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Abstract

We have collected transit times for the TRAPPIST-1 system with the Spitzer Space Telescope over four years. We
add to these ground-based, HST, and K2 transit-time measurements, and revisit an N-body dynamical analysis of
the seven-planet system using our complete set of times from which we refine the mass ratios of the planets to the
star. We next carry out a photodynamical analysis of the Spitzer light curves to derive the density of the host star
and the planet densities. We find that all seven planets’ densities may be described with a single rocky mass–radius
relation which is depleted in iron relative to Earth, with Fe 21 wt% versus 32 wt% for Earth, and otherwise Earth-
like in composition. Alternatively, the planets may have an Earth-like composition but enhanced in light elements,
such as a surface water layer or a core-free structure with oxidized iron in the mantle. We measure planet masses to
a precision of 3%–5%, equivalent to a radial-velocity (RV) precision of 2.5 cm s−1, or two orders of magnitude
more precise than current RV capabilities. We find the eccentricities of the planets are very small, the orbits are
extremely coplanar, and the system is stable on 10Myr timescales. We find evidence of infrequent timing outliers,
which we cannot explain with an eighth planet; we instead account for the outliers using a robust likelihood
function. We forecast JWST timing observations and speculate on possible implications of the planet densities for
the formation, migration, and evolution of the planet system.

Unified Astronomy Thesaurus concepts: Extrasolar rocky planets (511); Exoplanet dynamics (490); Infrared
photometry (792); Habitable planets (695); Transit timing variation method (1710); Transit photometry (1709);
Exoplanet astronomy (486); Planetary interior (1248); Fundamental parameters of stars (555); Markov chain
Monte Carlo (1889); N-body simulations (1083); Few-body systems (531)

Supporting material: machine-readable tables

1. Introduction

The TRAPPIST-1 planetary system took the exoplanet
community by surprise thanks to the high multiplicity of small
transiting planets orbiting a very-low-mass star (∼0.09Me;

Gillon et al. 2016, 2017; Luger et al. 2017b; Van Grootel et al.
2018). This unexpected nature stems from the fact that this
system was found in a survey of only 50 nearby ultracool dwarf
stars (Jehin et al. 2011; Gillon et al. 2013), suggesting either a
high frequency of such systems around the latest of the M
dwarfs (He et al. 2016), or perhaps, this discovery was
fortuitous (Sagear et al. 2020; Sestovic & Demory 2020). The
proximity of the host star (∼12 pc) makes it brighter in the
infrared (K=10.3) than most ultracool dwarfs. Its small size
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(∼0.12Re) means that its planets’ masses and radii are large
relative to those of the star, which enables precise character-
ization of the planets’ properties. The system provides the first
opportunity for a detailed study of potentially rocky, Earth-
sized exoplanets with incident fluxes spanning the range of the
terrestrial planets in our solar system. As such, it has
galvanized the exoplanet community to study this system in
detail, both observationally and theoretically, and has fueled
hopes that atmospheric signatures (or even biosignatures)
might be detected with the James Webb Space Telescope
(JWST; Barstow & Irwin 2016; Morley et al. 2017; Batalha
et al. 2018; Krissansen-Totton et al. 2018; Fauchez et al. 2019;
Lustig-Yaeger et al. 2019; Wunderlich et al. 2019).

More conservatively, the system provides a potential
laboratory for comparative planetology of terrestrial planets
and may provide insight and constraints on the formation and
evolution of terrestrial planets around the lowest-mass stars. In
particular, transiting multiplanet systems afford an opportunity
to constrain the interior compositions of exoplanets. Sizes from
transit depths combined with masses from transit-timing
variations (TTVs) yield the densities of the planets (e.g., Agol
& Fabrycky 2018). In the case of rocky planets with a thin
atmosphere, the bulk density can constrain the core-mass
fraction (CMF) and/or Mg/Fe mass ratio (Valencia et al.
2007), although for any given planet, there is still a degeneracy
between a larger CMF and a volatile envelope (Dorn et al.
2018). In a multiplanet system, the bulk density as a function of
planet orbital distance may be used to partly break the
compositional degeneracy by assuming a common refractory
composition and a water composition that increases with orbital
distance (Unterborn et al. 2018; Lichtenberg et al. 2019).

