessed a prolonged circulation time and could be used for 
blood pool as well as reticuloendothelial system imaging over a few hours, while maintaining low systematic 
toxicity. Furthermore, by using tumor homing peptides as targeting agents, these nanoparticles were 
investigated for early diagnosis of various malignancies, demonstrating superior imaging properties to 
commercial iodinated small molecules for CT imaging. The same authors also reported the use of this 
nanoplatform for combinational diagnostic and therapeutic purposes, with the additional incorporation of 
131I for radioisotope therapy (Figure 9D).370, 371 The iodine-rich polymersomes enabled versatile SPECT/CT 
dual-modal imaging and potent anticancer effect in breast cancer in vivo, making them excellent theranostics. 
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Figure 9. A) Imaging data of ex vivo organs 12 h after the injection of rhodamine-functionalized micelles. 
Lactose decorated particles are found to exclusively accumulate in the liver. Lac+: lactose containing 
micelles, Lac-f: lactose-free micelles. Reprinted with permission from reference 367 “Lactose mediated liver-
targeting effect observed by ex vivo imaging technology” Biomaterials 2010, 31 (9), 2646, Copyright (2010), 
with permission from Elsevier. B) Near infrared fluorescence images of 4T1 tumor-bearing mice following 
intravenous administration of DiR-loaded nanoparticles. Reprinted from reference 268 “The use of 
cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery 
of anticancer drugs” Biomaterials 2012, 33 (6), 1921, Copyright (2012), with permission from Elsevier.  C) 
Sagittal and coronal sections of several major organs after i.v. injection of iodine-rich nanopolymersomes 
at different time intervals. Reprinted with permission from reference 369. Copyright (2017) John Wiley & 
Sons. D) Coronal section of microSPECT/CT dual-modal imaging of 4T1 tumor-bearing mice at 0, 4, 8, 
12, 24, and 48 h post-injection of 125I functionalized polymersome. Reprinted with permission from 
reference 370. Copyright (2019) American Chemical Society. 

 

5. Antimicrobial polycarbonates  

Macromolecular antimicrobial agents such as antimicrobial peptides (AMPs) and synthetic cationic 
polymers are a highly promising class of therapeutics with immense potential for the treatment of multidrug 
resistant microbes.372 These antimicrobial agents selectively target the microbial membrane via electrostatic 
attractions between their cationic groups and the anionic membrane’s surface (Figure 10A).373, 374 Although 
AMPs have demonstrated efficacious antimicrobial properties, their applicability is still beset with several 
limitations for clinical usage, such as high cytotoxicity (e.g. hemolysis), poor proteolytic stability and 
pharmacokinetics (i.e. short half-life in vivo), and high production cost.375 In contrast, a number of synthetic 
macromolecular antimicrobials (including PEI, polyacrylate, polyacrylamide, polynorbornene, and many 
others) have emerged with characteristics that mimic AMPs while addressing their drawbacks.376 
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Nevertheless, most antimicrobial polymers reported in the literature are non-biodegradable, which limits 
their in vivo application. 

Recently, Hedrick and coworkers reported the first biodegradable antimicrobial polymer using a 
polycarbonate matrix fabricated through the “segregated monomer” approach, where an hydrophobic 
monomer is copolymerized with a cationic monomer to afford either statistical or block copolymers (Figure 
10B).198 Specifically, ROP was used to synthesize triblock copolymers of TMC and MTC bearing a chloride 
functional group, which were then further functionalized with quaternary ammonium and self-assembled 
into nanoparticles. These nanostructures were able to inhibit the growth of a wide range of Gram-positive 
bacteria and fungi while showing insignificant hemolytic activity. Importantly, a strong microbicidal activity 
was shown against clinically threatening methicillin-resistant Staphylococcus aureus (MRSA) at a concentration 
that did not induce toxicity to liver and kidney in a mouse model. To further improve the antimicrobial 
activities and broaden the antimicrobial spectrum of these polymers, many studies have focused on 
investigating the role of the polymer chemical structure on antimicrobial activity and selectivity, including 
hydrophobic/hydrophilic balance, cationic chemical functionality, and molar mass.377-380 

