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The wheat pathogen Zymoseptoria tritici possesses a large number of accessory chromosomes that may be
present or absent in its genome. The genome of the reference isolate IPO323 has been assembled to a very
high standard and contains 21 full length chromosome sequences, 8 of which represent accessory
chromosomes. The IPO323 reference, when combined with low-cost next-generation sequencing and
bioinformatics, can be used as a powerful tool to assess the presence or absence of accessory chromo-
somes. We present an outline of a range of bioinformatics techniques that can be applied to the analysis
of presence–absence variation among accessory chromosomes across 13 novel isolates of Z. tritici.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The establishment of whole-genome sequence (WGS) resources
for several important fungal species has been a significant mile-
stone in the field of fungal biology (Grigoriev, 2013). In the study
of the wheat pathogen Zymoseptoria tritici (syn. Mycosphaerella
graminicola, Septoria tritici), access to WGS resources for the repre-
sentative isolate of this species, IPO323 (Goodwin et al., 2011), has
enabled the juxtaposition of additional bioinformatic data derived
from the transcriptome (Brunner et al., 2013; Kellner et al., 2014;
Yang et al., 2013a) and proteome (Yang et al., 2013b). These com-
bined resources have led to insights into the genome biology of Z.
tritici (Croll et al., 2013; Goodwin et al., 2011; Kellner et al., 2014;
Morais do Amaral et al., 2012; Torriani et al., 2011; Yang et al.,
2013a) (reviewed in (McDonald et al., 2015) and Testa et al.,
2015). Furthermore, these resources have also enabled molecular
plant pathologists to routinely adopt reverse genetics approaches,
greatly accelerating the accumulation of knowledge of plant–
microbe interactions at a molecular level (Perez-Nadales et al.,
2014).

An important feature of Z. tritici is its bipartite set of chromo-
somes, distinguished by being either essential for growth (core)
or accessory (syn. dispensable) (Croll and McDonald, 2012;
Goodwin et al., 2011). The WGS assembly of Z. tritici IPO323 com-
prises 21 near-chromosome-length sequences of a total length of
39.9 Mb and was selected as the reference isolate partly due to
its large number of accessory chromosomes (ACs) (Goodwin
et al., 2011). Alternate isolates of Z. tritici have been observed to
lack ACs found in IPO323 (an Algerian isolate IPO95052 and iso-
lates described in Croll et al. (2013)) (Goodwin et al., 2011). Z. tritici
ACs have been observed to have lower gene density, higher repet-
itive DNA content and depleted G:C base compositions (Croll et al.,
2013; Kellner et al., 2014) – all hallmarks of hotspots of gene inno-
vation within fungal genomes (Croll and McDonald, 2012).
Consequently, the ACs of Z. tritici may play important roles in plant
pathogenicity and their presence could potentially be used as
markers for pathogenicity phenotypes – as is the case in other
fungal plant-pathogens possessing ACs including Fusarium
oxysporum f. sp. lycopersici (Ma et al., 2010) and Fusarium solani
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(Coleman et al., 2009). It is important to note that unlike Fusarium
spp. ACs have never been directly associated with virulence
towards particular wheat cultivars, however genes on accessory
chromosomes have been shown to be under accelerated evolution
and are highly expressed in planta, both hallmarks for pathogenic-
ity related genes (Kellner et al., 2014; Stukenbrock et al., 2010). Z.
tritici ACs were originally proposed to have originated via horizon-
tal transfer from an unknown source, which was followed by
degeneration and extensive recombination with core chromo-
somes (Goodwin et al., 2011; Stukenbrock et al., 2011). Early
reports also noted widespread paralogy between genes on acces-
sory and core chromosomes (Goodwin et al., 2011), however these
speculations have since been disputed (Kellner et al., 2014).

