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Enhanced BCR signaling
inflicts early plasmablast
and germinal center B cell death

Juan Carlos Yam-Puc,1,* Lingling Zhang,1 Raul A Maqueda-Alfaro,2 Laura Garcia-Ibanez,1 Yang Zhang,1

Jessica Davies,1 Yotis A Senis,3 Michael Snaith,4 and Kai-Michael Toellner1,5,*

SUMMARY

It is still not clear how B cell receptor (BCR) signaling intensity affects plasma cell
(PC) and germinal center (GC) B cell differentiation. We generated Cg1Cre/

wtPtpn6fl/fl mice where SHP-1, a negative regulator of BCR signaling, is deleted
rapidly after B cell activation. Although immunization with T-dependent antigens
increased BCR signaling, it led to PC reduction and increased apoptosis. Depen-
dent on the antigen, the early GC B cell response was equally reduced and
apoptosis increased. At the same time, a higher proportion of GC B cells ex-
pressed cMYC, suggesting GC B cell-Tfh cell interactions may be increased. GC
B cell numbers returned to normal at later stages, whereas affinity maturation
was suppressed in the long term. This confirms that BCR signaling not only directs
affinity-dependent B cell selection but also, without adequate further stimula-
tion, can inflict cell death, which may be important for the maintenance of B
cell tolerance.

INTRODUCTION

Specific interaction between antigen and the B cell receptor (BCR) is the key signal for B cell selection and

activation (Niiro and Clark, 2002; Yam-Puc et al., 2018). After initial activation in vivo, B cells may differen-

tiate into plasma cells (PCs) through rapid extra-follicular expansion or become germinal center (GC) cells

that will undergo BCR affinity maturation for antigen (MacLennan, 1994; MacLennan et al., 2003; Victora and

Nussenzweig, 2012). GCs contribute to long-lived humoral responses by producing high-affinity antibody-

forming PCs and memory B cells (MacLennan, 1994; Victora and Nussenzweig, 2012; Weisel et al., 2016).

High-affinity neutralizing antibodies represent a crucial mechanism by which vaccines or natural infections

confer sterilizing immunity protecting against on re-exposure to the same pathogen (Bachmann et al.,

1994; Steinhoff et al., 1995). Two major signals regulate B cell activation leading to antibody production:

signals from T helper cells have been studied intensely in recent years (Oropallo and Cerutti, 2014; Shulman

et al., 2013; Victora et al., 2010), whereas less attention has been given to the impact of BCR signaling dur-

ing selection of B cells by antigen (Khalil et al., 2012; Mueller et al., 2015). Although signals from pathogen

recognition receptors may participate in B cell activation (Li et al., 2013; Pone et al., 2015), the interaction

between antigen and BCR has been described as crucial to control whether activated B cells enter the GC

or undergo rapid PC differentiation in extra-follicular proliferative foci. B cell clones undergoing a strong

initial interaction with antigen can efficiently differentiate into extra-follicular PCs contributing to the rapid

early phase of the antibody production (Paus et al., 2006). B cells expressing a wide range of BCR affinities

become pre-GC B cells after T-B interaction (Dal Porto et al., 2002; Schwickert et al., 2011; Victora et al.,

2010). Higher affinity BCRs can induce stronger signal transduction than lower affinity ones (Kouskoff

et al., 1998). BCR occupancy is a product of BCR affinity and antigen concentration, and concentration

of free antigen can be limited by antibody feedback (Toellner et al., 2018).

B cell activationuponBCR ligation canbeamplifiedbyToll-like receptor (TLR) signaling (Castro-DopicoandClat-

worthy, 2019; Poneet al., 2012), and thismay act at very early stagesbeforeT cell help is available. However, these

innate immune receptors may also have an inhibitory effect on B cell activation, such as TLR-9, which can inhibit

antigen processing and presentation by B cells, inhibiting acquisition of T cell help (Akkaya et al., 2018a, 2018b).

The effect of all this on cell fate decisions during B cell differentiation merits more attention.
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The Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase (PTP)-1 (SHP-1), encoded by

the Ptpn6 gene, negatively regulates BCR signaling primarily via its binding to the immunoreceptor tyro-

sine-based inhibitory motif (ITIM)-containing receptors CD72, CD22, FcgRIIB, paired Ig-like receptor (PIR)-

B, and FCRL3 (Adachi et al., 2001; D’Ambrosio et al., 1995; Kochi et al., 2009; Maeda et al., 1998; Nitschke

and Tsubata, 2004). Although FCRL3 can mediate B cell activation through TLR-9 stimulation, this seems to

be independent of SHP-1 (Li et al., 2013). SHP-1 is expressed and constitutively activated in all B cells, and

its specific deletion on B cells results in systemic autoimmunity (Pao et al., 2007). SHP-1 is highly expressed

and activated in GC B cells, suggesting that BCR signaling is negatively regulated during differentiation of

GC B cells (Khalil et al., 2012). BCR signaling has been shown to be absent in dark zone (DZ) GC B cells

(Stewart et al., 2018), whereas there is more signal transduction in light zone (LZ) B cells competing for se-

lection signals through affinity-dependent activation of their BCR (Mueller et al., 2015).

