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In this article we review and evaluate a number of meth-
ods used in the design and analysis of small three-arm par-
allel cluster randomised trials. We conduct a simulation-
based study to evaluate restricted randomisation methods
including covariate-constrained randomisation and a novel
method for matched-group cluster randomisation. We also
evaluate the appropriate modelling of the data and small
sample inferential methods for a variety of treatment ef-
fects relevant to three-arm trials. Our results indicate that
small-sample corrections are required for high (0.05) but
not low (0.001) values of the intraclass correlation coef-
ficient and their performance can depend on trial design,
number of clusters, and the nature of the hypothesis being
tested. The Satterthwaite correction generally performed
best at an ICC of 0.05 with a nominal type I error rate for
single-period trials, and in trials with repeated measures
type I error rates were between 0.04 and 0.06. Restricted
randomisation methods produce little benefit in trials with
repeatedmeasures but in trialswith single post-intervention
design can provide relatively large gains in powerwhen com-
pared to themost unbalanced possible allocations. Matched-
group randomisation improves power but is not as effective
as covariate-constrained randomisation. For model-based
analysis, adjusting for fewer covariates than were used in

Abbreviations: cRCT, cluster randomised controlled trial; LMM, linear mixed model; ICC, intra-class correlation coefficient
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a restricted randomisation process under any design can
produce non-nominal type I error rates and reductions in
power. Where comparisons to two-arm cluster trials are
possible, the performance of the methods are qualitatively
very similar.

K E YWORD S

Cluster randomised controlled trial, covariate-constrained
randomisation, matching, power, sample size

1 | INTRODUCTION

Cluster randomised controlled trials (cRCT) are awidely-usedmethod to evaluate the effect of interventions applied to
groups of individuals such as clinics, hospitals, schools, or villages [1, 2]. Cluster trials are useful when treatments are
targeted at ‘higher-level’ processes rather than the individual, or when it is not possible to avoid interaction between
individuals within the same cluster. Many cluster trials include only include a small number of clusters as it can be
difficult or impractical to recruit many [3]. Schools and hospitals, for example, are large, complex organisations, and
enlisting them into a trial can be an expensive and time-consuming process [4]. There is no standard definition of
‘small’ for the number of clusters in this setting, but, for an approximate sense of scale around fewer than ten to
fifteen clusters per arm is often used in analyses of ‘small’ cluster trials (e.g. [3, 4, 5, 6]).

A small number of clusters can present issues for the design and analysis of a cRCT [7]. In particular, an imbalance
of cluster-level prognostic factors, which wewill call covariates from here on, between trial arms can lead to low power
[8, 6]. And under small sample sizes methods of inference can fail to have the expected statistical properties [5].
Restricted randomisation methods that improve covariate balance can produce greater power but require appropriate
model-based analysis and it can be unclear how these interact with any small-sample corrections that are used for
statistical inference [6, 9].

There are various types of cRCT designs; in this article we focus on multi-arm parallel cluster trials. There are
relatively few published examples of multi-arm cRCTs but they are growing in number. They have evaluated either
different combinations of interventions against usual care, or different ‘doses’ of a single type of intervention; they
have ranged in size from fewer than ten clusters per arm to over 100; they have included both continuous and binary
outcomes; and generally, but not exclusively, include repeated measures. One recent major trial enrolled over 700
clusters into seven trial arms to evaluate the effects of different combinations of water, sanitation, hygiene, and
nutrition interventions on the risk of childhood diarrhoeal and respiratory illness in Bangladesh where the presence
of disease was recorded post-intervention [10, 11]. Smaller examples include a three-arm trial with 11 clusters per
arm of an intervention to reduce time spent sitting at work with baseline and post-treatment measures of sitting time
[12]. We have conducted a four-arm trial of different levels of incentives for small businesses to follow a healthy
workplace initiative that included both continuous and binary outcomes measured pre- and post-intervention [13].
Other examples include a three-arm cRCT of different clinical management tools for knee osteoarthritis that enrolled
87 clusters, with a continuous outcome score measured at baseline and follow up [14], and an adaptive cluster trial
of different levels of incentives for HIV self-testing in Malawi that started with six arms and six clusters per arm
that measured a dichotomous outcome only in the post-intervention period [15]. There are evidently many possible
variations to the design of multi-arm cRCTs, but little guidance around their design and analysis. This article considers
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three-arm cRCTs with a small number of clusters, with continuous outcomes, including single post-intervention and
repeated cross-sectional and cohort designs.