The hydrophilic/hydrophobic ratio and the polymer sequence play a pivotal role in achieving selective 
antimicrobial activity.376 For example, while the above-mentioned triblock polycarbonates were ineffective 
towards Gram-negative strains,198 randomly copolymerized carbonates with a similar structure were able to 
inhibit the growth of Gram-negative bacteria, such as Escherichia coli, possibly as a consequence of the 
random copolymer readily interacting with the lipid domain of the bacterial membrane.150 Together with 
the conventional “segregated monomer” approach, the “same-centered” is an alternative and widely used 
strategy to alter the amphiphilicity of antimicrobial polycarbonates (Figure 10B). In this approach, a 
hydrophobic moiety (usually an alkyl chain) is directly conjugated to a cationic center, allowing the facile 
optimization of the polymers’ amphiphilicity by varying different structural parameters. In an early example, 
the hydrophobic/hydrophilic balance could be controlled simply by varying the spacer (propyl, hexyl, or 
octyl) between the charged quaternary ammonium moiety and the polycarbonate backbone (MTC 
derivative).380 It was also reported that these “same-centered” polymers do not need to exist in the 
nanoparticle form to be active, and more importantly the polymer amphiphilicity is critical in determining 
hemolytic activity. This could be employed to achieve high selectivity of antimicrobials toward bacteria over 
mammalian cells. Analogously, other parameters such as cationic appendages (i.e. pendant structures 
attached on quaternary ammonium) and counter-anions (e.g. trifluoroacetate and citrate) have also been 
proved to be valid in tuning the amphiphilic balance of these antimicrobial polycarbonates, thus inducing 
substantial antimicrobial potency while maintaining low hemolysis (Figure 10C).381-383 
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Figure 10. A) Simplified demonstration of the interactions between antimicrobial and bacterial membranes. 
B) Schematic depiction of strategies for balancing hydrophobicity and hydrophilicity of antimicrobial 
polycarbonates, including the “segregated monomer” and “same centered” approaches. C) For 
antimicrobial polycarbonates prepared using the “same centered” approach, the amphiphilicity could be 
modulated by using different spacers, cations, counter anions.  

 

The chemical structure of the cationic groups in the polymer side-chain plays a key role not only in the 
electrostatic binding of polymers to bacterial membranes, but also the molecular mechanism of membrane 
insertion and disruption.373 Apart from quaternary ammonium, other functionalities e.g. quaternary 
phosphonium,384 primary amines,385, 386 imidazoles,387 pyridines,381 and guanidinium218, 388 have also been 
used to prepare antimicrobial polycarbonates. Guanidine-functionalized polymers can form multidentate 
binding with the anionic phosphate head groups on the bacteria cell membrane, thus resulting in stronger 
interactions with cell membranes and superior potency against bacteria compared with amine or quaternary 
ammonium-functionalized counterparts.389, 390 Polycarbonates featuring guanidine side-chains could be 
fabricated through the ROP of Boc-protected guanidine-functionalized carbonate monomers (MTC 
derivatives) followed by post-polymerization deprotection.219 With the optimization of the molar mass (DP 
varied from 5 to 40) and amphiphilic properties (the hydrophobic spacer ranged from straight chain alkyl 
and cyclohexyl to phenyl), the “same-centered” guanidinium-functionalized polycarbonate demonstrated 
broad spectrum in vivo antimicrobial activity against MDR Acinetobacter baumannii, Escherichia coli, methicillin-
resistant Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia, while remaining nontoxic to 
mammalian cells.219, 391 The guanidine functionality was also conjugated to alkyne-containing 
polycarbonates via azide-alkyne cycloaddition in the post-polymerization modification process, and the 
effect of charge density and polymer molar mass on the antimicrobial activity was investigated.218 While 
there is a minimum charge density requirement for the attachment of the polymer to the bacterial 
membrane, an increment in cationic charge density above the threshold did not significantly increase the 
antimicrobial polymer’s potency but induced a stronger hemagglutination as a side effect. In terms of molar 
mass effect, low molar mass polymers (8 kDa) showed an overall greater potency than the higher molar 
mass counterparts (15-30 kDa), possibly as a consequence of the quicker translocation of smaller polymers 
across the bacteria membranes, hence leading to a greater growth inhibition.392 It is worth mentioning that 
guanidinylated polycarbonates significantly outperformed polymethacrylate analogues with regards to 
antimicrobial activity, possibly owing to some synergistic effect between polycarbonate and guanidinium.390 
Though some general trends have been observed as to how molar mass, amphiphilicity, and charge density 
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affect the antimicrobial and hemolytic activity of polycarbonates, the final effects still highly depend on the 
specific polymer system and the strain of bacteria considered. 

