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Abstract
Automated verification techniques for stochastic games allow formal reasoning about systems
that feature competitive or collaborative behaviour among rational agents in uncertain or
probabilistic settings. Existing tools and techniques focus on turn-based games, where each
state of the game is controlled by a single player, and on zero-sum properties, where two
players or coalitions have directly opposing objectives. In this paper, we present automated
verification techniques for concurrent stochastic games (CSGs), which provide amore natural
model of concurrent decision making and interaction.We also consider (social welfare) Nash
equilibria, to formally identify scenarios where two players or coalitions with distinct goals
can collaborate to optimise their joint performance. We propose an extension of the temporal
logic rPATL for specifying quantitative properties in this setting and present corresponding
algorithms for verification and strategy synthesis for a variant of stopping games. For finite-
horizon properties the computation is exact, while for infinite-horizon it is approximate
using value iteration. For zero-sum properties it requires solving matrix games via linear
programming, and for equilibria-based properties we find social welfare or social cost Nash
equilibria of bimatrix games via the method of labelled polytopes through an SMT encoding.
We implement this approach in PRISM-games,which required extending the tool’smodelling
language for CSGs, and apply it to case studies from domains including robotics, computer
security and computer networks, explicitly demonstrating the benefits of both CSGs and
equilibria-based properties.

Keywords Quantitative verification · Probabilistic model checking · Concurrent stochastic
games · Nash equilibria

1 Introduction

Stochastic multi-player games are a versatile modelling framework for systems that exhibit
cooperative or competitive behaviour in the presence of adversarial or uncertain environ-
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Formal Methods in System Design

ments. They can be viewed as a collection of players (agents) with strategies for determining
their actions based on the execution so far. Thesemodels combine nondeterminism, represent-
ing the adversarial, cooperative and competitive choices, stochasticity, modelling uncertainty
due to noise, failures or randomness, and concurrency, representing simultaneous execution
of interacting agents. Examples of such systems appear in many domains, from robotics and
autonomous transport, to security and computer networks. A game-theoretic approach also
facilitates the design of protocols that use penalties or incentives to ensure robustness against
selfish participants. However, the complex interactions involved in such systems make their
correct construction a challenge.

Formal verification for stochastic games provides a means of producing quantitative guar-
antees on the correctness of these systems (e.g. “the control software can always safely stop
the vehicle with probability at least 0.99, regardless of the actions of other road users”),
where the required behavioural properties are specified precisely in quantitative extensions
of temporal logic. The closely related problem of strategy synthesis constructs an optimal
strategy for a player, or coalition of players, which guarantees that such a property is satisfied.

A variety of verification algorithms for stochastic games have been devised, e.g., [13,14,
24,25,75]. In recent years, further progress has beenmade: verification and strategy synthesis
algorithms have been developed for various temporal logics [5,19,42,45] and implemented
in the PRISM-games tool [51], an extension of the PRISM probabilistic model checker [44].
This has allowed modelling and verification of stochastic games to be used for a variety of
non-trivial applications, in which competitive or collaborative behaviour between entities is
a crucial ingredient, including computer security and energy management.

A limitation of the techniques implemented in PRISM-games to date is that they focus
on turn-based stochastic multi-player games (TSGs), whose states are partitioned among
a set of players, with exactly one player taking control of each state. In this paper, we
propose and implement techniques for concurrent stochastic multi-player games (CSGs),
which generalise TSGs by permitting players to choose their actions simultaneously in each
state. This provides a more realistic model of interactive agents operating concurrently, and
making action choices without already knowing the actions being taken by other agents.
Although algorithms for CSGs have been known for some time (e.g., [14,24,25]), their
implementation and application to real-world examples has been lacking.

A further limitation of existing work is that it focuses on zero-sum properties, in which
one player (or a coalition of players) aims to optimise some objective, while the remaining
players have the directly opposing goal. In PRISM-games, properties are specified in the
logic rPATL (probabilistic alternating-time temporal logic with rewards) [19], a quantitative
extension of the game logic ATL [1]. This allows us to specify that a coalition of players
can achieve a high-level objective, regarding the probability of an event’s occurrence or the
expectation of reward measure, irrespective of the other players’ strategies. Extensions have
allowed players to optimise multiple objectives [5,20], but again in a zero-sum fashion.

In this work, we move beyond zero-sum properties and consider situations where two
players (or two coalitions of players) in a CSG have distinct objectives to be maximised or
minimised. The goals of the players (or coalitions) are not necessarily directly opposing, and
so it may be beneficial for players to collaborate. For these nonzero-sum scenarios, we use
the well studied notion of Nash equilibria (NE), where it is not beneficial for any player to
unilaterally change their strategy. In particular, we use subgame-perfect NE [61], where this
equilibrium criterion holds in every state of the game, and we focus on two specific variants
of equilibria: social welfare and social cost NE, which maximise and minimise, respectively,
the sum of the objectives of the players.
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We propose an extension of the rPATL logic which adds the ability to express quantitative
nonzero-sum properties based on these notions of equilibria, for example “the two robots
have navigation strategies which form a (social cost) Nash equilibrium, and under which the
combined expected energy usage until completing their tasks is below k”. We also include
some additional reward properties that have proved to be useful when applying our methods
to various case studies.

We provide a formal semantics for the new logic and propose algorithms for CSG verifi-
cation and strategy synthesis for a variant of stopping games, including both zero-sum and
nonzero-sum properties. Our algorithms extend the existing approaches for rPATL model
checking, and employ a combination of exact computation through backward induction for
finite-horizon properties and approximate computation through value iteration for infinite-
horizon properties. Both approaches require the solution of games for each state of the model
in each iteration of the computation: we solve matrix games for the zero-sum case and find
optimal NE for bimatrix games for the nonzero-sum case. The former can be done with linear
programming; we perform the latter using labelled polytopes [52] and a reduction to SMT.

We have implemented our verification and strategy synthesis algorithms in a new release,
version 3.0, of PRISM-games [48], extending both the modelling and property specification
languages to support CSGs and nonzero-sum properties. In order to investigate the perfor-
mance, scalability and applicability of our techniques, we have developed a large selection
of case studies taken from a diverse set of application domains including: finance, computer
security, computer networks, communication systems, robot navigation and power control.

These illustrate examples of systems whose modelling and analysis requires stochasticity
and competitive or collaborative behaviour between concurrent components or agents. We
demonstrate that our CSGmodelling and verification techniques facilitate insightful analysis
of quantitative aspects of such systems. Specifically, we show cases where CSGs allow more
accurate modelling of concurrent behaviour than their turn-based counterparts and where our
equilibria-based extension of rPATL allows us to synthesise better performing strategies for
collaborating agents than can be achieved using the zero-sum version.

The paper combines and extends the conference papers [45,46]. In particular, we: (i)
introduce the definition of social cost Nash equilibria for CSGs and model checking algo-
rithms for verifying temporal logic specifications using this definition; (ii) provide additional
details and proofs of model checking algorithms, for example for combinations of finite-
and infinite-horizon objectives; (iii) present an expanded experimental evaluation, includ-
ing a wider range of properties, extended analysis of the case studies and a more detailed
evaluation of performance, including efficiency improvements with respect to [45,46].
Related workVarious verification algorithms have been proposed for CSGs, e.g. [14,24,25],
but without implementations, tool support or case studies. PRISM-games 2.0 [51], which
we have built upon in this work, provided modelling and verification for a wide range of
properties of stochastic multi-player games, including those in the logic rPATL, and multi-
objective extensions of it, but focusing purely on the turn-based variant of the model (TSGs)
in the context of two-coalitional zero-sum properties. GIST [17] allows the analysis of ω-
regular properties on probabilistic games, but again focuses on turn-based, not concurrent,
games. GAVS+ [21] is a general-purpose tool for algorithmic game solving, supporting TSGs
and (non-stochastic) concurrent games, but not CSGs. Three further tools, PRALINE [10],
EAGLE [74] and EVE [34], support the computation of NE [58] for the restricted class of
(non-stochastic) concurrent games. In addition, EVE has recently been extended to verify if
an LTL property holds on some or all NE [35]. Computing NE is also supported byMCMAS-
SLK [12] via strategy logic and general purpose tools such as Gambit [57] can compute a
variety of equilibria but, again, not for stochastic games.
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Work concerning nonzero-sum properties includes [18,75], in which the existence of and
the complexity of findingNE for stochastic games is studied, butwithout practical algorithms.
The complexity of finding subgame-perfect NE for quantitative reachability properties is
studied in [11], while [33] considers the complexity of equilibrium design for temporal logic
properties and lists social welfare requirements and implementation as future work. In [65],
a learning-based algorithm for finding NE for discounted properties of CSGs is presented
and evaluated. Similarly, [53] studies NE for discounted properties and introduces iterative
algorithms for strategy synthesis. A theoretical framework for price-taking equilibria ofCSGs
is given in [2], where players try to minimise their costs which include a price common to all
players and dependent on the decisions of all players. A notion of strong NE for a restricted
class of CSGs is formalised in [27] and an approximation algorithm for checking the existence
of such NE for discounted properties is introduced and evaluated. The existence of stochastic
equilibria with imprecise deviations for CSGs and a PSPACE algorithm to compute such
equilibria is considered in [8]. Finally, we mention the fact that the concept of equilibrium
is used to analyze different applications such as cooperation among agents in stochastic
games [39] and to design protocols based on quantum secret sharing [67].

2 Preliminaries

Webeginwith some basic background fromgame theory, and then describeCSGs, illustrating
each with examples. For any finite set X , we will write Dist(X) for the set of probability
distributions over X and for any vector v ∈ Qn for n ∈ N we use v(i) to denote the i th entry
of the vector.

2.1 Game theory concepts

We first introduce normal form games, which are simple one-shot games where players make
their choices concurrently.

Definition 1 (Normal form game) A (finite, n-person) normal form game (NFG) is a tuple
N = (N , A, u) where:

– N = {1, . . . , n} is a finite set of players;
– A = A1 × · · · × An and Ai is a finite set of actions available to player i ∈ N ;
– u = (u1, . . . , un) and ui : A → Q is a utility function for player i ∈ N .

In a gameN, players select actions simultaneously,with player i ∈ N choosing from the action
set Ai . If each player i selects action ai , then player j receives the utility u j (a1, . . . , an).

Definition 2 (Strategies and strategy profile)A (mixed) strategy σi for player i in anNFGN is
a distribution over its action set, i.e., σi ∈ Dist(Ai ). We let Σ i

N denote the set of all strategies
for player i . A strategy profile (or just profile) σ = (σ1, . . . , σn) is a tuple of strategies for
each player.

Under a strategy profile σ = (σ1, . . . , σn) of an NFG N, the expected utility of player i is
defined as follows:

ui (σ )
def= ∑

(a1,...,an)∈A ui (a1, . . . , an) ·
(∏n

j=1 σ j (a j )
)

.
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A two-player NFG is also called a bimatrix game as it can be represented by two distinct
matrices Z1, Z2 ∈ Ql×m where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm}, z1i j = u1(ai , b j ) and

z2i j = u2(ai , b j ).
A two-player NFG is constant-sum if there exists c ∈ Q such that u1(α)+u2(α) = c

for all α ∈ A and zero-sum if c = 0. A zero-sum, two-player NFG is often called a matrix
game as it can be represented by a single matrix Z ∈ Ql×m where A1 = {a1, . . . , al},
A2 = {b1, . . . , bm} and zi j = u1(ai , b j ) = −u2(ai , b j ). For zero-sum, two-player NFGs, in
the bimatrix game representation we have Z1 = −Z2.

2.1.1 Matrix games

We require the following classical result concerning matrix games, which introduces the
notion of the value of a matrix game (and zero-sum NFG).

Theorem 1 (Minimax theorem [76,77]) For any zero-sum NFG N = (N , A, u) and corre-
sponding matrix game Z, there exists v� ∈ Q, called the value of the game and denoted
val(Z), such that:

– there is a strategy σ�
1 for player 1, called an optimal strategy of player 1, such that under

this strategy the player’s expected utility is at least v� regardless of the strategy of player
2, i.e. infσ2∈Σ2

N
u1(σ �

1 , σ2) ≥ v�;

– there is a strategy σ�
2 for player 2, called an optimal strategy of player 2, such that under

this strategy the player’s expected utility is at least −v� regardless of the strategy of
player 1, i.e. infσ1∈Σ1

N
u2(σ1, σ �

2 ) ≥ −v�.

The value of a matrix game Z ∈ Ql×m can be found by solving the following linear program-
ming (LP) problem [76,77]. Maximise v subject to the constraints:

x1·z1 j + · · · + xl ·zl j ≥ v for all 1 ≤ j ≤ m

xi ≥ 0 for all 1 ≤ i ≤ l

x1 + · · · + xl = 1

In addition, the solution for (x1, . . . , xl) yields an optimal strategy for player 1. The value of
the game can also be found by solving the following dual LP problem. Minimise v subject
to the constraints:

y1·zi1 + · · · + ym ·zim ≤ v for all 1 ≤ i ≤ l

y j ≥ 0 for all 1 ≤ j ≤ m

y1 + · · · + ym = 1

and in this case the solution (y1, . . . , ym) yields an optimal strategy for player 2.

Example 1 Consider the (zero-sum) NFG corresponding to the well known rock-paper-
scissors game, where each player i ∈ {1, 2} chooses “rock” (ri ), “paper” (pi ) or “scissors”
(si ). The matrix game representation is:

Z =
⎛

⎝

r2 p2 s2

r1 0 −1 1
p1 1 0 −1
s1 −1 1 0

⎞

⎠
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where the utilities for winning, losing and drawing are 1, −1 and 0 respectively. The value
for this matrix game is the solution to the following LP problem. Maximise v subject to the
constraints:

x2 − x3 ≥ v

x3 − x1 ≥ v

x1 − x2 ≥ v

x1, x2, x3 ≥ 0

x1 + x2 + x3 = 1

which yields the value v� = 0 with optimal strategy σ�
1 = (1/3, 1/3, 1/3) for player 1 (the

optimal strategy for player 2 is the same).

2.1.2 Bimatrix games

For bimatrix games (and nonzero-sum NFGs), we use the concept of Nash equilibria (NE),
which represent scenarios for players with distinct objectives in which it is not beneficial for
any player to unilaterally change their strategy. In particular, wewill use variants called social
welfare optimal NE and social cost optimal NE. These variants are equilibria that maximise
or minimise, respectively, the total utility of the players, i.e., the sum of the individual player
utilities.

Definition 3 (Best and least response) For NFG N = (N , A, u), strategy profile σ =
(σ1, . . . , σn) and player i strategy σ ′

i , we define the sequence of strategies σ−i =
(σ1, . . . , σi−1, σi+1, . . . , σn) and profile σ−i [σ ′

i ] = (σ1, . . . , σi−1, σ
′
i , σi+1, . . . , σn). For

player i and strategy sequence σ−i :

– a best response for player i to σ−i is a strategy σ�
i for player i such that ui (σ−i [σ�

i ]) ≥
ui (σ−i [σi ]) for all strategies σi of player i ;

– a least response for player i to σ−i is a strategy σ�
i for player i such that ui (σ−i [σ�

i ]) ≤
ui (σ−i [σi ]) for all strategies σi of player i .

Definition 4 (Nash equilibrium) For NFGN = (N , A, u), a strategy profile σ� ofN is aNash
equilibrium (NE) and 〈ui (σ �)〉i∈N NE values if σ�

i is a best response to σ�−i for all i ∈ N .

Definition 5 (Social welfare NE) For NFG N = (N , A, u), an NE σ� of N is a
social welfare optimal NE (SWNE) and 〈ui (σ �)〉i∈N corresponding SWNE values if
u1(σ �)+ · · · +un(σ �) ≥ u1(σ )+ · · · +un(σ ) for all NE σ of N.

Definition 6 (Social cost NE) For NFG N = (N , A, u), a profile σ� of N is a social
cost optimal NE (SCNE) and 〈ui (σ �)〉i∈N corresponding SCNE values if it is an NE
of N− = (N , A,−u) and u1(σ �)+ · · · +un(σ �) ≤ u1(σ )+ · · · +un(σ ) for all NE σ of
N− = (N , A,−u).

The notion of SWNE is standard [59] and corresponds to the case where utility values
represent profits or rewards. We introduce the dual notion of SCNE for the case where
utility values correspond to losses or costs. In our experience of modelling with stochastic
games, such situations are common: example objectives in this category include minimising
the probability of a fault occurring or minimising the expected time to complete a task.
RepresentingSCNEdirectly is amore natural approach than the alternative of simply negating
utilities, as above.

The following demonstrates the relationship between SWNE and SCNE.
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Lemma 1 For NFG N = (N , A, u), a strategy profile σ� of N is an NE of N− = (N , A,−u)

if and only if σ�
i is a least response to σ�−i of player i in N for all i ∈ N. Furthermore, σ� is

a SWNE of N− if and only if σ� is a SCNE of N.

Lemma 1 can be used to reduce the computation of SCNE profiles and values to those of
SWNE profiles and values (or vice versa). This is achieved by negating all utilities in the
NFG or bimatrix game, computing an SWNE profile and corresponding SWNE values, and
then negating the SWNE values to obtain an SCNE profile and corresponding SCNE values
for the original NFG or bimatrix game.