Almost all of the evaluation of methods for the design and analysis of small cRCTs has been for two-arm trials.
The analysis of multi-arm trials is not as clear-cut as for a two-arm study as there are multiple possible pairwise
and joint comparisons that may be of interest [16]. Unlike for simple null hypotheses with one linear restriction,
small-sample corrections for test statistics of null hypotheses with multiple linear restriction depend on the whole
internal random structure of the covariance matrix of the estimated parameters and the non-linear dependency of
the reference distribution on the number of restrictions [17]. Different corrections handle this problem in different
ways, which may result in differing performance. Furthermore, their use in trials with repeated measures has not
been previously analysed for any number of trial arms. The performance of methods that balance covariates, such as
restricted randomisation, is not known. Analyses of these randomisation methods have not previously incorporated
trials with repeated measures into their assessments (e.g. [18, 6]) for any number of trial arms. Our objective in this
article is to extend and evaluate analysis methods for multi-arm trials.

1.1 | Covariate Imbalance

Trials that use simple randomisation methods with small numbers of randomisation units could end up with a severe
imbalance of cluster-level covariates between trial arms [3]. These covariates could include demographics or socioe-
conomic characteristics of its catchment population, or other factors that may confound intervention effects. While
imbalance is not a problem per se for causal inference from cRCTs, it might result in lower power than a randomisation
method that can ensure a certain level of balance. For cRCTs where all clusters are recruited prior to the start of
the trial, a number of restricted randomisation methods have been developed for two-arm trials to balance impor-
tant prognostic characteristics while maintaining an ignorable treatment allocation [3], which we collectively refer to
as ‘balancing randomisation’. This includes covariate-constrained randomisation [8, 6, 9] and matched-pairs cluster
randomisation [19, 20]. Where we refer to ‘imbalance’ in the article, we mean an imbalance in cluster-level covariates.

Constrained randomisation follows the steps: (i) enumerate a large number of possible randomisation schemes,
or all of them if the number of clusters is small enough; (ii) remove duplicate schemes; (iii) assess the balance in
each enumerated scheme according to some balance score; and (iv) randomly select a scheme from the top q% of
schemes, where q = 10 is often used. A commonly used balance score for two-arm trials was proposed by Raab and
Butcher, which is a sum of standardised mean differences between the two arms [8], but could include any statistic
that compares the distance between the distributions of the covariate(s) of interest in the different trial arms. For
example, Grischott [21] provides functionality for 15 different measures in an online constrained-randomisation app.

Li et al. [18, 6] evaluated covariate-constrained randomisationmethods for both linear and generalised linear mod-
els, respectively, for small cluster trials. They identified a number of conclusions through a series of simulation-based
studies. Sufficient model-based adjustment is required to ensure that tests have the nominal type I error rate; if not
all of the covariates used in the randomisation are used in a model-based analysis then type I errors are conservative
and can approach zero. They also show that constrained randomisation provides perhaps only a modest improvement
in power compared to simple randomisation on average, which is most pronounced when the randomisation space is
constricted to the most balanced 10% or less of permutations. Little improvement in power was observed above eight
clusters per arm.

Matched-pair cluster randomisation is less widely used than covariate-constrained randomisation as means to
ensure covariate balance in cRCTs [19]. Clusters are paired on the basis of their similarity of observed characteristics,
and then randomised within pairs to either treatment or control conditions. Some authors have questioned the effi-
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ciency of such a randomisation process, and some have recommended against using it altogether (see discussion in
Imai et al. [19]). However, in-depth analyses of this design, such as by Imai et al. [19] and Wu et al. [20], have shown
that under the right conditions the matched-pair cluster randomisation can improve efficiency for small trials.

Little analysis exists of balancing randomisation methods in the multi-arm cluster trial setting and there does not
exist any extension and evaluation of balancing randomisation methods involving matching to a multi-arm setting.
Ciolino et al. [22] consider covariate-constrained randomisation in a multi-arm trial setting and demonstrate that it
does indeed improve balance between trial arms, but the consequences of this on inferences are not explored.

1.2 | Inference

Balancing randomisationmethods reduce the sampling variance of treatment effect estimators by causing a correlation
in outcomes between trial arms, since only allocations with a similar covariate distribution in each arm are allowed
(see C.1 Supplementary Information as well as Kahan and Morris [23], Wu et al. [20]). However, treatment effect
estimators assume independence between trial arms. The correlation between arms is determined by the covariates
used in the balancing procedure and any estimators of the variance of treatment effects that do not adjust for these
covariates will be biased upwards, i.e. the standard errors of treatment effects will be too large and the type I error
rate will not be nominal, which has been demonstrated for two-arm trials [6, 9, 19]. However, the estimator of the
treatment effect itself remains unbiased.