Positively-charged polycarbonates have also been formulated as hydrogels and coatings with antimicrobial 
activity.393-395 While cationic groups are normally attached to polycarbonate side-chains, they can also be 
incorporated into a polymer backbone. Sardon and coworkers synthesized quaternary ammonium-
containing eight-membered CCs and prepared antimicrobial hydrogels via crosslinking of mono- and di-
functional monomers. These hydrogels exhibited a broad-spectrum antimicrobial activity and showed great 
potential for applications in the areas of wound care and medical implants for the prevention of acute 
infections.193, 396 Moreover, antimicrobial polycarbonates can be used as coating for medical devices to 
efficiently prevent surface fouling and infections. For instance, a coating of cationic PEG-b-polycarbonate 
on silicone rubber (a widely used catheter material) inhibited the formation of a biofilm of Staphylococcus 
aureus and Escherichia coli over 7 days, demonstrating its potential for the prevention of catheter-associated 
bloodstream infections.397, 398 To date, antimicrobial polycarbonate is the only synthetic polymer that meets 
all the critical requirements for in vivo clinical applications including biocompatibility, biodegradation, and 
antimicrobial activity. However, the development of antimicrobial polycarbonates is still at an early stage, 
with more research needed to understand the complex, long-term interactions of these polymers with 
microorganisms and tissues. 

 

6. Polycarbonate hydrogels 

6.1 Methods for polycarbonate-based hydrogel preparation 

6.1.1 Covalent polycarbonate-based hydrogels 

Hydrogels are crosslinked polymeric 3D networks that contain a large amount of water, up to 99% of their 
weight. This unique feature and the ability to readily tune their mechanical properties make this class of 
materials ideal for cell encapsulation and tissue regeneration. APCs have been widely employed for the 
preparation of hydrogel networks, owing to their versatility and ease of synthesis (Figure 11).399 In early 
reports, ring-opening polymerization of CCs could be directly employed to create a crosslinked network, 
where the carbonate motif featuring bifunctionality, such as bis-carbonate PEG macromonomer or 
bifunctional CC monomer, acted as the crosslinker (Figure 11A).193, 195, 396, 400-404 However, polymerizations 
had to be performed in an organic solvent before transfer in water by dialysis to obtain biologically relevant 
hydrogels.  

In contrast to direct ring-opening polymerization, highly efficient click-type chemistries such as thiol-ene 
and azide-alkyne cycloaddition are more widely used in the preparation of polycarbonate-based hydrogels 
as they can be conducted in aqueous media, at physiological pH, and at room temperature (Figure 11 B and 
D).395, 405 As an example of thiol-ene chemistry via Michael-type addition, by simply mixing the aqueous 
solution of triblock copolymers poly(acryloyl carbonate)-b-PEG-b-poly(acryloyl carbonate) and thiolated 
glycol chitosan under physiological-like conditions, a robust hydrogel could be rapidly formed at remarkably 
low total polymer concentrations of 1.5-4.5 wt%.406 The copper-catalyzed azide-alkyne cycloaddition has 
also received particular attention for the preparation of polycarbonate-based hydrogels owing to its high 
reaction yields as well as a high level of functional group tolerance. Indeed, alkyne-functionalized PTMC 
crosslinked with PEG-bisazides has been used as a hydrogel matrix, producing an amphiphilic hydrogel 
with less than 4% of the end-groups remaining unreactive. However, the amount of copper used to catalyze 
the azide-alkyne cycloaddition raised severe concerns regarding the use of such prepared hydrogels as 
biomaterials, considering copper’s ability to interact with the DNA of living cells and subsequent cell 
damage.407 In an attempt to avoid the use of copper-based catalysts, copper-free strain-promoted azide-
alkyne cycloaddition reactions have been used for preparing polycarbonate-based networks, where 
crosslinking typically occurs between PEG bis-terminated aza-dibenzocyclooctynes and azide 
functionalized PTMC (Figure 11B).408-411 Notably, this approach does not require any catalysts or external 
stimuli and avoids the formation of potentially toxic by-products, making it ideal for cell encapsulation in 
the field of tissue engineering. 
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Figure 11. Different strategies used to prepare crosslinked polycarbonate-based hydrogels. A) Crosslinking 
of cyclic carbonate TMC and bis-carbonate PEG macromonomer through ROP. Adapted from reference 
401 with permission from The Royal Chemical Society. B) PEG bis-terminated aza-dibenzocyclooctynes and 
azide functionalized PTMC were employed to prepare hydrogels through strain-promoted azide-alkyne 
cycloaddition reactions. Reprinted with permission from reference 410. Copyright (2016) American 
Chemical Society. C) Hydrogel formation from physical crosslinking of polycarbonate(VE)-b-PEG-b-
polycarbonate(VE) micelles. VE refers to vitamin E. Adapted with permission from reference 251. Copyright 
(2013) John Wiley & Sons. D) Preparation of in situ-forming poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-
2-one)-poly(ethylene glycol) hydrogels with tunable swelling, mechanical strength and degradability. 
Adapted from reference195 with permission from The Royal Chemical Society. 