To test how BCR signaling inhibition by SHP-1 affects antigen-induced B cell differentiation, we generated

Cg1Cre/wtPtpn6fl/fl mice, in which the T-dependent B cell activation induces SHP-1 deletion in most B cells

(Roco et al., 2019). Most induction of immunoglobulin class switch recombination (CSR) happens during

the initial phase of cognate T cell-B cell interaction before GCs are formed, which is accompanied by rapid

strong induction of IgG1 germline transcripts (Marshall et al., 2011; Roco et al., 2019; Toellner et al., 1998).

Although CD40 ligation and interleukin (IL)-4 are strong inducers of IgG1 germline transcripts (Stavnezer

et al., 2008), their expression is not necessarily followedbyCSR.HereweuseCre recombinase located inside

the IgG1 heavy chain locus as a reporter for successful T-dependent B cell activation (Casola et al., 2006;

Roco et al., 2019). Using Cg1Cre mice that contain a Cre-deletable version of SHP-1 (Ptpn6), we show that

Cg1Cre/wtPtpn6fl/fl B cells exhibit stronger BCR signaling. Paradoxically this leads to a smaller extra-follicular

IgG1+ PC response and to death of GC B cells, resulting in reduced affinity maturation in the GC.

RESULTS

Increased apoptosis in extra-follicular plasma cells of Cg1Cre/wtPtpn6fl/fl mice

B cells binding antigen with higher affinity are more likely to differentiate into extra-follicular PCs (O’Con-

nor et al., 2006; Paus et al., 2006). To test whether deletion of the negative regulator of BCR signaling, SHP-

1, affects the early extra-follicular PC response to immunization, Cg1Cre/wtPtpn6fl/wt and Cg1Cre/wtPtpn6fl/fl,

in the following abbreviated as Shp1fl/wt and Shp1fl/fl mice, were immunized with sheep red blood cells

(SRBCs) intravenously. The Cg1Cre allele reports expression of IgG1 germline transcripts (Casola et al.,

2006), which are strongly induced after the initial interaction of B cells with T helper cells before PCs or

GCs appear (Marshall et al., 2011; Roco et al., 2019; Zhang et al., 2018). This should lead to efficient deletion

of SHP-1 in extra-follicular PCs and GC founder B cells. Spleens were analyzed 5 days post immunization,

when the extra-follicular PC response peaks and early GCs have formed (Zhang et al., 2018).

Against expectation, flow cytometry showed that Shp1fl/fl PC numbers were reduced by 50% (Figure 1A).

This primarily affected IgG1-switched PCs, whereas non-switched IgM PCs developed in similar numbers

as in Shp1fl/wt control animals (Figure 1B). Testing deletion of SHP-1 in PCs by flow cytometry showed

that Shp1fl/wt and Shp1fl/fl PC expressed similar amounts of SHP-1 (Figures S1A and S1B), suggesting

that the surviving PCs had not deleted SHP-1. Immunohistology, using IRF4 as a marker for PCs, confirmed

reduced PC foci in the splenic red pulp, primarily in the IgG1-switched PCs of Shp1fl/flmice (Figure 1C). PCs

emerging from GCs at the GC-T zone interface (GTI) (Zhang et al., 2018) were unaffected at this point (Fig-

ure S1C). These data indicate that increased BCR signaling after initial B cell activation inhibits extra-follic-

ular PC differentiation.

Hyper-activation of B cells through BCR signaling can lead to programmed cell death (Akkaya et al., 2018b;

Parry et al., 1994; Tsubata et al., 1994b; Watanabe et al., 1998). To test whether cell death was responsible

for the smaller extra-follicular PC response, apoptotic cells were detected using Annexin V and 7-AAD

staining. This showed a minor increase in the proportion of apoptotic PCs (Annexin V+ve and 7-AAD+ve)

in Shp1fl/fl mice (Figure 2A). Also, the expression of active caspase-3 on different isotypes of PCs showed

that IgG1+ PCs of Shp1fl/fl animals were more likely to express active caspase-3 (Figure 2B). Immunohistol-

ogy confirmed an increase in active caspase-3+ cells in the IRF-4+ extra-follicular splenic foci of Shp1fl/flmice

(Figure 2C). Interestingly, apoptosis was increased despite the similar SHP-1 protein expression in Shp1fl/fl

PCs that survived to this stage (Figure S1A). Therefore, it is likely that at earlier stages the differences in

apoptosis rates were even more pronounced. Taken together, this indicates that an inappropriate increase

in BCR signaling can negatively affect extra-follicular PC generation through increased cell death.
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SRBC-induced GC formation of Cg1Cre/wtPtpn6fl/fl mice is unaffected

In established GCs, BCR signaling is limited by SHP-1 hyper-phosphorylation, and this is important for GC

maintenance (Khalil et al., 2012). To test how SHP-1 deletion, starting from the earliest stages of GC devel-

opment, affects the GC response we followed GC B cell differentiation in Cg1Cre/wtPtpn6fl/fl mice 5 days

after SRBC immunization. Surprisingly, at this early stage there was no significant change in the number

of GC B cells in Shp1fl/fl mice (Figure 3A). Flow cytometry confirmed a reduction of SHP-1 staining intensity

in all GC B cells (Figure S2A), indicating that most GC B cells had deleted the gene. The increase in SYK

phosphorylation seen in GC B cells in Shp1fl/fl mice confirmed that SHP-1 deletion does increase BCR

signaling in this system (Figure 3B). In contrast to what was seen in extra-follicular PCs, cell death in GC