Finding NE and NE values in bimatrix games is in the class of linear complementarity
problems (LCPs). More precisely, (σ1, σ2) is an NE profile and (u, v) are the corresponding
NE values of the bimatrix game Z1, Z2 ∈ Ql×m where A1 = {a1, . . . , al}, A2 = {b1, . . . , bm}
if and only if for the column vectors x ∈ Ql and y ∈ Qm where xi = σ1(ai ) and y j = σ2(b j )

for 1 ≤ i ≤ l and 1 ≤ j ≤ m, we have:

xT (1u − Z1y) = 0 (1)

yT (1v − ZT2 x) = 0 (2)

1u − Z1y ≥ 0 (3)

1v − ZT2 x ≥ 0 (4)

and 0 and 1 are vectors or matrices with all components 0 and 1, respectively.

Example 2 We consider a nonzero-sum stag hunt game [62] where, if players decide to
cooperate, this can yield a large utility, but if the others do not, then the cooperating player
gets nothing while the remaining players get a small utility. A scenario with 3 players, where
two form a coalition (assuming the role of player 2), yields a bimatrix game:

Z1 =
(

nc2 hc2 c2

nc1 2 2 2
c1 0 4 6

)

Z2 =
(

nc2 hc2 c2

nc1 4 2 0
c1 4 6 9

)

where nci and ci represent player 1 and coalition 2 not cooperating and cooperating, respec-
tively, and hc2 represents half the players in the coalition cooperating. A strategy profile
σ ∗ = ((x1, x2, x3), (y1, y2)) is an NE and (u, v) the corresponding NE values of the game
if and only if, from Eqs. (1) and (2):

u·x1 − 2·x1·y1 − 2·x1·y2 − 2·x1·y3 + u·x2 − 4·x2·y2 − 6·x2·y3 = 0

v·y1 − 4·x1·y1 − 4·x2·y1 + v·y2 − 2·x1·y2 − 6·x2·y2 + v·y3 − 9·x2·y3 = 0

and, from Eqs. (3) and (4):

u − 2·y1 − 2·y2 − 2·y3 ≥ 0

u − 4·y2 − 6·y3 ≥ 0

v − 4·x1 − 4·x2 ≥ 0

v − 2·x1 − 6·x2 ≥ 0

v − 9·x2 ≥ 0.

There are three solutions to this LCP problemwhich correspond to the following NE profiles:

– player 1 and the coalition pick nc1 and nc2, respectively, with NE values (2, 4);
– player 1 selects nc1 and c1 with probabilities 5/9 and 4/9 and the coalition selects nc2

and c2 with probabilities 2/3 and 1/3, with NE values (2, 4);
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– player 1 and the coalition select c1 and c2, respectively, with NE values (6, 9).

For instance, in the first case, neither player 1 nor the coalition believes the other will coop-
erate: the best they can do is act alone. The third maximises the joint utility and is the only
SWNE profile, with corresponding SWNE values (6, 9).

To find SCNE profiles and SCNE values for the same set of utility functions, using
Lemma 1 we can negate all the utilities of the players in the game and look for NE pro-
files in the resulting bimatrix game; again, there are three:

– player 1 and the coalition select c1 and nc2, respectively, with NE values (0,−4);
– player 1 selects nc1 and c1 with probabilities 1/2 and 1/2 and the coalition selects nc2

and hc2 with probabilities 1/2 and 1/2, with NE values (−2,−4);
– player 1 and the coalition select nc1 and c2, respectively, with NE values (−2, 0).

The third is the only SCNE profile, with corresponding SCNE values (2, 0).

In this work, we compute the SWNE values for a bimatrix game (or, via Lemma 1,
the SCNE values) by first identifying all the NE values of the game. For this, we use the
Lemke-Howson algorithm [52], which is based on the method of labelled polytopes [59].
Other well-known methods include those based on support enumeration [64] and regret
minimisation [69]. Given a bimatrix game Z1, Z2 ∈ Ql×m , we denote the sets of deterministic
strategies of players 1 and 2 by I = {1, . . . , l} and M = {1, . . . ,m} and define J =
{l+1, . . . , l+m} by mapping j ∈ M to l+ j ∈ J . A label is then defined as an element of
I ∪ J . The sets of strategies for players 1 and 2 can be represented by:

X = {x ∈ Ql | (1x = 1) ∧ (x ≥ 0)} and Y = {y ∈ Qm | (1y = 1) ∧ (y ≥ 0)} .

The strategy set Y is then divided into regions Y (i) and Y ( j) (polytopes) for i ∈ I and j ∈ J
such that Y (i) contains strategies for which the deterministic strategy i of player 1 is a best
response and Y ( j) contain strategies which choose action j with probability 0:

Y (i) = {y ∈ Y | ∀k ∈ I . Z1(i, :)y ≥ Z1(k, :)y} and Y ( j) = {y ∈ Y | y j−l = 0}
where Z1(i, :) is the i th row vector of Z1. A vector y is then said to have label k if y ∈ Y (k),
for k ∈ I ∪ J . The strategy set X is divided analogously into regions X( j) and X(i) for
j ∈ J and i ∈ I and a vector x has label k if x ∈ X(k), for k ∈ I ∪ J . A pair of vectors
(x, y) ∈ X×Y is completely labelled if the union of the labels of x and y equals I ∪ J .

The NE profiles of the game are the vector pairs that are completely labelled [52,72]. The
corresponding NE values can be computed through matrix-vector multiplication. A SWNE
profile and corresponding SWNE values can then be found through an NE profile with NE
values that maximise the sum.

2.2 Concurrent stochastic games

We now define concurrent stochastic games [71], where players repeatedly make simultane-
ous choices over actions that update the game state probabilistically.

Definition 7 (Concurrent stochastic game)A concurrent stochasticmulti-player game (CSG)
is a tuple G = (N , S, S̄, A,Δ, δ,AP,L) where:

– N = {1, . . . , n} is a finite set of players;
– S is a finite set of states and S̄ ⊆ S is a set of initial states;
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– A = (A1 ∪ {⊥})× · · · ×(An ∪ {⊥}) where Ai is a finite set of actions available to player
i ∈ N and ⊥ is an idle action disjoint from the set ∪n

i=1Ai ;
– Δ : S → 2∪n

i=1Ai is an action assignment function;
– δ : S×A → Dist(S) is a probabilistic transition function;
– AP is a set of atomic propositions and L : S → 2AP is a labelling function.

A CSG G starts in an initial state s̄ ∈ S̄ and, when in state s, each player i ∈ N selects

an action from its available actions Ai (s)
def= Δ(s) ∩ Ai if this set is non-empty, and from

{⊥} otherwise. Supposing each player i selects action ai , the state of the game is updated
according to the distribution δ(s, (a1, . . . , an)). A CSG is a turn-based stochastic multi-
player game (TSG) if for any state s there is precisely one player i for which Ai (s) �= {⊥}.
Furthermore, a CSG is a Markov decision process (MDP) if there is precisely one player i
such that Ai (s) �= {⊥} for all states s.

A path π of G is a sequence π = s0
α0−→ s1

α1−→ · · · where si ∈ S, αi ∈ A and
δ(si , αi )(si+1) > 0 for all i ≥ 0. We denote by π(i) the (i+1)th state of π , π[i] the action
associated with the (i+1)th transition and, if π is finite, last(π) the final state. The length of
a path π , denoted |π |, is the number of transitions appearing in the path. Let FPathsG and
IPathsG (FPathsG,s and IPathsG,s) be the sets of finite and infinite paths (starting in state s).

We augment CSGswith reward structures of the form r = (rA, rS), where rA : S×A → Q

is an action reward function (which maps each state and action tuple pair to a rational value
that is accumulated when the action tuple is selected in the state) and rS : S → Q is a state
reward function (which maps each state to a rational value that is incurred when the state is
reached). We allow both positive and negative rewards; however, we will later impose certain
restrictions to ensure the correctness of our model checking algorithms.

A strategy for a player in a CSG resolves the player’s choices in each state. These choices
can depend on the history of the CSG’s execution and can be randomised. Formally, we have
the following definition.

Definition 8 (Strategy) A strategy for player i in a CSG G is a function of the form
σi : FPathsG → Dist(Ai ∪ {⊥}) such that, if σi (π)(ai ) > 0, then ai ∈ Ai (last(π)). We
denote by Σ i

G the set of all strategies for player i .

As forNFGs, a strategy profile forG is a tuple σ = (σ1, . . . , σn) of strategies for all players
and, for player i and strategy σ ′

i , we define the sequence σ−i and profile σ−i [σ ′
i ] in the same

way. For strategy profile σ = (σ1, . . . , σn) and state s, we let FPathsσG,s and IPaths
σ
G,s denote

the finite and infinite paths from s under the choices of σ .We can define a probabilitymeasure
Probσ

G,s over the infinite paths IPaths
σ
G,s [43]. This construction is based on first defining the

probabilities for finite paths from the probabilistic transition function and choices of the

strategies in the profile. More precisely, for a finite path π = s0
α0−→ s1

α1−→ · · · αm−1−−−→ sm
where s0 = s, the probability of π under the profile σ is defined by:

Pσ (π)
def= ∏m−1

j=0

(( ∏n
i=1 σi (s0

α0−→ · · · α j−1−−→ s j )(α j (i))
)

· δ(s j , α j )(s j+1)
)

.

Next, for each finite path π , we define the basic cylinder Cσ (π) that consists of all infinite
paths in IPathsσG,s that have π as a prefix. Finally, using properties of cylinders, we can then
construct the probability space (IPathsσG,s,Fσ

s ,Probσ
G,s), whereFσ

s is the smallest σ -algebra
generated by the set of basic cylinders {Cσ (π) | π ∈ FPathsσG,s} and Probσ

G,s is the unique
measure such that Probσ

G,s(C
σ (π)) = Pσ (π) for all π ∈ FPathsσG,s .

For random variable X : IPathsG → Q, we can then define for any profile σ and state s
the expected value Eσ

G,s(X) of X in s with respect to σ . These random variables X represent
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an objective (or utility function) for a player, which includes both finite-horizon and infinite-
horizon properties. Examples of finite-horizon properties include the probability of reaching
a set of target states T within k steps or the expected reward accumulated over k steps. These
properties can be expressed by the random variables:

X(π) =
{
1 if π( j) ∈ T for some j ≤ k

0 otherwise

Y (π) =
k−1∑

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

respectively. Examples of infinite-horizon properties include the probability of reaching a
target set T and the expected cumulative reward until reaching a target set T (where paths that
never reach the target have infinite reward), which can be expressed by the random variables:

X(π) =
{
1 if π( j) ∈ T for some j ∈ N

0 otherwise

Y (π) =
{∑kmin−1

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
if π( j) ∈ T for some j ∈ N

∞ otherwise

where kmin = min{ j ∈ N | π( j) ∈ T }, respectively.
Let us first focus on zero-sum games, which are by definition two-player games. As for

NFGs (see Definition 1), for a two-player CSG G and a given objective X , we can consider
the case where player 1 tries to maximise the expected value of X , while player 2 tries to
minimise it. The above definition yields the value of G with respect to X if it is determined,
i.e., if the maximum value that player 1 can ensure equals the minimum value that player 2
can ensure. Since the CSGs we consider are finite state and finitely-branching, it follows that
they are determined for all the objectives we consider [55]. Formally we have the following.

Definition 9 (Determinacy and optimality) For a two-player CSG G and objective X , we say
that G is determined with respect to X if, for any state s:

supσ1∈Σ1 infσ2∈Σ2 E
σ1,σ2
G,s (X) = infσ2∈Σ2 supσ1∈Σ1 E

σ1,σ2
G,s (X)

and call this the value of G in state s with respect to X , denoted valG(s, X). Furthermore,
a strategy σ�

1 of player 1 is optimal with respect to X if we have E
σ�
1 ,σ2

G,s (X) ≥ valG(s, X)

for all s ∈ S and σ2 ∈ Σ2 and a strategy of player 2 is optimal with respect to X if
E

σ1,σ
�
2

G,s (X) ≤ valG(s, X) for all s ∈ S and σ1 ∈ Σ1.

Example 3 Consider the (non-probabilistic) CSG shown in Fig. 1 corresponding to two play-
ers repeatedly playing the rock-paper-scissors game (see Example 1). Transitions are labelled
with action pairs, where Ai = {ri , pi , si , ti } for 1 ≤ i ≤ 2, with ri , pi and si representing
playing rock, paper and scissors, respectively, and ti restarting the game. The CSG starts in
state s0 and states s1, s2 and s3 are labelled with atomic propositions corresponding to when
a player wins or there is a draw in a round of the rock-paper-scissors game.

For the zero-sum objective to maximise the probability of reaching s1 before s2, i.e. player
1 winning a round of the game before player 2, the value of the game is 1/2 and the optimal
strategy of each player i is to choose ri , pi and si , each with probability 1/3 in state s0 and
ti otherwise.
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s0

s1

{win1}
s2

{win2}

s3

{draw}

(r1, r2), (p1, p2), (s1, s2) (t1, t2)

(r1, s2), (p1, r2), (s1, p2) (s1, r2), (p1, s2), (r1, p2)

(t1, t2)

Fig. 1 Rock-paper-scissors CSG

For nonzero-sum CSGs, with an objective Xi for each player i , we will use NE, which can
be defined as for NFGs (see Definition 4). In line with the definition of zero-sum optimality
above (and because the model checking algorithms we will later introduce are based on
backward induction [70,77]), we restrict our attention to subgame-perfect NE [61], which
are NE in every state of the CSG.

Definition 10 (Subgame-perfect NE) For CSG G, a strategy profile σ� is a subgame-perfect

Nash equilibrium for objectives 〈Xi 〉i∈N if and only if Eσ�

G,s(Xi ) ≥ supσi∈Σi
E

σ�−i [σi ]
G,s (Xi ) for

all i ∈ N and s ∈ S.

Furthermore, because we use a variety of objectives, including infinite-horizon objectives,
where the existence of NE is an open problem [7], we will in some cases use ε-NE, which
do exist for any ε > 0 for all the properties we consider.

Definition 11 (Subgame-perfect ε-NE) For CSG G and ε > 0, a strategy profile σ� is
a subgame-perfect ε-Nash equilibrium for objectives 〈Xi 〉i∈N if and only if Eσ�

G,s(Xi ) ≥
supσi∈Σi

E
σ�−i [σi ]
G,s (Xi ) − ε for all i ∈ N and s ∈ S.

Example 4 In [10] a non-probabilistic concurrent game is used to model medium access
control. Two users with limited energy share a wireless channel and choose to transmit (ti )
or wait (wi ) and, if both transmit, the transmissions fail due to interference. We extend this to
a CSG by assuming that transmissions succeed with probability q if both transmit. Figure 2
presents aCSGmodel of the protocolwhere eachuser has enough energy for one transmission.
The states are labelled with the status of each user, where the first value represents if the user
i has transmitted or not transmitted their message (tri and nti respectively) and the second if
there is sufficient energy to transmit or not (1 and 0 respectively).

If the objectives are to maximise the probability of a successful transmission, there are
two subgame-perfect SWNE profiles, one when user 1 waits for user 2 to transmit before
transmitting and another when user 2 waits for user 1 to transmit before transmitting. Under
both profiles, both users successfully transmit with probability 1. If the objectives are to
maximise the probability of being one of the first to transmit, then there is only one SWNE
profile corresponding to both users immediately trying to transmit. In this case the probability
of each user successfully transmitting is q .
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Fig. 2 CSG model of a medium access control problem

3 Property specification: extending the logic rPATL

In order to formalise properties of CSGs, we propose an extension of the logic rPATL,
previously defined for zero-sum properties of TSGs [19]. In particular, we add operators to
specify nonzero-sum properties, using (social welfare or social cost) Nash equilibria, and
provide a semantics for this extended logic on CSGs.

Definition 12 (Extended rPATL syntax)The syntax of our extended version of rPATL is given
by the grammar:

φ := true | a | ¬φ | φ ∧ φ | 〈〈C〉〉P∼q [ψ ] | 〈〈C〉〉Rr∼x [ ρ ] | 〈〈C :C ′〉〉opt∼x (θ)

ψ := Xφ | φ U≤k φ | φ U φ

ρ := I=k | C≤k | F φ

θ := P[ψ ]+P[ψ ] | Rr [ ρ ]+Rr [ ρ ]
where a is an atomic proposition, C and C ′ are coalitions of players such that C ′ = N\C ,
opt ∈ {min,max}, ∼∈ {<,≤,≥,>}, q ∈ Q ∩ [0, 1], x ∈ Q, r is a reward structure and
k ∈ N.

rPATL is a branching-time temporal logic for stochastic games, which combines the proba-
bilistic operator P of PCTL [38], PRISM’s reward operator R [44], and the coalition operator
〈〈C〉〉 of ATL [1]. The syntax distinguishes between state (φ), path (ψ) and reward (ρ) for-
mulae. State formulae are evaluated over states of a CSG, while path and reward formulae
are both evaluated over paths.

The core operators from the existing version of rPATL [19] are 〈〈C〉〉P∼q [ψ ] and
〈〈C〉〉Rr∼x [ ρ ]. A state satisfies a formula 〈〈C〉〉P∼q [ψ ] if the coalition of players C can
ensure that the probability of the path formula ψ being satisfied is ∼q , regardless of the
actions of the other players (N\C) in the game. A state satisfies a formula 〈〈C〉〉Rr∼x [ ρ ] if the
players in C can ensure that the expected value of the reward formula ρ for reward structure
r is ∼x , whatever the other players do. Such properties are inherently zero-sum in nature as
one coalition tries to maximise an objective (e.g., the probability of ψ) and the other tries to
minimise it; hence, we call these zero-sum formulae.