 

6.1.2 Non-covalent polycarbonate-based hydrogels  

Apart from covalent crosslinking, polycarbonate-derived hydrogels can also be obtained through non-
covalent binding, including ionic and hydrophobic interactions and hydrogen bonding. For example, 
triblock copolymers of polycarbonate-b-PEG-b-polycarbonate functionalized with guanidine and 
carboxylic acid groups were able to form hydrogel networks via ionic and hydrogen bonding, which in turn 
endowed the system with pH-responsive properties.412 Similarly, Kristina et al. reported the synthesis of a 
self-healing hydrogel fabricated through ionic interactions between Fe3+ ions and dopamine, conjugated on 
allyl-functional polycarbonate through thiol-ene chemistry.413 It is important to note that simple 
hydrophobic interactions among polycarbonate segments could contribute to the formation of a 
network.319, 414-419 For example, aqueous solutions of the diblock copolymer PEG-b-PTMC with relatively 
short PEG and PTMC segments were used to generate thermo-responsive hydrogels. The mixture 
underwent a sol-gel transition with a temperature increase, where the transition temperature could be 
controlled from 20 to 75 °C by varying polymer concentration, molar mass, and composition. Subcutaneous 
injection of aqueous polymer solutions (30 wt%, 0.5 mL) into rats led to in situ gelation, and the hydrogel 
system was determined to be stable in buffer solution and in vivo (15 wt% mass loss) for over three 
months.420 Nevertheless, these hydrogel formulations normally require high polymer content (at least 16 
wt%) and/or hydrophobic content (17-37%) for gelation to occur, which could lead to adverse side effects 
in vivo. In order to lower the polymer concentration needed for gelation, Lee et al. introduced vitamin E to 
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the polycarbonate backbone via an ester linkage, which substantially altered the hydrophobic interactions 
and gelation mechanism of polycarbonate-b-PEG-b-polycarbonate triblock copolymers. A hydrogel with 
storage modulus ranging from 1400 to 12000 Pa was directly formed by dissolving polymer motif, VitEm-
b-PEG-b-VitEm, in water at a relatively low concentration (4-8 wt%). Without the presence of vitamin E, 
a polymer content of 30 wt% was required for gelation.404 

 

6.1.3 Polycarbonate-based hydrogels prepared via photopolymerization 

Although non-covalent hydrogels exhibit remarkably decreased toxicity and consequently increased 
biocompatibility, owing to the absence of covalent crosslinkers and initiators, they generally suffer from 
inadequate mechanical properties. Photopolymerization has emerged as an alternative strategy for in situ 
hydrogel formation that generates a strong network.421-425 (Meth)acrylated precursors, typically end-group 
acrylated PTMC–b-PEG–b-PTMC triblock copolymers, have been widely used for preparing 
polycarbonate-based hydrogels via photopolymerization. With optimization over the block lengths on both 
hydrophobic and hydrophilic segments, the network formed demonstrated good mechanical properties 
including toughness (215 KJ/m3), high Young’s modulus (15 kPa) and fracture strain (98%). Importantly, 
these hydrogels showed negligible cytotoxicity, supporting proliferation and spreading of human-bone-
marrow-derived mesenchymal stem cells and primary bovine articular chondrocytes.102, 426, 427 To further 
increase the mechanical properties of such hydrogels, different strategies have been exploited, which include 
the addition of nanocomposites (such as halloysite nanotubes and laponite nanoclay) and the design of 
double networks.425, 428, 429 Together with traditional chain growth radical polymerization, thiol-ene 
chemistry has also been exploited to prepare polycarbonate hydrogels through photopolymerization (e.g. 
using precursor poly(5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one)-b-PEG), having the advantage of high 
oxygen tolerance and low side-product formation.195 

 