Next-generation sequencing (NGS), now a widely used tech-
nique for low-cost, high-throughput nucleotide sequencing, has
been widely applied to several fungal species including Z. tritici.
Since the WGS assembly was completed using Sanger sequencing
before NGS was available, NGS has only been applied to the refer-
ence isolate for the sequencing of its transcriptome (RNA-Seq).
However NGS can also be a powerful tool when applied to the
re-sequencing of alternate Z. tritici isolates with variable
pathogenicity on wheat (McDonald et al., in preparation). Since
the reference genome assembly of Z. tritici IPO323 is of very
highquality in near-complete chromosome-length sequences and
represents most known ACs, it is possible to use short-length
NGS reads aligned to the IPO323 reference for intra-species
comparisons across multiple Z. tritici isolates without the need
for further genome assembly. We present a case-study illustrating
the application of NGS genome re-sequencing of multiple Z. tritici
isolates and its use in rapidly determining whether ACs are present
or absent in novel isolates of Z. tritici.

A complementary approach is the comparison of de novo assem-
blies of NGS reads from alternate isolates to the IPO323 reference.
This can serve as a useful means of capturing sequence data (con-
tigs or genes) where Illumina reads do not map reliably. While
IPO323 contains a large number of ACs, there is also potential for
novel isolates to possess additional sequences in the form of extra
ACs or large insertion mutations that are not present in IPO323. De
novo assembly of this data, via tools such as SPAdes (Bankevich
et al., 2012) can produce large contig or scaffold sequences, which
can then be probed with tools such as BLAST (Altschul et al., 1990)
for coding genes that are located on an alternative chromosome
when compared to IPO323.

Additionally, the NGS re-sequencing examples presented in this
study highlight the idiosyncrasies of the Z. tritici ACs in contrast to
its core chromosomes and are also useful at gene-level resolution
to rapidly identify genes that are present, absent or mutated across
isolates.
2. Methods

The various methods presented in this study are summarised in
Fig. 1, with details of miscellaneous methods and scripts available
in Supplementary Data 1.

Genomic DNA of several Z. tritici isolates was sequenced via the
Illumina HiSeq 2000 platform. Standard paired-end sequence
libraries with 100 bp read lengths and approximate insert size of
250 bp were generated for the following isolates: WAI221,
WAI56, WAI332, WAI147, WAI320, WAI321, WAI322, WAI323,
WAI324, WAI326, WAI327, WAI328 and WAI329. Short sequence
reads were trimmed for adapter, primer and low quality sequences
via Cutadapt v1.1 (homopolymer/polyN < 5 bp,>Q30, discard
reads < 50 bp) (Martin, 2011).

NGS reads were aligned to the reference genome, initially as per
a previous study (Croll et al., 2013). Paired end Illumina libraries
were aligned to the IPO323 reference assembly via bowtie2 v
2.1.0 (parameters: – sensitive – end-to-end) (Langmead and
Salzberg, 2012) producing alignment outputs that were converted
to BAM format via SAMtools v0.1.19 (Li et al., 2009). The percent-
age of IPO323 chromosomes covered by NGS reads of novel isolates
was calculated via BEDtools genomeCoverageBed (requiring at
least 10� coverage) using BAM alignments generated in this study
(Quinlan and Hall, 2010). The percentage of IPO323 genes covered
by NGS reads of novel isolates was similarly calculated using
BEDtools coverageBED using BAM alignments (this study) and gene
annotation GFF data downloadable from JGI Mycocosm (Goodwin
et al., 2011; Grigoriev et al., 2013) and Ensemblfungi (Kersey
et al., 2014). This data was used to determine presence–absence
variation (PAV) of ACs across isolates. Regional coverage and PAV
of IPO323 chromosomes by genes, repeats and NGS alignments
from alternate Z. tritici isolates were visualised using Circos
(Krzywinski et al., 2009), pooling counts of each respective dataset
within 100 Kb increments (Fig. 2).