The most significant extension we make to the rPATL logic is the addition of nonzero-
sum formulae. These take the form 〈〈C :C ′〉〉opt∼x (θ), where C and C ′ are two coalitions that
represent a partition of the set of players N , and θ is the sum of either two probabilistic or
two reward objectives. Their meaning is as follows:
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– 〈〈C :C ′〉〉max∼x (θ) is satisfied if there exists a subgame-perfect SWNE profile between
coalitions C and C ′ under which the sum of the objectives of C and C ′ in θ is ∼x ;

– 〈〈C :C ′〉〉min∼x (θ) is satisfied if there exists a subgame-perfect SCNE profile between
coalitions C and C ′ under which the sum of the objectives of C and C ′ in θ is ∼x .

Like the existing zero-sum formulae, the new nonzero-sum formulae still split the players
into just two coalitions, C and C ′ = N\C . This means that the model checking algorithm
(see Sect. 4) reduces to finding equilibria in two-player CSGs, which is more tractable than
for larger numbers of players. Technically, therefore, we could remove the second coalition
C ′ from the syntax. However, we retain it for clarity about which coalition corresponds to
each of the two objectives, and to allow a later extension to more than two coalitions [47].

Both types of formula, zero-sum and nonzero-sum, are composed of path (ψ) and reward
(ρ) formulae, used in probabilistic and reward objectives included within P and R operators,
respectively. For path formulae, we follow the existing rPATL syntax from [19] and allow next
(Xφ), bounded until (φ U≤k φ) and unbounded until (φ U φ). We also allow the usual equiv-
alences such as F φ ≡ true U φ (i.e., probabilistic reachability) and F≤k φ ≡ true U≤k φ

(i.e., bounded probabilistic reachability).
For reward formulae, we introduce some differences with respect to [19].We allow instan-

taneous (state) reward at the kth step (instantaneous reward I=k), reward accumulated over
k steps (bounded cumulative reward C≤k), and reward accumulated until a formula φ is
satisfied (expected reachability F φ). The first two, adapted from the property specification
language of PRISM [44], were not previously included in rPATL, but proved to be useful for
the case studies we present later in Sect. 7.2. For the third (F φ), [19] defines several variants,
which differ in the treatment of paths that never reach a state satisfying φ. We restrict our
attention to the most commonly used one, which is the default in PRISM, where paths that
never satisfy φ have infinite reward. In the case of zero-sum formulae, adding the additional
variants is straightforward based on the algorithm of [19]. On the other hand, for nonzero-sum
formulae, currently no algorithms exist for these variants.

As for other probabilistic temporal logics, it is useful to consider numerical queries,
which represent the value of an objective, rather than checking whether it is above or below
some threshold. In the case of zero-sum formulae, these take the form 〈〈C〉〉Pmin=?[ψ ],
〈〈C〉〉Pmax=?[ψ ], 〈〈C〉〉Rrmin=?[ ρ ] and 〈〈C〉〉Rrmax=?[ ρ ]. For nonzero-sum formulae, numer-
ical queries are of the form 〈〈C :C ′〉〉max=?[θ ] and 〈〈C :C ′〉〉min=?[θ ] which return the SWNE
and SCNE values, respectively.

Example 5 Consider a scenario in which two robots (rbt1 and rbt2) move concurrently over a
square grid of cells, where each is trying to reach their individual goal location. Each step of
the robot involves transitioning to an adjacent cell, possibly stochastically. Examples of zero-
sum formulae, where crash,goal1,goal2 denote the obvious atomic propositions labelling
states, include:

– 〈〈rbt1〉〉Pmax=?[ ¬crash U≤10 goal1 ] asks what is the maximum probability with which
the first robot can ensure that it reaches its goal location within 10 steps and without
crashing, no matter how the second robot behaves;

– 〈〈rbt2〉〉Rrcrash≤1.5 [F goal2 ] states that, no matter the behaviour of the first robot, the second
robot can ensure the expected number of times it crashes before reaching its goal is less
than or equal to 1.5 (rcrash is a reward structure that assigns 1 to states labelled crash and
0 to all other states).
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Examples of nonzero-sum formulae include:

– 〈〈rbt1:rbt2〉〉max≥2(P[F goal1 ]+P[ ¬crash U≤10goal2 ]) states the robots can collaborate
so that both reach their goal with probability 1, with the additional condition that the
second has to reach its goal within 10 steps without crashing;

– 〈〈rbt1:rbt2〉〉min=?(Rrsteps [F goal1 ]+Rrsteps [F goal2 ]) asks what is the sum of expected
reachability valueswhen the robots collaborate and eachwants tominimise their expected
steps to reach their goal (rsteps is a reward structure that assigns 1 to all state and action
tuple pairs).

Examples of more complex nested formulae for this scenario include the following, where
rsteps is as above:

– 〈〈rbt1〉〉Pmax=?[F 〈〈rbt2〉〉Rrsteps≥10 [Fgoal2 ] ] asks what is the maximum probability with
which the first robot can get to a state where the expected time for the second robot to
reach their goal is at least 10 steps;

– 〈〈rbt1, rbt2〉〉P≥0.75[F 〈〈rbt1:rbt2〉〉min≤5(Rrsteps [Fgoal1 ]+Rrsteps [Fgoal2 ]) ] states the
robots can collaborate to reach, with probability at least 0.75, a state where the sum
of the expected time for the robots to reach their goals is at most 5.

Before giving the semantics of the logic, we define coalition games which, for a CSG G
and coalition (set of players) C ⊆ N , reduce G to a two-player CSG GC , with one player
representing C and the other N\C . Without loss of generality we assume the coalition of
players is of the form C = {1, . . . , n′}.
Definition 13 (Coalition game) For CSG G = (N , S, s̄, A,Δ, δ,AP,L) and coalition C =
{1, . . . , n′} ⊆ N , the coalition game GC = ({1, 2}, S, s̄, AC ,ΔC , δC ,AP,L) is a two-player
CSG where:

– AC = (AC
1 ∪ {⊥})×(AC

2 ∪ {⊥});
– AC

1 = (A1 ∪ {⊥})× · · · ×(An′ ∪ {⊥}) \ {(⊥, . . . ,⊥)};
– AC

2 = (An′+1 ∪ {⊥})× · · · ×(An ∪ {⊥}) \ {(⊥, . . . ,⊥)};
– aC1 = (a1, . . . , am) ∈ ΔC (s) if and only if either Δ(s) ∩ A j = ∅ and a j = ⊥ or

a j ∈ Δ(s) for all 1 ≤ j ≤ m and aC2 = (am+1, . . . , an) ∈ ΔC (s) if and only if either
Δ(s) ∩ A j = ∅ and a j = ⊥ or a j ∈ Δ(s) for all m + 1 ≤ j ≤ n for s ∈ S;

– for any s ∈ S, aC1 ∈ AC
1 and aC2 ∈ AC

2 we have δC (s, (aC1 , aC2 )) = δ(s, (a1, a2)) where
ai = (⊥, . . . ,⊥) if aCi = ⊥ and ai = aCi otherwise for 1 ≤ i ≤ 2.

Furthermore, for a reward structure r = (rA, rS) of G, by abuse of notation we also use r for
the corresponding reward structure r = (rCA , rCS ) of GC where:

– for any s ∈ S, aC1 ∈ AC
1 and aC2 ∈ AC

2 we have rCA (s, (aC1 , aC2 )) = rA(s, (a1, a2)) where
ai = (⊥, . . . ,⊥) if aCi = ⊥ and ai = aCi otherwise for 1 ≤ i ≤ 2;

– for any s ∈ S we have rCS (s) = rS(s).

Our logic includes both finite-horizon (X ,U≤k ,I=k ,C≤k) and infinite-horizon (U,F) temporal
operators. For the latter, the existence of SWNE or SCNE profiles is an open problem [7],
but we can check for ε-SWNE or ε-SCNE profiles for any ε. Hence, we define the semantics
of the logic in the context of a particular ε.

Definition 14 (Extended rPATL semantics) For a CSG G, ε > 0 and a formula φ in our
rPATL extension, we define the satisfaction relation |� inductively over the structure of φ.
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The propositional logic fragment (true, a,¬,∧) is defined in the usual way. For a zero-sum
formula and state s ∈ S of CSG G, we have:

s |� 〈〈C〉〉P∼q [ψ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2. E
σ1,σ2

GC ,s
(Xψ) ∼ q

s |� 〈〈C〉〉Rr∼x [ ρ ] ⇔ ∃σ1 ∈ Σ1.∀σ2 ∈ Σ2. E
σ1,σ2

GC ,s
(Xr ,ρ) ∼ x

For a nonzero-sum formula and state s ∈ S of CSG G, we have:

s |� 〈〈C :C ′〉〉opt∼x (θ) ⇔ ∃σ�
1 ∈ Σ1, σ �

2 ∈ Σ2.
(
E

σ�
1 ,σ �

2

GC ,s
(X θ

1 ) + E
σ�
1 ,σ �

2

GC ,s
(X θ

2 )
)

∼ x

where (σ �
1 , σ �

2 ) is a subgame-perfect ε-SWNE profile if opt = max, or a subgame-perfect
ε-SCNE profile if opt = min, for the objectives (X θ

1 , X
θ
2 ) in G

C . For an objective Xψ , Xr ,ρ

or X θ
i (1 ≤ i ≤ 2), and path π ∈ IPathsGC ,s :

Xψ(π) = 1 if π |�ψ and 0 otherwise

Xr ,ρ(π) = rew(r , ρ)(π)

XP[ ψ1 ]+P[ψ2 ]
i (π) = 1 if π |�ψ iand 0 otherwise

X
Rr1 [ ρ1 ]+Rr2 [ ρ2 ]
i (π) = rew(ri , ρ

i )(π)

For a temporal formula and path π ∈ IPathsGC ,s :

π |�Xφ ⇔ π(1) |�φ

π |�φ1 U
≤k φ2 ⇔ ∃i ≤ k. (π(i) |� φ2 ∧ ∀ j < i . π( j) |� φ1)

π |�φ1 U φ2 ⇔ ∃i ∈ N. (π(i) |� φ2 ∧ ∀ j < i . π( j) |� φ1)

For a reward structure r , reward formula and path π ∈ IPathsGC ,s :

rew(r ,I=k)(π) = rS(π(k))

rew(r ,C≤k)(π) =
k−1∑

i=0

(
rA(π(i), π[i]) + rS(π(i))

)

rew(r ,F φ)(π) =
{

∞ if ∀ j ∈ N. π( j) �|� φ
∑kφ−1

i=0

(
rA(π(i), π[i]) + rS(π(i))

)
otherwise

where kφ = min{k | π(k) |� φ}.

Using the notation above, we can also define the numerical queries mentioned previously.
For example, for state s we have:

〈〈C〉〉Pmin=?[ψ ] def= infσ1∈Σ1
GC

supσ2∈Σ2
GC

E
σ1,σ2

GC ,s
(Xψ)

〈〈C〉〉Pmax=?[ψ ] def= supσ1∈Σ1
GC

infσ2∈Σ2
GC

E
σ1,σ2

GC ,s
(Xψ) .

As the zero-sum objectives appearing in the logic are either finite-horizon or infinite-horizon
and correspond to either probabilistic until or expected reachability formulae, we have that
CSGs are determined (see Definition 9) with respect to these objectives [55], and therefore
values exist. More precisely, for any CSG G, coalition C , state s, path formula ψ , reward
structure r and reward formula ρ, the values valGC (s, Xψ) and valGC (s, Xr ,ρ) of the game
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GC in state s with respect to the objectives Xψ and Xr ,ρ are well defined. This determinacy
result also yields the following equivalences:

〈〈C〉〉Pmax=?[ψ ] ≡ 〈〈N\C〉〉Pmin=?[ψ ] and 〈〈C〉〉Rrmax=?[ ρ ] ≡ 〈〈N\C〉〉Rrmin=?[ ρ ] .
Also, as for other probabilistic temporal logics, we can represent negated path formu-
lae by inverting the probability threshold, e.g.: 〈〈C〉〉P≥q [ ¬ψ ] ≡ 〈〈C〉〉P≤1−q [ψ ] and
〈〈C :C ′〉〉max≥q(P[ψ1 ]+P[ψ2 ]) ≡ 〈〈C :C ′〉〉min≤2−q(P[ ¬ψ1 ]+P[ ¬ψ2 ]), notably allowing
the ‘globally’ operator G φ ≡ ¬(F ¬φ) to be defined.

4 Model checking for extended rPATL against CSGs

We now present model checking algorithms for the extended rPATL logic, introduced in
the previous section, on a CSG G. Since rPATL is a branching-time logic, this works by
recursively computing the set Sat(φ) of states satisfying formula φ over the structure of φ,
as is done for rPATL on TSGs [19].

If φ is a zero-sum formula of the form 〈〈C〉〉P∼q [ψ ] or 〈〈C〉〉Rr∼x [ ρ ], this reduces to
computing values for a two-player CSG (either GC or GN\C ) with respect to Xψ or Xr ,ρ . In
particular, for ∼∈ {≥,>} and s ∈ S we have:

s |� 〈〈C〉〉P∼q [ψ ] ⇔ valGC (s, Xψ) ∼ q

s |� 〈〈C〉〉Rr∼x [ ρ ] ⇔ valGC (s, Xr ,ρ) ∼ x .

and, since CSGs are determined for the zero-sum properties we consider, for ∼∈ {<,≤} we
have:

s |� 〈〈C〉〉P∼q [ψ ] ⇔ valGN\C (s, Xψ) ∼ q

s |� 〈〈C〉〉Rr∼x [ ρ ] ⇔ valGN\C (s, Xr ,ρ) ∼ x .

Without loss of generality, for such formulae we focus on computing valGC (s, Xψ) and
valGC (s, Xr ,ρ) and, to simplify the presentation, we denote these values by VGC (s, ψ) and
VGC (s, r , ρ) respectively.

If, on the other hand, φ is a nonzero-sum formula of the form 〈〈C :C ′〉〉opt∼x (θ) then,
from the semantics for 〈〈C :C ′〉〉opt∼x (θ) (see Definition 14), computing Sat(φ) reduces to the
computation of subgame-perfect SWNE or SCNE values for the objectives (X θ

1 , X
θ
2 ) and a

comparison of their sum to the threshold x . Again, to simplify the presentation, will use the
notation VGC (s, θ) for the SWNE values of the objectives (X θ

1 , X
θ
2 ) in state s of GC .

For the remainder of this section,wefixaCSGG = (N , S, S̄, A,Δ, δ,AP,L) and coalition
C of players and assume that the available actions of players 1 and 2 of the (two-player) CSG
GC in a state s are {a1, . . . , al} and {b1, . . . , bm}, respectively. We also fix a value ε > 0
which, as discussed in Sect. 3, is needed to define the semantics of our logic, in particular
for infinite-horizon objectives where we need to consider ε-SWNE profiles.

AssumptionsOurmodel checking algorithms require several assumptions on CSGs, depend-
ing on the operators that appear in the formula φ. These can all be checked using standard
graph algorithms [23]. In the diverse set of model checking case studies that we later present
in Sect. 7.2, these assumptions have not limited the practical applicability of our model
checking algorithms.

For zero-sum formulae, the only restriction is for infinite-horizon reward properties on
CSGs with both positive and negative reward values.
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Assumption 1 For a zero-sum formula of the form 〈〈C〉〉Rr∼x [F φ ], from any state s where
rS(s) < 0 or rA(s, a) < 0 for some action a, under all profiles of G, with probability 1 we
reach either a state satisfying φ or a state where all rewards are zero and which cannot be left
with probability 1 under all profiles.

Without this assumption, the values computed during value iteration can oscillate, and there-
fore fail to converge (see “Appendix A”). This restriction is not applied in the existing rPATL
model checking algorithms for TSGs [19] since that work assumes that all rewards are non-
negative.

The remaining two assumptions concern nonzero-sum formulae that contain infinite-
horizon objectives. We restrict our attention to a class of CSGs that can be seen as a variant
of stopping games [20], as used formulti-objective TSGs. Compared to [20], we use aweaker,
objective-dependent assumption, which ensures that, under all profiles, with probability 1,
eventually the outcome of each player’s objective does not change by continuing.

Assumption 2 For nonzero-sum formulae, if P[φ1 U φ2 ] is a probabilistic objective, then
Sat(¬φ1 ∨ φ2) is reached with probability 1 from all states under all profiles of G.

Assumption 3 For nonzero-sum formulae, if Rr [F φ ] is a reward objective, then Sat(φ) is
reached with probability 1 from all states under all profiles of G.

Like for Assumption 1, without this restriction, value iteration may not converge since values
can oscillate (see “Appendices B, C”). Notice that Assumption 1 is not required for nonzero-
sum properties containing negative rewards since Assumption 3 is itself a stronger restriction.

4.1 Model checking zero-sum properties

In this section, we present algorithms for zero-sum properties, i.e., for computing the values
VGC (s, ψ) or VGC (s, r , ρ) for path formulae ψ or reward formulae ρ in all states s of GC .
We split the presentation into finite-horizon properties, which can be solved exactly using
backward induction [70,77], and infinite-horizon properties, forwhichwe approximate values
using value iteration [15,68]. Both cases require the solution of matrix games, for which we
rely on the linear programming approach presented in Sect. 2.1.1.