6.2 Polycarbonate-based hydrogels for drug delivery 

The high water content (typically 70-99%) lends hydrogels excellent capability to encapsulate hydrophilic 
drugs, which are otherwise difficult to deliver as a consequence of rapid denaturation and aggregation upon 
exposure to organic solvents.430 As a result of this important feature, polycarbonate-derived hydrogels are 
perfectly suited for the delivery of biological drugs, in addition to being highly biocompatible and 
biodegradable. For example, an injectable hydrogel derived from triblock copolymers poly(VitEm-
carbonate)-b-PEG-b-poly(VitEm-carbonate) was reported to encapsulate herceptin, a monoclonal antibody 
that binds to the HER2 receptor and finds application in targeted cancer therapy.431 In vitro studies 
demonstrated that herceptin-loaded hydrogels achieved specific binding towards HER2-overexpressing 
cancer cells and the resultant cytotoxic action was comparable to that of herceptin alone. Moreover, no 
acute or chronic inflammatory response was observed after subcutaneous injection of the herceptin-loaded 
poly(VitEm-carbonate)-b-PEG-b-poly(VitEm-carbonate) hydrogels up to 6 weeks post-administration, 
despite degradation occurring in this time frame. The in vivo studies also showed that the hydrogel matrix 
not only enhanced the retention of the antibody within the tumor but also provided extraordinary sustained 
release of herceptin. Indeed, the anti-tumor efficacy of herceptin-loaded hydrogels after subcutaneous 
injection was comparable to that of weekly intravenous injection (i.v.) administration of free herceptin over 
four weeks. Furthermore, by simply modifying the carbonate backbone to include carbamate, more 
sustained antibody release and thus superior anticancer efficacy could be achieved as a consequence of the 
introduction of hydrogen-bonds.391 Analogously, such a hydrogel platform could be readily adapted by 
replacing vitamin E with vitamin D for the delivery of Avastin, showing enhanced therapeutic efficacy 
against metastatic colorectal cancer.252 

Together with biologics, hydrophobic drugs such as doxorubicin and bortezomib (BTZ), can also be loaded 
into polycarbonate-based hydrogels after being encapsulatated into polymeric nanoparticles.432-434 In the 
case of BTZ delivery, the drug was firstly conjugated to a phenylboronic acid-functionalized polycarbonate 
through a pH-sensitive linkage before assembling into 42 nm nanoparticles. Triblock copolymers of 
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polycarbonate-b-PEG-b-polycarbonate functionalized with a guanidinium group were then used to form 
hydrogel networks by ionic coacervation with phenylboronic acid-functionalized analogues, which 
encapsulated the drug-loaded micelles. The in vitro release of BTZ from the composite gel was pH-
dependent, with sustained gradual release in an acidic endo-lysosomal environment and minimal drug 
leaching at physiological pH. When tested in a multiple myeloma xenograft mouse model, anti-tumoral 
efficacy was significantly enhanced in the case of the BTZ-loaded hydrogel composite when compared with 
BTZ-loaded micelles, highlighting the need for the hydrogel matrix for sustained drug release.434 While drug 
delivery using polycarbonate-based hydrogels has mainly focused in inhibiting tumor growth, limited 
research has been carried out for the treatment of other diseases, and hence more relevant studies in other 
disease areas are necessary.417 

 

6.3 Polycarbonate-based hydrogels as tissue engineering scaffolds 

Hydrogels have been investigated as potential candidates for the regeneration of natural extracellular 
matrices and have recently emerged as a promising 3D platform to investigate cell proliferation and 
migration.435 In the case of polycarbonate-derived hydrogels for tissue engineering applications, triblock 
copolymers of PTMC-b-PEG-b-PTMC diacrylate are commonly used as precursors to prepare scaffolds 
through thermal or light-initiated polymerization or Michael addition reaction. In an early example, primary 
articular chondrocytes were encapsulated in such PTMC-b-PEG-b-PTMC diacrylate hydrogels via 
photopolymerization. Compared to the pure PEG hydrogel, the extra polycarbonate motif in the hydrogel 
network not only enhanced the overall mechanical properties but also promoted the aggregation of 
encapsulated chondrocytes and stimulated cartilage matrix production, highlighting their potential as 
scaffolds for cartilage repair.427 In subsequent reports, the mechanical properties, micro-cavitary structure, 
as well as surface functionalization of these hydrogels could be readily manipulated to meet the necessary 
requirements as scaffolds for cartilage regeneration.425, 436, 437 The application of this hydrogel platform was 
further extended to include in vivo cardiac and in vitro nerve regeneration.416, 438 In particular, in the treatment 
of peripheral ischemia, PTMC-b-PEG-b-PTMC diacrylate precursors were crosslinked with methacrylated 
glycol chitosan by thermally initiated polymerization at 37 ºC, making it an injectable, in situ-gelling hydrogel 
for loading stem cells and promoting angiogenesis in the tissue. In a model of hindlimb ischemia, 
intramuscular retention of the stem cells over 28 days was significantly improved when delivered using the 
injectable scaffold compared to direct intramuscular injection of cells, with improvements in cell 
proliferation and capillary density in the surrounding muscle tissue.439 Despite these successes, 
polycarbonate-based hydrogels for tissue engineering applications are still very limited, and in-depth 
investigations towards the development of new biocompatible chemistries are required to further advance 
the field. 