Treatment effects are typically estimated from a cRCT using a generalised linear mixed model. However, when
the number of clusters is small, test statistics do not have the standard (asymptotic) reference distributions. Use of
uncorrected test statistics leads to inflated type I error rates and exaggerated power [4]. A number of small-sample
corrections have been proposed in the literature that determine the appropriate (denominator) degrees of freedom
for the F distributions of test statistics. The Satterthwaite correction approximates the degrees of freedom based on
the first two moments of the parameter estimate [24], and the correction proposed by Kenward and Roger [17] takes
Satterthwaite’s correction after applying a scale factor based on a small-sample estimate of the covariance matrix to
the Wald statistic. In addition, there is also the ‘between-within’ correction, which sets the number of degrees of
freedom for the the test statistic to the number of degrees of freedom at the cluster level. The performance of these
corrections may depend on the level of the intraclass correlation coefficient (ICC), which is the proportion of the total
variance at the cluster level. Using simulated data, Leyrat et al. [5] found that for very small two-arm cRCTs (less
than around six clusters per arm) with an ICC of 0.05, the type I error rate using the the Kenward-Roger correction
was too conservative, the Satterthwaite correction anti-conservative, and the ‘between-within’ correction performed
well. However, for low ICC (0.001) uncorrected and the Satterthwaite correction, in some settings, performed nom-
inally, while the others (between-within and Kenward-Roger) were too conservative. Generally Kenward-Roger and
Satterthwaite corrections have been found to perform similarly, although evidence from other evaluations suggests
the Kenward-Roger correction is more robust to different structures of the covariance matrix (e.g. Luke [25], Arnau
et al. [26]).

1.3 | Objectives

The aim of this article is to examine and extend methods for small cRCTs to a multi-arm setting. In particular, using
simulated data we examine the power and type I error of different estimators of treatment effects in various small
multi-arm cRCT designs, including cross-sectional and repeated measures designs, under both covariate-constrained
randomisation and matched-pairs cluster randomisation. We consider the number of covariates used in the randomi-
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sation and adjustment, small sample corrections, and the size of the trial among other aspects of the design and
analysis. The rest of the article is structured as follows: Section 2 describes our multi-arm trial framework including
notation and null hypotheses, randomisation methods, and methods for the simulation study. Section 3 provides the
results from the simulation study. Section 4 discusses the results and concludes.

2 | METHODS

2.1 | Multi-arm cluster trial notation and models

We conducted a series of simulation studies to evaluate the design choices and performance of randomisation and
analysis methods in the small multi-arm parallel cRCT setting. We examine three-arm trials. We follow the simulation
described in Li et al. [6] where possible.

We focus on three parallel designs of amulti-arm cluster randomised trial: onewith only a single post-intervention
observation in each cluster; one with two cross-sectional observations per cluster, one pre- and the other post-
intervention, a repeated cross-sectional design; and a cohort design with the same participants observed in two time
periods, pre- and post-intervention. We refer to these designs as the ‘post’, ‘repeated cross-section’, and ‘cohort’
designs, respectively. The choice over the design is often pragmatic; while a multi-period design can afford greater
power than a single period design, time and budget may prohibit two rounds of data collection, for example.

We consider a three arm trial with two treatments, so that one arm receives the current ‘standard of care’ and acts
as a control. There are J clusters in total recruited to the trial j = 1, ..., J that are randomised to the three trial arms
at a 1:1:1 ratio, g = 1, g = 2 or g = 3, where an ‘arm’ is a set of clusters all randomly assigned to the same treatment
or treatment schedule, and one or two periods of observation: t = 1 or t = 1, 2. We assume that each cluster has
n j g individuals where

∑J
j=1 n j g = n . We explicitly notate the trial arm g to facilitate description of covariate balancing

between arms later, whereG is the total number of arms andT is the total number of time periods. The two treatments
are indicated by dichotomous variables d1j g t and d2j g t , which equal one if cluster j has the treatment at time t and zero
otherwise, and which contrast the two treatment conditions to the control condition. We observe Sx time-invariant
pre-treatment covariates at the cluster-level Xj g = [x1j g , ..., xSx j g ]′, j = 1, ..., J . We observe R covariates at the
individual-level Zi j g t = [z1i j g t , ..., zRi j g t ]′, i = 1, ..., n . We consider only a continuous outcome yi j g t ∈ Ò.

We focus on a model-based analysis (and data generating process) using a linear mixed effects model. For the
cohort model:

yi j g t = µ + X
′
j g β + Z

′
i j g t δ + τt + γ1d1j g t + γ2d2j g t + αj + αj t + αi + ui j g t (1)

where αj ∼ N (0,σ2α1) is a between-cluster random effect, αj t ∼ N (0,σ2α2) is a within-cluster between-period random
effect, αi ∼ N (0,σ2α3) is a between-individual random effect, τt is a time period fixed effect, and ui j g t is an independent
identically distributedN (0,σ2) error term. In the case of the repeated cross-section design the individual-level random
effect αi is dropped from the model. For the single period post design trials, τt and αj t are dropped from the model
(set to zero). β , δ , γ, and τt are vectors of parameters to be estimated. We also define the (within-period) intraclass
correlation coefficient (ICC) as [27]:

I CC =
σ2α1 + σ

2
α2

σ2
α1 + σ

2
α2 + σ

2
α3 + σ

2
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The cluster autocorrelation coefficient (CAC) is the correlation between cluster-level observations in different time
periods and is:

CAC =
σ2α1

σ2
α1 + σ

2
α2

and the individual autocorrelation coefficient (IAC), which described the correlation between observations from the
same individual in different periods, is:

I AC =
σ2α3

σ2
α3 + σ

2
.

