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ABSTRACT 

 

Thrombotic events that frequently occur in Coronavirus disease 2019 (Covid-19) are 

predominantly venous thromboemboli (VTE) and are associated with increasing 

disease severity and worse clinical outcomes. Distinctive microvascular 

abnormalities in Covid-19 include endothelial inflammation, disruption of intercellular 

junctions and microthrombi formation. A distinct Covid-19 associated coagulopathy 

along with increased cytokines and activation of platelets, endothelium and 

complement occur in Covid-19, which is more frequent with worsening disease 

severity. This pro-inflammatory milieu may result in immunothrombosis, a host 

defence mechanism that can become dysregulated, leading to excess formation of 

immunologically mediated thrombi which predominantly affect the microvasculature. 

The haemostatic and immune systems are intricately linked, and multifactorial 

processes are likely to contribute to VTE and immunothrombosis in Covid-19. This 

state of the art review will explore the pathobiological mechanisms of 

immunothrombosis and VTE in Covid-19 focusing on: Covid-19 associated 

coagulopathy, pathology, endothelial dysfunction & haemostasis, the immune 

system & thrombosis, genetic associations and additional thrombotic mechanisms. 

An understanding of the complex interplay between these processes is necessary for 

developing and assessing how new treatments affect VTE and immunothrombosis in 

Covid-19. 

 

Keywords: Pulmonary Embolism, Innate Immunity, Viral infection, Cytokine Biology, 

Respiratory Infection 

  

 

 
 
 
 
 
 
 
  



 

INTRODUCTION 

Coronavirus disease 2019 (Covid-19) is caused by the novel severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) that has disseminated in a global 

pandemic. SARS-CoV-2 is a single-stranded RNA virus, of the genus 

betacoronavirus, that enters cells via angiotensin converting enzyme 2 (ACE2) 

receptors.1 SARS-CoV-2 has homology to SARS-CoV-1 and Middle East respiratory 

syndrome coronavirus (MERS-CoV), which caused the 2002/3 SARS and 2012 

MERS outbreaks respectively.1–3 Covid-19 pneumonia can cause fever, cough and 

dyspnoea with approximately 15% of cases being severe and 5% requiring intensive 

care support for acute respiratory distress syndrome (ARDS) or multi-organ failure.4 

Demographics and comorbidities that are associated with Covid-19 include older 

age, male sex, ethnicity, diabetes, systemic hypertension and chronic 

cardiorespiratory disease.5,6 

 

Thrombotic events occur in up to one third of Covid-19 patients, which are 

predominately pulmonary emboli, and are associated with more severe disease and 

increased mortality.7,8 However, studies are heterogenous and incidence varies by 

cohort composition (e.g. disease severity, definition of thrombotic events), 

investigations performed, and the use of thromboprophylaxis.9 Venous 

thromboembolism (VTE) incidence is high in other viral diseases including SARS-

CoV-1 and H1N1 however, a direct comparison with Covid-19 is challenging due to 

varied cohorts and methodologies.10,11 VTE rates are higher in severe Covid-19 than 

matched groups with ARDS, suggesting the high incidence is due to mechanisms in 

addition to VTE risk factors in hospitalised patients (e.g. immobility and severe 

illness).12 Furthermore, VTE may be under-recognised in Covid-19 as the incidence 

increases when screening investigations are performed however, this may also apply 

to other diseases.13 Smaller pulmonary (micro)thrombosis in Covid-19 may represent 

in-situ immunothrombosis, a process initiated by the innate immune system that 

involves cross-talk with haemostasis.8,14,15 There is current uncertainty about 

whether Covid-19 associated thrombotic events are due to conventional VTE, 

immunothrombosis or a combination, which has important implications for diagnostic 

and management strategies.  



 

 

 

We aim to review the pathobiological mechanisms of immunothrombosis and VTE in 

Covid-19 focusing on: Covid-19 associated coagulopathy (CAC), pathology, 

endothelial dysfunction & haemostasis, the immune system & thrombosis, genetic 

associations and additional thrombotic mechanisms. A literature search (MEDLINE) 

was performed in June 2020 using the following search terms (including variations 

and acronyms): “Covid-19”, “venous thromboembolism”, “immunothrombosis”, 

“coagulopathy”, “endothelial dysfunction”, “platelet”, “cytokine” and “complement”. 