 

7. Polycarbonates as medical devices and cell culture scaffolds 

7.1. 3D printed polycarbonate scaffolds 

Although complex and versatile hydrogel scaffolds have been designed to generate an ideal three-
dimensional environment for cell growth, able to allow transport of nutrients to cells and efflux of 
metabolic waste, the mechanical properties of such networks are often insufficient to meet the needs of 
hard tissue regeneration. Alternative scaffold fabrication approaches such as solvent casting/particulate 
leaching,440 electrospinning,441-445 sintering,446 and 3D printing447, 448 have been employed to prepare tough 
tissue engineering scaffolds using polycarbonate matrices. Among them, the 3D printing methodology has 
gained significant attention for the creation of a well-defined porous matrix and patient-specific biomimetic 
structures. Stereolithography (SLA) is the most widely used 3D printing technique for the manufacturing  
of polycarbonate-based 3D-printed scaffolds.220, 449, 450 In SLA, a liquid, photocrosslinkable resin is solidified 
upon irradiation with a laser beam. A software is used to break the desired 3D design into sequential layers 
of masks consisting of individual 2D pixel patterns, which define the position of the liquid resin voxels that 
need to be crosslinked. Upon computer-controlled sequential photocrosslinking of the layers through the 
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masks, a 3D structure is finally generated, where each layer is cured on top of the other.451 Using this 
technique, three-armed PTMC macromers functionalized with methacrylate end-groups were employed as 
the printable precursor, and with the addition of a non-reactive diluent and a photoinitiator, 3D porous 
structures were fabricated upon photocrosslinking. The mechanical properties of such obtained scaffolds, 
such as tensile strength, elongation at break and toughness could be readily tuned by varying molar mass of 
the PTMC macromer, the  addition of another macromer with different molar mass, as well as the 
introduction of inorganic nanomaterials.452-457 Moreover, this process allows other parameters, such as pore 
structure and surface curvature to be tuned, endowing such networks with a wide range of properties 
intended for various tissue engineering applications.458, 459 Indeed, this scaffold system prepared via SLA 
using three-armed PTMC macromers has been employed for meniscus regeneration,460 microvascular 
grafts,461 orbital floor implants,462, 463 as well as bone replacement.464 SLA has also been used to prepare 
polycarbonate-based scaffolds for tissue engineering via thiol-ene chemistry, using aliphatic polycarbonate 
precursors bearing pendant alkene functionalities and four-armed thiols as crosslinkers.199 

In contrast to homopolymers, the use of copolymer resins has been proposed as a way to increase the range 
of mechanical properties accessible within one scaffold and tune degradation behaviors of the final material. 
For instance, Kuhnt et al. designed PCL-co-PTMC urethane acrylate resins to prepare scaffolds through 
digital light processing, which is a variant of SLA where UV light comes from projectors instead of lasers.465 
While PTMC is an aliphatic polycarbonate with a low glass transition temperature and amorphous in nature,  
the semi-crystallinity of PCL allows an increase in the mechanical strength of the PCL-co-PTMC 3D 
scaffold.226 On the other hand, polycarbonates generally demonstrate longer degradation times than 
polyesters, and thus, through rational changes in comonomer ratios, scaffolds with different degradation 
times and tunable mechanical properties can be easily fabricated.249  

 