2.2 | Null hypotheses

There are a number of possible hypothesis tests of interest in the multi-arm trial. CONSORT, a widely accepted set
of guidelines for randomised trials, identifies four types of comparison for a three-arm trial,[16] to quote directly:

1. Comparing all 3 groups at once (A vs B vs C); a global test of unordered groups or a test for trend across ordered
groups.

2. Comparing 1 group to the other 2 groups combined (A plus B vs C) and then the groups that were combined to
each other (A vs B); A and B might be low and high doses of the same drug and the first comparison could be of
treated vs untreated, followed by a comparison of the 2 treated groups, or A and B might be 2 antibiotics in the
same class vs C as a member of a different class (note: the labeling in this example is arbitrary).

3. All pairwise comparisons: A vs B, A vs C, and B vs C.
4. Comparing A vs C and B vs C, but not A vs B; for example, comparing 2 treatments, separately, to the control but

not comparing the 2 treatments to each other.

Based on these different comparisons we specify a number of null hypotheses for the parameters of Equation (1),
which are described in Table 1. The hypotheses are not exhaustive but represent the range of possible comparisons
we examine in this article. We note also that we assume that for some hypotheses we assume that the value of ‘free’
treatment effect parameters does not affect the test and leave these unspecified as stated.

2.3 | Randomisation

2.3.1 | Covariate-constrained randomisation

A commonly used balance score is that proposed by Raab and Butcher [8], which is a weighted sum of (standardised)
mean differences of covariates. Higher values of this score indicate greater imbalance. The score is motivated by
considering that cluster trial analyses based on a linear model are equivalent to a sum of mean differences. In a
two-arm trial the score is:

S∑
l=1

1

σ2x l
(x̄ l .2 − x̄ l .1)2 (2)
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Comparison CONSORT Description H0 H1

Pairwise comparison (A vs
B, B vs C, etc)

3,4 a) {treatment 1} = {con-
trols}, {treatment 2}
unspecified versus {treat-
ment 1} , {controls},
{treatment 2} unspecified

γ1 = 0 γ1 , 0

Pairwise comparison (A vs
B, B vs C, etc)

3,4 b) {treatment 2} = {con-
trols}, {treatment 1}
unspecified versus {treat-
ment 2} , {controls},
{treatment 1} unspecified

γ2 = 0 γ2 , 0

Pairwise comparison (A vs
B, B vs C, etc)

2,3 c) {treatment 1} = {treat-
ment 2}, {controls} un-
specified versus {treat-
ment 1} , {treatment 2},
{controls} unspecified

γ1 = γ2 γ1 , γ2

Comparing all three
groups (A vs B vs C)

1 d) {treatment 1} = {treat-
ment 2} = {controls} ver-
sus {treatment 1} , {treat-
ment 2} or {treatment 1} ,
{controls} or {treatment 2}
, {controls}

γ1 = γ2 = 0 γ1 , 0 or γ2 , 0 or γ1 , γ2

Comparing 1 group to the
other two combined (A
plus B vs C)

2 e) {treatment 1 or treat-
ment 2} = {controls} versus
{treatment 1 or treatment
2} , {controls}

γ1 + γ2 = 0 γ1 + γ2 , 0

TABLE 1 Null and alternative hypotheses for multi-group trials. {a } is shorthand for “the group mean for those
with a”. CONSORT refers to the relevant comparison described by the CONSORT statement.
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where S is the number of covariates used in the randomisation, σ2x l = V ar (x l j g ) and x̄ l .g is the mean value of x l j g
in arm g for covariate l . In the same way, other measures of the distance between two means, including quadratic
distance, absolute or Manhattan distance, or maximum distance could be used. We propose a general multi-arm
version of the score in Equation (2) based on the between-arm covariance matrix used to calculate MANOVA test
statistics:

B =
G∑
g=1

(X̄.g − ¯̄X..) (X̄.g − ¯̄X..)′ (3)

where X̄.g = [x̄1.g , ..., x̄S .g ]′ and X̄.. = [x̄1.., ..., x̄S .. ]. The score we use is:

tr(B) (4)

where the covariates are standardised, as this is the sum of cluster level mean differences.

