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to predict species and ecosystem

response to climate. Our case study
(Box 1) demonstrates how we have used
urban plantings to test plant trait
expression and plasticity in response to
warmer and drier climates beyond native
distributions. We encourage researchers
who currently work in natural ecosystems
to consider how urban plantings
could enhance their research into plant
physiological responses to a changing
climate.
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Spotlight
Emerging Functions
for N-Terminal Protein
Acetylation in Plants
Daniel J. Gibbs1,*

N-terminal (Nt-) acetylation is a
widespread but poorly understood
co-translational protein modifica-
tion. Two reports now shed light
onto the proteome-wide dynamics
and protein-specific consequences
of Nt-acetylation in relation to plant
development, stress-response, and
protein stability, identifying this
modification as a key regulator of
diverse aspects of plant growth and
behaviour.

The N-terminus (Nt) of a protein can
undergo a wide range of co- and post-
translational modifications, including cleav-
age events, amino acid conjugations, and
biochemical alterations [1,2]. Such modifi-
cations can have profound effects on pro-
tein behaviour, impacting on protein–
protein and protein–membrane interac-
tions, subcellular targeting, and protein sta-
bility, which is dependent on the N-end rule
pathway of proteolysis [1,2]. One of the
most widespread Nt-modifications in
eukaryotic organisms is Nt-acetylation,
where acetyl moieties are transferred from
acetyl-CoA to the exposed /-amino group
of the Nt-residue [3]. This modification typi-
cally occurs co-translationally, and, in con-
trast to internal lysine acetylation, is
irreversible [3]. Nt-acetylation of nascent
polypeptides is carried out by N/t-acetyl-
transferases (NATs), which are protein
complexes comprising of a catalytic and
auxiliary subunit. Three main NATs account
for the majority of Nt-acetylation events in
yeast and humans by targeting distinct N-
Tr
termini; NATA acetylates certain exposed
amino acids following Nt-Met excision,
whereas NATB and NATC target Nt-Met
residues preceding acidic or hydrophobic
residues, respectively [1,3].

Despite the fact that more than 80% of
proteins in humans and plants undergo
Nt-acetylation [4], the functional relevance
of this modification has remained elusive.
A recent significant breakthrough in yeast
and mammals was the discovery that Nt-
acetylation can target proteins for degra-
dation via a novel branch of the N-end rule
pathway [5]. It was postulated that all Nt-
acetylated proteins can in principle be tar-
geted by this ‘Ac/N-end rule pathway’, but
proteolysis via this mechanism is condi-
tional and dependent on exposure of the
N-terminus, which may occur, for exam-
ple, when a protein is misfolded or protein
complexes are disrupted [2,5,6].

There is a lack of studies on Nt-acetylation
in plants, although phenotypes associated
with NAT loss of function in Arabidopsis
have been reported. For example, loss of
NATC activity negatively affects photosyn-
thetic efficiency [7], whereas mutation of
the NATB auxiliary subunit causes a range
of pleiotropic defects [8]. It is not known
whether any of these phenotypes are due
to downstream changes in protein stabil-
ity, or other putative Nt-acetylation func-
tions as previously described in animal
and yeast systems (e.g., subcellular mis-
targeting, abolishment of protein interac-
tion or disruption of membrane associa-
tion [3]). Two new papers by Linster et al.
[9] and Xu et al. [10] have now added to
our knowledge of the conservation and
importance of Nt-acetylation in plants,
particularly in relation to the management
of abiotic stress-tolerance, immunity and
protein stability. Importantly, these recent
findings have general implications for the
cross-kingdom functions of this enigmatic
chemical modification as an essential and
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Figure 1. Recently Identified Functions for N-Terminal (Nt) Acetylation in Plants. (A) Under normal
conditions NATA co-translationally Nt-acetylates (Ac) a large number of proteins following Nt-Met excision [1,3].
Drought-induced abscisic acid (ABA) accumulation (green gradated triangle) depletes NATA transcript and
protein abundance, which leads to a global reduction in the number of Nt-acetylated proteins, resulting in
several adaptive responses that improve drought-tolerance and survival [9]. Thus, NATA-mediated Nt-acetyla-
tion is proposed to act as an important switch coordinating metabolic, developmental and physiological
responses downstream of ABA. (B) The Nod-like receptor protein SNC1 plays a key role in plant immunity.
Two Nt-variants of SNC1 are present in plants, most likely arising as a result of alternative translation. Nt-Met-
Met-Asp-SNC1 (MMD-) is Nt-acetylated by NATA, whereas Nt-Met-Asp-SNC1 (MD-), which lacks the first Met
residue, is Nt-acetylated by NATB [10]. Remarkably, these Nt-acetylation events have contrasting conse-
quences, destabilising or stabilising SNC1, which decreases or enhances the immune response, respectively.
Xu et al. suggest that Nt-acetylation of these alternate Nt-isoforms contributes to overall SNC1 homeostasis.
This study reveals that different NAT complexes can have antagonistic effects on the stability of a protein
dynamic regulator of protein behaviour
and cellular activity.