7.2 Polycarbonates as tissue engineering scaffolds  

7.2.1 Scaffolds for bone regeneration 

The application of SLA for the construction of biodegradable composite scaffolds combined with bioactive 
compounds is a promising strategy in bone regenerative medicine. Indeed, biodegradable scaffolds 
fabricated via SLA have been produced using (meth)acrylate functional polyester precursors, including PCL, 
PLA, and poly(propylene fumarate)-based resins, and enriched with calcium phosphate ceramic particles to 
induce osteoconductivity.466, 467 Nevertheless, as previously noted, the degradation of polyesters driven by 
hydrolysis leads to the release of acid by-products, which can cause inflammatory reactions and subsequent 
bone resorption. Recently, polycarbonates have been proposed as alternative degradable polymers for the 
formulation of 3D printing resins for bone tissue engineering, owing to their safer degradation mechanism, 
which does not involve the formation of acidic degradation products and allows structural mechanical 
integrity to be retained (Figure 12).448, 454, 462, 464 It was found that the incorporation of hydroxyapatite (HA) 
nanoparticles in the PTMC macromer resulted in increased hydrophilicity and improved the mechanical 
properties of the fabricated scaffold (SLA manufacturing), compared with PTMC only. More importantly, 
the introduction of ceramic particles in polycarbonate scaffolds helped to improve human bone marrow 
stem cell osteogenic differentiation in vitro and reduced the time needed for bone healing in vivo. In the case 
of orbital floor repair, the customized scaffold (prepared from 40 wt% of HA in PTMC resin through SLA) 
led to rapid neovascularization and bone morphogenesis, both ectopically and in the orbital floor region, 
without the need for additional biological stimuli, while standard titanium meshes resulted in fibrous tissue 
encapsulation (Figure 12B).463 Besides the use of SLA for the fabrication of 3D printed scaffolds, composite 
sheets made from PDLLA and biphasic calcium phosphate incorporating PTMC matrices and scaffolds 
produced by electrospinning (PDLLA-co-PTMC) have also been used to support bone repair.443, 468, 469  
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Figure 12. Polycarbonate-based 3D printing scaffolds for tissue engineering. A) Engineering route to 
manufacture a porous individualized implant based on imaging data including a large mandibular defect 
PTMC prototype containing 51 wt % β-tricalcium phosphate printed with SLA. SEM of printed scaffold 
demonstrates a clear microscaled topographical roughness. Reprinted with permission from reference 464. 
Copyright (2020) American Chemical Society. B) CT-scan of the orbital area of a sheep and the preparation 
of Osteo-PTMC implants through SLA. Reprinted with permission from reference 463 “Orbital floor repair 
using patient specific osteoinductive implant made by stereolithography” Biomaterials, 2020, 233: 119721, 
Copyright (2020), with permission from Elsevier.  C) Photograph and reconstructed µCT image of the 
microvascular network built by SLA using a PTMC-based resin. Reprinted with permission from reference 
461. Copyright (2014) John Wiley & Sons. 

 

7.2.2 Scaffolds for cartilage repair  

Articular cartilage tissue possesses shape-consistency and repetitive load bearing capacity together with 
three-dimensional shape.470 Therefore, flexible and elastic three-dimensional porous scaffold materials are 
considered the gold standard for cartilage tissue regeneration.471 As previously mentioned, the mechanical 
properties and pore characteristics of SLA-fabricated scaffolds derived from a three-armed PTMC 
macromer can be readily tuned, allowing the creation of structures with the desired modulus, elongation, 
and strength.472 Indeed, upon seeding bovine chondrocytes in the designed PTMC scaffolds (with a pore 
diameter of 350  µm and a porosity of 54%), cells adhered and spread on the PTMC surface. After culturing 
for 6 weeks, cells with a round morphology were detected, indicative of the differentiated chondrocyte 
phenotype. Moreover, sulfated glycosaminoglycans and fibrillar collagen were deposited by the 
chondrocytes, suggesting that the cells recognize the scaffolds as an ideal environment for proliferation and 
tissue growth. 

PTMC porous scaffolds have also been investigated for intervertebral disc repair, especially tailored to the 
regeneration of the annulus fibrosus (AF), primarily composed of fibrocartilage.447, 473-475 Specifically, a 
PTMC scaffold (SLA manufacturing) seeded with human bone marrow-derived mesenchymal stem cells 
(hMSCs) and covered with a poly(ester-urethane) (PU) membrane was assessed for AF repair in a bovine 
organ culture annulotomy model under dynamic load. Implanted hMSCs showed an up-regulated gene 
expression indicating the ability to differentiate in situ. Moreover, the PTMC network not only restored 
annulotomized discs, but also prevented the herniation of the inner intervertebral tissue into the AF defect, 
hence representing an ideal platform for the repair of AF rupture after herniotomy and partial discectomy. 
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Interestingly, copolymerization with D,L-lactide (PDLLA-co-PTMC) imparted shape memory properties to 
the polycarbonate-based network.428, 443 When the shape memory device (switching temperatures of 0 ºC 
and 40 ºC) was inserted through a small slit in a canine intervertebral disc for AF repair, it could self-
sufficiently deploy within the disc cavity, allowing implantation to be minimally invasive.476 

 

7.2.3 Vascular grafts 

Cardiovascular disease is one of the leading causes of death worldwide, with common disorders associated 
with stenosis or occlusion of blood vessels. Biocompatible, degradable porous scaffolds with mechanical 
properties tailored to the vascular tissue have great potential to stimulate cell proliferation and facilitate re-
growth of natural tissue.477, 478 PTMC scaffolds have been widely used for vascular tissue engineering, as a 
consequence of their biocompatibility, predictable degradation products, and tunable mechanical 
strength.479-481 Moreover, the PTMC matrix has been reported to facilitate the adhesion of human smooth 
muscle cells (SMCs) and endothelial cells (ECs) and support the differentiation of mesenchymal or adipose-
derived stem cells towards SMCs.482 Notably, upon proliferation of SMCs for 14 days, the maximum tensile 
strength of the constructs, determined in the radial direction, increased from 0.16 (unseeded scaffold) to 
0.48 MPa (dynamic culturing), which is close to that of natural blood vessels.  

