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ABSTRACT: C3-selective C−C bond formation on benzothiophenes is challenging, and few direct functionalization methods are
available. A gold-catalyzed reaction of alkynes with benzothiophene S-oxides provides regioselective entry into C3-alkylated
benzothiophenes with the C7-alkylated isomer as the minor product. This oxyarylation reaction works with alkyl and aryl alkynes
and substituted and unsubstituted benzothiophenes. Mechanistic studies identify that sulfoxide inhibits the catalyst
[DTBPAu(PhCN)]SbF6, which also degrades and forms the unreactive complex [(DTBP)2Au]SbF6.

Benzothiophene-containing molecules display unique pho-
tophysical and electrochemical properties1 as well as an

array of biological activities against diseases such as cancer,
HIV, diabetes, and Alzheimer’s disease, rendering them of
interest to the materials and pharmaceutical sectors (Figure
1).2

The direct functionalization of a benzothiophene provides a
synthetically appealing entry into more substituted species, yet
diverse methods for selective and direct C−C bond formation
at C3 are scarce.3 Examples include palladium-catalyzed C−H
arylations, which require relatively forcing conditions (Scheme
1a),4 and single examples of alkynylations5 and vinylations.6
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Figure 1. Biologically important molecules that contain C3-
substituted benzothiophenes.

Scheme 1. Selective Benzothiophene C3 Elaboration
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Procter’s group introduced an interrupted Pummerer approach
allowing C3 arylation and allylation processes on benzothio-
phene S-oxides (Scheme 1a).7 Here we report a mechanisti-
cally distinct benzothiophene functionalization method that
uses simple alkynes to access complementary functionality at
C3 through a gold-catalyzed oxyarylation process (Scheme
1b).
Gold- and subsequently Brønsted acid-catalyzed C−C bond-

forming rearrangements between sulfoxides and alkynes have
shown great promise for atom-efficient aryl C−H functional-
ization and other transformations.8 For the desired trans-
formation, the vinylgold carbenoid intermediate B should
evolve through a [3,3]-sigmatropic rearrangement and onto C3
rather than the C7 benzenoid position (Scheme 1b).
Rearrangement must occur before the electrophilic organogold
species reacts with a second equivalent of sulfoxide.8c Our
interest in gold-catalyzed reactions with sulfoxides9 led us to
investigate the potential of oxyarylation for C3 benzothiophene
elaboration.
Our study started with 2-methylbenzothiophene S-oxide (1)

and 1-hexyne (2a), as unsubstituted benzothiophene S-oxide is
unstable and decomposes out of solution (vide infra).10 All
reactions were performed under non-inert conditions with
undried, commercial solvents. A range of Au(I) catalysts was
tested (Table 1, entries 1−6). In all cases the product 3a from
reaction at C3 was preferred, but some of the C7-function-
alized product 4a was also seen. Low reactivity occurred with
SPhosAuNTf2 and was not improved with higher temperatures

(Table 1, entries 1 and 2). Cleaner reactions and greater
conversion to the desired product were seen with the
phosphite-containing catalyst [DTBPAu(PhCN)]SbF6 over
those derived from more electron-rich ligands, with small
amounts of benzothiophene 5 also observed in the latter case
(Table 1, entries 1−5). Use of a more coordinating tosylate
counterion saw reduced activity (Table 1, entry 6).
Improved yields were obtained in CH2Cl2 and fluoroben-

zene (Table 1, entries 7 and 8). A more substantial solvent
effect was seen upon switching from hexyne to phenylacetylene
(2b), with fluorobenzene giving a superior outcome with a
90% combined yield of oxyarylation products and much higher
regioselectivity (Table 1, entry 10 vs 11). A modest reduction
in yield was seen at a catalyst loading of 2.5 mol % (Table 1,
entry 12). Reducing the equivalents of alkyne lowered the
overall yield of 3 and 4 with both 1-hexyne and phenyl-
acetylene (Table 1, entries 7 vs 9 and 11 vs 13). Reversing the
stoichiometry of sulfoxide 1 and phenylacetylene 2b further
reduced the combined yield of 3b and 4b (Table 1, entry 14).
The best conditions were then applied across a range of