 

 

COVID-19 ASSOCIATED COAGULOPATHY  

Covid-19 patients can have mild thrombocytopenia, mildly prolonged prothrombin 

time, increased fibrinogen and raised D-dimer (table 1), all of which are more 

pronounced as disease severity increases.16,17 This pattern of CAC shares features 

with sepsis-induced coagulopathy (SIC) and disseminated intravascular coagulation 

(DIC), but is a distinct entity.18 DIC and SIC can occur in Covid-19, but are less 

common when validated diagnostic criteria are applied.18 Similar CAC findings have 

also been reported in SARS-CoV-1 infections.10 

 

D-dimer is a fibrin degradation product that is sensitive at detecting fibrinolysis of 

intravascular thrombus (i.e. VTE) but lacks specificity and can be raised in 

inflammation and other diseases.19 A marked increase in D-dimer can occur in 

Covid-19 and has been independently associated with mortality.20,21 Raised D-dimer 

may be related to Covid-19 acute lung injury and produced by the breakdown of 

intra-alveolar fibrin, which is deposited in ARDS.22,23 

 

Additional markers of coagulation and inflammation can also be abnormal in Covid-

19 including ferritin, von Willebrand Factor (VWF), C-reactive protein (CRP), 

complement and cytokines (table 1). This suggests a complex interaction between 

the haemostatic and immune systems that may contribute to a prothrombotic 

phenotype that is discussed in this review. 

  



 

Blood test Direction of 
change 

Comparator 
(case vs. control) 

Reference(s) 

D-dimer ↑ Severe vs. non-severe 17 

Fibrinogen ↑ ICU vs. ref range 16 

Platelets → / ↓ Severe vs. non-severe 17,24 

aPTT → Severe vs. non-severe 17,25 

PT → / ↑ Severe vs. non-severe 17,26 

Antithrombin → / ↑ Covid-19 vs. healthy 
control 

27 

PAI-1 ↑ Autopsy vs. ref range 28 

Leucocytes ↑ Severe vs. non-severe 17 

Lymphocytes ↓ Severe vs. non-severe 17  

Neutrophils ↑ Severe vs. non-severe 17 

Factor VIII ↑ ICU vs. non-ICU 29 

VWF ↑ ICU vs. non-ICU 29 

Soluble P-selectin ↑ ICU vs. non-ICU 29 

CRP ↑ Severe vs. non-severe 17 

Procalcitonin ↑ Severe vs. non-severe 17,25 

Ferritin ↑ Severe vs. non-severe 25 

Complement ↑  Autopsy vs. ref range 30 

 

Table 1. Blood markers of coagulation, fibrinolysis and inflammation in Covid-

19. Arrows indicate the direction of change (↑ = increase, ↓ = decrease, → = no 



 

change) in Covid-19 with respect to a control group or reference range defined in the 

comparator column. The magnitude of change (i.e. marked increase vs. mild 

increase) is not indicated in this table. Activated partial thromboplastin time (aPTT), 

C-reactive protein (CRP), intensive care unit (ICU), plasminogen activator inhibitor 1 

(PAI-1), prothrombin time (PT), reference (ref), von Willebrand factor (VWF). 

 

 

COVID-19 PATHOLOGY  

SARS-CoV-2 has a predilection for the respiratory tract, gaining cellular entry via the 

ACE2 receptor that is expressed on the surface of airway epithelial cells.31,32 

Pathological changes in Covid-19 include diffuse alveolar damage, activation of type 

II pneumocytes, hyaline membrane formation and fibrin deposition; changes 

consistent with ARDS.33,34 Distinctive pulmonary microvascular abnormalities occur 

in Covid-19 that include intravascular fibrin deposition, perivascular monocyte 

infiltration, angiogenesis and microthrombi formation.33,34 Pulmonary endothelial cell 

inflammation, membrane disruption and damage are prominent features that may 

result from direct viral effects, consistent with endothelial ACE2 receptor expression, 

or indirect host inflammatory effects.23,35 Importantly, the microvascular changes in 

Covid-19 are more pronounced than in H1N1 infected lungs, suggesting disease 

specific effects rather than epiphenomenon of ARDS or viral pneumonia.23 VTE 

occurs in up to 50% of Covid-19 autopsy series and the frequent occurrence of DVT 

suggests embolic complications in addition to in-situ microvascular 

immunothrombosis.33,36 The ACE2 receptor is widely expressed by different cells 

and SARS-CoV-2 has been detected in the kidneys, liver, heart and brain, which 

may account for extra-pulmonary thrombotic complications along with the ubiquitous 

presence of endothelium in different organs.7,32,37 

 

Pulmonary thrombosis in Covid-19 may represent conventional PEs or 

immunothrombosis (particularly for smaller clots) however there is no current 

differentiating diagnostic strategy. The pathological changes from autopsy series 

suggest a combination of these two processes occurs in Covid-19, although this may 

only apply to severe disease. 