4.1.1 Computing the values of zero-sum finite-horizon formulae

Finite-horizon properties are defined over a bounded number of steps: the next or bounded
until operators for probabilistic formulae, and the instantaneous or bounded cumulative
reward operators. Computation of the values VGC (s, ψ) or VGC (s, r , ρ) for these is done
recursively, based on the step bound, using backward induction and solving matrix games
in each state at each iteration. The actions of each matrix game correspond to the actions
available in that state; the utilities are constructed from the transition probabilities δC of the
game GC , the reward structure r (in the case of reward formulae) and the values already
computed recursively for successor states.
Next This is the simplest operator, over just one step, and so in fact requires no recursion,
just solution of a matrix game for each state. If ψ = Xφ, then for any state s we have that
VGC (s, ψ) = val(Z) where Z ∈ Ql×m is the matrix game with:

zi, j = ∑
s′∈Sat(φ) δC (s, (ai , b j ))(s′) .
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Bounded Until If ψ = φ1 U≤k φ2, we compute the values for the path formulae ψn =
φ1 U≤n φ2 for 0 ≤ n ≤ k recursively. For any state s:

VGC (s, ψn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ Sat(φ2)

0 else if s /∈ Sat(φ1)

0 else if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · vs
′

n−1

and vs
′

n−1 = VGC (s′, ψn−1) for all s′ ∈ S.
Instantaneous Rewards If ρ = I=k , then for the reward structure r we compute the values
for the reward formulae ρn = I=n for 0 ≤ n ≤ k recursively. For any state s:

VGC (s, r , ρn) =
{
rS(s) if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · vs
′

n−1

and vs
′

n−1 = VGC (s′, r , ρn−1) for all s′ ∈ S.
Bounded Cumulative Rewards If ρ = C≤k , then for the reward structure r we compute the
values for the reward formulae ρn = C≤n for 0 ≤ n ≤ k recursively. For any state s:

VGC (s, r , ρn) =
{
0 if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi, j = rA(s, (ai , b j )) + rS(s) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · vs
′

n−1

and vs
′

n−1 = VGC (s′, r , ρn−1) for all s′ ∈ S.

4.1.2 Computing the values of zero-sum infinite-horizon formulae

We now discuss how to compute the values VGC (s, ψ) and VGC (s, r , ρ) for infinite-horizon
properties, i.e., when the path formula ψ is an until operator, or for the expected reachability
variant of the reward formulae ρ. In both cases, we approximate these values using value
iteration, adopting a similar recursive computation to the finite-horizon cases above, solving
matrix games in each state and at each iteration, which converges in the limit to the desired
values.

Following the approach typically taken in probabilisticmodel checking tools to implement
value iteration, we estimate convergence of the iterative computation by checking the maxi-
mum relative difference between successive iterations. However, it is known [36] that, even
for simpler probabilistic models such as MDPs, this convergence criterion cannot be used
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to guarantee that the final computed values are accurate to within a specified error bound.
Alternative approaches that resolve this by computing lower and upper bounds for each state
have been proposed for MDPs (e.g. [9,36]) and extended to both single- and multi-objective
solution of TSGs [3,42]; extensions could be investigated for CSGs. Another possibility is
to use policy iteration (see, e.g., [14]).
Until If ψ = φ1 U φ2, the probability values can be approximated through value itera-
tion using the fact that 〈VGC (s, φ1 U≤k φ2)〉k∈N is a non-decreasing sequence converging to
VGC (s, φ1 U φ2). We compute VGC (s, φ1 U≤k φ2) for increasingly large k and estimate con-
vergence as described above, based on the difference between values in successive iterations.
However, we can potentially speed up convergence by first precomputing the set of states
Sψ
0 for which the value of the zero-sum objective Xψ is 0 and the set of states Sψ

1 for which
the value is 1 using standard graph algorithms [23]. We can then apply value iteration to
approximate VGC (s, φ1 U φ2) = limk→∞ VGC (s, φ1 U φ2, k) where:

VGC (s, φ1 U φ2, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ Sψ
1

0 else if s ∈ Sψ
0

0 else if n = 0

val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · vs
′

n−1

and vs
′

n−1 = VGC (s′, φ1 U φ2, n − 1) for all s′ ∈ S.
Expected Reachability If ρ = F φ and the reward structure is r , then we first make all
states of GC satisfying φ absorbing, i.e., we remove all outgoing transitions from such states.
Second, we find the set of states Sρ∞ for which the reward is infinite; as in [19], this involves
finding the set of states satisfying the formula 〈〈C〉〉P<1[F φ ] and we can use the graph
algorithms of [23] to find these states. Again following [19], to deal with zero-reward cycles
we need to use value iteration to compute a greatest fixed point. This involves first computing
upper bounds on the actual values, by changing all zero reward values to some value γ > 0 to
construct the reward structure rγ = (rγ

A, rγ

A) and then applying value iteration to approximate
VGC (s, rγ , ρ) = limk→∞ VGC (s, rγ , ρk) where:

VGC (s, rγ , ρn) =

⎧
⎪⎨

⎪⎩

0 if s ∈ Sat(φ)

∞ if s ∈ Sρ∞
val(Z) otherwise

where val(Z) equals the value of the matrix game Z ∈ Ql×m with:

zi, j = rγ

A(s, (ai , b j )) + rγ

S (s) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · vs
′

n−1

and vs
′

n−1 = VGC (s′, rγ , ρn−1) for all s′ ∈ S. Finally, using these upper bounds as the ini-
tial values we again perform value iteration as above, except now using the original reward
structure r , i.e., to approximate VGC (s, r,ρ) = limk→∞ VGC (s, r , ρk). The choice of γ can
influence value iteration computations in opposing ways: increasing γ can speed up con-
vergence when computing over-approximations, while potentially slowing it down when
computing the actual values.
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4.2 Model checking nonzero-sum properties

Next, we show how to compute subgame-perfect SWNE and SCNE values for the two
objectives corresponding to a nonzero-sum formula. As for the zero-sum case, the approach
taken depends on whether the formula contains finite-horizon or infinite-horizon objectives.
We now have three cases:

1. when both objectives are finite-horizon, we use backward induction [70,77] to compute
(precise) subgame-perfect SWNE and SCNE values;

2. when both objectives are infinite-horizon, we use value iteration [15,68] to approximate
the values;

3. when there is a mix of the two types of objectives, we convert the problem to two infinite-
horizon objectives on an augmented model.

We describe these three cases separately in Sects. 4.2.1, 4.2.2 and 4.2.3, respectively, focusing
on the computation of SWNE values. Then, in Sect. 4.2.4, we explain how to adapt this for
SCNE values.

In a similar style to the algorithms for zero-sum properties, in all three cases the com-
putation is an iterative process that analyses a two-player game for each state at each step.
However, this now requires finding SWNE or SCNE values of a bimatrix game, rather than
solving a matrix game as in the zero-sum case. We solve bimatrix games using the approach
presented in Sect. 2.1.2 (see also the more detailed discussion of its implementation in
Sect. 6.2).

Another important aspect of our algorithms is that, for efficiency, if we reach a state where
the value of one player’s objective cannot change (e.g., the goal of that player is reached or can
no longer be reached), then we switch to the simpler problem of solving an MDP to find the
optimal value for the other player in that state. This is possible since the only SWNE profile
in that state corresponds to maximising the objective of the other player. More precisely:

– the first player (whose objective cannot change) is indifferent, since its value will not be
affected by the choices of either player;

– the second player cannot do better than the optimal value of its objective in the corre-
sponding MDP where both players collaborate;

– for any NE profile, the value of the first player is fixed and the value of the second is less
than or equal to the optimal value of its objective in the MDP.

We use the notation Pmax
G,s (ψ) and Rmax

G,s (r , ρ) for the maximum probability of satisfying
the path formula ψ and the maximum expected reward for the random variable rew(r , ρ),
respectively, when the players collaborate in state s. These values can be computed through
standard MDP model checking [6,22].

4.2.1 Computing SWNE values of finite-horizon nonzero-sum formulae

As for the zero-sum case, for a finite-horizon nonzero-sum formula θ , we compute the SWNE
values VGC (s, θ) for all states s of GC in a recursive fashion based on the step bound. We
now solve bimatrix games at each step, which are defined in a similar manner to the matrix
games for zero-sum properties: the actions of each bimatrix game correspond to the actions
available in that state and the utilities are constructed from the transition probabilities δC of
the game GC , the reward structure (in the case of reward formulae) and the values already
computed recursively for successor states.
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For any state formula φ and state s we let ηφ(s) equal 1 if s ∈ Sat(φ) and 0 otherwise.
Recall that probability and reward values of the form Pmax

G,s (ψ) and Rmax
G,s (r , ρ), respectively,

are computed through standard MDP verification. Below, we explain the computation for
both types of finite-horizon probabilistic objectives (next and bounded until) and reward
objectives (instantaneous and bounded cumulative), as well as combinations of each type.
Next If θ = P[Xφ1 ]+P[Xφ2 ], then VGC (s, θ) equals SWNE values of the bimatrix game
(Z1, Z2) ∈ Ql×m where:

z1i, j =
∑

s′∈Sat(φ1)

δC (s, (ai , b j ))(s
′)

z2i, j =
∑

s′∈Sat(φ2)

δC (s, (ai , b j ))(s
′) .

Again, since next is a 1-step property, no recursion is required.
Bounded Until If θ = P[φ1

1 U≤k1 φ1
2 ] + P[φ2

1 U≤k2 φ2
2 ], we compute SWNE val-

ues for the objectives for the nonzero-sum formulae θn+n1,n+n2 = P[φ1
1 U≤n+n1 φ1

2 ] +
P[φ2

1 U≤n+n2 φ2
2 ] for 0 ≤ n ≤ k recursively, where k = min{k1, k2}, n1 = k1−k and

n2 = k2−k. In this case, there are three situations in which the value of the objective of one
of the players cannot change, and hence we can switch to MDP verification. The first is when
the step bound is zero for only one of the corresponding objectives, the second is when a
state satisfying φi

2 is reached by only one player i (and therefore the objective is satisfied by
that state) and the third is when a state satisfying ¬φi

1 ∧ ¬φi
2 is reached by only one player

i (and therefore the objective is not satisfied by that state). For any state s, if n = 0, then:

VGC (s, θn1,n2) =

⎧
⎪⎪⎨

⎪⎪⎩

(ηφ1
2
(s), ηφ2

2
(s)) if n1 = n2 = 0

(ηφ1
2
(s),Pmax

G,s (φ2
1 U≤n2 φ2

2)) else if n1 = 0

(Pmax
G,s (φ1

1 U≤n1 φ1
2), ηφ2

2
(s)) otherwise.

On the other hand, if n > 0, then:

VGC (s, θn+n1,n+n2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1,Pmax
G,s (φ2

1 U≤n+n2 φ2
2)) else if s ∈ Sat(φ1

2)

(Pmax
G,s (φ1

1 U≤n+n1 φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmax
G,s (φ1

1 U≤n+n1 φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0,Pmax
G,s (φ2

1 U≤n+n2 φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if s /∈ Sat(φ1
1) ∩ Sat(φ2

1)

val(Z1, Z2) otherwise

where val(Z1, Z2) equals SWNE values of the bimatrix game (Z1, Z2) ∈ Ql×m :

z1i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
(n−1)+n1

z2i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,2
(n−1)+n2

and (v
s′,1
(n−1)+n1

, v
s′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s
′ ∈ S.
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Next and Bounded Until If θ = P[Xφ1 ]+P[φ2
1 U≤k2 φ2

2 ], then VGC (s, θ) equals SWNE
values of the bimatrix game (Z1, Z2) ∈ Ql×m where:

z1i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · ηφ1(s′)

z2i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if s ∈ Sat(φ2
2)

0 else if k2 = 0
∑

s′∈S δC (s, (ai , b j ))(s′) · Pmax
G,s (φ2

1 U≤k2−1 φ2
2) else if Sat(φ2

1)

0 otherwise.

In this case, since the value for objectives corresponding to next formulae cannot change
after the first step, we can always switch to MDP verification after this step. The symmetric
case is similar.
Instantaneous Rewards If θ = Rr1 [I=k1 ]+Rr2 [I=k2 ], we compute SWNE values of the
objectives for the nonzero-sum formulae θn+n1,n+n2 = Rr1 [I=n+n1 ] + Rr2 [I=n+n2 ] for
0 ≤ n ≤ k recursively, where k = min{k1, k2}, n1 = k1−k and n2 = k2−k. Here, there is
only one situation in which the value of the objective of one of the players cannot change:
when one of the step bounds equals zero. Hence, this is the only time we switch to MDP
verification. For any state s, if n = 0, then:

VGC (s, θn1,n2) =

⎧
⎪⎨

⎪⎩

(r1S(s), r
2
S(s)) if n1 = n2 = 0

(r1S(s),R
max
G,s (r2,I=n2)) else if n1 = 0

(Rmax
G,s (r1,I=n1), r2S(s)) otherwise.

On the other hand, if n > 0, then VGC (s, θn+n1,n+n2) equals SWNE values of the bimatrix
game (Z1, Z2) ∈ Ql×m where:

z1i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
(n−1)+n1

z2i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,2
(n−1)+n2

and (v
s′,1
(n−1)+n1

, v
s′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s
′ ∈ S.

Bounded Cumulative Rewards If θ = Rr1 [C≤k1 ]+Rr2 [C≤k2 ], we compute values of the
objectives for the formulae θn+n1,n+n2 = Rr1 [C≤n+n1 ] + Rr2 [C≤n+n2 ] for 0 ≤ n ≤ k
recursively, where k = min{k1, k2}, n1 = k1−k and n2 = k2−k. As for instantaneous
rewards, the only time we can switch to MDP verification is when one of the step bounds
equals zero. For state s, if n = 0:

VGC (s, θn1,n2) =

⎧
⎪⎨

⎪⎩

(0, 0) if n1 = n2 = 0

(0,Rmax
G,s (r2,C≤n2)) else if n1 = 0

(Rmax
G,s (r1,C≤n1), 0) otherwise

and if n > 0, then VGC (s, θn+n1,n+n2) equals SWNE values of the bimatrix game (Z1, Z2) ∈
Ql×m :

z1i, j = r1S(s) + r1A(s, (ai , b j )) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
(n−1)+n1

z2i, j = r2S(s) + r2A(s, (ai , b j )) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,l
(n−1)+n2
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and (v
s′,1
(n−1)+n1

, v
s′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s
′ ∈ S.

Bounded Instantaneous and Cumulative Rewards If θ = Rr1 [I=k1 ]+Rr2 [C≤k2 ], we
compute values of the objectives for the formulae θn+n1,n+n2 = Rr1 [I=n+n1 ]+Rr2 [C≤n+n2 ]
for 0 ≤ n ≤ k recursively, where k = min{k1, k2}, n1 = k1−k and n2 = k2−k. Again, here
we can only switch to MDP verification when one of the step bounds equals zero. For state
s, if n = 0:

VGC (s, θn1,n2) =

⎧
⎪⎨

⎪⎩

(r1S(s), 0) if n1 = n2 = 0

(r1S(s),R
max
G,s (r2,C≤n2)) else if n1 = 0

(Rmax
G,s (r1,I=n1), 0) otherwise

and if n > 0, then VGC (s, θn+n1,n+n2) equals SWNE values of the bimatrix game (Z1, Z2) ∈
Ql×m :

z1i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
(n−1)+n1

z2i, j = r2S(s) + r2A(s, (ai , b j )) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,l
(n−1)+n2

and (v
s′,1
(n−1)+n1

, v
s′,2
(n−1)+n2

) = VGC (s′, θ(n−1)+n1,(n−1)+n2) for all s
′ ∈ S. The symmetric case

follows similarly.

4.2.2 Computing SWNE values of infinite-horizon nonzero-sum formulae

We next show how to compute SWNE values VGC (s, θ) for infinite-horizon nonzero-sum
formulae θ in all states s of GC . As for the zero-sum case, we approximate these using a
value iteration approach. Each step of this computation is similar in nature to the algorithms
in the previous section, where a bimatrix game is solved for each state, and a reduction to
solving an MDP is used after one of the player’s objective can no longer change.

A key aspect of the value iteration algorithm is that, while the SWNE (or SCNE) values
take the form of a pair, with one value for each player, convergence is defined over the sum of
the two values. This is because there is not necessarily a unique pair of such values, but the
maximum (or minimum) of the sum of NE values is uniquely defined. Convergence of value
iteration is estimated in the same way as for the zero-sum computation (see Sect. 4.1.2), by
comparing values in successive iterations. As previously, this means that we are not able to
guarantee that the computed values are within a particular error bound of the exact values.

Below,we give the algorithms for the cases of two infinite-horizon objectives. The notation
used is as in the previous section: for any state formula φ and state s we let ηφ(s) equal 1 if
s ∈ Sat(φ) and 0 otherwise; and values of the form Pmax

G,s (ψ) and Rmax
G,s (r , ρ) are computed

through standard MDP verification.
Until If θ = P[φ1

1 U φ1
2 ]+P[φ2

1 U φ2
2 ], values for any state s can be computed through

value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:
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VGC (s, θ, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 1) if s ∈ Sat(φ1
2) ∩ Sat(φ2

2)

(1,Pmax
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ1

2)

(Pmax
G,s (φ1

1 U φ1
2), 1) else if s ∈ Sat(φ2

2)

(Pmax
G,s (φ1

1 U φ1
2), 0) else if s ∈ Sat(φ1

1) \ Sat(φ2
1)

(0,Pmax
G,s (φ2

1 U φ2
2)) else if s ∈ Sat(φ2

1) \ Sat(φ1
1)

(0, 0) else if n = 0 or s /∈ Sat(φ1
1) ∩ Sat(φ2

1)

val(Z1, Z2) otherwise

where val(Z1, Z2) equals SWNE values of the bimatrix game (Z1, Z2) ∈ Ql×m :

z1i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
n−1

z2i, j =
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,2
n−1

and (v
s′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n−1) for all s′ ∈ S.