BAM alignments were also processed with GATK v1.5-20
(DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et al.,
2013) UnifiedGenotyper (-stand_call_conf 50.0-stand_emit_conf
10.0-dcov 50 – genotype_likelihoods_model BOTH) to determine
sites of mutation across Z. tritici isolates relative to the IPO323 ref-
erence, producing outputs describing chromosome coordinates of
single nucleotide polymorphisms (SNPs) and insertion/deletion
mutations (indels) in variant call format (VCF). VCF data was also
compared to JGI GFF gene annotations via BEDtools coverageBED
as above, for the purpose of determining the number of mutations
present between isolates at each Z. tritici IPO323 locus. For the
purpose of presenting this data concisely, we have summarised
the gene-level mutation rate (SNPs and indels) at the
chromosome-level (Fig. 3, Supplementary Table 1).

To demonstrate how novel isolate assemblies can be applied to
PAV analysis, de novo assembly was performed on all isolates with
SPAdes v3.30 with all paired reads and unpaired reads that lost
their mate during quality trimming (-k 21,33,55,77 – careful)
(Bankevich et al., 2012). A FASTA file of genomic DNA gene
sequences was generated from a modified version of the gene
annotations provided in GFF3 format at Ensemblfungi (Kersey
et al., 2014). This FASTA file was used as the queries for local
BLASTN searches. De novo SPAdes assembled contigs were con-
verted to local BLAST databases with BLAST+ v2.2.27 (Camacho
et al., 2009) (makeblastdb-in file.fasta-input_type fasta-dbtype
nucl-parse_seqids-out isolate-title isolate.spades.database).
BLASTN searches were run on each gDNA gene region (-evalue
1e-3-outfmt ‘6 qseqid sseqid pident length qlen qstart qend slen
sstart send bitscore evalue’). The presence of each gene in de novo
assemblies relative to IPO323 was determined if the top BLAST hit
represented 50% of the total length of the IPO323 gene. The python
script used to generate FASTA files, parse BLAST results and gener-
ate presence/absence files for each de novo assembly is available in
Supplementary Data 1. This dataset represents a gene-level PAV
analysis and furthermore the de novo assembled sequences that
did not match to the IPO323 genome could be used to further
investigate novel ACs not present in IPO323. For the purposes of
presenting this data, we have summarised the gene-level PAV anal-
ysis at both the chromosome-level (Fig. 2A, Supplementary
Table 2) and at the gene-level (Fig. 2B). The R script and example
data used to generate Fig. 2B are also available in Supplementary
Data 1.
3. Results & discussion

At the chromosome-level, alignment of NGS genome data of
various Z. tritici isolates to the IPO323 reference assembly indicates



Fig. 1. Overview of techniques used to assess accessory chromosome presence and absence across multiple isolates of Z. tritici relative to the reference isolate IPO323. (A)
Flow chart summarising the progression from raw NGS data from alternate isolates through to the visualisations presented in this study. (B) Example of differing presence/
absence variation patterns detected by NGS read-alignment and de novo assembly-alignment based approaches.
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the following PAV profiles: AC14 is absent in WAI323; AC15 is
absent in WAI147, WAI322 and WAI328; AC16 is absent in
WAI147 and WAI320; AC17 is absent in WAI322 and WAI320;
AC18 is absent in all novel isolates; AC19 appears to be absent in
WAI329, AC20 is clearly absent in WAI56 and possibly WAI147;
AC21 is absent in WAI56, WAI147, WAI320, WAI324 and WAI329
(Figs. 2 and 3). In Fig. 2, it should be noted that percent coverage
values may be >0% where ACs are genuinely absent, due to
misalignment of short reads to the reference AC sequences, often
in regions of repetitive DNA. However the decreased coverage
indicative of PAV in ACs is clearly distinguishable when compared
to coverage values for core chromosomes 1–13.