alkynes and benzothiophene S-oxides (Scheme 2), with the
reactions typically performed on a 0.2−0.5 mmol scale. On the
1.0 mmol scale, isomerically pure 3b was isolated in 68% yield.
Both electron-rich and electron-deficient aryl alkynes under-
went oxyarylation successfully. Appreciable amounts of the free
benzothiophene were observed with more electron-rich aryl
alkynes (Scheme 2, compounds 6−9 and 24). A low yield and
poor C3:C7 regioselectivity were seen with an o-methoxy
group on the aromatic ring. Aliphatic alkynes provided
excellent yields with lower regioselectivities compared with
aromatic alkynes (Scheme 2, compounds 15−18 and 23).
Good functional group tolerance was shown across these
reactions with aryl halides, primary alkyl bromide, a tertiary
amine, phthalimide, and carboxylic esters all readily incorpo-
rated.
The formation of 12−15 and 25 (Scheme 2) required

higher temperatures for oxyarylation to occur. During the
formation of 15 with 2.0 equiv of alkyne, the alkyne hydration
product was also formed and was inseparable from the desired
product. Using 1.0 equiv of alkyne saw no formation of the
hydration side product, and 15 was isolated in good yield. No
oxyarylation product was formed when diphenylacetylene and
1 were submitted to the reaction conditions. Only the benzil
product from double oxidation of the alkyne was isolated (98%
based on sulfoxide 1).
Benzothiophene S-oxides with different substitution patterns

also performed well. The reaction proceeds well in the absence
of a C2 substituent, and halogen substituents are also tolerated
(Scheme 2, 19−25). In several cases very high regioselectiv-
ities were observed (>20:1), so simple trituration with
methanol was sufficient to obtain the single C3 regioisomer
(Scheme 2, 21, 24, and 25). Good outcomes were also
observed with an ester group at C2 (Scheme 2, 26 and 27).
The presence of a substituent at C3 did not lead to efficient
formation of the C7 oxylarylation product, as a complex
mixture was formed upon reaction of 3-methylbenzothiophene
S-oxide with phenylacetylene 2b.
As unsubstituted benzothiophene S-oxide is unstable when

neat, a protocol was developed that telescoped together the S-
oxidation of benzothiophene with the gold-catalyzed oxy-
arylation. C3-substituted benzothiophene 28 was obtained in
79% yield over two steps (see the Supporting Information for
details).

Table 1. Reaction Optimization Study between 2-
Methylbenzothiophene S-Oxide and Hex-1-yne or
Phenylacetylene

entry 2 (equiv) catalysta solvent yields (1:3:4:5) (%)b

1 2a (2) A PhMe 70:16:2:0
2 2a (2) A (23 °C) PhMe 74:16:2:0
3 2a (2) B PhMe 32:39:10:−c

4 2a (2) C PhMe 46:33:4:−c

5 2a (2) D PhMe −d:55:23:0
6 2a (2) E/AgOTse PhMe 88:6:4:0
7 2a (2) D CH2Cl2 0:64:23:−c

8 2a (2) D C6H5F 7:63:24:0
9 2a (1) D CH2Cl2 0:50:17:<6f

10 2b (2) D CH2Cl2 -d:51:9:−c

11 2b (2) D C6H5F 0:80:10:<7f

12 2b (2)g D (2.5 mol %) C6H5F 0:67:12:<10f

13 2b (1) D C6H5F 0:62:9:8
14 2b (1)g D C6H5F −d:50:9:−c

aA, SPhosAuNTf2; B, IPrAuNTf2; C, [JohnPhosAu(MeCN)]SbF6; D,
[DTBPAu(PhCN)]SbF6; E , DTBPAuCl; DTBP = (2,4-
(tBu)2C6H3O)3P.

bYields and ratios were determined by 1H NMR
spectroscopy using a known concentration of 1,2,4,5-tetramethylben-
zene. c5 was present, but the yield could not be determined because of
overlapping resonances. d1 was present, but the yield could not be
determined because of overlapping resonances. eE (0.05 equiv) and
AgOTs (0.10 equiv). fRepresents the maximum possible yield because
of overlapping resonances. g2 equiv of 1.
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Studies were then initiated in order to gain further insight
into the mechanism (Scheme 3 and further details in the
Supporting Information). Crossover experiments saw the
formation of the oxyarylation products from only the
benzothiophene S-oxide component and not the benzothio-
phene dopant (Scheme 3a).
Higher effective equivalents of sulfoxide 1 gave reduced