2.3.2 | Matched-group cluster randomisation

There have been no proposed extensions of matched pairs randomisation to a multi-arm setting previously. Indeed,
there has been little or no investigation of algorithms to create matched groups with a given number of clusters as
members based on their similarity in terms of covariate values. We developed an algorithm to implement a matched-
pairs randomisation in a multi-arm trial setting to evaluate whether it could equal or exceed efficiency gains produced
by covariate-constrained randomisation. We propose an algorithm that will create M = dJ/G e matched groups. The
aim of the algorithm is to group clusters into M groups so that t r (W ) is minimised, whereW is the within-groups
covariance matrix as before but where the summation and means are with respect to the matched groups rather than
trial arm. The intuition for this is that the closest matching minimises within-matched group variance — a perfect
matching would have zero variance within a matched group. The algorithm is shown as Algorithm 1 in Supplementary
Information and is a brute-force type algorithm involving continually proposing group swaps, keeping them if they
reduce the overall within matched-group variance, and doing this until no more swaps can be made. Each member of
a group is then randomly allocated to a different trial arm in a way that ensures there is at most a difference of one in
the numbers of cluster per arm.

2.4 | Simulation study

The data generating process for the simulation study follows the model described in Equation (1). Three continuous
covariates were simulated at the cluster level

xsj g ∼ N (0, 12), s = 1, 2, 3
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all of which were used to generate the data. We simulated normal random effects for each cluster and individual:

αj ∼N (0,σ2α ,1)

αj t ∼N (0,σ2α ,2)

αi ∼N (0,σ2α ,3)

and then at the individual-level four covariates were simulated:

zmi j g t ∼ N (µzm , 22),m = 1, ..., 4

µzm ∼ Uni f orm (−2, 2)

We do not include any time period effects, so that the true parameter value for each time period is zero. The ICC
was specified to be either 0.05 or 0.001. For an ICC of 0.05 and σ = 2 we have σ2α1 ≈ 0.21, for example. The cluster
autocorrelation coefficient (CAC) and individual autocorrelation coefficient (IAC) were both specified to be 0.8. The
coefficients β = [β1, ..., βS ]′ were set at 2 for primary analyses, however this value may be considered high as up
to approximately 20% of the variance in the outcome would be accounted for by cluster-level covariates. We also
examined a scenario in which β were set at 0.5 so that the cluster-level covariates accounted for approximately 5%
of the variance. In all simulations the δ = [δ1, ..., δ4 ]′ coefficients were set at 2.

For each simulated data set we use simple randomisation, covariate-constrained randomisation with the score
in Equation (2), and matched-group cluster randomisation using the new algorithm. We randomise in a 1:1:1 ratio.
Following Li et al. [6], the candidate set size of covariate-constrained randomisation, i.e. the number of enumerated
randomisation schemes, was set at 10,000. After enumerating schemes and scoring them we select from schemes in
the the upper q quantile of the distribution of the balance score, q was set at 0.1 as Li et al. [6] found little evidence
for improvement in power above this figure.

We varied the number of clusters per arm from 3 to 11. For the number of individuals per cluster we considered
predominantly unequal cluster sizes. We set an arbitrary distribution of cluster sizes: one third of size 10, one third
25, and one third 40. In scenarios with equal cluster sizes, all clusters had 25 individuals. We do not use cluster size
as a covariate to be balanced in the restricted randomisation. All simulated trial data sets had three arms and hence
9 to 33 clusters in total.

2.4.1 | Parameter estimation and small-sample inference

For each simulated data set, we test each of these hypotheses described in Table 1 using the appropriate parameter
restrictions for the linear mixed model described in 1. To evaluate the type I error for each of the hypotheses, both γ1
and γ2 were set to zero. To evaluate the power we set γ2 to one and left γ1 at zero. For the single-period ‘post’ designs
the terms αj t and τt were dropped from the analysis model. The number of covariates included in Xj g for adjustment
in the analysis model was Sx , which is varied for some analyses. All individual-level variables were included in the
model.

We use restricted maximum likelihood (REML) (using the R package lme4) to estimate the treatment effects as
it has shown better small sample properties than standard maximum likelihood estimators, especially with regards
to the variance components, which is crucial for accurate inference [28]. Inference for treatment effects, i.e. the
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parameter(s) γ in (1), is typically based on a Student’s t-distribution. However, naive estimators of the variance of the
model parameters are biased downwards with small numbers of clusters [17]. We compare the corrections proposed
by Satterthwaite [24], Kenward and Roger [17] (Kenward-Roger), and the ‘between-within’ correction, along with an F-
test with no correction. The general version of the ‘between-within’ correction sets the degrees of freedom correction
to the number of degrees of freedom at the cluster level, which in the case of the multi-arm trial setting presented
here is J ∗T − Sx − (G − 1) − (T − 1) − 1 where Sx is the number of cluster-level covariates included in the model-
based analysis (specifically, if X is a matrix with all cluster varying covariates, including intercept, cluster-covariates,
time dummies, and treatments, then the degrees of freedom is J ∗ T − rank(X )). For a two-arm, post trial with no
covariates this would be J − 2, for example. We conducted 10,000 simulations for each set of simulation parameters.
Code for the simulations is available from the authors upon request.