Linster et al. functionally characterised the
plant NATA complex [9]. They found that
NATA specificity in plants is conserved, and
that its function is indispensable, since T-
DNA null mutants of either NATA subunit
were embryo lethal. A microRNAi approach
was therefore used, which led to the pro-
duction of plants with retarded growth and
significant increases in the global levels of
non-acetylated N-termini. NATA-depleted
plants were highly drought-tolerant, relative
to wild type. The extreme drought-toler-
ance was due to altered root morphology
and reduced stomatal aperture, prompting
the hypothesis that it might be associated
with alterations in signalling of the abiotic

depending on the nature of its N-terminus, suggesting th
complex than previously postulated [5,6], and; (ii) that th
the N-end rule pathway (the Ac/N-end rule) may be fu
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stress phytohormone absicisic acid (ABA).
Validating this theory, NATA RNAi plants
were shown to constitutively express key
ABA- and drought-associated genes.
Remarkably, it was found that drought
stress or exogenous application of ABA
to wild type Arabidopsis caused a rapid
depletion of NATA transcript and protein
abundance, concomitant with a reduction
in the total number of Nt-acetylated pro-
teins, suggesting that decreases in global
Nt-acetylation are a specific and function-
ally important response triggered by abiotic
stress (Figure 1A). This highlights a novel
and agronomically relevant significance for
this modification in cellular stress-surveil-
lance, and suggests that NATA-regulated
modulation of the Nt-acetylome contrib-
utes to plant plasticity under drought,

at: (i) control of protein half-life by Nt-acetylation is more
e previously identified acetylation-dependent branch of
nctional in plants [2].
0

and perhaps other ABA-associated
stresses. The mechanistic consequence
of altered proteome-wide Nt-acetylation
is currently unknown. Nonetheless, this
study reveals that protein Nt-acetylation
is dynamic and signal-responsive, and that
global change in the levels of this biochemi-
cal modification can have profound effects
on plant growth and development.

A second report by Xu et al. focussed on
the Nt-acetylation dynamics of the Nod like
receptor (NLR) protein SUPPRESSOR OF
NPR1, CONSTITUTIVE 1 (SNC1), revealing
the functional relevance of its modification
in relation to plant immunity [10]. NATA
was identified as a modulator of SNC1-
mediated response to pathogens; SNC1
protein accumulated in NATA mutant
plants and enhanced pathogen-tolerance.
This suggests that Nt-acetylation of SNC1
might act as a degradation signal. Remark-
ably, proteomic analyses identified two dis-
tinct Nt-variants of SNC1: (i) Nt-Met-Met-
Asp-SNC1, which is Nt-acetylated by
NATA, and (ii) Nt-Met-Asp-SNC1, which
lacks the first Nt-Met residue and is Nt-
acetylated by NATB (Figure 1B). These
variants are likely generated via alternative
initiation. Intriguingly, Nt-acetylation of
these alternative N-termini has contrasting
effects on protein abundance, destabilising
SNC1 when the first Met is present, but
stabilising SNC1 when the second Met is
Nt-acetylated. Thus, Nt-acetylation can
have antagonistic effects on a single pro-
tein's half-life, depending on the sequence
context of the modification [10]. This
implies that the relationship between Nt-
acetylation and proteolysis is more com-
plex than previously postulated [5]. It will
now be crucial to identify the downstream
E3 ligase(s) recognising the Nt-acetylation
degron in SNC1, as well as determining
whether this differential targeting is sig-
nal-responsive and widespread. It is tempt-
ing to speculate that other proteins initiating
with a double Met might also be subjected
to this dual regulation.