As can be seen, there are two situations in which we switch to MDP verification. These
correspond to the two cases where the value of the objective of one of the players cannot
change: when a state satisfying φi

2 is reached for only one player i (and therefore the objective
is satisfied by that state) and when a state satisfying¬φi

1∧¬φi
2 is reached for only one player

i (and therefore the objective is not satisfied by that state).
Expected Reachability If θ = Rr1 [F φ1 ]+Rr2 [F φ2 ], values can be computed through
value iteration as the limit VGC (s, θ) = limn→∞ VGC (s, θ, n) where:

VGC (s, θ, n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0, 0) if s ∈ Sat(φ1) ∩ Sat(φ2)

(0, 0) else if n = 0

(0,Rmax
G,s (r2,F φ2)) else if s ∈ Sat(φ1)

(Rmax
G,s (r1,F φ1), 0) else if s ∈ Sat(φ2)

val(Z1, Z2) otherwise

where val(Z1, Z2) equals SWNE values of the bimatrix game (Z1, Z2) ∈ Ql×m :

z1i, j = r1S(s) + r1A(s, (ai , b j )) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,1
n−1

z2i, j = r2S(s) + r2A(s, (ai , b j )) +
∑

s′∈S
δC (s, (ai , b j ))(s

′) · v
s′,2
n−1

and (v
s′,1
n−1, v

s′,2
n−1) = VGC (s′, θ, n−1) for all s′ ∈ S.

In this case, the only situation in which the value of the objective of one of the players
cannot change is when only one of their goals is reached, i.e., when a state satisfying φi is
reached for only one player i . This is therefore the only time we switch to MDP verification.

4.2.3 Computing SWNE values of mixed nonzero-sum formulae

We now present the algorithms for computing SWNE values of nonzero-sum formulae con-
taining a mixture of both finite- and infinite-horizon objectives. This is achieved by finding
values for a sum of two modified (infinite-horizon) objectives θ ′ on a modified gameG′ using
the algorithms presented in Sect. 4.2.2. This approach is based on the standard construction
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for converting the verification of finite-horizon properties to infinite-horizon properties [66].
We consider the cases when the first objective is finite-horizon and second infinite-horizon;
the symmetric cases follow similarly. In each case, the modified game has states of the form
(s, n), where s is a state of GC , n ∈ N and the SWNE values VGC (s, θ) are given by the
SWNE values VG′((s, 0), θ ′). Therefore, since we require the SWNE values for all states of
the original game, in the modified game the set of initial states equals {(s, 0) | s ∈ S}.
Next and Unbounded Until If θ = P[Xφ1 ]+P[φ2

1 U φ2
2 ], then we construct the game

G′ = ({1, 2}, S′, S̄′, AC ,Δ′, δ′, {aφ1 , aφ2
1
, aφ2

2
},L′) where:

– S′ = {(s, n) | s ∈ S ∧ 0 ≤ n ≤ 2} and S̄′ = {(s, 0) | s ∈ S};
– Δ′((s, n)) = ΔC (s) for all (s, n) ∈ S′;
– for any (s, n), (s′, n′) ∈ S′ and a ∈ AC :

δ′((s, n), a)((s′, n′)) =

⎧
⎪⎨

⎪⎩

δC (s, a)(s′) if 0 ≤ n ≤ 1 and n′ = n+1

δC (s, a)(s′) else if n = n′ = 2

0 otherwise;

– for any (s, n) ∈ S′ and 1 ≤ j ≤ 2:

– aφ1 ∈ L′((s, n)) if and only if s ∈ Sat(φ1) and n = 1;
– aφ2

j
∈ L′((s, n)) if and only if s ∈ Sat(φ2

j ),

and compute the SWNE values of θ ′ = P[true U aφ1 ]+P[ aφ2
1
U aφ2

2
] for G′.

Bounded and Unbounded Until If θ = P[φ1
1 U≤k1 φ1

2 ] + P[φ2
1 U φ2

2 ], then we construct
the game G′ = ({1, 2}, S′, S̄′, AC ,Δ′, δ′, {aφ1

1
, aφ1

2
, aφ2

1
, aφ2

2
},L′) where:

– S′ = {(s, n) | s ∈ S ∧ 0 ≤ n ≤ k1+1} and S̄′ = {(s, 0) | s ∈ S};
– Δ′((s, n)) = ΔC (s) for all (s, n) ∈ S′;
– for any (s, n), (s′, n′) ∈ S′ and a ∈ AC :

δ′((s, n), a)((s′, n′)) =

⎧
⎪⎨

⎪⎩

δC (s, a)(s′) if 0 ≤ n ≤ k1 and n′ = n+1

δC (s, a)(s′) else if n = n′ = k1+1

0 otherwise;

– for any (s, n) ∈ S′ and 1 ≤ j ≤ 2:

– aφ1
j
∈ L′((s, n)) if and only if s ∈ Sat(φ1

j ) and 0 ≤ n ≤ k j ;

– aφ2
j
∈ L′((s, n)) if and only if s ∈ Sat(φ2

j ),

and compute the SWNE values of θ ′ = P[ aφ1
1
U aφ1

2
]+P[ aφ2

1
U aφ2

2
] for G′.

Bounded Instantaneous and Expected Rewards If θ = Rr1 [I=k1 ] + Rr2 [F φ2 ], then we
construct the game G′ = ({1, 2}, S′, S̄′, AC ,Δ′, δ′, {ak1+1, aφ2},L′) and reward structures
r ′
1 and r

′
2 where:

– S′ = {(s, n) | s ∈ S ∧ 0 ≤ n ≤ k1+1} and S̄′ = {(s, 0) | s ∈ S};
– Δ′((s, n)) = ΔC (s) for all (s, n) ∈ S′;
– for any (s, n), (s′, n′) ∈ S′ and a ∈ AC :

δ′((s, n), a)((s′, n′)) =

⎧
⎪⎨

⎪⎩

δC (s, a)(s′) if 0 ≤ n ≤ k1 and n′ = n+1

δC (s, a)(s′) else if n = n′ = k1+1

0 otherwise;
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– for any (s, n) ∈ S′:

– ak1+1 ∈ L′((s, n)) if and only if n = k1+1;
– aφ2 ∈ L′((s, n)) if and only if s ∈ Sat(φ2);

– for any (s, n) ∈ S′ and a ∈ AC :

– r1
′

A ((s, n), a) = 0 and r1
′

S ((s, n)) = r1
C

S (s) if n = k1 and r1
′

A ((s, n), a) = 0 and

r1
′

S ((s, n)) = 0 otherwise;

– r2
′

A ((s, n), a) = r2
C

A (s)(a) and r2
′

S ((s, n)) = r2
C

S (s),

and compute the SWNE values of θ ′ = Rr
′
1 [F ak1+1 ]+Rr

′
2 [F aφ2 ] for G′.

Bounded Cumulative and Expected Rewards If θ = Rr1 [C≤k1 ] + Rr2 [F φ2 ], then we
construct the game G′ = ({1, 2}, S′, S̄′, AC ,Δ′, δ′, {ak1 , aφ2},L′) and reward structures r ′

1
and r ′

2 where:

– S′ = {(s, n) | s ∈ S ∧ 0 ≤ n ≤ k1} and S̄′ = {(s, 0) | s ∈ S};
– Δ′((s, n)) = ΔC (s) for all (s, n) ∈ S′;
– for any (s, n), (s′, n′) ∈ S′ and a ∈ AC :

δ′((s, n), a)((s′, n′)) =

⎧
⎪⎨

⎪⎩

δC (s, a)(s′) if 0 ≤ n ≤ k1−1 and n′ = n+1

δC (s, a)(s′) else if n = n′ = k1
0 otherwise;

– for any (s, n) ∈ S′:

– ak1 ∈ L′((s, n)) if and only if n = k1;
– aφ2 ∈ L′((s, n)) if and only if s ∈ Sat(φ2);

– for any (s, n) ∈ S′ and a ∈ AC :

– r1
′

A ((s, n), a) = r1
C

A (s, a) if 0 ≤ n ≤ k1−1 and equals 0 otherwise;

– r1
′

S ((s, n)) = r1
C

S (s) if 0 ≤ n ≤ k1−1 and equals 0 otherwise;

– r2
′

A ((s, n), a) = r2
C

A (s)(a) and r2
′

S ((s, n)) = r2
C

S (s).

and compute the SWNE values of θ ′ = Rr
′
1 [F ak1 ]+Rr

′
2 [F aφ2 ] for G′.

4.2.4 Computing SCNE values of nonzero-sum formulae

The case for SCNE values follows similarly to the SWNE case using backward induction
for finite-horizon properties and value iteration for infinite-horizon properties. There are two
differences in the computation. First, when solving MDPs, we find the minimum probability
of satisfying path formulae and the minimum expected reward for reward formulae. Second,
when solving the bimatrix games constructed during backward induction and value iteration,
we find SCNE rather than SWNE values; this is achieved through Lemma 1. More precisely,
we negate all the utilities in the game, find the SWNE values of this modified game, then
negate these values to obtain SCNE values of the original bimatrix game.

4.3 Strategy synthesis

In addition to verifying formulae in our extension of rPATL, it is typically also very useful
to perform strategy synthesis, i.e., to construct a witness to the satisfaction of a property.
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For each zero-sum formula 〈〈C〉〉P∼q [ψ ] or 〈〈C〉〉Rr∼x [ ρ ] appearing as a sub-formula, this
comprises optimal strategies for the players in coalition C (or, equivalently, for player 1
in the coalition game GC ) for the objective Xψ or Xr ,ρ . For each nonzero-sum formula
〈〈C :C ′〉〉opt∼x (θ) appearing as a sub-formula, this is a subgame-perfect SWNE/SCNE profile
for the objectives (X θ

1 , X
θ
2 ) in the coalition game GC .

We can perform strategy synthesis by adapting themodel checking algorithms described in
the previous sections which compute the values of zero-sum objectives and SWNE or SCNE
values of nonzero-sum objectives. The type of strategy needed (deterministic or randomised;
memoryless or finite-memory) depends on the types of objectives. As discussed previously
(in Sects. 4.2.2, 4.1.2), for infinite-horizon objectives our use of value iteration means we
cannot guarantee that the values computed are within a particular error bound of the actual
values; so, the same will be true of the optimal strategy that we synthesise for such a formula.
Zero-sum properties For zero-sum formulae, all strategies synthesised are randomised; this
is in contrast to checking the equivalent properties against TSGs [19], where deterministic
strategies are sufficient. For infinite-horizon objectives, we synthesise memoryless strategies,
i.e., a distribution over actions for each state of the game. For finite-horizon objectives,
strategies are finite-memory, with a separate distribution required for each state and each
time step.

For both types of objectives, we synthesise the strategies whilst computing values using
the approach presented in Sect. 4.1: from the matrix game solved for each state, we extract
not just the value of the game, but also an optimal (randomised) strategy for player 1 of GC in
that state. It is also possible to extract the optimal strategy for player 2 in the state by solving
the dual LP problem for the matrix game (see Sect. 2.1.1). For finite-horizon objectives, we
retain the choices for all steps; for infinite-horizon objectives, just those from the final step
of value iteration are needed.
Nonzero-sum properties In the case of a nonzero-sum formula, randomisation is again
needed for all types of objectives. Similarly to zero-sum formulae above, strategies are gen-
erated whilst computing SWNE or SCNE values, using the algorithms presented in Sect. 4.2.
Now, we do this in two distinct ways:

– when solving bimatrix games in each state, we also extract an SWNE/SCNE profile,
comprising the distributions over actions for each player of GC in that state;

– when solving MDPs, we also synthesise an optimal strategy for the MDP [49], which is
equivalent to a strategy profile for GC (in fact, randomisation is not needed for this part).

Thefinal synthesised profile is then constructed by initially following the ones generatedwhen
solving bimatrix games, and then switching to theMDP strategies if we reach a statewhere the
value of one player’s objective cannot change. This means that all strategies synthesised for
nonzero-sum formulae may need memory. As for the zero-sum case, finite-horizon strategies
are finite-memory since separate player choices are stored for each state and each time step.
But, in addition, for both finite- and infinite-horizon objectives, one bit of memory is required
to record that a switch is made to the strategy extracted when solving the MDP.

4.4 Complexity

Due to its overall recursive nature, the complexity of our model checking algorithms are
linear in the size of the formula φ. In terms of the problems solved for each subformula,
finding zero-sum values of a 2-player CSG is PSPACE [16] and finding subgame-perfect
NE for reachability objectives of a 2-player CSG is PSPACE-complete [11]. In practice, our
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algorithms are iterative, so the complexity depends on the number of iterations required, the
number of states in the CSG and the problems solved for each state and in each step.

For finite-horizon objectives, the number of iterations is equal to the step-bound in the
formula. For infinite-horizon objectives, the number of iterations depends on the convergence
criterion used. For zero-sum properties, an exponential lower bound has been shown for the
worst-case number of iterations required for a non-trivial approximation [37]. We report on
efficiency in practice in Sect. 7.1.

In the case of zero-sum properties, for each state, at each iteration, we need to solve an
LP problem of size |A|. Such problems can be solved using the simplex algorithm, which
is PSPACE-complete [29], but performs well on average [73]. Alternatively, Karmarkar’s
algorithm [41] could be used, which is in PTIME.

For nonzero-sum properties, in each state, at each iteration, we need to find all solutions
to an LCP problem of size |A|. Papadimitriou established the complexity of solving the class
of LCPs we encounter to be in PPAD (polynomial parity argument in a directed graph) [63]
and, to the best of our knowledge, there is still no polynomial algorithm for solving such
problems. More closely related to finding all solutions, it has been shown that determining
if there exists an equilibrium in a bimatrix game for which each player obtains a utility of a
given bound is NP-complete [32]. Also, it is demonstrated in [4] that bimatrix games may
have a number of NE that is exponential with respect to the size of the game, and thus any
method that relies on finding all NE in the worst case cannot be expected to perform in a
running time that is polynomial with respect to the size of the game.

5 Correctness of themodel checking algorithms

The overall (recursive) approach and the reduction to solution of a two-player game is essen-
tially the same as for TSGs [19], and therefore the same correctness arguments apply. In the
case of zero-sum formulae, the correctness of value iteration for infinite-horizon properties
follows from [68] and for finite-horizon properties from Definition 14 and the solution of
matrix games (see Sect. 2). Below, we show the correctness of themodel checking algorithms
for nonzero-sum formulae.

5.1 Nonzero-sum formulae

We fix a game G and a nonzero-sum formula 〈〈C :C ′〉〉opt∼x (θ). For the case of finite-horizon
nonzero-sum formulae, the correctness of the model checking algorithms follows from the
fact that we use backward induction [70,77]. For infinite-horizon nonzero-sum formulae,
the proof is based on showing that the values computed during value iteration correspond
to subgame-perfect SWNE values of finite game trees, and the values of these game trees
converge uniformly and are bounded from above by the actual values of GC .

The fact that we use MDP model checking when the goal of one of the players is reached
means that the values computed during value iteration are not finite approximations for the
values of GC . Therefore we must also show that the values computed during value iteration
are bounded from below by finite approximations for the values of GC . We first consider the
case when both the objectives in the sum θ are infinite-horizon objectives. Below we assume
opt = max and the case when opt = min follow similarly. For any (v1, v2), (v

′
1, v

′
2) ∈ Q2,

let (v1, v2) ≤ (v′
1, v

′
2) if and only if v1 ≤ v′

1 and v2 ≤ v′
2. The following lemma follows by

definition of subgame-perfect SWNE values.
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Lemma 2 Consider any strategy profile σ and state s of GC and let (v
σ,s
1 , v

σ,s
2 ) be the

corresponding values of the players in s for the objectives (X θ1 , X θ2). Considering subgame-
perfect SWNE values of the objectives (X θ1 , X θ2) in state s, in the case that θ is of the form
P[φ1

1 U φ1
2 ]+P[φ2

1 U φ2
2 ] :

– if s |�φ1
2 ∧ φ2

2 , then (1, 1) are the unique subgame-perfect SWNE values for state s and
(v

σ,s
1 , v

σ,s
2 ) ≤ (1, 1);

– if s |�φ1
2 ∧ φ2

1 ∧ ¬φ2
2 , then (1,Pmax

G,s (φ2
1 U φ2

2)) are the unique subgame-perfect SWNE

values for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (1,Pmax

G,s (φ2
1 U φ2

2));

– if s |�φ1
1 ∧ ¬φ1

2 ∧ φ2
2 , then (Pmax

G,s (φ1
1 U φ1

2), 1) are the unique subgame-perfect SWNE

values for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (Pmax

G,s (φ1
1 U φ1

2), 1);

– if s |�φ1
2 ∧ ¬φ2

1 ∧ ¬φ2
2 , then (1, 0) are the unique subgame-perfect SWNE values for

state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (1, 0);

– if s |�¬φ1
1 ∧ ¬φ1

2 ∧ φ2
2 , then (0, 1) are the unique subgame-perfect SWNE values for

state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (0, 1);

– if s |�¬φ1
1 ∧ ¬φ1

2 ∧ φ2
1 ∧ ¬φ2

2 , then (0,Pmax
G,s (φ2

1 U φ2
2)) are the unique subgame-perfect

SWNE values for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (0,Pmax

G,s (φ2
1 U φ2

2));

– if s |�φ1
1 ∧ ¬φ1

2 ∧ ¬φ2
1 ∧ ¬φ2

2 , then (Pmax
G,s (φ1

1 U φ1
2), 0) are the unique subgame-perfect

SWNE values for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (Pmax

G,s (φ1
1 U φ1

2), 0);

– if s |�¬φ1
1 ∧¬φ1

2 ∧¬φ2
1 ∧¬φ2

2 , then (0, 0) are the unique subgame-perfect SWNE values
for state s and (v

σ,s
1 , v

σ,s
2 ) ≤ (0, 0).