3 | RESULTS

3.1 | Small sample estimation and inference

We present results from the repeated cross-section design and highlight where differences between study designs
occur; results from the post and cohort designs are reported in the Supplementary Information. Figure 1 reports
the type I errors from the repeated cross-section design. We make a number of observations. In all designs and
hypotheses, small sample corrections were not required for an ICC of 0.001, and generally produced non-nominal type
I error rates. For an ICC of 0.05, the Satterthwaite correction generally had the best performance. For the repeated
cross-section design, it was moderately conservative (type I error of 0.04 to 0.05). For the post design (Figure S2
Supplementary Information), all corrections had a nominal type I error above five clusters per arm, whereas for a
cohort design (Figure S6 Supplementary Information) the Satterthwaite correction was moderately anti-conservative
(0.05 to 0.06) but generally was the best performing. For the joint null hypothesis H0 : γ1 = γ2 = 0 an uncorrected
F-test had nominal type I error rates in post and repeated cross-section designs, but not for the other two types of
null hypotheses for which performance was comparable for all corrections.

3.2 | Randomisation methods

The estimated power from the simulations is shown in Figure 2 where we have used the best performing correction
from the previous section (Satterthwaite for ICC of 0.05 and uncorrected F-test for an ICC of 0.001), and where all
three covariates used in the balanced randomisation procedures were included in model-based adjustment. Covariate-
constrained randomisation performed the best in terms of power although there was little advantage in the repeated
cross-section or cohort designs (Figure S7 Supplementary Information). The increase in power for the post design was
relatively small (Figure S3 Supplementary Information). For example, for a pairwise comparison (e.g. H0 : γ1 = 0) at
five clusters per arm and a post design, the power with simple randomisation was 51%, with matched-group cluster
randomisation was 55%, and with covariate constrained randomisation 58%. For low ICC (0.001) the conclusions are
similar, although the improvement in power was larger in magnitude. For example in the same design as before, the
power under simple randomisation was 77%, under matched-group cluster randomisation 82%, and under covariate
constrained randomisation 86%. Gains were small for the repeated cross-section design. With the same design param-
eters as before and an ICC of 0.05, the power for simple, covariate-constrained, and matched-group randomisation
was 73%, 75%, and 75% respectively. There was little evidence of any difference in power for the cohort design.

We compared the balance scores for covariate-constrained and matched-group randomisation methods (Figure
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F IGURE 1 Type 1 error for repeated cross-sectional design with different small sample corrections (line types),
randomisation methods, and numbers of clusters. Simulations for three-arm trial G = 3, unequal cluster sizes,
number of covariates in adjustment Sx = 3, and number of covariates in randomisation S = 3.
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F IGURE 2 Power for different randomisation methods (line types) in the repeated cross-section design, and
numbers of clusters. Simulations three-arm trial G = 3, unequal cluster sizes, number of covariates in adjustment
Sx = 3, and number of covariates in randomisation S = 3. For ICC=0.05 a Satterthwaite corrected F-test was used
and for ICC=0.001 an uncorrected F-test.
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F IGURE 3 Attained power by decile of balance score (q ) in an covariate-constrained randomisation. Simulations
for J = 15 clusters, three-arm trial G = 3, number of covariates in adjustment Sx = 3, number of covariates in
randomisation S = 3 and repeated cross-section study design. For ICC=0.05 a Satterthwaite corrected F-test was
used and for ICC=0.001 an uncorrected F-test.

S1, Supplementary Information). Matched-group cluster randomisation improves the cluster-level balance of covari-
ates compared to simple randomisation as assessed by the balance score, however there is still a high chance of
relatively imbalanced allocations. Covariate-constrained randomisation more reliably produces balanced allocations
and hence smaller sampling variation. Figure 3 shows the attained power for different levels of balance according to
the balance score. Imbalance makes little difference to power for the repeated cross-section design. For an ICC of
0.001 the difference in attained power displays a similar pattern to the higher ICC. Figure 3 also provides equivalent
results for an equal cluster size. As expected, equal cluster sizes result in greater power; the marginal increase in
power by decile of balance score is approximately the same between designs equal and unequal cluster size. For a
post design allocations in the bottom decile of balance have a power more than 15 percentage points worse than
the top decile in this context (Figure S4 Supplementary Information). There was little change in attained power when
the parameters β were set at 0.5 instead of 2: the differences in power between the top and bottom deciles for an
ICC of 0.05 and covariate constrained randomisation for a post, repeated cross-section, and cohort designs, were,
respectively 15, 4, and 0 percentage points.