It has recently been proposed that Nt-
acetylation may be more dynamic than



previously considered, playing a regula-
tory role in growth and development
[11]. These new plant studies also support
this notion. Furthermore, a plastid-specific
NAT has recently been identified [12], and
chloroplastic proteins are Nt-acetylated
post-translationally, following a transit-
peptide cleavage step [4]. This implies that
compartmentalisation of NAT-activity is
functionally important. There has been
growing interest in the study of Nt-mod-
ifications in plants in recent years, partic-
ularly in relation to the N-end rule pathway
of proteolysis [2]. It will now be important
to determine whether the recently identi-
fied Ac/N-end rule pathway functions in
plants. Homologues of the relevant E3
ligases are present in plant genomes [2],
and the effects of NAT activity on SNC1
turnover [and a second NLR, RESISTANCE
TO P. syringae pv maculicola 1 (RPM1)]
also support this proposition [10]. Another
pertinent question is how ABA- and patho-
gen-associated stress signals impact on
NAT function. Effects on transcription and
protein-depletion are implicated by Linster
et al., but it is also possible that these sig-
nals may modulate NAT enzymatic activity
in other ways, for example via post-transla-
tional modifications.

It is becoming increasingly apparent that
what was previously considered a con-
stitutive and inert modification actually
has a great deal of functional signifi-
cance, at protein-specific and prote-
ome-wide levels. The scene is now set
for further studies into the complexity
and functional relevance of this wide-
spread but enigmatic modification in
plants and beyond.
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Spotlight
WOX5 is Shining in
the Root Stem Cell
Niche
Xiangpei Kong,1,2

Songchong Lu,1,2 Huiyu Tian,1

and Zhaojun Ding1,*

The WUS-RELATED HOMEOBOX
5 (WOX5) gene is expressed in
the quiescent center (QC) to regu-
late the columella stem cell (CSC)
identity. Three recent reports not

only show how WOX5 is con-
trolled but also highlight the key
role of WOX5 in root stem cell niche
maintenance.

Tr
WOX5 is a Root Stem Cell
Organizer
In higher plants, the root is an important
organ system for nutrient uptake,
anchorage, and storage. Its growth
depends on the continuous division of
cells in the root meristem. At the tip of
root apical meristem, a pool of stem cells,
which are defined by the ability to renew
themselves and contribute undifferenti-
ated daughter cells to produce new
tissues, surround a small group of orga-
nizing cells, the quiescent center (QC) [1].
Laser ablation experiments showed that
root stem cells rapidly differentiate if the
QC cells are ablated, indicating the cru-
cial role of QC to maintain root stem cell
identity [2].

The homeobox gene WUSCHEL-
RELATED HOMEOBOX 5 (WOX5) was
reported to be specifically expressed in
QC. Loss of WOX5 function in the root
stem cell niche causes terminal differen-
tiation of CSCs [3]. A pathway involving
the signaling peptide CLAVATA3/
EMBRYOSURROUNDING REGION 40
(CLE40), the receptor-like kinases ARA-
BIDOPSIS CRINKLY4 (ACR4)/CLAV-
ATA1 (CLV1) was reported to maintain
the columella stem cells (CSCs) through
negative regulation of WOX5 in the root
apical meristem [4–6]. Although the
CLE40-ACR4/CLV1-WOX5 module is
well characterized, the molecular mech-
anisms by which WOX5 promotes stem
cell fate and controls QC division remain
obscure. By identifying the downstream
targets and upstream regulators of
WOX5 in Arabidopsis, three recent
reports [7–9] provide novel mechanistic
insights into the regulation of WOX5 and
its action modes in the stem cell niche
[7–9].

Effector Genes Mediates WOX5
Function in the Stem Cell Niche
Using a WOX5 translational reporter line

(pWOX5:WOX5-GFP) which could
completely rescue the CSC defective phe-
notype of the wox5-1 mutant, Pi et al.
showed that WOX5 protein accumulates
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