 



 

 

ENDOTHELIAL DYSFUNCTION & HAEMOSTASIS 

The endothelium is a monocellular layer lining blood vessels with functions that 

include providing a mechanical barrier between circulating blood and the basement 

membrane, controlling vascular tone and immunomodulation.38 Endothelial 

dysfunction involves endothelial activation and reduced endothelium-dependent 

vasodilation, which results in a proinflammatory, procoagulant and proliferative 

state.39 Covid-19 clinical outcomes are worse in patients with diseases associated 

with endothelial dysfunction (e.g. systemic hypertension, diabetes and obesity) and 

evidence of endothelial dysfunction is present in Covid-19 autopsy series.23,40 The 

mechanism(s) for endothelial dysfunction could occur via direct SARS-CoV-2 

invasion of endothelial cells or indirect inflammatory effects.23,41 Binding of the 

SARS-CoV-2 spike protein to the ACE2 receptor is facilitated by host serine 

protease TMPRSS2 priming, followed by viral endocytosis and replication.31,41 

Subsequent endothelial damage and viral release triggers a marked immune 

response that could cause additional endothelial dysfunction (see: The immune 

system and thrombosis section). 

 

Haemostasis overview 

A prothrombotic state occurs in Covid-19 that could be a consequence of increased 

coagulation, decreased fibrinolysis and immune effects. Coagulation involves a 

complex biological cascade and is a component of haemostasis along with vascular 

spasm and platelet activation. Endothelial damage and disruption of intercellular 

junctions in Covid-19 exposes the subendothelial matrix containing tissue factor (TF) 

and collagen.23,42 This activates the coagulation cascade and results in thrombin 

generation and conversion of fibrinogen to fibrin which, together with platelet 

aggregates, forms blood clots (figure 1).42 Mild prolongation of prothrombin time in 

CAC (particularly in severe disease), could signify activation of the TF (extrinsic) 

pathway (figure 1). TF is a subendothelial transmembrane protein and FVII/FVIIa 

cofactor that potently activates the coagulation cascade.43,44 In Covid-19, TF 

expression on macrophages and platelets could be induced by inflammatory 

cytokines.43 Furthermore, tissue factor pathway inhibitor (TFPI), which inhibits the TF 



 

pathway, could be impaired by inflammation in Covid-19 leading to further 

coagulation.45 Endogenous anticoagulant levels (α2-antiplasmin, protein C/S, 

antithrombin) are normal in Covid-19, which is further evidence that CAC is distinct 

from DIC.29 Markers of endothelial activation (VWF, FVIII, P-selectin) are increased 

in Covid-19, and raised soluble thrombomodulin (an endothelial glycoprotein) 

together with VWF are associated with worse clinical outcomes.29 Importantly, the 

presence of endothelial activation and haemostatic abnormalities in intensive care 

unit (ICU) and non-ICU Covid-19 patients suggests these processes are important in 

disease pathophysiology and not only an epiphenomenon of ARDS (figure 2).29,46 

 

Fibrinolysis 

Reduced fibrinolysis has been described in severe Covid-19 and increased VTE 

occurs in patients with more severe abnormalities of clot dissolution.16 The 

combination of raised D-dimer (a marker of fibrinolysis) and evidence of apparent 

hypofibrinolysis has been proposed to either be a consequence of differences 

between systemic and local effects, or due to the fibrinolytic system becoming 

overwhelmed.47,48 The fibrinolytic inhibitor plasminogen activator inhibitor 1 (PAI-1) is 

increased in Covid-19, SARS-CoV-1 infection and other causes of ARDS where 

hypofibrinolysis and fibrin deposition are hallmark features.28,29 Inflammation 

promotes PAI-1 release from endothelial cells, which suppresses urokinase- (uPA) 

and tissue-type plasminogen activator (tPA) from converting plasminogen to plasmin, 

which ultimately leads to reduced fibrin degradation.28 PAI-I is increased in ICU and 

non-ICU Covid-19, suggesting a role in disease pathobiology and progression that is 

not only related to ARDS.29 

 

Platelets 

Activated endothelial cells express a number of proteins including P-selectin, a cell 

adhesion molecule that enables the recruitment of platelets and leucocytes, which 

have a pivotal role in haemostasis and thrombosis.49 Disruption of the endothelial 

layer exposes the collagen containing subendothelial matrix and also results in 

platelet activation and recruitment.50 Subsequent platelet degranulation and 

aggregation produces a platelet plug that functions as an adhesion site for 

coagulation factors.50 Activated platelets secrete a range of bioactive molecules (e.g. 