At the gene-level, analysis of NGS alignments to IPO323 gene
regions indicate that ACs 14–21 are typified by distinctive patterns
of presence and absence across various isolates and variable (often
increased) rates of gene mutation (Fig. 3, Supplementary Table 1).
In particular we observe AC17 and AC21 to frequently contain the
highest rate of mutations per gene across most isolates. The PAV
patterns observed at the chromosome-level are also strongly cor-
roborated by gene-level PAVs (summarised by chromosome in
Figs. 2 and 3 and Supplementary Table 2), which exhibit far lower
percentage coverage (due to reduced background) for the
aforementioned ACs as these are restricted to genes and exclude
DNA repeats. This gene-level information can also be readily
adapted for the purpose of discovering novel pathogenicity genes,
which have a PAV or mutation profile that correlates with a known
phenotype across isolates of Z. tritici.

Together these two methods can confidently predict both
whole-chromosome absence (via read mapping) as well as single
gene deletions in both core chromosomes and ACs. However
these methods are not without their limitations. Due to the
higher percentage of repetitive sequence content in ACs, it is
challenging to accurately determine the exact sequences or
break points in absent sequences, especially when mapping
NGS data. Similarly using only short-read NGS data, de novo gen-
ome assemblies will remain highly fragmented, which limits the
discovery of ‘‘novel’’ complete ACs and/or genes. Improvements
to this method could involve limiting spurious read mappings
to repetitive regions by initial masking of repeat families –
reviewed in (Jurka et al., 2011). Alternatively, pre-existing anno-
tations of repetitive regions for isolate IPO323 (Dhillon et al.,
2014) could be used to exclude these regions with BEDtools
(Quinlan and Hall, 2010), in order to remove unreliable regions
containing known repeats from consideration.



Fig. 2. Summary of Z. tritici chromosome comparative genomics across multiple isolates relative to the reference isolate IPO323. (A) Circos representation of presence/
absence variation relative to IPO323 chromosomes (core = blue, dispensable = red), displaying the percentage (0–100%) of 100 kb windows containing: (i) gene-coding
regions, (ii) repetitive DNA (via RepeatMasker/Repbase (‘‘fungi’’)), (iii) %G:C content; % of window covered by aligned NGS reads (>10�) to isolate, (iv) WAI221, (v) WAI56, (vi)
WAI332, (vii) WAI147, (viii) WAI320, (ix) WAI321, (x) WAI322, (xi) WAI323, (xii) WAI324, (xiii) WAI326, (xiv) WAI327, (xv) WAI328 and (xvi) WAI329. (B) R ggPlot
representation of the presence or absence of coding genes across novel isolates relative to IPO323 core and accessory chromosomes. Only genes annotated in IPO323 are
shown – arranged in matrices according to their order on their respective chromosomes – in which a gene is represented by one block in green if present or grey if absent.
Genes were defined as present if 50% of their total length was covered by the top BLASTN match versus the de novo assembled genomes of thirteen isolates, sorted in columns
from left to right: WAI147, WAI221, WAI56, WAI332, WAI320, WAI321, WAI322, WAI323, WAI324, WAI326, WAI327, WAI328 and WAI329.

Fig. 3. Heat-map summary of gene-based sequence comparisons across Z. tritici isolates relative to the reference isolate IPO323. Accessory chromosomes of IPO323 have been
italicised. The differences in various characteristics between core and accessory chromosomes are summarised, including chromosome length, gene density and mutation
rates across novel isolates. Genome sequences of novel isolates were de novo assembled using SPAdes. Presence of accessory chromosomes was indicated by the percentage of
IPO323 protein-coding genes on each chromosome that were P50% conserved based on BLASTN matches across the length of IPO323 genes. Mutation rates within gene
regions were based on BAM alignments of NGS reads and determined via GATK, relative to the genes of IPO323 and presented here as an average across genes on each
chromosome.
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4. Conclusion

In summary, the application of low-cost NGS and simple bioin-
formatic workflows can be a powerful tool for rapidly assaying
PAVs and mutation rates across novel Z. tritici isolates, relative to
the core and accessory chromosomes of the reference isolate
IPO323. Thirteen isolates, which vary in their pathogenicity pro-
files on wheat, have been presented in this study as examples illus-
trating the application of these techniques. The correlation of these
profiles with PAV and mutation data will be further investigated in
subsequent studies.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.fgb.2015.04.012.
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