On the other hand, in the case that θ is of the form Rr1 [F φ1 ]+Rr2 [F φ2 ] :
– if s |� φ1 ∧ φ2, then (0, 0) are the unique subgame-perfect SWNE values for state s and

(v
σ,s
1 , v

σ,s
2 ) ≤ (0, 0);

– if s |�φ1 ∧ ¬φ2, then (0,Rmax
G,s (r2,F φ2)) are the unique subgame-perfect SWNE values

for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (0,Rmax

G,s (r2,F φ2));

– if s |�¬φ1 ∧ φ2, then (Rmax
G,s (r1,F φ1), 0) are the unique subgame-perfect SWNE values

for state s and (v
σ,s
1 , v

σ,s
2 ) ≤ (Rmax

G,s (r1,F φ1), 0).

Next we require the following objectives of GC .

Definition 15 For any sum of two probabilistic or reward objectives θ , 1 ≤ i ≤ 2 and n ∈ N,
let X θ

i,n be the objective where for any path π of GC :

X
P[φ1

1 Uφ1
2 ]+P[φ2

1 Uφ2
2 ]

i,n (π) =
{
1 if ∃k ≤ n. (π(k) |� φi

2 ∧ ∀ j < k. π( j) |� φi
1)

0 otherwise

X
Rr1 [Fφ1 ]+Rr2 [Fφ2 ]
i,n (π) =

⎧
⎪⎨

⎪⎩

∞ if ∀k ∈ N. π(k) �|� φi

∑kφi −1
k=0

(
rA(π(k), π[k]) + rS(π(k))

)
if kφi ≤ n−1

0 otherwise

and kφi = min{k | k ∈ N ∧ π(k) |�φi }.
The following lemma demonstrates that, for a fixed strategy profile and state, the values of
these objectives are non-decreasing and converge uniformly to the values of θ .

Lemma 3 For any sum of two probabilistic or reward objectives θ and ε > 0, there exists
N ∈ N such that, for any n ≥ N, s ∈ S, σ ∈ Σ1

GC×Σ2
GC and 1 ≤ i ≤ 2 :

0 ≤ Eσ

GC ,s
(X θ

i ) − Eσ

GC ,s
(X θ

i,n) ≤ ε .
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Proof Consider any sum of two probabilistic or reward objectives θ , state s and 1 ≤ i ≤ 2.
Using Assumption 3 we have that, for subformulae Rr [F φi ], the set Sat(φi ) is reached
with probability 1 from all states of G under all profiles, and therefore Eσ

GC ,s
(X θ

i ) is finite.

Furthermore, for any n ≥ N , by Definitions 14 and 15 we have that Eσ

GC ,s
(X θ

i,n) is the value

of state s for the nth iteration of value iteration [15] when computingEσ

GC ,s
(X θ

i ) in the DTMC

obtained from GC by following the strategy σ , and the sequence is both non-decreasing and
converges. The fact that we can choose an N independent of the strategy profile for uniform
convergence follows from Assumptions 2 and 3. ��
In the proof of correctness we will use the fact that n iterations of value iteration is equivalent
to performing backward induction on the following game trees.

Definition 16 For any state s and n ∈ N, let GC
n,s be the game tree corresponding to playing

GC for n steps when starting from state s and then terminating.

We can map any strategy profile σ of GC to a strategy profile of GC
n,s by only considering

the choices of the profile over the first n steps when starting from state s. This mapping is
clearly surjective, i.e., we can generate all profiles of GC

n,s , but is not injective. We also need
the following objectives corresponding to the values computed during value iteration for the
game trees of Definition 16.

Definition 17 For any sum of two probabilistic or reward objectives θ , s ∈ S, n ∈ N,
1 ≤ i ≤ 2 and j = i+1 mod 3, let Y θ

i be the objective where, for any path π of GC
n,s :

Y
P[φ1

1 Uφ1
2 ]+P[ φ2

1 Uφ2
2 ]

i (π) =
⎧
⎪⎨

⎪⎩

1 if ∃m ≤ n. (π(m) |� φi ∧ ∀k < m. π(k) |� φ1
1∧¬φ1

2∧φ2
1∧¬φ2

2)

Pmax
G,π(m)

(φi
1 U φi

2) else if ∃m ≤ n. (π(m) |� φ j ∧ ∀k < m. π(k) |� φ1
1∧¬φ1

2∧φ2
1∧¬φ2

2)

0 otherwise

Y
Rr1 [Fφ1 ]+Rr2 [Fφ2 ]
i (π) =

{
∞ if ∀k ≤ n. π(k) �|�φi

∑kφ1∨φ2−1
k=0

(
rA(π(k), π[k]) + rS(π(k))

) + r iS(π(k)) otherwise

where

r iS(s
′) =

{
Rmax
G,s′ (ri ,F φi ) if s |�¬φi ∧ φ j

0 otherwise

for s′ ∈ S and kφ1∨φ2 = min{k | k ≤ n ∧ π(k) |� φ1 ∨ φ2}.
Similarly to Lemma 3, the lemma below demonstrates, for a fixed strategy profile and state
s of GC , that the values for the objectives given in Definition 17 when played on the game
trees GC

n,s are non-decreasing and converge uniformly. As with Lemma 3 the result follows
from Assumptions 2 and 3.

Lemma 4 For any sum of two probabilistic or reward objectives θ and ε > 0, there exists
N ∈ N such that for any m ≥ n ≥ N, σ ∈ Σ1

GC×Σ2
GC , s ∈ S and 1 ≤ i ≤ 2 :

0 ≤ Eσ

GC
m,s

(Y θ
i ) − Eσ

GC
n,s

(Y θ
i ) ≤ ε .
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We require the following lemma relating the values of the objectives X θ
i,n , Y

θ
i and X θ

i for
1 ≤ i ≤ 2.

Lemma 5 For any sum of two probabilistic or reward objectives θ , state s of GC , strategy
profile σ such that when one of the targets of the objectives of θ is reached, the profile then
collaborates to maximise the value of the other objective, n ∈ N and 1 ≤ i ≤ 2 :

sup
σi∈Σ

GC
n,s

i

E
σ−i [σi ]
GC ,s

(X θ
i,n) ≤ sup

σi∈Σ
GC
n,s

i

E
σ−i [σi ]
GC
n,s

(Y θ
i ) ≤ sup

σi∈ΣGC

i
E

σ−i [σi ]
GC ,s

(X θ
i ) .

Proof Consider any strategy profile σ , n ∈ N and 1 ≤ i ≤ 2. By Definitions 15 and 17 it
follows that:

Eσ

GC ,s
(X θ

i,n) ≤ Eσ

GC
n,s

(Y θ
i ).

Furthermore, if we restrict the profile σ such that, when one of the targets of the objectives
of θ is reached, the profile then collaborates to maximise the value of the other objective,
then by Definitions 17 and 14:

Eσ

GC
n,s

(Y θ
i ) ≤ Eσ

GC ,s
(X θ

i ).

Combining these results with Lemma 2, we have:

sup
σi∈Σ

GC
n,s

i

E
σ−i [σi ]
GC ,s

(X θ
i,n) ≤ sup

σi∈Σ
GC
n,s

i

E
σ−i [σi ]
GC
n,s

(Y θ
i ) ≤ sup

σi∈ΣGC

i
E

σ−i [σi ]
GC ,s

(X θ
i )

as required. ��
We now define the strategy profiles synthesised during value iteration.

Definition 18 For any n ∈ N and s ∈ S, let σ n,s be the strategy profile generated for the
game tree GC

n,s (when considering value iteration as backward induction) and σ n,� be the
synthesised strategy profile for GC after n iterations.

Before giving the proof of correctness we require the following results.

Lemma 6 For any state s of GC , sum of two probabilistic or reward objectives θ and n ∈ N

we have that σ n,s is a subgame-perfect SWNE profile of the CSG GC
n,s for the objectives

(Y θ1 , Y θ2).

Proof The result follows from the fact that value iteration selects SWNE profiles, value
iteration corresponds to performing backward induction for the objectives (Y θ1 , Y θ2) and
backward induction returns a subgame-perfect NE [70,77]. ��
The following proposition demonstrates that value iteration converges and depends on
Assumptions 2 and 3. Without these assumptions convergence cannot be guaranteed as
demonstrated by the counterexamples in “Appendices B and C”. Although value iteration
converges, unlike value iteration for MDPs or zero-sum games, the generated sequence of
values is not necessarily non-decreasing.

Proposition 1 For any sum of two probabilistic or reward objectives θ and state s, the
sequence 〈VGC (s, θ, n)〉n∈N converges.

Proof For any state s and n ∈ N we can consider GC
n,s as two-player infinite-action NFGs

Nn,s where for 1 ≤ i ≤ 2:
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– the set of actions of player i equals the set of strategies of player i in GC ;
– for the action pair (σ1, σ2), the utility function for player i returns Eσ

GC
n,s

(Y θ
i ).

The correctness of this construction relies on the mapping of strategy profiles from the game
GC to GC

n,s being surjective. Using Lemma 4, we have that the sequence 〈Nn,s〉n∈N of NFGs
converges uniformly, and therefore, since VGC (s, θ, n) are subgame-perfect SWNE values of
GC
n,s (see Lemma 6), the sequence 〈VGC (s, θ, n)〉n∈N also converges. ��

A similar convergence result to Proposition 1 has been shown for the simpler case of dis-
counted properties in [30].

Lemma 7 For any ε > 0, there exists N ∈ N such that for any s ∈ S and 1 ≤ i ≤ 2:
∣
∣ Eσ n,�

GC ,s
(X θ

i ) − Eσ n,s

GC
n,s

(Y θ
i )

∣
∣ ≤ ε .

Proof Using Lemma 4 and Proposition 1, we can choose N such that the choices of the
profile σ n,s agree with those of σ n,� for a sufficient number of steps such that the inequality
holds. ��
Theorem 2 For a given sum of two probabilistic or reward objectives θ and ε > 0, there
exists N ∈ N such that for any n ≥ N the strategy profile σ n,� is a subgame-perfect ε-SWNE
profile of GC and the objectives (X θ1 , X θ2).

Proof Consider any ε > 0. From Lemma 7 there exists N1 ∈ N such that for any s ∈ S and
n ≥ N1: ∣

∣ Eσ n,�

GC ,s
(X θ

i ) − Eσ n,s

GC
n,s

(Y θ
i )

∣
∣ ≤ ε

2
. (5)

For any m ∈ N and s ∈ S, using Lemma 6 we have that σm,s is a NE of GC
m,s , and therefore

for any m ∈ N, s ∈ S and 1 ≤ i ≤ 2:

Eσm,s

GC
m,s

(Y θ
i ) ≥ sup

σi∈Σ
GC
m,s

i

E
σ
m,s
−i [σi ]

GC
m,s

(Y θ
i ) . (6)

From Lemma 3 there exists N2 ∈ N such that for any n ≥ N2, s ∈ S and 1 ≤ i ≤ 2:

sup
σi∈ΣGC

i
E

σ
n,�
−i [σi ]

GC ,s
(X θ

i ) − sup
σi∈ΣGC

i
E

σ
n,�
−i [σi ]

GC ,s
(X θ

i,n) ≤ ε

2
. (7)

By construction, σ n,� is a profile for which, if one of the targets of the objectives of θ is
reached, the profile maximises the value of the objective. We can thus rearrange (7) and
apply Lemma 5 to yield for any n ≥ N2, s ∈ S and 1 ≤ i ≤ 2:

sup
σi∈Σ

GC
n,s

i

E
σ
n,s
−i [σi ]

GC
n,s

(Y θ
i ) ≥ sup

σi∈ΣGC

i
E

σ
n,�
−i [σi ]

GC ,s
(X θ

i ) − ε

2
. (8)

Letting N = max{N1, N2}, for any n ≥ N , s ∈ S and 1 ≤ i ≤ 2:

Eσ n,�

GC ,s
(X θ

i ) ≥ Eσ n,s

GC
n,s

(Y θ
i ) − ε

2
by (5) since n ≥ N1

≥ sup
σi∈Σ

GC
n,s

i

E
σ
n,s
−i [σi ]

GC
n,s

(Y θ
i ) − ε

2
by (6)

≥
(

sup
σi∈ΣGC

i
E

σ
n,�
−i [σi ]

GC ,s
(X θ

i ) − ε

2

)

− ε

2
by (8) since n ≥ N2

= sup
σi∈ΣGC

i
E

σ
n,�
−i [σi ]

GC ,s
(X θ

i ) − ε
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and hence, since ε > 0, s ∈ S and 1 ≤ i ≤ 2 were arbitrary, σ n,� is a subgame-perfect ε-NE.
It remains to show that the strategy profile is a subgame-perfect social welfare optimal ε-NE,
which follows from the fact that when solving the bimatrix games during value iteration
social welfare optimal NE are returned. ��
It remains to consider the model checking algorithms for nonzero-sum properties for which
the sum of objectives contains both a finite-horizon and an infinite-horizon objective. In this
case (see Sect. 4.2.3), for a given game GC and sum of objectives θ , the algorithms first build
a modified game G′ with states S′ ⊆ S×N and sum of infinite-horizon objectives θ ′ and then
computes SWNE/SCNE values of θ ′ in G′. The correctness of these algorithms follows by
first showing there exists a bijection between the profiles of GC and G′ and then that, for any
profile σ of GC and σ ′, the corresponding profile of G′ under this bijection, we have:

Eσ

GC ,s
(X θ

i ) = Eσ ′
G′,(s,0)(X

θ ′
i )

for all states s of GC and 1 ≤ i ≤ 2. This result follows from the fact that in Sect. 4.2.3
we used a standard construction for converting the verification of finite-horizon properties to
infinite-horizon properties.

6 Implementation and tool support

We have implemented support for modelling and automated verification of CSGs in PRISM-
games 3.0 [48], which previously only handled TSGs and zero-sum objectives [51]. The
PRISM-games tool is available from [80] and the files for the case studies, described in the
next section, are available from [81].

6.1 Modelling

We extended the PRISM-games modelling language to support specification of CSGs.
The language allows multiple parallel components, called modules, operating both asyn-
chronously and synchronously. Each module’s state is defined by a number of finite-valued
variables, and its behaviour is defined using probabilistic guarded commands of the form
[a] g → u, where a is an action label, g is a guard (a predicate over the variables of all
modules) and u is a probabilistic state update. If the guard is satisfied then the command
is enabled, and the module can (probabilistically) update its variables according to u. The
language also allows for the specification of cost or reward structures. These are defined in
a similar fashion to the guarded commands, taking the form [a] g : v (for action rewards)
and g : v (for state rewards), where a is an action label, g is a guard and v is a real-valued
expression over variables.

For CSGs, we assign modules to players and, in every state of the model, each player can
choose between the enabled commands of the corresponding modules (or, if no command
is enabled, the player idles). In contrast to the usual behaviour of PRISM, where modules
synchronise on common actions, in CSGs action labels are distinct for each player and the
players move concurrently. To allow the updates of variables to depend on the choices of
other players, we extend the language by allowing commands to be labelled with lists of
actions [a1, . . . , an]. Moreover, updates to variables can be dependent on the new values of
other variables being updated in the same concurrent transition, provided there are no cyclic
dependencies. This ensures that variables of different players are updated according to a
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joint probability distribution. Another addition is the possibility of specifying “independent”
modules, that is, modules not associated with a specific player, which do not feature nonde-
terminism and update their own variables when synchronising with other players’ actions.
Reward definitions are also extended to use action lists, similarly to commands, so that an
action reward can depend on the choices taken by multiple players. For further details of the
new PRISM-games modelling language, we refer the reader to the tool documentation [80].

6.2 Implementation

PRISM-games constructs a CSG from a givenmodel specification and implements the rPATL
model checking and strategy synthesis algorithms from Sect. 4. We extend existing function-
ality within the tool, such as modelling and property language parsers, the simulator and
basic model checking functionality. We build, store and verify CSGs using an extension of
PRISM’s ‘explicit’ model checking engine, which is based on sparse matrices and imple-
mented in Java. For strategy synthesis we have included the option to export the generated
strategies to a graphical representation using the Dot language [31].

Computing values (and optimal strategies) of matrix games (see Sect. 2.1.1), as required
for zero-sum formulae, is performed using the LPSolve library [54] via linear programming.
This library is based on the revised simplex and branch-and-bound methods. Computing
SWNE or SCNE values (and SWNE or SCNE strategies) of bimatrix games (see Sect. 2.1.2)
for nonzero-sum formulae is performed via labelled polytopes through a reduction to SMT.
Currently, we implement this in both Z3 [26] andYices [28]. As an optimised precomputation
step, when possible we also search for and filter out dominated strategies, which speeds up
computation and reduces calls to the solver.