 

ADP, polyphosphates, coagulation factors) and immunological mediators (e.g. 

complement factors) that cause further platelet activation and amplification of the 

immune system via positive feedback mechanisms contributing to haemostasis.50  

 

Platelet counts are normal or mildly reduced in Covid-19, unless there is concurrent 

DIC which is uncommon.18 However, marked platelet activation occurs with rapid 

aggregation and increased platelet-leucocyte aggregates that are more pronounced 

in severe Covid-19.51,52 Markers of platelet activation (e.g. P-selectin, soluble 

CD40L) are increased Covid-19 and P-selectin can induce monocyte TF expression, 

leading to a procoagulant phenotype.29,52 The glycoprotein VWF produced by 

activated endothelial cells, platelets or exposed subendothelium mediates platelet 

adhesion and aggregation.53 VWF is markedly increased in Covid-19, which could 

signify a propensity for platelet plug formation and thrombosis.29 Platelets have an 

important function in the innate immune system and activated platelets release 

complement (C3) which may contribute to Covid-19 immunothrombosis (see: The 

immune system and thrombosis section).54 

 

Hypoxia 

Hypoxia occurs in moderate-severe Covid-19 and this can lead to endothelial 

dysfunction and hypercoagulability.55,56 Upregulation of endothelial P-selectin and 

adhesion molecules (e.g. intercellular adhesion molecule-1 (ICAM-1)) in hypoxia 

results in platelet and leucocyte recruitment.57 Monocytes bind to activated 

endothelial cells through the P-selectin glycoprotein ligand-1, and further express 

prothrombotic factors such as TF.58  

 

Hypoxia-induced factors (HIFs) are transcription factors expressed by endothelial 

and immune cells in response to hypoxaemia.59 HIFs promote thrombosis by 

increasing endothelial release of PAI-1 and inflammatory cytokines (e.g. Tumour 

necrosis factor (TNF), Interleukin(IL)-2), while downregulating thrombomodulin.56,57 

Additionally, HIF activity can initiate the immune system; a hypoxic environment can 

cause release of damage-associated molecular patterns (DAMPs), that potently 

trigger an immune response (see: The immune system and thrombosis section). 

In macrophages, HIFs promote their activation and local aggregation, along with 

driving the expression of pro-inflammatory cytokines including IL-6 and TNF-ɑ.59 HIF-



 

1α could enhance complement-mediated endothelial damage in Covid-19 by 

decreasing the expression of the complement regulator CD55.60 The cumulative 

effects of hypoxia are a likely contributor to dysregulated haemostasis and disruption 

of vascular tone in Covid-19. 

 

Vasoconstriction 

Loss of vascular tone is a feature of endothelial dysfunction and, when culminating in 

vasoconstriction, can have prothrombotic consequences. A number of hypoxia-

dependent pathways can drive this process. Hypoxia-induced expression of 

adhesion molecules, namely P-selectin, E-selectin, ICAM-1 and vascular cell 

adhesion molecule-1 (VCAM-1) disrupts the endothelium. Subsequent increase in 

microvascular permeability exposes the subendothelial matrix, rapidly triggering 

thrombosis.57 Alveolar and tissue hypoxia in severe Covid-19 may initiate the 

cyclooxygenase (COX) pathway in endothelial cells; binding of COX-induced 

thromboxanes A2 and B2 to thromboxane prostanoid receptors initiates constriction 

of vascular smooth muscle cells.57  

Vascular tone is also regulated by hypoxia-independent mechanisms, including the 

renin-angiotensin-aldosterone system. ACE2 cleaves angiotensin II (AngII) to 

angiotensin 1-7 (Ang1-7) and downregulation of the ACE2 receptor, following 

internalisation with SARS-CoV-2, would suppress Ang1-7-mediated vasodilation 

(figure 2).61 The subsequent accumulation of AngII, and binding to angiotensin II 

receptor type 1 (AT1), could augment pulmonary vasoconstriction and promote 

induction of TF and PAI-1 expression on platelets and the endothelium.43,61,62 

Increased AngII occurs in Covid-19 and has been associated with viral load and lung 

injury.63 Imbalance of ACE2/AngII may in part explain the association of pre-existing 

vascular diseases (e.g. systemic hypertension, diabetes) with susceptibility to severe 

Covid-19 as these diseases have altered baseline levels of ACE2.63 

 

THE IMMUNE SYSTEM AND THROMBOSIS 

Haemostasis and the immune system are intricately related, with the two systems 

complementing each other to provide host defence and limit the dissemination of 

invading pathogens. Physiological immunothrombosis can become dysregulated 



 

resulting in excessive formation of immunologically-mediated thrombi that 

predominantly affect the microvasculature.15 Immunothrombosis has been proposed 

as an important pathological mechanism in Covid-19 patients, whereby innate 

immune cell activation, excessive coagulation and endothelial dysfunction contribute 

to the observed prothrombotic state.64 Interaction between the haemostatic and 

innate immune systems, particularly monocytes, macrophages and neutrophils, is 

the cardinal feature of immunothrombosis (figure 3). Activation of innate immunity 

can be induced by the coagulation system; thrombin and factor Xa can activate 

innate immune cells through their protease-activated receptors (PARs). Similarly, 

fibrinogen and fibrin have been shown to initiate the activation of neutrophils.15 