yields of the functionalized benzothiophenes (Table 1, entries
9, 13, and 14). Monitoring the progress of an oxyarylation
reaction of 1 and 2a by in situ 1H NMR spectroscopy showed
the significant effect of the sulfoxide concentration (Scheme
3b). Under otherwise identical conditions, doubling the
concentration of the limiting sulfoxide reagent 1 led to a
substantially lower concentration of products 3b/4b over the
same reaction time (Scheme 3b), with no increase in the
formation of free benzothiophene 5. No other side products
were seen in either reaction. A simultaneous comparison of
batch- and slow-addition of the sulfoxide showed that the latter
yielded more oxyarylation products 3b/4b (Scheme 3b). An
increase in the yield of oxyarylation products with more
equivalents of alkyne was also observed (Table 1, entries 7 vs 9
and 11 vs 13). No reduction in reaction progress was seen

when a catalysis reaction was doped with an oxyarylation
product (Scheme 3c).
An upfield shift in the 31P NMR resonance from 88 to 81

ppm was observed upon addition of sulfoxide 1 to [DTBPAu-
(PhCN)]SbF6 at 0 °C. The free DTBP ligand was not
observed in the 31P NMR or 1H NMR spectra, while
benzonitrile was observed in the 1H NMR spectrum. A new
minor resonance at 120 ppm was also observed, but this could
also be seen in small amounts from the untreated catalyst in
CDCl3. Addition of phenylacetylene to [DTBPAu(PhCN)]-
SbF6 resulted in the formation of several new 31P resonances,
with a major one at 120 ppm. This resonance was identified as
[(DTBP)2Au]SbF6 by in situ synthesis and also by isolation
(Scheme 3d, i). The bisphosphite complex was formed
preferentially and irreversibly in the presence of free ligand,
with no change observed on addition of excess benzonitrile,
sulfoxide, or phenyacetylene (Scheme 3d, ii). Using
[(DTBP)2Au]SbF6 in a reaction with sulfoxide 1 and
phenylacetylene gave only a trace amount of product (<5%)
after an extended reaction time.
On the basis of these observations, the broader mechanism

is consistent with that established by Ujaque et al.,8b where
sulfoxide addition to an alkyne−gold complex generates a

Scheme 2. Scope of Gold-Catalyzed Oxyarylation of Alkynes with Benzothiophene S-Oxidesf

aThe reaction was performed on a 1.0 mmol scale and afforded the C3:C7 mixture in 84% yield; the pure C3 isomer 3b was isolated by column
chromatography and recrystallization in 68% yield. bThe reaction was run at 75 °C. cThe reaction was run at 70 °C. dThe reaction was run at 50
°C. eThe reaction was run at 50 °C with 1.0 equiv of alkyne. fRatios refer to the isolated mixtures of C3:C7 regioisomers. Where ratios are not
given, the yield refers to the isolated yield of the C3 regioisomer. The standard conditions used, unless stated otherwise, are 2.0 equiv of alkyne, 5
mol % [DTBPAu(PhCN)]SbF6, and a reaction temperature of 0 °C.
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vinylgold carbenoid intermediate that undergoes [3,3]-
sigmatropic rearrangement and then rearomatization and
protodeauration. The alternative carbene formation and
electrophilic aromatic substitution pathway can be ruled out
from the results of the crossover experiments and the ready
formation of compounds 26 and 27 bearing a deactivating
ester group at C2.
Sulfoxide inhibition of the reaction is seen, as are direct

interactions between sulfoxide 1 and the gold complex. The
release of DTBP by catalyst degradation pathways, as observed
in the presence of phenylacetylene, will reduce the amount of
any remaining active catalyst by formation of [(DTBP)2Au]-
SbF6, which is essentially a catalytic dead-end for the desired
process.
In summary, gold-catalyzed reactions between readily

accessed benzothiophene S-oxides and terminal alkynes
provide efficient and selective access to C3-alkylated
benzothiophenes bearing a useful carbonyl group for
subsequent exploitation. The approach is compatible with a
variety of electron-rich and electron-deficient aromatic and
aliphatic alkynes as well as reactive functionalities including
carboxylic esters, tertiary amines, phthalimide, and alkyl and
aryl halides. The highest regioselectivities are seen with aryl
alkynes. The reactions are straightforward to perform and do

not require dry or inert conditions or high temperatures. This
is the first instance of the use of gold-catalyzed oxyarylation to
modify a sulfur-containing ring. The reaction is compatible
with substitution around the benzothiophene, including
halogens and electron-withdrawing groups. A telescoped
oxidation−oxyarylation sequence has also been developed.
Sulfoxide was determined to inhibit the gold-catalyzed

process, which may have wider relevance in other gold-
catalyzed transformations. This study also highlights the need
for further development of more robust gold complexes that
retain the reactivity profile of phosphite Au(I) species.
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