Since bimatrix games can have multiple SWNE values, when selecting SWNE values of
such games we choose the SWNE values for which the value of player 1 is maximal. In case
player 1 is indifferent, i.e., their utility is the same for all pairs, we choose the SWNE values
which maximise the value of player 2. If both players are indifferent, an arbitrary pair of
SWNE values is selected.

Table 1 presents experimental results for the time to solve bimatrix games using the Yices
and Z3 solvers, as the numbers of actions of the individual games vary. The table also shows
the number of NE in each game N, as found when determining the SWNE values, and also
the number of NE inN−, as found when determining the SCNE values (see Lemma 1). These
games were generated using GAMUT (a suite of game generators) [60] and a time-out of 2
hours was used for the experiments. The results show Yices to be the faster implementation
and that the difference in solution time grows as the number of actions increases. Therefore, in
our experimental results in the next section, all verification runs use theYices implementation.
The results in Table 1 also demonstrate that the solution time for either solver can vary widely
and depends on both the number of NE that need to be found and the structure of the game.
For example, when solving the dispersion games, the differences in the solution times for
SWNE and SCNE seem to correspond to the differences in the number of NE that need to
found. On the other hand, there is no such correspondence between the difference in the
solution times for the covariant games.

Regarding the complexity of solving bimatrix games, if each player has n actions, then the
number of possible assignments to the supports of the strategy profiles (i.e., the action tuples
that are chosen with nonzero probability) is (2n−1)2, which therefore grows exponentially
with the number of actions, surpassing 4.2 billion when each player has 16 actions. This
particularly affects performance in caseswhere one or both players are indifferentwith respect
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Table 2 Possible NE strategies
and utilities of the bimatrix game
of Example 6

Player 1 strategy Player 2 strategy Utilities

Prob. a1 Prob. a2 Prob. b1 Prob. b2 (u1, u2)

0.0 1.0 0.0 1.0 (0.0,4.0)

0.0 1.0 1.0 0.0 (1.0,4.0)

0.0 1.0 0.5 0.5 (0.5,4.0)

1.0 0.0 0.0 1.0 (0.0,2.0)

1.0 0.0 1.0 0.0 (1.0,2.0)

1.0 0.0 0.5 0.5 (0.5,2.0)

0.5 0.5 0.0 1.0 (0.0,3.0)

0.5 0.5 1.0 0.0 (1.0,3.0)

0.5 0.5 0.5 0.5 (0.5,3.0)

to a given support. More precisely, in such cases, if there is an equilibrium including pure
strategies over these supports, then there are also equilibria including mixed strategies over
these supports as the indifferent player would get the same utility for any affine combination
of pure strategies.

Example 6 Consider the following bimatrix game:

Z1 =
(

b1 b2

a1 1 0
a2 1 0

)

Z2 =
(

b1 b2

a1 2 2
a2 4 4

)

Since the entries in the rows for the utility matrix for player 1 are the same and the columns
are the same for player 2, it is easy to see that both players are indifferent with respect to
their actions. As can be seen in Table 2, all (22−1)2 = 9 possible support assignments lead
to an equilibrium.

For the task of computing non-optimal NE values, the large number of supports can be
somewhat mitigated by eliminating weakly dominated strategies [59]. However, removing
such strategies is not a straightforward task when computing SWNE or SCNE values, since
it can lead to the elimination of SWNE or SCNE profiles, and hence also SWNE or SCNE
values. For example, if we removed the row corresponding to action a2 or the column cor-
responding to action b1 from the matrices in Example 6 above, then we eliminate a SWNE
profile. As the number of actions for each player increases, the number of NE profiles also
tends to increase and so does the likelihood of indifference. Naturally, the number of actions
also affects the number of variables that have to be allocated, and the number and complexity
of assertions passed to the SMT solver. As our method is based on the progressive elimina-
tion of support assignments that lead to NE, it takes longer to find SWNE and SCNE values
as the number of possible supports grows and further constraints are added each time an
equilibrium is found.

7 Case studies and experimental results

To demonstrate the applicability and benefits of our techniques, and to evaluate their perfor-
mance, we now present results from a variety of case studies. Supporting material for these

123



Formal Methods in System Design

examples (models and properties) is available from [81]. These can be runwith PRISM-games
3.0 [48].

7.1 Efficiency and scalability

We begin by presenting a selection of results illustrating the performance of our implemen-
tation. The experiments were run on a 2.10 GHz Intel Xeon with 16GB of JVM memory. In
Table 3, we present the model statistics for the examples used: the number of players, states,
transitions and model construction times (details of the case studies themselves follow in
the next section). Due to improvements in the modelling language and the model building
procedure, some of the model statistics differ from those presented in [45,46]. The main
reason is that the earlier version of the implementation did not allow for variables of different
players to be updated following a joint probability distribution, which made it necessary to
introduce intermediate states in order to specify some of the behaviour. Also, some model
statistics differ from [45] since models were modified to meet Assumptions 2 and 3 to enable
the analysis of nonzero-sum properties.

Tables 4 and 5present themodel checking statisticswhen analysing zero-sumandnonzero-
sum properties, respectively. In both tables, this includes the maximum and average number
of actions of each coalition in the matrix/bimatrix games solved at each step of value iter-
ation and the number of iterations performed. In the case of zero-sum properties including
reward formulae of the form F φ, value iteration is performed twice (see Sect. 4.1.2), and
therefore the number of iterations for each stage are presented (and separated by a semi-
colon). For zero-sum properties, the timing statistics are divided into the time for qualitative
(column ‘Qual.’) and quantitative verification, which includes solving matrix games (column
‘Quant.’). For nonzero-sum properties we divide the timing statistics into the time for CSG
verification, which includes solving bimatrix games (column ‘CSG’), and the instances of
MDP verification (column ‘MDP’). In the case of mixed nonzero-sum properties, i.e., prop-
erties including both finite and infinite horizon objectives, we must first build a new game
(see Sect. 4.2.3); the statistics for these CSGs (number of players, states and transitions) are
presented in Table 6. Finally, Table 7 presents the timing results for three nested properties.
Here we give the time required for verifying the inner and outer formula separately, as well
as the number of iterations for value iteration at each stage.

Our results demonstrate significant gains in efficiency with respect to those presented
for zero-sum properties in [45] and nonzero-sum properties in [46] (for the latter, a direct
comparison with the published results is possible since it uses an identical experimental
setup). The gains are primarily due to faster SMT solving and reductions in CSG size as
a result of modelling improvements, and specifically the removal of intermediate states as
discussed above.

The implementation can analyse models with over 3 million states and almost 18 million
transitions; all are solved in under 2 hours and most are considerably quicker. The majority
of the time is spent solving matrix or bimatrix games, so performance is affected by the
number of choices available within each coalition, rather than the number of players, as
well as the number of states. For example, larger instances of the Aloha models are verified
relatively quickly since the coalitions have only one choice in many states (the average
number of choices is 1.00 for both coalitions). However, for models where players have
choices in almost all states, only models with up to hundreds of thousands of states for zero-
sum properties and tens of thousands of states for nonzero-sum properties can be verified
within 2 h.
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7.2 Case studies

Next, we present more information about our case studies, to illustrate the applicability
and benefits of our techniques. We use some of these examples to illustrate the benefits of
concurrent stochastic games, in contrast to their turn-based counterpart; here, we build both
TSG and CSG models for the case study and compare the results.

To study the benefits of nonzero-sum properties, we compare the results with cor-
responding zero-sum properties. For example, for a nonzero-sum formula of the form
〈〈C :C ′〉〉max=?(P[F φ1 ]+P[F φ2 ]), we compute the value and an optimal strategy σ�

C for
coalition C of the formula 〈〈C〉〉Pmax=?[F φ1 ], and then find the value of an optimal strat-
egy for the coalition C ′ for Pmin=?[F φ2 ] and Pmax=?[F φ2 ] in the MDP induced by CSG
when C follows σ�

C . The aim is to showcase the advantages of cooperation since, in many
real-world applications, agents’ goals are not strictly opposed and adopting a strategy that
assumes antagonistic behaviour can have a negative impact from both individual and collec-
tive standpoints.

As will be seen, our results demonstrate that, by using nonzero-sum properties, at least
one of the players gains and in almost all cases neither player loses (in the one case study
where this is not the case, the gains far outweigh the losses). The individual SWNE/SCNE
values for players need not be unique and, for all case studies (except Aloha and medium
access in which the players are not symmetric), the values can be swapped to give alternative
SWNE/SCNE values.

Finally, we note that, for infinite-horizon nonzero-sum properties, we compute the value
of ε for the synthesised ε-NE and find that ε = 0 in all cases.
Robot Coordination Our first case study concerns a scenario in which two robots move
concurrently over a grid of size l×l, briefly discussed in Example 5. The robots start in
diagonally opposite corners and try to reach the corner from which the other starts. A robot
canmove either diagonally, horizontally or vertically towards its goal. Obstacleswhich hinder
the robots as they move from location to location are modelled stochastically according to a
parameter q (which we set to 0.25): when a robot moves, there is a probability that it instead
moves in an adjacent direction, e.g., if it tries to move north west, then with probability q/2
it will instead move north and with the same probability west.

We can model this scenario as a two-player CSG, where the players correspond to the
robots (rbt1 and rbt2), the states of the game represent their positions on the grid. In states
where a robot has not reached its goal, it can choose between actions that move either
diagonally, horizontally or vertically towards its goal (under the restriction that it remains
in the grid after this move). For i ∈ {1, 2}, we let goali be the atomic proposition labelling
those states of the game in which rbti has reached its goal and crash the atomic proposition
labelling the states in which the robots have crashed, i.e., are in the same grid location. In
Fig. 3, we present the states that can be reached from the initial state of the game when l = 3,
when the robot in the south west corner tries to move north and the robot in the north east
corner tries to move south west. As can be seen there are six different outcomes and the
probability of the robots crashing is q

2 ·(1−q).
We first investigate the probability of the robots eventually reaching their goals without

crashing for different size grids. In the zero-sum case, we find the values for the formula
〈〈rbt1〉〉Pmax=?[ ¬crash U goal1 ] converge to 1 as l increases; for example, the values for
this formula in the initial states of game when l = 5, 10 and 20 are approximately 0.9116,
0.9392 and 0.9581, respectively. On the other hand, in the nonzero-sum case, considering
SWNE values for the formula 〈〈rbt1:rbt2〉〉max=?(P[ ¬crash U goal1 ]+P[ ¬crash U goal2 ])
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Fig. 3 Robot coordination on a 3×3 grid: probabilistic choices for one pair of action choices in the initial
state. Solid lines indicate movement in the intended direction, dotted lines where there is deviation due to
obstacles
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Fig. 4 Robot coordination: probability of reaching the goal without crashing

and l ≥ 4, we find that each robot can reach its goal with probability 1 (since time is not an
issue, they can collaborate to avoid crashing).

We next consider the probability of the robots reaching their targets without crash-
ing within a bounded number of steps. Figure 4 presents both the value for the
(zero-sum) formula 〈〈rbt1〉〉Pmax=?[ ¬crash U≤k goal1 ] and SWNE values for the formula
〈〈rbt1:rbt2〉〉max≥2(P[ ¬crash U≤ k1 goal1 ]+P[ ¬crash U≤ k2 goal2 ]), for a range of step
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Fig. 5 Robot coordination: expected steps to reach the goal

bounds and grid sizes. When there is only one route to each goal within the bound (along
the diagonal), i.e., when k1 = k2 = l−1, in the SWNE profile both robots take this route.
In odd grids, there is a high chance of crashing, but also a chance one will deviate and the
other reaches its goal. Initially, as the bound k increases, for odd grids the SWNE values for
the robots are not equal (see Fig. 4 right). Here, both robots following the diagonal does not
yield a NE profile. First, the chance of crashing is high, and therefore the probability of the
robots satisfying their objectives is low. Therefore it is advantageous for a robot to switch
to a longer route as this will increase the probability of satisfying its objective, even taking
into account that there is a greater chance it will run out of steps and changing its route will
increase the probability of the other robot satisfying its objective by a greater amount (as the
other robot will still be following the diagonal). Dually, both robots taking a longer route
is not an NE profile, since if one robot switches to the diagonal route, then the probability
of satisfying its objective will increase. It follows that, in a SWNE profile, one robot has to
follow the diagonal and the other take a longer route. As expected, if we compare the results,
we see that the robots can improve their chances of reaching their goals by collaborating.

The next properties we consider concern the minimum expected number of steps
for the robots to reach their goal. In Fig. 5 we have plotted the values corresponding
to the formula 〈〈rbt2〉〉Rrstepsmin=?[F goal2 ] and SCNE values for the individual players for
〈〈rbt1:rbt2〉〉min=?(Rrsteps [F goal1 ]+Rrsteps [F goal2 ]) as the grid size l varies. The results
again demonstrate that the players can gain by collaborating.
Futuresmarket investorsThis case study is a model of a futures market investor [56], which
represents the interactions between investors and a stock market. For the TSGmodel of [56],
in successive months, a single investor chooses whether to invest, next the market decides
whether to bar the investor, with the restriction that the investor cannot be barred two months
in a row or in the first month, and then the values of shares and a cap on values are updated
probabilistically.

We have built and analysed several CSGs variants of the model, analysing optimal strate-
gies for investors under adversarial conditions. First, we made a single investor and market
take their decisions concurrently, and verified that this yielded no additional gain for the
investor (see [81]). This is because the market and investor have the same information, and
so the market knows when it is optimal for the investor to invest without needing to see its
decision. We next modelled two competing investors who simultaneously decide whether
to invest (and, as above, the market simultaneously decides which investors to bar). If the
two investors cash in their shares in the same month, then their profits are reduced. We also
consider several distinct profit models: ‘normal market’, ‘later cash-ins’, ‘later cash-ins with
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Fig. 6 Futures market: payoff profiles

fluctuation’ and ‘early cash-ins’. The first is from [56] and the remaining reward models
either postponing cashing in shares or the early cashing in of shares. Figure 6 presents the
‘later cash-ins’ and ‘later cash-ins with fluctuation’ profit multipliers; see [81] for further
details.

The CSG has 3 players: one for each investor and one representing the market who
decides on the barring of investors. We study both the maximum profit of one investor and
the maximum combined profit of both investors. For comparison, we also build a TSGmodel
in which the investors first take turns to decide whether to invest (the ordering decided by
the market) and then the market decides on whether to bar any of the investors.

Figure 7 shows the maximum expected value over a fixed number of months under the
‘normal market’ for both the profit of first investor and the combined profit of the two
investors. For the former, we show results for the formulae 〈〈i1〉〉Rprofit1

max=?[F cashed_in1 ],
corresponding to the first investor acting alone, and 〈〈i1, i2〉〉Rprofit1,2

max=? [F cashed_in1,2 ] when
in a coalition with the second investor.We plot the corresponding results from the TSGmodel
for comparison. Figure 8 shows the maximum expected combined profit for the two ‘later
cash-ins’ profiles. The variations in the combined profits of the investors for ‘later cash-ins
with fluctuations’ are caused by the rise and fall in the profit multiplier under this profile, as
shown in Fig. 6.

When investors cooperate to maximise the profit of the first, results for the CSG and TSG
models coincide. This follows from the discussion above since all the second investor can do
is to make sure it does not invest at the same time as the first. For the remaining cases and
given sufficient months, there is always a strategy in the concurrent setting that outperforms
all turn-based strategies. The increase in profit for a single investor in the CSG model is due
to the fact that, as the investors decisions are concurrent, the second cannot ensure it invests
at the same time as the first, and hence decreases the profit of the first. In the case of combined
profit, the difference arises because, although the market knows when it is optimal for one
investor to invest, in the CSG model the market does not know which one will, and therefore
may choose the wrong investor to bar.

We performed strategy synthesis to study the optimal actions of investors. By way of
example, consider 〈〈i1〉〉Rprofit1max=?[F cashed_in1 ] over three months and for a normal market
(see Fig. 7 left). The optimal TSG strategy for the first investor is to invest in the first month
(which the market cannot bar) ensuring an expected profit of 3.75. The optimal (randomised)
CSG strategy is to invest:

– in the first month with probability ∼ 0.4949;
– in the second month with probability 1, if the second investor has cashed in;
– in the second month with probability ∼ 0.9649, if the second investor did not cash in at

the end of the first month and the shares went up;
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Fig. 7 Futures market investors: normal market
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Fig. 8 Futures market: later cash-ins without (left) and with (right) fluctuations

– in the second month with probability ∼ 0.9540, if the second investor did not cash in at
the end of the first month and the shares went down;

– in the third month with probability 1 (this is the last month to invest).

Following this strategy, the first investor ensures an expected profit of ∼ 4.33.
We now make the market probabilistic, where, in any month when it did not bar

the investor in the previous month (including the first), the probability that the market
bars an individual investor equals pbar . We consider nonzero-sum properties of the form
〈〈i1:i2〉〉max=?(Rprofit1 [F cashed_in1 ]+Rprofit2 [F cashed_in2 ]), in which each investor tries
to maximise their individual profit, for different reward structures. In Figs. 9 and 10 we
have plotted the results for the investors where the profit models of the investors follow a
normal profile and where the profit models of the investors differ (‘later cash-ins’ for the
first investor and ‘early cash-ins’ for second), when pbar equals 0.1 and 0.5 respectively. The
results demonstrate that, given more time and a more predictable market, i.e., when pbar is
lower, the players can collaborate to increase their profits.