In Covid-19, vascular injury is induced by endocytosis of SARS-CoV-2 by host cells, 

causing them to undergo pyroptosis.41 Pyroptosis is an extremely inflammatory form 

of programmed cell death that terminates in cell lysis, causing the release of various 

DAMPs including ATP, nucleic acids and inflammasomes. Pyroptosis also releases 

non-encapsulated viral RNA and proteins that can infect surrounding host cells and 

further amplify the inflammatory milieu. DAMPs bind pattern recognition receptors 

(PRRs), present on the surface of local epithelial cells, endothelial cells and 

monocytes.41 Ligation of viral ssRNA and dsRNA (which serve as pathogen-

associated molecular patterns (PAMPs)) with PRRs and toll-like receptors (TLRs), 

on the surface of macrophages, triggers their activation and further exacerbates the 

proinflammatory response. Recognition of PAMPs through the TLR and CD14 

receptor of monocytes promotes the transcription and expression of TF.15,65 The 

cumulative response of the immune system to SARS-CoV-2, both through 

inflammation and immune cell expression of prothrombotic proteins, is likely to be a 

major contributor to hypercoagulability in Covid-19. 

Cytokines and chemokines  

Severe Covid-19 is characterised by the increased activation of the innate immune 

system and increased inflammation.41 This is associated with an amplified and 

uncontrolled release of cytokines, a phenomenon that has been termed cytokine 

storm.66 Cytokines and chemokines are proteins secreted by a host of immune cells, 

and serve as an important innate defence mechanism. They recruit adaptive immune 

cells, and regulate a wide range of processes in the immune system.67 In Covid-19, 



 

numerous cytokines and chemokines are increased; IL-6, interferon (IFN)-γ, and IL-2 

are among the most commonly reported elevated cytokines.66,68 IL-6 increases 

platelet production and activity, increases the expression of TF on endothelial cells 

and monocytes, and can also give rise to endothelial dysfunction.66,68 IFN-γ similarly 

increases platelet production and impairs the vascular endothelium, giving rise to 

prothrombotic effects.68 IL-2 can decrease fibrinolysis by up-regulating PAI-1.68 IL-8 

is also elevated in Covid-19, and can attract neutrophils to the site of infection, which 

predisposes to the formation of neutrophil extracellular traps (NETs).66 Whilst 

cytokines have prothrombotic effects, the degree that this applies to Covid-19 

immunothrombosis requires further investigation and reverse causation 

(immunothrombosis may increase cytokines) or co-association are alternative 

explanations. 

 

Complement 

Complement activation is observed in Covid-19, with the deposition of the terminal 

complement complex C5b-9 and MASP2 protein in lung lesions.30 Complements are 

proteins that enhance the function of phagocytic cells and facilitate antibody 

opsonisation, serving as an important host defence mechanism of the innate immune 

system. They are produced as dormant factors by the liver, and in Covid-19 they are 

activated by the alternative and lectin pathways.30 The complement system involves 

a cascade of processes, culminating in the formation of the terminal C5b-9 

membrane attack complex (MAC), which is observed in Covid-19.30 The insertion of 

a MAC into the cell membrane of infected cells or directly onto pathogens creates a 

transmembrane channel, triggering cell lysis and death.69 MACs can also activate 

platelets, induce endothelial secretion of VWF, and cause endothelial damage when 

inserted into endothelial cells.69 When these normal defences against pathogens are 

hyperactivated, they result in excess endothelial damage that can serve as foci for 

thrombosis. The individual complement components are prothrombotic, for example, 

C5a can upregulate the activity of TF and PAI-1 and can also activate neutrophils, 

resulting in increased IL-6 and IL-8 production, while also promoting the formation of 

NETs.69 The serine protease MASP2 is increased in Covid-19 and may promote clot 

formation by activating C2 and C4, which increase the activity of thrombin, fibrinogen 

and factor XIII.30,70 Complement activation is likely to augment the Covid-19 



 

prothrombotic phenotype and future research should clarify the specific components 

of the complement system involved and the effect of modulation.  