B cells, evaluated by flow cytometric analysis of Annexin V/7-AAD and active caspase-3 staining, was not

increased at this stage (Figure 3C). Immunohistology confirmed that there were no obvious changes in

GCs in Shp1fl/fl compared with Shp1fl/wt mice (Figure 3D). These data indicate that increased BCR signaling

after initial B cell activation does not affect the formation of GCs.

Germinal center B cell responses and affinity maturation to hapten protein are impaired in

Cg1Cre/wtPtpn6fl/fl mice

While SRBC immunization rapidly induces B cell activation and differentiation (Zhang et al., 2018), it also

has a T-independent component. Primary foot immunization with 4-hydroxy-3-nitrophenyl acetyl coupled

to chicken g-globulin (NP-CGG) in alum induces strong IL-4 expression in T cells, Th2 type B cell activation,

and rapid differentiation of extra-follicular PCs as well as GC in the draining popliteal lymph nodes (Toell-

ner et al., 1998). Furthermore, this antigen allows the identification of antigen-specific antibodies.

To better estimate the response in B cells that had an actual history of Cre-recombinase expression, we

generated Cg1Cre/wtPtpn6fl/wt and Cg1Cre/wtPtpn6fl/fl on the ROSAmTmG background, which contain a

Cre-inducible membrane-tagged version of eGFP (Muzumdar et al., 2007). Eight days post subcutaneous

immunization with NP-CGG, Shp1fl/fl draining lymph nodes showed a reduced numbers of PCs (Figures 4A

and 4B), similar to what was seen in Shp1fl/fl spleens after SRBC immunization. Again, PCs surviving to this

Figure 1. Plasma cells are reduced in Cg1Cre/wtPtpn6fl/fl mice post SRBC immunization

Mouse spleens were analyzed 5 days post intravenous immunization with SRBCs

(A) Representative contour plots gating PCs (lymphocytes/singlets/live/B220�CD138+, numbers indicate percentage of cells within live lymphocyte gate).

Right: % of live cells and total numbers per spleen; data combined from three independent experiments.

(B) IgM+ and IgG1+ PCs (% of live cells and total numbers per spleen; data combined from three independent experiments).

(C) Splenic sections from Shp1fl/wt (fl/wt) and Shp1fl/fl (fl/fl) mice staining B cell follicles (IgD, green), T cell zone (CD4, blue) and PCs (top, IRF4 in red), or IgG1+

cells (bottom, IgG1 in red); scale bar, 200 mm. IRF4 and IgG1 area is shown as a percentage of the total spleen area. Data are representative of one of two

independent experiments.

Each symbol corresponds to one animal; horizontal lines indicate the mean. n.s. not significant, *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed t-test).
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stage contained normal amounts of SHP-1 (Figures S2B and S2C). GCs developing in Shp1fl/fl mice were

smaller (Figure S2D) and numbers of GC B cells were reduced (Figures 4A and 4B). This went along with

increased GC B cell apoptosis (Figure 4C). Again, SHP-1 deletion (Figure S2E) resulted in increased BCR

signaling, as detected by increased SYK phosphorylation (Figure 4D).

To test the hypothesis that B cell are dying by apoptosis because they are not receiving sufficient T cell

help, we evaluated the expression of cMYC, which is induced after GC B cell stimulation by Tfh cells (Calado

et al., 2012; Dominguez-Sola et al., 2012; Luo et al., 2018). Despite expectation, cMYC was found in a larger

number of Shp1fl/fl GC B cells (Figure 4E), suggesting more efficient Tfh help. These results suggest that,

similar to what is seen in extra-follicular PCs, overstimulation of GC B cells leads to increased cell death.

Deletion of C-terminal Src kinase (Csk), another downstream inhibitor of BCR signaling, led to a similar

reduction of the GC B cell response in Cg1Cre/wtCskfl/fl mice after 8 and 14 days of NP-CGG immunization

(Figures S3A and S3B).

Figure 2. Plasma cell apoptosis is increased in SRBC immunized Cg1Cre/wtPtpn6fl/fl mice

Apoptosis rate on PCs was analyzed 5 days post SRBCs immunization in Cg1Cre/wtPtpn6fl/wt and Cg1Cre/wtPtpn6fl/fl mice.

(A) Representative dot plots show apoptosis rate based on the binding of Annexin V and the dead cell dye 7-AAD

(pregated on PCs; top panel). Annexin V+ 7-AAD- cells were considered as early apoptotic cells, and Annexin V+ 7-AAD+,

cells as late apoptotic cells. Summary data (bottom panel; % of plasma cells; results are combined from two independent

experiments).