3.3 | Model adjustment

The effect of different numbers of covariates in the randomisation process and inmodel-based adjustment for covariate-
constrained randomisation and simple randomisation is shown in Figure 4 (for a fixed three covariates in the data gen-
erating process). When the covariates used in covariate-constrained randomisation were not all used in model-based
adjustment then the type I error rate was below 5% for both levels of ICC. For the repeated cross-section design, type
I errors were close to nominal (reflecting the patterns in Figure 1) when the same number or more covariates were
used in adjustment as the covariate-constrained randomisation for an ICC of 0.05. When fewer covariates were used
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F IGURE 4 Power and type I error with different numbers of covariates used in covariate-constrained
randomisation and model adjustment for repeated cross-section design. SR = simple randomisation, a cov. CCR =
covariate constrained randomisation with a covariates. The data generating process used three cluster-level
covariates. Simulations for J = 15 clusters, three-arm trial G = 3, unequal cluster sizes. For ICC=0.05 a Satterthwaite
corrected F-test was used and for ICC=0.001 an uncorrected F-test.

for model adjustment than were included in the data generating process and the ICC was 0.001 or simple randomisa-
tion was used, type I errors were below nominal rates for both repeated cross-section and cohort designs (Figure S9
Supplementary Information), but not the post design. We note that not adjusting for cluster-level covariates has the
effect of inflating the ICC, so the effect is likely due to a lack of small sample correction here. Power reflected the
pattern of type I error rates: there were reductions in power when fewer covariates were used in the model adjust-
ment than were included in the covariate-constrained randomisation; reductions in power were more modest for the
repeated cross-section and cohort designs than for the post design.
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4 | DISCUSSION

Both covariate-constrained randomisation and matched-pair cluster randomisation improve the balance of covari-
ates between trial arms in two arm parallel cluster randomised trials with small numbers of clusters [6, 18, 22]. We
examined the performance of constrained-randomisation and matched group randomisation (a proposed multi-arm
extension to matched-pair randomisation) for three-arm trials in terms of the type I error and power of treatment
effect estimators. Covariate-constrained randomisation performed the best in terms of power. However, there was
little benefit in terms of power in trials with repeated measures. Indeed, the sampling distribution of the treatment ef-
fect estimator was affected only marginally by cluster-level covariate imbalance in the repeated cross-section design
even compared to an equivalently powered post design. Our explanation for this is that having baseline measure-
ments ensures an equivalent distribution of covariates in treatment and control conditions thus effectively providing
adjustment for cluster-level differences, even if there is imbalance between arms.

For small trials and a reasonable ICC (ICC=0.05) we demonstrated the necessity of a small sample correction
to ensure the appropriate type I error rates of the estimators. However, for cluster trials with repeated measures,
either of repeated cross-section or cohort designs, none of the small-sample corrections provided exactly nominal
type I error rates in small samples, although they were approximately nominal (+/- <0.01). The between-within and
Satterthwaite corrections both performed reasonably, although for very small trials (fewer than five clusters per arm)
our evidence suggests only the Satterthwaite correction has close to nominal type I error rates. However, for very low
ICC values (ICC=0.001), the uncorrected test statistic was preferred and small-sample corrections generally produced
non-nominal type I error rates. This reflects the findings of Leyrat et al. [5], who found for post design trials at
very low values of the ICC, uncorrected analyses performed close to nominally in a mixed model setting. They also
found evidence the Satterthwaite correction performed close to nominally, while the results in this article suggest it
is moderately conservative for very low ICCs and in repeated measures designs. The performance of the corrections
also depended to some extent on the hypothesis being tested. For joint null hypotheses comparing all treatment
groups at once to the control, we found the uncorrected F-test to perform well and the between-within correction to
be more conservative, with a high ICC.

We also showed that if the covariates used in the constrained randomisation procedure were not used in the
analysis the standard errors of the treatment effect estimators would likely be biased, the type I error rate would
likely be significantly conservative, which would also result in significant drop-offs in power. This is consistent with
the findings of Li et al. [6] for two-arm trials and is due to the uncorrected correlation induced by the constrained
randomisation procedure (see Supplementary Information). We also noted that if (strongly prognostic) cluster-level
covariates that were in the data generating process were not adjusted for in analyses of repeated measures cluster
trials then error rates were not nominal, which was explained as this would inflate the ICC. It is unknown whether the
small sample correction would be as effective at even higher levels of the ICC.