 

Neutrophil extracellular traps 

Neutrophils are important contributors to the formation of thromboses and rapidly 

migrate to the site of endothelial damage alongside platelets.71 An important defence 

mechanism, known as NETosis, is deployed by activated neutrophils to clear 

pathogens and could be relevant to thrombosis in Covid-19 (figure 3).72 NETosis 

involves the extracellular release of NETs, which are composed of chromatin and 

microbicidal proteins.73 NETs have been implicated in the pathobiology of thrombosis 

in VTE, as well as ARDS and sepsis, with serum levels of NETs correlating with 

mortality.74,75 

 

NET-driven thrombosis is largely platelet-dependent; neutrophils recognise and bind 

P-selectin, expressed by activated platelets, through their PSGL-1 receptor which 

triggers NETosis.71 NETs can also interact with VWF, released by endothelial cells 

and platelets, which leads to platelet adhesion and fibrin formation.76,77 Histone 

proteins in the DNA fragments of NETs, serve as potent DAMPs which can further 

attract platelets and thereby initiate a positive feedback loop.71 Release of neutrophil 

elastase, a serine protease, during NETosis has previously been shown to inhibit 

anticoagulation by degrading TFPI and thrombomodulin.78 Degradation of these 

endogenous anticoagulants permits the unprohibited action of TF.79 Serine 

proteases also degrade alveolar surfactant cells which are important in the clearance 

of inflammatory cells.75 

 

The detrimental effects of NETs have previously been described in sepsis and 

ARDS, whereby NETs have been shown to induce damage to host tissue at the site 

of injury, thus exacerbating local inflammation and propagating microvascular 

thrombosis. Case reports in severe Covid-19 have described evidence of NETs, with 

sera derived from hospitalised patients containing markers of NETs, including 

elevated levels of citrullinated histone H3 and myeloperoxidase-DNA.72 A study 

utilising autopsy-derived tissue from Covid-19 patients reported neutrophil activation 

and the presence of NET aggregates within the microvasculature, resulting in 

vascular occlusion and consequent organ damage.80 NET formation may be 



 

augmented by the described pro-inflammatory and procoagulant factors in Covid-19, 

contributing to a thrombotic phenotype.  

COVID-19 AND VTE GENETIC ASSOCIATIONS 

VTE is a polygenic disease associated with common and rare genetic variants 

including heritable thrombophilias (e.g. Factor V Leiden, prothrombin mutations and 

antithrombin, protein C/S deficiencies). A genome-wide association study (GWAS) of 

patients with severe Covid-19 identified genetic associations in the ABO gene and in 

a chromosome 3 locus (3p21.31) spanning several genes (SLC6A20, LZTFL1, 

CCR9, FYCO1, CXCR6 and XCR1).81 When ABO blood groups were inferred in this 

GWAS, the A group was enriched in the severe Covid-19 patients whilst the O group 

was underrepresented. ABO is a pleiotropic locus that is associated with thrombotic 

diseases including VTE.82 The differential thrombotic risk of ABO blood groups has 

traditionally been attributed to VWF levels, which are 25% lower in O group 

individual.83 ABO is also associated with IL-6 levels which, together with VWF, are 

increased in Covid-19.84 Alternatively, anti-A antibodies in blood group O and B 

individuals may inhibit the SARS-CoV-2 virus and ACE2 receptor interaction.85,86 

Multiple plasma protein levels are associated with ABO, relating to immunology, 

endothelial cell function and coagulation.87 Alternative functional consequences of 

ABO genetic variation include influencing DC-SIGN levels, a membrane receptor 

expressed by dendritic cells and a proposed binding site for SARS-CoV-2.88,89  

 

The candidate gene SLC6A20 in the 3p21.31 GWAS locus encodes the SIT1 

transporter protein that functionally interacts with the ACE2 receptor, and the 

3p21.31 locus is putatively associated with levels of the chemokine CXCL16; 

however, the functional consequences of the 3p21.31 genetic association require 

further investigation.81,88,89 Genetic variation in ACE2 and TMPRSS2 may influence 

Covid-19 susceptibility but this requires validation in a Covid-19 specific population.90 

Genetic variation in human leucocyte antigens could affect immune response by 

varying the affinity for SARS-CoV-2 binding.91 Furthermore, rare variants in genes 

related to type I interferon immunity are enriched in severe Covid-19.92 Ongoing 

research from global consortia aims to clarify the role of genomic variation in Covid-

19 susceptibility, severity and clinical outcomes.93 

 



 

 

 

ADDITIONAL THROMBOTIC MECHANISMS 

Additional mechanisms have been putatively associated with thrombosis in Covid-

19. Increased levels of ferritin in Covid-19 are likely to reflect cellular damage and 

could contribute to inflammation.25,94 High levels of ferritin may have detrimental 

effects on mitochondria, leading to the release of reactive oxygen species, which 

cause cell death.94 Mitochondrial dysfunction in platelets may contribute to 

inflammation and a prothrombotic state.94 

 

Elevated antiphospholipid antibody (APA) titres have been described in Covid-19, 

although their significance is unclear.95 APAs can interact with the endothelium, 

leucocytes and platelets, triggering the release of prothrombotic factors, and can 

also interact with the complement system.96 APAs can be raised in acute infection, 

and a diagnosis of antiphospholipid syndrome requires APAs to be measured on two 

separate occasions 12 weeks apart, which needs confirmation before being 

implicated in Covid-19 pathophysiology.95,96  

 