(B) Active caspase-3 expression on IgG1+ or IgM+ PCs. Graphs on the right show the percentage of active caspase-3+ cells

within IgG1+ or IgM+ plasma cells. Results are combined from three independent experiments.

(C) Spleen sections from Shp1fl/wt and Shp1fl/flmice staining for B cell follicles (IgD, green), T cell zone (CD4, blue), and PCs

(IRF4 in red) in the top, or active caspase-3+ cells (Caspase-3 in red) in the bottom. Ratio of active caspase-3+ pixel/IRF4+

pixel, representative of one of two independent experiments. Each symbol corresponds to one animal; horizontal lines

indicate the mean. n.s. not significant, *p < 0.05 (two-tailed t test).
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To test the effects of SHP-1 deletion on later stages of the response to NP-CGG, splenic GC response and

affinity maturation weremonitored after intraperitoneal primary immunization of Shp1fl/fl and Shp1fl/wtmice

with NP-CGG. Similar to what was seen in lymph nodes, increased BCR signaling led to a reduced early GC

response 8 days after immunization, but this effect was lost at later stages of the response (Figures 4F and

S4A). NP-specific IgG1 was marginally reduced, whereas NP-specific antibody affinity in Shp1fl/fl mice did

not increase at late stages after immunization (Figure 4G), showing that despite the normalization in GC B

cell numbers, there is a long-term effect on the efficiency of affinity-dependent B cell selection. A similar

reduction of NP-specific IgG and IgG1 titers and antibody affinity were seen in Cg1Cre/wtCskfl/fl animals (Fig-

ures S3C and S3D).

DISCUSSION

Enhanced BCR signaling due to specific deletion of SHP-1 in all B cells during development leads to B1a B

cell subset expansion and results in autoimmunity (Pao et al., 2007). Few studies have tested the effects of

Figure 3. SRBC-induced GC formation in Cg1Cre/wtPtpn6fl/fl mice is largely unaffected

Germinal center response was analyzed 5 days post intravenous SRBC immunization of Cg1Cre/wtPtpn6fl/wt (fl/wt) and

Cg1Cre/wtPtpn6fl/fl (fl/fl) mice.

(A) Representative contour plots gating GC B cells from spleen (lymphocytes/singlets/live/CD138-B220+CD38�Fas+).
Right panel shows percentage of B220+ B cells and total numbers per spleen. Data are combined from two independent

experiments.

(B) pSYK expression in GC B cells. Right panel shows pSYK median fluorescence intensity (MFI) in GC B cells; results are

representative of two independent experiments. Gray histogram shows the fluorescence minus one (FMO) control for

pSYK staining.

(C) Apoptosis rate based on the binding of Annexin V and 7-AAD, active caspase-3 in IgG1+, or IgM+ cells as in Figure 2. %

of GC B cells; data are combined from two independent experiments.

(D) Spleen sections from Shp1fl/wt (fl/wt) and Shp1fl/fl (fl/fl) mice staining for B cell follicles (IgD, green), T cell zone (CD4,

blue), and proliferating cells (Ki67 in red); scale bar, 200 mm. Positive area of Ki67+IgD- was calculated as percentage of

total splenic area. Each symbol corresponds to one animal; horizontal lines indicate the mean. n.s. not significant, **p <

0.01 (two-tailed t test).
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artificially enhanced BCR signaling in mature B cells that had undergone normal B cell development (Da-

vidzohn et al., 2020; Li et al., 2014). The model presented here allows normal B cell development and

increased BCR signaling by deletion of SHP-1 only after mature and naive B cells are activated by signals

that may induce class-switching to IgG1.

Figure 4. Germinal center B cell responses and affinity maturation to NP-CGG are impaired in Cg1Cre/wtPtpn6fl/fl mice

(A) Germinal center B cell responses in popliteal lymph nodes (PLN) 8 days post NP-CGG immunization of Cg1Cre/wtPtpn6fl/wt ROSAmTmG and Cg1Cre/

wtPtpn6fl/fl ROSAmTmG mice. Sequential gating strategy for the identification of PCs (lymphocytes/singlets/live/tomato�GFP+B220�CD138+) and GC B cells

(lymphocytes/singlets/live/tomato�GFP+CD138-B220+CD38�Fas+).
(B) Summary of PC and GC B cell numbers (% of live cells and total numbers per LN); three independent experiments.

(C) Active caspase-3 on GC B cells from PLNs 8 days post NP-CGG immunization (% of GC B cells; results are representative of one experiment).

(D) SYK phosphorylation in GC B cells (MFI on GC B cells).

(E) Relative percentage of GC area containing cMYC-expressing cells. Each symbol represents a different GC. Data combined from two independent

experiments.

(F) Splenic NP-specific GC B cells at different time points after immunization (total cell numbers per spleen; results are from one to two independent

experiments).

(G) Serum antibody titers for NP-specific IgG1 (left panel) and relative affinity of NP-specific IgG1 (right panel).

Results are from two to three independent experiments; horizontal lines indicate the mean. n.s. not significant, *p < 0.05, **p < 0.01, ***p < 0.001 (B–E two-

tailed t test and F–G two-way ANOVA).
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SHP-1 inhibits BCR signaling through SYK (Adachi et al., 2001), and activated B cells in the current model

show clear signs of pSYK overexpression after B cell activation.