Performing strategy synthesis, we find that the strategies in the mixed profiles model are
for the investor with an ‘early cash-ins’ profit model to invest as soon as possible, i.e., it tries
to invest in the first month and if this fails because it is barred, it will be able to invest in
the second. On the other hand, for the investor with the ‘later cash-ins’ profile, the investor
will delay investing until the chances of the shares failing start to increase or they reach the
month before last and then invest (if the investor is barred in this month, they will be able to
invest in the final month).
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Fig. 9 Futures market: normal profiles (left) and mixed profiles (right) (pbar = 0.1)
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Fig. 10 Futures market: normal profiles (left) and mixed profiles (right) (pbar = 0.5)

Trust models for user-centric networks Trust models for user-centric networks were
analysed previously using TSGs in [50]. The analysis considered the impact of different
parameters on the effectiveness of cooperation mechanisms between service providers. The
providers share information on the measure of trust for users in a reputation-based setting.
Each measure of trust is based on the service’s previous interactions with the user (which
previous services they paid for), and providers use this measure to block or allow the user to
obtain services.

In the original TSG model, a single user can either make a request to one of three service
providers or buy the service directly by paying maximum price. If the user makes a request
to a service provider, then the provider decides to accept or deny the request based on the
user’s trust measure. If the request was accepted, the provider would next decide on the price
again based on the trust measure, and the user would then decide whether to pay for the
service and finally the provider would update its trust measure based on whether there was
a payment. This sequence of steps would have to take place before any other interactions
occurred between the user and other providers. Here we consider CSG models allowing the
user to make requests and pay different service providers simultaneously and for the different
providers to execute requests concurrently. There are 7 players: one for the user’s interaction
with each service provider, one for the user buying services directly and one for each of
the 3 service providers. Three trust models were considered. In the first, the trust level was
decremented by 1 (td = 1) when the user does not pay, decremented by 2 in the second
(td = 2) and reset to 0 in the third (td = inf ).
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Fig. 11 User-centric network results (CSG/TSG values as solid/dashed lines)
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Figure 11 presents results for themaximum fraction and number of unpaid services the user
can ensure for each trustmodel, corresponding to the formulae 〈〈usr〉〉Rratio−

min=?[F finished ] and
〈〈usr〉〉Runpaid−

min=? [F finished ] (to prevent not requesting any services and obtaining an infinite
reward being the optimal choice of the user, we negate all rewards and find the minimum
expected reward the user can ensure). The results for the original TSG model are included as
dashed lines. The results demonstrate that the user can take advantage of the fact that in the
CSGmodel it can requestmultiple services at the same time, and obtainmore serviceswithout
paying before the different providers get a chance to inform each other about non-payment.
In addition, the results show that imposing a more severe penalty on the trust measure for
non-payment reduces the number of services the user can obtain without paying.
Aloha This case study concerns three users trying to send packets using the slotted ALOHA
protocol. In a time slot, if a single user tries to send a packet, there is a probability (q) that
the packet is sent; as more users try and send, then the probability of success decreases. If
sending a packet fails, the number of slots a user waits before resending is set according to
an exponential backoff scheme. More precisely, each user maintains a backoff counter which
it increases each time there is a failure (up to bmax) and, if the counter equals k, randomly
chooses the slots to wait from {0, 1, . . . , 2k−1}.

We suppose that the three users are each trying tomaximise the probability of sending their
packet before a deadline D, with users 2 and 3 forming a coalition, which corresponds to
the formula 〈〈usr1:usr2,usr3〉〉max=?P[F (sent1 ∧ t≤D) ] + P[F (sent2 ∧ sent3 ∧ t≤D) ].
Figure 12 presents total values as D varies (left) and individual values as q varies (right).
Through synthesis, we find the collaboration is dependent on D and q . Given more time
there is a greater chance for the users to collaborate by sending in different slots, while if
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q is large it is unlikely users need to repeatedly send, so again can send in different slots.
As the coalition has more messages to send, their probabilities are lower. However, for the
scenario with two users, the probabilities of the two users would still be different. In this
case, although it is advantageous to initially collaborate and allow one user to try and send
its first message, if the sending fails, given there is a bound on the time for the users to send,
both users will try to send at this point as this is the best option for their individual goals.

We have also considered when the users try to minimise the expected time before
their packets are sent, where users 2 and 3 form a coalition, represented by the formula
〈〈usr1:usr2,usr3〉〉min=?(Rtime[F sent1 ]+Rtime[F (sent2 ∧ sent3) ]). When synthesising the
strategies we see that the players collaborate with the coalition of users 2 and 3, letting user
1 to try and send before sending their messages. However, if user 1 fails to send, then the
coalition either lets user 1 try again in case the user can do so immediately, and otherwise
the coalition attempts to send their messages.

Finally, we have analysed when the players collaborate to maximise the proba-
bility of reaching a state where they can then send their messages with probabil-
ity 1 within D time units (with users 2 and 3 in coalition), which is represented
by the formula 〈〈usr1,usr2,usr3〉〉Pmax=?[F 〈〈usr1:usr2,usr3〉〉min≥2P[F (sent1 ∧ t≤D) ] +
P[F (sent2 ∧ sent3 ∧ t≤D) ]].
Intrusion detection policies In [78], CSGs are used to model the interaction between an
intrusion detection policy and attacker. The policy has a number of libraries it can use to
detect attacks and the attacker has a number of different attacks which can incur different
levels of damage if not detected. Furthermore, each library can only detect certain attacks. In
the model, in each round the policy chooses a library to deploy and the attacker chooses an
attack. A reward structure is specified representing the level of damage when an attack is not
detected. The goal is to find optimal intrusion detection policies which correspond to finding
a strategy for the policy that minimises damage, represented by synthesising a strategy for
the formula 〈〈policy〉〉Rdamage

min=? [C≤rounds) ]. We have constructed CSGmodels with two players
(representing the policy and the attacker) for the two scenarios outlined in [78].
Jammingmulti-channel radio systemsACSGmodel for jamming multi-channel cognitive
radio systems is presented in [79]. The systemconsists of a number of channels (chans), which
can be in an occupied or idle state. The state of each channel remains fixed within a time slot
and between slots is Markovian (i.e. the state changes randomly based only on the state of the
channel in the previous slot). A secondary user has a subset of available channels and at each
time-slot must decide which to use. There is a single attacker which again has a subset of
available channels and at each time slot decides to send a jamming signal over one of them.
The CSG has two players: one representing the secondary user and the other representing
the attacker. Through the zero-sum property 〈〈user〉〉Pmax=?[F (sent ≥ slots/2) ] we find the
optimal strategy for the secondary user to maximize the probability that at least half their
messages are sent against any possible attack. We have also considered the expected number
of messages sent by the kth time-slot: 〈〈user〉〉Rsent

max=?[I=k ].
Medium Access Control This case study extends the CSG model from Example 4 to
three users and assumes that the probability of a successful transmission is dependent
on the number of users that try and send (q1 = 0.95, q2 = 0.75 and q3 = 0.5).
The energy of each user is bounded by emax. We suppose the first user acts in iso-
lation and the remaining users form a coalition. The first nonzero-sum property we
consider is 〈〈p1:p2,p3〉〉max=?(Rsent1 [C≤k1 ]+Rsent2,3 [C≤k2 ]), which corresponds to each
coalition trying to maximise the expected number of messages they send over a bounded
number of steps. On the other hand, the second property is
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〈〈p1:p2,p3〉〉max=?(P[F≤k (mess1 = smax) ]+P[F (mess2+mess3 = 2·smax) ]) and here the
coalitions try to maximise the probability of successfully transmitting a certain number of
messages (smax for the first user and 2·smax for the coalition of the second and third users),
where in addition the first user has to do this in a bounded number of steps (k).
PowerControlOur final case study is based on amodel of power control in cellular networks
from [10]. In the model, phones emit signals over a cellular network and the signals can
be strengthened by increasing the power level up to a bound (powmax). A stronger signal
can improve transmission quality, but uses more energy and lowers the quality of other
transmissions due to interference. We extend this model by adding a failure probability (qfail)
when a power level is increased and assume each phone has a limited battery capacity (emax).
Based on [10], we associate a reward structure with each phone representing transmission
quality dependent both on its power level and that of other phones due to interference.
We consider the nonzero-sum property 〈〈p1:p2〉〉max=?(Rr1 [F (e1 = 0) ]+Rr2 [F (e2 = 0) ]),
where each user tries tomaximise their expected reward before their phone’s battery is empty.
We have also analysed the properties: 〈〈p1:p2〉〉max=?(Rr1 [F (e1 = 0) ] + Rr2 [C≤k ]), where
the objective of the second user is to instead maximise their expected reward over a bounded
number of steps (k), and 〈〈p1:p2〉〉max=?(Rr1 [I=k1 ]+R[I=k2 ]), where the objective of user
i is to maximise their reward at the ki th step.

8 Conclusions

In this paper, we have designed and implemented an approach for the automatic verification
of a large subclass of CSGs. We have extended the temporal logic rPATL to allow for the
specification of equilibria-based (nonzero-sum) properties, where two players or coalitions
with distinct goals can collaborate. We have then proposed and implemented algorithms for
verification and strategy synthesis using this extended logic, including both zero-sum and
nonzero-sum properties, in the PRISM-games model checker. In the case of finite-horizon
properties the algorithms are exact, while for infinite-horizon they are approximate using
value iteration. We have also extended the PRISM-games modelling language, adding new
features tailored to CSGs. Finally, we have evaluated the approach on a range of case studies
that have demonstrated the benefits of CSG models compared to TSGs and of nonzero-sum
properties as a means to synthesise strategies that are collectively more beneficial for all
players in a game.

The main challenge in implementing the model checking algorithms is efficiently solv-
ing matrix and bimatrix games at each state in each step of value iteration for zero-sum
and nonzero-sum properties, respectively, which are non-trivial optimisation problems. For
bimatrix games, this furthermore requires finding an optimal equilibrium, which currently
relies on iteratively restricting the solution search space. Solution methods can be sensi-
tive to floating-point arithmetic issues, particularly for bimatrix games; arbitrary precision
representations may help here to alleviate these problems.

There are a number of directions for future work. First, we plan to consider additional
properties such as multi-objective queries. We are also working on extending the implemen-
tation to consider alternative solution methods (e.g., policy iteration and using CPLEX [40]
to solve matrix games) and a symbolic (binary decision diagram based) implementation and
other techniques for Nash equilibria synthesis such as an MILP-based solution using regret
minimisation. Lastly, we are considering extending the approach to partially observable
strategies, multi-coalitional games, building on [47], and mechanism design.
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Appendix A: Convergence of zero-sum reachability reward formulae

In this appendix we give a witness to the failure of convergence for value iteration when
verifying zero-sum formulae with an infinite horizon reward objective if Assumption 1 does
not hold.
Consider the CSG in Fig. 13 with players p1 and p2 and the zero-sum state formula φ =
〈〈p1, p2〉〉Rrmax=?[F a ], where a is the atomic proposition satisfied only by state t . Clearly,

s1 s2

t

a1, a2

a1, a2
a1, b2

rA(s, (c1, c2)) =

⎧
⎪⎨

⎪⎩

−1 if s = s1 and (c1, c2) = (a1, a2)
1 if s = s2 and (c1, c2) = (a1, a2)
0 otherwise

rS(s) = 0 for all s

Fig. 13 Counterexample for zero-sum expected reachability reward properties
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state s1 does not reach either the target of the formula or an absorbing state with probability 1
under all strategy profiles, while the reward for the state-action pair (s1, (a1, a2)) is negative.
Applying the value iteration algorithm of Sect. 4, we see that the values for state s1 oscillate
between 0 and −1, while the values for state s2 oscillate between 0 and 1.

Appendix B: Convergence of nonzero-sum probabilistic reachability
properties

In this appendix we give a witness to the failure of convergence for value iteration when
verifyingnonzero-sum formulaewith infinite horizonprobabilistic objectives ifAssumption 2
does not hold.
Consider theCSG inFig. 14with players p1 and p2 (an adaptation of aTSGexample from [8])
and the nonzero-sum state formula 〈〈p1:p2〉〉max=?(θ), where θ = P[F a1 ]+P[F a2 ] and ai
is the atomic proposition satisfied only by the state ti . Clearly, this CSG has a non-terminal
end component as one can remain in {s1, s2} indefinitely or leave at any time.

Applying the value iteration algorithm of Sect. 4, we have:

– In the first iteration VGC (s1, θ, 1) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 0
s 1

4

)

and Z2 =
(

⊥
c 0
s 3

4

)

i.e. the values ( 14 ,
3
4 ), and VGC (s2, θ, 1) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 0 3
4

)
and Z2 = (

c s

⊥ 0 1
4

)

i.e. the values ( 34 ,
1
4 ).

Fig. 14 Counterexample for
nonzero-sum probabilistic
reachability properties

s1 s2

t1 t2 t1 t2

c,⊥

⊥, cs,⊥ ⊥, s

1
4

3
4

3
4

1
4
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– In the second iteration VGC (s1, θ, 2) are the SWNE values of the bimatrix game:

Z1 =
( ⊥

c 3
4

s 1
4

)

and Z2 =
( ⊥

c 1
4

s 3
4

)

i.e. the values ( 34 ,
1
4 ), and VGC (s2, θ, 2) are the SWNE values of the bimatrix games:

Z1 = (
c s

⊥ 1
4

3
4

)
and Z2 = (

c s

⊥ 3
4

1
4

)

i.e. the values ( 14 ,
3
4 ).

– In the third iteration VGC (s1, θ, 3) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 1

4

s 1
4

)

and Z2 =
(

⊥
c 3

4
s 3

4

)

i.e. the values ( 14 ,
3
4 ), and VGC (s2, θ, 3) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 3
4

3
4

)
and Z2 = (

c s

⊥ 1
4

1
4

)

i.e. the values ( 34 ,
1
4 ).

– In the fourth iteration VGC (s1, θ, 4) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 3

4

s 1
4

)

and Z2 =
(

⊥
c 1

4
s 3

4

)

i.e. the values ( 34 ,
1
4 ), and VGC (s2, θ, 4) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 3
4

3
4

)
and Z2 = (

c s

⊥ 1
4

1
4

)

i.e. the values ( 34 ,
1
4 ).

As can be seen the values computed at each iteration for the states s1 and s2 will oscillate
between ( 14 ,

3
4 ) and ( 34 ,

1
4 ).

Appendix C: Convergence of nonzero-sum expected reachability prop-
erties

In this appendix we give a witness to the failure of convergence for value iteration when
verifying nonzero-sum formulae with infinite horizon reward objectives if Assumption 3
does not hold.
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s1 s2

t1 t2

c,⊥

⊥, c
s,⊥ ⊥, s

r1A(s, (a1, a2)) =

⎧
⎪⎨

⎪⎩

1
3 if s = s1 and (a1, a2) = (s,⊥)
2 if s = s2 and (a1, a2) = (⊥, s)
0 otherwise

r1S(s) = 0 for all s

r2A(s, (a1, a2)) =

⎧
⎪⎨

⎪⎩

1 if s = s1 and (a1, a2) = (s,⊥)
1
3 if s = s2 and (a1, a2) = (⊥, s)
0 otherwise

r2S(s) = 0 for all s

Fig. 15 Counterexample for nonzero-sum expected reachability properties

Consider the CSG in Fig. 15 with players p1 and p2 (which again is an adaptation of a
TSG example from [8]) and the nonzero-sum state formula 〈〈p1:p2〉〉max=?(θ), where θ =
Rr1 [F a ]+Rr2 [F a ] and a is the atomic proposition satisfied only by the states t1 and t2.
Clearly, there are strategy profiles for which the targets are not reached with probability 1.

Applying the value iteration algorithm of Sect. 4, we have:

– In the first iteration VGC (s1, θ, 1) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 0
s 1

3

)

and Z2 =
(

⊥
c 0
s 1

)

i.e. the values ( 13 , 1), and VGC (s2, θ, 1) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 0 2
)

and Z2 = (
c s

⊥ 0 1
3

)

i.e. the values (2, 1
3 ).

– In the second iteration VGC (s1, θ, 2) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 2
s 1

3

)

and Z2 =
(

⊥
c 1

3
s 1

)

i.e. the values (2, 1
3 ), and VGC (s2, θ, 2) are the SWNE values of the bimatrix games:

Z1 = (
c s

⊥ 1
3 2

)
and Z2 = (

c s

⊥ 1 1
3

)

i.e. the values ( 13 , 1).
– In the third iteration VGC (s1, θ, 3) are the SWNE values of the bimatrix game:

Z1 =
( ⊥

c 1
3

s 1
3

)

and Z2 =
(

⊥
c 1
s 1

)
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i.e. the values ( 13 , 1), and VGC (s2, θ, 3) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 2 2
)

and Z2 = (
c s

⊥ 1
3

1
3

)

i.e. the values (2, 1
3 ).

– In the fourth iteration VGC (s1, θ, 4) are the SWNE values of the bimatrix game:

Z1 =
(

⊥
c 2
s 1

3

)

and Z2 =
(

⊥
c 1

3
s 1

)

i.e. the values (2, 1
3 ), and VGC (s2, θ, 4) are the SWNE values of the bimatrix game:

Z1 = (
c s

⊥ 1
3 2

)
and Z2 = (

c s

⊥ 1 1
3

)

i.e. the values ( 13 , 1).

As can be seen the values computed during value iteration oscillate for both s1 and s2.
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