Obesity is a is a long-term and subacute inflammatory condition that is a risk factor 

for Covid-19 and VTE.43,97,98 Hypertrophy of adipocytes and the associated 

dysfunction in adipose metabolism causes the release of IL-6, PAI-1 and TF, which 

activate the coagulation system.98 Platelet aggregation is also promoted with the 

decreased release of adiponectin and increased release of leptin.98 Insulin 

resistance, associated with obesity, also reduces the modulatory effect that insulin 

appears to have on platelet activity.98 The inflammatory state in obesity may account 

for its association with Covid-19, and result in an increased risk of VTE.  

 

 

DISCUSSION 

The mechanisms contributing to increased thrombosis in Covid-19 involve extensive 

cross-talk between haemostasis and the immune system. Treatments that target 

these pathways may mitigate the adverse macro- and microvascular effects of 

Covid-19 and include anticoagulants, antiplatelets, fibrinolytics and immune 



 

modulators, with numerous studies ongoing.99 Guidelines recommend prophylactic 

anticoagulation in hospitalised Covid-19 patients and treatment dose anticoagulation 

in established VTE, with evidence indicating better clinical outcomes for 

anticoagulated patients.20,100 Ongoing studies are assessing different anticoagulation 

strategies for Covid-19. Anticoagulation may reduce propagation or additional 

formation of thrombus, but alternative strategies may be required to prevent or target 

dysregulated immunothrombosis. Additionally, cellular heparan sulfate is a proposed 

co-receptor for SARS-CoV-2 binding to ACE2, and therefore exogenous heparin 

may have effects on viral adhesion.101 Dexamethasone has a range of anti-

inflammatory and immunosuppressive effects including attenuating the function of 

immune cells, particularly T cells by suppressing their activation and proliferation. 

Dexamethasone improves clinical outcomes in hospitalised Covid-19 patients, but its 

role in controlling Covid-19 immunothrombosis is unclear.102,103 Fibrinolytics (e.g. 

recombinant tPA) have been trialled in a case-series of Covid-19 ARDS, and tPA 

may have additional anti-inflammatory effects that could be beneficial for Covid-19 

immunothrombosis.28 Anti-cytokine treatments, such as tocilizumab (directed against 

the IL-6 receptor), and anti-complement agents, such as eculizumab (directed 

against C5), are also being investigated in Covid-19 patients.66 Attenuating pro-

inflammatory pathways is likely to have downstream effects on immunothrombosis. 

However, care is required to strike the correct balance between appropriately 

targeting aberrant and dysregulated immunothrombosis, whilst not impairing its 

important physiological host defence function. 

 

Whilst research into Covid-19 associated VTE and immunothrombosis has been 

proliferating, there remain a number of knowledge gaps. Some putative 

pathobiological mechanisms have been inferred from other disease processes 

including alternative betacoronaviruses, viral pneumonias and ARDS. Dissecting and 

delineating the specific effects that SARS-CoV-2 has on thrombosis remains an 

active area of research and is crucial for guiding interventions. Areas for future 

Covid-19 research include i) whether small pulmonary thromboses represent VTE, 

immunothrombosis or a combination ii) can diagnostic strategies (e.g. radiological, 

biochemical) accurately diagnose and differentiate between VTE and 

immunothrombosis iii) can the risk of immunothrombosis be accurately predicted  iv)  

can immunothrombosis be prevented with prophylactic anticoagulation, or treated 



 

with anticoagulation v) developing novel immunothrombosis targeted interventions 

and defining how other Covid-19 treatments (e.g. dexamethasone) affect 

immunothrombosis / VTE in Covid-19.  

 

Most Covid-19 studies have been cross-sectional in patients with more severe 

disease. To fully understand the immuno-haemostatic cross-talk leading to 

immunothrombosis, longitudinal measurements in different cohorts would be 

required, which would guide the optimal timing and cohorts where intervention would 

be beneficial. An increasing understanding of the complex pathobiological interplay 

between the immune system and haemostasis in Covid-19 will help in developing 

new treatments and mitigate off target effects of modulation.  



 

FIGURES 
 
 

 

Figure 1. Clotting cascade abnormalities in Covid-19.  