After antigen-mediated BCR stimulation and T cell help, B cells may differentiate into extra-follicular PCs

(MacLennan et al., 2003) or become GC precursor cells to start GC reactions (Victora and Nussenzweig,

2012). The exact mechanisms that control this fate decision is still controversial and under scrutiny. It has

been shown that B cells experiencing a strong initial interaction with antigen more efficiently differentiate

into extra-follicular PCs (Paus et al., 2006). Here, we show that higher signaling through the BCR affects PC

differentiation in unexpected ways. Cg1 germline transcripts are induced during the initial B cell activation

before extra-follicular or GC B cell differentiation (Marshall et al., 2011; Roco et al., 2019). Therefore, early B

blasts differentiating into extra-follicular plasmablasts would be the first to encounter Cre-mediated dele-

tion of SHP-1 and increased BCR signaling. As increased BCR signaling should enhance extra-follicular PC

differentiation (Paus et al., 2006), it was surprising to see reduced numbers of extra-follicular plasmablasts.

It is very likely that BCR signaling, without adequate regulation, is inflicting cell death, which may be impor-

tant for the maintenance of B cell tolerance.

Although the frequency of apoptosis in the PC compartment seems high, this appears to fit with the sub-

stantial PC death during the contraction of the immune response (McCarron et al., 2017; Smith et al., 1996;

Sze et al., 2000). Kinetics of cell death in extra-follicular foci in the primary response are scarce, but it has

been estimated that the daily cell loss should be over 20%, enough to account for their massive decline

(Smith et al., 1996). PC death in the extra-follicular response is sharp and short (Sze et al., 2000), whereas

GC responses and apoptosis therein are happening over longer periods, and apoptotic GC B cells are effi-

ciently removed by tingible body macrophages. Therefore, it seems quite possible that removal of

apoptotic cells in the extra-follicular response is less efficient.

Owing to the low number of B cells activated in a non-BCR transgenic animal it was not possible to test

whether the number of B cells initially activated to enter plasmablast differentiation was changed. Stronger

BCR-mediated activation may have led to larger numbers of B cells entering plasmablast differentiation,

however, stronger activation in the absence of co-stimulation from T cells can also promote activation-

induced cell death (Akkaya et al., 2018b; Parry et al., 1994; Tsubata et al., 1994a, 1994b; Watanabe et al.,

1998). This would suggest that after activation, SHP-1-deficient B cells are not maintained because they

do not receive timely co-stimulatory signals needed for full activation (Akkaya et al., 2018b). These results

are in line with data from an earlier study (Li et al., 2014) that showed amodest reduction in PC production in

the response to primary immunization with TD antigens in mice where Ptpn6 is deleted by Cre expressed

under the control of the Aicda promoter. Aicda is also induced during primary B cell activation before GCs

form; however, its expression is at lower levels than Cg1 germline transcripts (Roco et al., 2019), which may

explain the more subtle changes.

The effect of SHP-1 deletion on GC size is only transient, which could be due to the expansion of a minority

of cells with incomplete deletion. The longer-term change in affinity maturation, however, makes it more

likely that the complex balance between affinity-dependent GC B cell selection, proliferation, output,

and death reaches a new equilibrium, filling GC B cell niches to normal occupancy levels. This may explain

differences seen to an earlier study, where tamoxifen-induced deletion of SHP-1 during the peak of the GC

response resulted in a rapid loss of GC B cells within a short period (Khalil et al., 2012).

Although the effect on the size of the GC compartment in NP-CGG immunized mice was only transient, the

higher pSYK levels clearly indicate considerably increased signal transduction in GC B cells. pSYK levels

were also increased in GC B cells induced by SRBC immunization, although there was less obvious effect

on GC size. This may be explained by the fact that the response to SRBC immunization is less dependent on

T cell help, and that GC B cells are able to survive and expand for a limited time without T cell help (de

Vinuesa et al., 2000). A recent study testing the inhibition of pSYK degradation in GC B cells using mixed

bone marrow chimeras (Davidzohn et al., 2020) showed that increased SYK signaling led to an increase in

the GC LZ compartment. Further differentiation of these LZ B cells depended on Tfh cell help (Davidzohn

et al., 2020; de Vinuesa et al., 2000; Gitlin et al., 2015; Shulman et al., 2013). We show here that SHP-1 dele-

tion in the GC leads to higher levels of pSYK. Many of these GC B cells are able to recruit efficient Tfh cell

help, indicated by the increased expression of cMYC (Calado et al., 2012; Dominguez-Sola et al., 2012).

However, many GC B cells undergo apoptosis. BCR overstimulation and inadequate expression of
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cMYC can induce cell death (Akkaya et al., 2018b; Meyer and Penn, 2008; Watanabe et al., 1998), and this

may be responsible for the reduced viability of B cells at the early stages of the GC response.