Given the onlymoderate benefit in terms of power and potentially severe consequences ofmodelmis-specification,
onemight askwhether using a constrained randomisation procedure is warranted even for the post design. For smaller
trials constrained randomisation may be worth it, although much of the gain in power may come from adjustment us-
ing these covariates rather than the constrained-randomisation itself. As Lin [29] discusses at length, an estimator of a
treatment effect from an adjusted model will generally be at least as efficient as one from an unadjusted model. How-
ever, comparisons of balancing randomisation to simple randomisation are typically on average [6, 18]; we showed
that a simple randomisation procedure can produce severely imbalanced allocations with large reductions in ‘attained
power’ [30] (i.e. larger standard errors) for a trial with only post-intervention measures. Constrained randomisation
(and matched-group randomisation) removes the risk of generating a highly imbalanced allocation in this context,
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which may significantly undermine the power of a trial. An additional benefit to constrained randomisation may also
come from an improvement in the face validity of the randomisation procedure. More balanced trial arms at baseline
may be improve confidence in reported results from cluster trials.

Multi-arm cluster trials raise the question of corrections for multiple testing as there is more than one treatment
effect. However, there is no clear consensus on whether this required or not. Wason et al. [31] estimate around half of
individual-level clinical trials do correct for multiple testing and half do not. Multiplicity adjustments are likely to have
a greater effect when the treatments are independent than when they are correlated (for example, different doses
of the same treatment) [31]. However, multiplicity corrections still require the underlying statistical tests to have the
appropriate error rates. Our results are therefore important to identifying these tests in the context of multi-arm
cluster trials, but we leave the question of multiplicity adjustments to future research.

4.1 | Limitations

We acknowledge a number of limitations to the work and the scope of the scenarios we investigated. We did not
examine directly the effect of varying q , setting it at 10% for all simulations. This was based on Li et al. [6]’s conclusions.
We did show variations in power for different deciles of the distribution of the balance statistic. Further improvements
could be improved by focusing on the top 5% or 1% of allocations, but we suggest they would likely be small and for
small numbers of clusters this may result in candidate set of allocations with only a small number of members. There
are also a variety of other scores that could be used for assessing balance for covariated-constrained randomisation,
although there is no obvious way to generalise many of these to a multi-arm multivariate setting. MANOVA test
statistics are an exception and are based on the eigenvalues ofW −1B , whereW is the within-group covariance matrix.
For exampleWilks’ Λ is∏S

s=1
1

1+λs
= det (W )
det (W+B ) where λs are the eigenvalues. The reason for this is that these functions

of the eigenvalues ofW −1B are ratios of between sums of squares to within (or total) sums of squares for particular
discriminant function variates of the covariates, and thus replicate ANOVA analyses in a multivariate setting [32].
However, since our concern is only to assess the scale of between group variance rather than conduct any inference,
information contained inW is somewhat redundant and MANOVA scores are unlikely to perform any better than the
score we proposed here.

We did not compare model-based analyses with other means of estimating treatment effects with small numbers
of clusters, in particular generalised estimating equations (GEE). Previous simulation studies have shown GEEs to
perform no better than, and often worse than, model-based methods for small numbers of clusters [28, 18]. As such
we opted to examine only model-based analyses. We also did not examine more complex multi-arm designs, such as
the stepped-wedge design, in which different randomisation sequences can be considered separate ‘arms’. However
we expect when there are repeated measures that the conclusion relating to the repeated cross-section design here,
namely that imbalance in cluster-level covariates between arms is unlikely to have much effect, will apply. Finally, one
can examine the validity of a given randomisation procedure using a test of randomness [33]. This would be a useful
means to check the validity of a given covariate-constrained randomisation procedure should one be used. Intuitively
the Raab-Butcher score ought to performbest since themodel based comparisons are in essence estimates of adjusted
mean differences [8]. Finally, we note that the simulations did not examine trials with dichotomous outcomes, which is
an important area for future investigation given some of the potential inferential issues we have identified in analyses
with continuous outcomes.
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4.2 | Conclusions and recommendations

Our findings echo the results of a number of other articles in other contexts and several conclusions and recommen-
dations arise from the research presented in this article. First, balancing randomisation procedures can successfully be
extended to the three-arm cluster trial. Second, restricted randomisation procedures may not produce much benefit
in trials with repeated measures but can reduce potentially substantial losses in power in three-arm cluster trials with
a single cross-sectional observation. Third, the choice of small-sample correction is dependent on the ICC, which is
typically unknown ex ante. Moreover, estimates of the ICC are likely to be noisy or biased with small numbers of
clusters, so future research is needed to identify best-practice in these scenarios. Caution is needed with inference
from trials with small numbers of clusters where the ICC is unknown. Fourth, appropriate model-based adjustment is
needed to ensure reliable inferences when using balancing randomisation methods.
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