The coagulation cascade is initiated by exposure to prothrombotic proteins from the 

subendothelium or following expression of tissue factor, referred to as the intrinsic 

pathway and extrinsic pathways, respectively. Clinical investigation of the intrinsic 

and extrinsic pathways can be measured by activated partial thromboplastin time 

(aPTT) and prothrombin time (PT), respectively. A series of sequential cleavages 

occur, whereby proteolytic coagulation factors convert circulating, inactive factors 

into their active form. Both pathways reach a common pathway, by which activated 

Factor X cleaves prothrombin to form thrombin. Thrombin cleaves fibrinogen to give 

rise to fibrin strands, which rapidly polymerise to stabilise platelet aggregates and 

form a thrombus. Fibrin can be degraded by plasmin; tissue plasminogen activator 

(tPA) facilitates the cleavage of plasminogen to give rise to plasmin. Components of 

the clotting cascade that are abnormal or putatively associated with Covid-19, 

particularly severe disease, are shown in shaded symbols. In Covid-19, tissue factor 

pathway inhibitor (TFPI), Factor VIII, fibrinogen, plasminogen-activator inhibitor-1 



 

(PAI-1) and fibrin degradation products (FDPs) have been shown to be elevated. A 

prolonged prothrombin time (PT) has also been reported. Studies have shown 

reduced platelet numbers and levels of tissue plasminogen activator (tPA) in Covid-

19. Elevated parameters are indicated with a ↑ symbol, decreased parameters with a 

↓ symbol. 

  



 

 

Figure 2. Endothelial dysfunction in Covid-19  

Endothelial dysfunction in Covid-19 may occur through multiple mechanisms and 

precipitating factors. Direct invasion of SARS-CoV-2 into endothelial cells causes 

cellular damage that disturbs intercellular junctions and exposes prothrombotic 

subendothelial collagen. Internalisation of the ACE2 receptor causes an imbalance 

of Ang1-7 and AngII, in favour of the latter. Accumulation of AngII promotes the 

endothelial expression of P-selectin, TF and VWF. Intracellular viral replication within 

endothelial cells results in their activation and expression of an array of 

prothrombotic proteins. Expression of these prothrombotic proteins activates the 

extrinsic coagulation cascade. Simultaneous recruitment of platelets to the site of 

endothelial injury further contributes to hypercoagulability. Polyphosphates are 

secreted by activated platelets and promote the activation of coagulation factors. 

Polyphosphates inhibit tissue factor pathway inhibitor (TFPI) and encourage fibrin 

polymerisation. Local hypoxia exacerbates the prothrombotic phenotype, through 

induction of P-selectin, TF and VWF expression on the endothelial surface. Hypoxia-

induced activation of the COX pathway releases thromboxanes A2 and B2 (TxA2 and 

TxB2, respectively). TxA2 and TxB2 bind to thromboxane prostanoid receptors 

(TPRs) present on smooth muscle cells, resulting in vasoconstriction. 

 



 

 

Figure 3. Immunothrombosis in Covid-19.  

Initial binding of SARS-CoV-2 to type II pneumocytes within the alveoli results in 

mass innate immune cell infiltration (including monocytes, macrophages and 

neutrophils). Subsequent cytokine release, from these immune cells, contributes to a 

hypercoagulable state through various proposed mechanisms. (A) Proinflammatory 



 

cytokine release can induce the release of platelets and their activation and 

aggregation. IL-6, in particular, has been shown to promote the production of 

platelets with notably more thrombogenic capacity than those produced under a non-

inflammatory environment. Cathepsin G, a serine protease produced by neutrophils, 

also activates platelets. TNF-ɑ and IL-6 upregulate TF expression by a number of 

different cell types, namely monocytes, macrophages and endothelial cells. 

Furthermore, TNF-ɑ triggers a rise in PAI-1, which in turn inhibits tPA. A consequent 

reduction in the activity of plasmin reduces fibrinolysis. (B) Complement activation is 

an important inducer of coagulation. Membrane attack complexes (MACs), also 

referred to as terminal complement complexes C5b-9, are the endpoint of a complex 

cascade of sequential cleavage and activation of complement proteins. MACs are 

constructed from a number of complement protein subunits and serve as a 

transmembrane channel, initiating cell lysis of the target cell of which they are 

embedded. Cell lysis and death of host cells contributes to coagulopathy by initiating 

microthrombi and VWF formation, as well as increasing prothrombin activity. Another 

mechanism, by which complement activation contributes to coagulation, is via 

binding of C3b to CR1 receptor, present on the membrane of platelets. Binding of 

C3b triggers the release of short-chain polyphosphate (polyP) from platelets, which 

induces the expression of TF. Complement component C5a may also contribute to 

the recruitment of neutrophils. (C) The generation of neutrophil extracellular traps 

(NETs), as a defence mechanism by neutrophils, also promotes coagulation. 

Histones, a major component of NETs, attract and bind platelets resulting in their 

aggregation. Activation of platelets, as a result of their binding to histones, induces 

TF expression. Neutrophil elastase (NE) cleaves tissue factor pathway inhibitor 

(TFPI), thereby permitting unprohibited action of TF. 
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