GCs are not only sites of affinity maturation. B cell selection in the GC also guarantees peripheral tolerance

(Goodnow et al., 1989; Russell et al., 1991). The data shown here could reflect the deletion of autoreactive

GC B cells that encounter inadequate BCR signaling and are not able to recruit adequate Tfh cell help in

time. In the same way, higher affinity SHP-1-deficient GC B cells may be deleted because they are not re-

cruiting sufficient Tfh cell help. This would indicate that affinity-dependent BCR signaling not only is impor-

tant for affinity-dependent B cell selection but also that the balance of BCR signaling and Tfh cell-mediated

rescue may regulate tolerance during GC B cell responses.

Limitations of the study

Although CSR occurs during the initial T cell:B cell interaction before GC formation or extra-follicular plas-

mablasts differentiation, very early signals influencing B cell fate decisions might have been overlooked.

Furthermore, it must be considered that SHP-1 gene deletion may not necessarily translate into immediate

reduction of SHP-1 levels due to the half-life of existing kinases inside the cell, making some delays in our

observations. On the other hand, our interpretations are limited to Th2-type responses, further evaluation

of BCR signals to other type of responses would be needed for more general conclusions.
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Supp. Fig. 1

Supplementary Figure 1. SHP-1 expression on PCs and GC-associated PCs during the response to 
SRBCs, related to Figure 1. Cγ1Cre/wtPtpn6fl/wt (fl/wt) and Cγ1Cre/wtPtpn6fl/fl (fl/fl) mice were 
immunised with SRBCs. A. SHP-1 expression in PCs was determined 5 days post immunisation. 
Representative FACS plot (left) and summary data (right) of SHP-1 expression (MFI) in all PCs. B.
SHP-1 expression in IgG1+ PCs. Results are representative of two independent experiments. Grey 
histograms in A and B show the fluorescence minus one (FMO) control for SHP-1 staining. C.
Quantification of IRF4+ PCs from Cγ1Cre/wtPtpn6fl/wt (fl/wt) and Cγ1Cre/wtPtpn6fl/fl (fl/fl) mice 5 days 
post SRBC immunisation in the GC-T zone interface (Zhang et al., 2018). Spleens were stained with 
IRF4 (red), IgD (green) and CD4 (blue). T, T zone; GC, germinal centre. Bar, 100 µm. (% of GC area; 
results are representative of one of two independent experiments). Horizontal lines indicate the 
mean.

Enhanced BCR signalling inflicts early plasmablast and germinal centre B cell 

death
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Supplementary Figure 2. SHP-1 expression is decreased in GC B cells from Cγ1Cre/wtPtpn6fl/fl
mice, related to Figure 3 and Figure 4. A. Cγ1Cre/wtPtpn6fl/wt (fl/wt) and Cγ1Cre/wtPtpn6fl/fl (fl/fl) 
mice were immunised with SRBCs and SHP-1 expression was determined 5 days post 
immunisation. Representative FACS plot (left) and summary data (right) of SHP-1 expression (MFI 
of GC B cells; results are representative of one of two independent experiments). B-C. SHP-1 
expression was determined 8 days post NP-CGG immunisation. Representative FACS plot (left) and 
summary data (right) of SHP-1 expression (MFI) on PCs (B), IgG1+ PCs (C); results are 
representative of one of two independent experiments. D. Lymph node sections from Shp1fl/wt

(fl/wt) and Shp1fl/fl (fl/fl) mice staining for B cell follicles (IgD, green), T cell zone (CD4, blue) and 
the GC marker PNA (red), scale bar 500 μm. PNA+IgD- areas were calculated as percentage of total 
LN area. E. Representative FACS plot (left) and summary data (right) of SHP-1 expression (MFI) on 
GC B cells. Grey histograms in FACS plots show the fluorescence minus one (FMO) control for SHP-
1 staining. Each symbol represents one animal. *P < 0.05, **P < 0.01 (two-tailed t-test). 
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Supplementary Figure 3. B cell responses in the absence of CSK, related to Figure 4. A. 
Cγ1Cre/wtCskfl/wt (black circles) and Cγ1Cre/wtCskfl/fl (white circles) mice were immunised with NP-
CGG and the PC and the GC responses were analysed 8 and 14 days post immunisation. (% of live 
cells; results are combined from two independent experiments). B. Spleen sections from Cskfl/wt

(fl/wt) and Cskfl/fl (fl/fl) mice staining for B cell follicles (IgD, brown) and T cell zone (CD3, blue). 
GCs are identified as IgD-CD4- (black arrows), scale bar 200 μm. C. Serum antibody titres for NP-
specific IgM, IgG and IgG1 8 and 14 days post-immunisation and the relative affinity of IgG1 to NP 
(D), 14 days post-immunisation. (Results are from one to two independent experiments at each 
time-point).  Horizontal lines indicate the mean. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001 (A and D two-tailed t-test and C two-way ANOVA).
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Supplementary Figure 4. In situ splenic GC response after NP-CGG immunisation of 
Cγ1Cre/wtPtpn6fl/fl mice, related to Figure 4. Cγ1Cre/wtPtpn6fl/wt (fl/wt) and Cγ1Cre/wtPtpn6fl/fl (fl/fl) 
mice were immunised with NP-CGG and spleen sections were stained for B cell follicles (IgD, blue), 
T cell zone (CD4, green) and Bcl6+ germinal centres (red) 8, 14, and 21 days post-immunisation, 
scale bar 200 μm. Bcl6+IgD- areas were calculated as percentage of total spleen area. Each symbol 
corresponds to one animal. 



REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rat anti-CD4 (GK1.5), allophycocyanin eBiosciences Cat # 17-0041-82 

Rat anti-IgD (11-26c.2a), BrilliantViolet421 BioLegend Cat # 405725 

Goat anti-IgG1, Alexa Fluor 633 Invitrogen, UK Cat # A21126 

Goat anti-mouse IRF4 (M-17), purified Santa Cruz Biotech Cat # sc-6059 

Rabbit anti-mouse active Caspase 3 (C92-605), 

purified 

BD Biosciences Cat # 55956 

Sheep anti-IgD, polyclonal Abcam N/A 

Donkey anti-rabbit, Cy3 Jackson 

ImmunoResearch 

Laboratories 

Cat # 711-165-152 

Donkey anti-sheep, Alexa Fluor 488 Jackson 

ImmunoResearch 

Laboratories 

Cat # 713-545-147 

Donkey anti-goat, Alexa Fluor 555 Invitrogen, UK Cat # A21432 

Rat anti-CD16/32 (93), purified BD Biosciences Cat # 01241A 

Rat anti-B220 (RA3-6B2), BrilliantViolet510 BioLegend Cat # 103248 

Rat anti-CD138 (281-2), BrilliantViolet711 BioLegend Cat # 142519 

NP - Phycoerythrin In house N/A 

Rat anti-CD38 (90), Fluorescein isothiocyanate eBiosciences Cat # 11-0381-82 

Rat anti-Fas (Jo2), BrilliantViolet605 BD Biosciences Cat # 740367 

Rat anti-IgG1 (X56), Allophycocyanin BD Biosciences Cat # 550874 

Mouse anti-IgM (Igh-6b), Phycoerythrin BD Biosciences Cat # 553521 

Mouse anti-pSYK (I120-722), Phycoerythrin BD Phosflow Cat # 558529 

Monoclonal-rabbit anti-SHP-1 (C14H6), purified Cell Signalling 

Technology 

Cat # 3759S 

Swine anti-rabbit, biotin DAKO Cat # E043101-2 

Goat anti-IgM, AP Southern Biotech Cat # 1021-04 

Goat anti-IgG1, AP Southern Biotech Cat # 1070-04 

   

NP18-CGG In house N/A 

ACK lysing buffer Gibco Cat # A1049201 

Annexin V apoptosis detection kit BD Biosciences, 

USA 

Cat # 556547 

Foxp3/Transcription Factor Fixation/Permeabilization 
Foxp3 kit 

eBioscience Cat # 00-5523-00 

   

Bacterial and Virus Strains  

Inactivated Bordetella pertussis LEE laboratories, 

BC, USA 

N/A 

   

Biological Samples   

Sheep red blood cells (SRBCs) TCS Biosciences, 

UK 

Cat # SB069 

   

 

Supplementary Table S1. Materials and Resources, related to Figures 1-4
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Chemicals, Peptides, and Recombinant Proteins 

BSA Sigma-Aldrich Cat # A9418 

Streptavidin-Alexa Fluor 555 Life Technologies, 

UK 

Cat # S32355 

Streptavidin-Texas Red Phycoerythrin BD Biosciences Cat # 551487 

ProLong Gold antifade Invitrogen, UK Cat # P36930 

NP15-BSA In house N/A 

NP2-BSA In house N/A 

p-nitrophenyl phosphate in Tris buffer 

(SIGMAFAST) 

Sigma-Aldrich Cat # N2770 

   

Experimental Models: Organisms/Strains 

Mouse: Cγ1
Cre/+

 Casola S, et al, 2006. N/A 

Mouse: Ptpn6
fl/wt

 Pao LI, et al, 2007 N/A 

Mouse: ROSA
mT/mG

 The Jackson 

Laboratory 

JAX: 007576 

Mouse: Csk
fl/wt

 Jun M, et al, 2018. N/A 

   

Software and Algorithms 

FIJI Win64 (ImageJ d 1.47) Schindelin et al., 

2012 

N/A 

ZEN Carl Zeiss Germany N/A 

BD FACSDiva BD Biosciences N/A 

FlowJo v10 FlowJo LLC, USA N/A 

GraphPad Prism 7 GraphPad N/A 

   

 

Schmedt et al., 1998

Supplementary Table S1. Materials and Resources, related to Figures 1-4



Transparent Methods

Mice

Eight to twelve-week-old female and male mice were used for all procedures. Cγ1Cre/wt Ptpn6fl/wt

(Shp1fl/wt) and Cγ1Cre/wtPtpn6fl/fl (Shp1fl/fl) mice were generated by the mating of Cγ1Cre/wt (kindly 

donated by S Casola, IFOM, Milan, Italy) (Casola et al., 2006) and Ptpn6fl/wt animals (Pao et al., 

2007). Ptpn6fl/wt animals had been backcrossed extensively onto C57BL6. For some experiments, 

Cγ1Cre/wt Ptpn6fl/wt mice were crossed with ROSAmT/mG animals (007576; Jackson Laboratory), which 

express a membrane tagged version of dTomato inserted into the ROAS26 locus. Cre-expression 

replaces this by expression of membrane-tagged eGFP (Muzumdar et al., 2007). Animal 

experiments were licensed by the UK Home Office according to the Animals Scientific Procedures 

Act 1986 and approved by local ethics committee, University of Birmingham, UK.