To further tune the mechanical properties and degradation times of the vascular scaffolds, copolymerization 
or blending strategies of polycarbonates with other polymeric matrices have been employed.441, 444 
Dargaville et al. prepared copolymers of TMC and LLA, where the hydroxyl end-groups were further 
functionalized with acrylates for light-triggered crosslinking. Such prepared networks demonstrated 
constant tensile strength between 5 and 11.7 MPa and no plastic deformation after 10000 continuous 
mechanical cycles, while Young’s moduli under wet conditions (i.e. after incubation in phosphate-buffered 
saline overnight) ranged from 1.5 to 1.8 MPa, which represents a significant improvement over other similar 
materials.16 When implanted into the rat peritoneal cavity, the material elicited formation of tissue capsules 
composed of myofibroblasts, resembling immature vascular smooth muscle cells.16 Although 
polycarbonate-derived scaffolds have emerged as promising materials for application as vascular grafts, 
achieving blood compatibility, and particularly antithrombotic properties, still remains an unmet 
requirement for which further in-depth in vivo evaluation is needed.483, 484  

 

8. Outlook 

This review has focused on the synthesis and application of APCs in biomedical and pharmaceutical fields. 
The ease of synthesis of this class of materials, together with their versatility - including a plethora of 
functionalities - allows the realization of materials with tunable thermal, degradation, and mechanical 
properties. Furthermore, these properties can be modified through copolymerization with other degradable 
polymers, targeting molar mass profiles, and by varying polymer morphology. The wide availability of 
functional CC monomers also allows the introduction of bio-relevant handles to the polycarbonate 
backbone, including targeting agents, drugs, imaging tools, and hydrophilic arms. Specifically, the 
development of efficient and simple chemistries for post-polymerization modifications has allowed this 
functionalization to be separated from the synthesis making the whole process simpler to achieve. Put 
simply, the aliphatic polycarbonate scaffold is versatile and easy to access, which makes it potentially useful 
for a wide range of applications in the biomaterials field: from nanoparticles with different morphologies 
as drug delivery vehicles, to 3D printed scaffolds for tissue regeneration, and hydrogels for both cell 
encapsulation and tissue healing.  

The application of APCs for the synthesis of nanoparticles for drug delivery has been widely explored, 
generating spherical micelles and vesicles that are not only able to target the desired tissue, but can also 
disassemble under a specific trigger and selectively deliver the cargo to the site of action, limiting the side 
effects on healthy tissues. On the other hand, while the chemistry of polycarbonate-based hydrogels has 
been widely investigated, their application in the biomaterials field is currently limited. As such, tailoring 
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their chemistries to expand the range of biomedical applications to which these materials can be directed, 
represents an exciting route for future investigations. Moreover, the biocompatibility and biodegradability 
of polycarbonates can be further exploited in the fabrication of solid materials for tissue healing and 
regeneration. This route offers application of the tunable degradation and mechanical properties of APCs, 
as well as their high functional group tolerance, that can be used to attach biological handles that promote 
cell adhesion, proliferation, and even stem cell differentiation. Particularly in this field, the use of 3D 
printing to design personalized materials that are able to address each patient’s needs, can significantly open 
the doors for the use of polycarbonate-based scaffolds as biomedical implants.451 Although significant 
advances have been achieved in the design of functional APCs for biomedical applications, some challenges 
still remain. To date, PTMC is the only aliphatic polycarbonate that has been widely investigated in 
biomedical devices - functional APCs have not yet been translated from the laboratory bench to clinical 
trials. The introduction of functionalities into the polycarbonate backbone allows to afford materials with 
different physicochemical and mechanical properties that can be further functionalized to tailor the desired 
biological application. Therefore, a deeper exploitation of the in vivo fate and biosafety of functional APCs, 
along with an in-depth understanding of the in vivo degradation of these materials, is essential to pave the 
way to the introduction of functional APCs into the clinic. 
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