METHOD DETAILS

Immunisation

2 x 108 sheep red blood cells (SRBCs) (TCS Biosciences, UK) in PBS were injected intravenously in 

the lateral tail vein. NP (4-hydroxy-3-nitrophenyl acetyl) was conjugated to CGG (Chicken γ-

globulin) at a ratio of NP18-CGG. Mice were immunised intraperitoneally (i.p.) with 50μg NP18-CGG 

precipitated in alum plus 105 chemically inactivated Bordetella pertussis (LEE laboratories, BC, 

USA) or subcutaneously on the plantar surface of the foot with 20μg NP18-CGG precipitated in 

alum plus 105 chemically inactivated Bordetella pertussis. 

Immunofluorescence

Spleens and popliteal lymph nodes obtained at different time-points post-immunisation were 

frozen and cryosectioned. Slides were rehydrated in PBS and blocked using 1% BSA (Sigma-Aldrich) 

in PBS for 30 min. Antibodies were diluted at the optimal dilution in PBS, 1% BSA and incubated in 

a humid dark chamber for 1 h. Allophycocyanin-CD4 (GK1.5), BrilliantViolet421-IgD (11-26c.2a), 

Alexa633-goat anti-IgG1, goat anti-mouse IRF4 (M-17), rabbit anti-mouse active Caspase 3 (C92-

605), and sheep anti-IgD (Abcam) were used.  Secondary antibodies were Cy3-conjugated donkey 

anti-rabbit and Alexa488-conjugated donkey anti-sheep, Alexa555-conjugated donkey anti-goat 

and streptavidin Alexa555-conjugated. Slides were mounted in ProLong Gold antifade reagent 

(Invitrogen, UK) and left to dry in a dark chamber for 24 h. Images were taken on an Axio Scan Z1 

microscope (Zeiss). Image data were processed using FIJI (Schindelin et al., 2012) or ZEN (Carl Zeiss 

Germany). 



Flow Cytometry

Cell suspensions were prepared from spleens and popliteal lymph nodes obtained at different 

time-points post-immunisation. For intracellular staining, red blood cells were lysed by ACK lysing 

buffer (Gibco). Cell suspensions were blocked by CD16/32 (93) diluted in FACS buffer (PBS 

supplemented with 0.5% BSA plus 2mM EDTA), and then followed with staining cocktail: 

BrilliantViolet510 B220 (RA3-6B2), BrilliantViolet711 CD138 (281-2), NP- Phycoerythrin for 

detecting antigen specific B cells (in house), Fluorescein isothiocyanate CD38 (90),  

BrilliantViolet605 Fas (Jo2), Allophycocyanin IgG1 (X56), Phycoerythrin IgM (Igh-6b), rabbit anti-

mouse active caspase 3 (C92-605), streptavidin-Texas Red Phycoerythrin, Phycoerythrin pSYK

(I120-722), monoclonal-rabbit anti-SHP-1 (C14H6). Swine anti-rabbit biotin to detect rabbit anti-

mouse active caspase 3. Annexin V apoptosis detection kit was used to stain apoptotic and dead 

cells. For intracellular/intranuclear staining, cell suspensions were treated after surface staining 

with the Foxp3/Transcription Factor Fixation/Permeabilization Foxp3 kit (eBioscience, Carlsbad, 

CA), according to manufacturer specification. Samples were acquired using a LSRFortessa Analyzer

(BD Biosciences, USA). Data were analysed with FlowJo v10 (FlowJo LLC, USA).

ELISA

Serial dilutions of serum samples were analysed by ELISA on NP15-BSA (5 μg/ml)–coupled 

microtiter plates to detect NP-specific IgG1, or NP2-BSA (5 μg/ml)–coupled microtiter plates to 

measure the high-affinity fraction of IgG1. Alkaline phosphatase (AP)-conjugated primary 

antibodies anti-IgG1 (Southern Biotech) were developed with p-nitrophenyl phosphate dissolved 

in Tris buffer (SIGMAFAST, Sigma-Aldrich). The absorbance was measured at 405 nm, plotted 

against dilution and relative antibody titres were read as the dilution where absorbance reached 

an arbitrary threshold. Relative affinity was calculated by dividing ELISA titres derived from NP2-

BSA–coupled plates by ELISA titres derived from NP15-BSA-coupled plates.

Statistical analysis

All analysis was performed using GraphPad Prism 7 software. To calculate significance two-tailed 

Student’s t-test or two-way ANOVA were used. Statistics throughout were performed by 

comparing pooled data obtained from all independent experiments. Statistical analysis of data 

plotted on a log scale were done from log transformed data. P values <0.05 were considered 

significant (*).  *p<0.05, ** p< 0.01, *** p<0.001, ****p<0.0001.
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