The TRAPPIST-1 system was initially found with a ground-
based pilot survey using a 60 cm telescope, revealing two short-
period transiting planets and two additional orphan transits
(Gillon et al. 2016; Burdanov et al. 2018). Subsequent ground-
based study of the system revealed several additional orphan
transits, leading to an incomplete picture of the number of
planets and the architecture of the system. A 20 day observation
campaign with the Spitzer Space Telescope (Werner et al. 2004)
resolved the confusion, revealing the periods of six of the seven
transiting planets (Gillon et al. 2017), while only a single transit
observed of the outermost planet left its orbit in question. A
subsequent observation campaign of the system with the K2
mission included four additional transits of the outer planet,
identifying its period, and revealed a series of generalized three-
body Laplace relations (GLRs)20 between adjacent triplets of
planets (Luger et al. 2017b). Additional observations with
Spitzer continued to monitor the transit times of the seven
planets at a higher precision than afforded by ground-based
observations. An initial analysis of the Spitzer data to
determine planetary radii and masses was presented in Delrez
et al. (2018b) and Grimm et al. (2018). In total, Spitzer
observed TRAPPIST-1 for more than 1075 hr (nearly 45 days),
and the resulting time-series photometry includes 188 transits
(Ducrot et al. 2020). In this paper, we complement and extend
the analysis of Ducrot et al. (2020) to include a transit-timing
and photodynamic analysis of the system.

Although the planets in the TRAPPIST-1 system have short
orbital periods, ranging from 1.5 to 19 days, the dynamical

interactions accumulate gradually with time, which requires
longer-timescale monitoring to accurately constrain the orbital
model. The GLRs also cause adjacent pairs of planets to reside
near mean-motion resonances, for which » +-

+
-jP j k Pi i

1
1
1( )

for integers j and k for the ith and (i+1)th planets. This
proximity causes a resonant timescale fork= 1 given by

=
- +-

+
-P

jP j P

1

1
1

i i
TTV 1

1
1( )

( )

(Lithwick et al. 2012), which is the characteristic timescale of
the TTVs of the outer five planets. The period of the resonant
terms for each of these pairs of planets is PTTV≈491±5
days (ranging from 485 to 500 days for each pair). This
timescale has two consequences for measuring the masses of
the planets from TTVs: (1) the transit times for each planet
need to be sampled on this timescale, preferably covering two
cycles so that the amplitude and phase of the cycles may be
distinguished from the planets’ orbital periods; (2) this resonant
period also sets the timescale for the amplitude variability of
“chopping” (short-timescale TTVs), which can help to break a
degeneracy between mass and eccentricity for the resonant
terms (Lithwick et al. 2012; Deck & Agol 2015). As a
consequence, we expect the measurements of the masses of the
system to require sampling on a timescale of
tmin≈2PTTV≈2.7 yr. The current paper is the first with a
survey time, tsurvey=4.114yr, such that tsurvey>tmin for the
TRAPPIST-1 system.
Prior studies used the data available at the time (Delrez et al.

2018b), with tsurvey<tmin, causing ample degeneracy in the
dynamical model and hence larger uncertainties in the masses
of the planets (Gillon et al. 2017; Grimm et al. 2018). Even so,
these papers were ground-breaking as they enable the first
density determinations of temperate, Earth-sized planets
exterior to the solar system. Both papers indicated densities
for the planets that were lower than the value expected for an
Earth-like composition (with the exception of planet e),
indicating that these planets might have significant volatile
content. However, these conclusions were subject to significant
uncertainty in the planet masses, making the determination of
the compositions less definitive as the uncertainties were still
consistent with rocky bodies at the 1σ–2σ level. In addition, the
masses of all of the planets are highly correlated due to the fact
that the dynamical state of all of the planets needs to be solved
together and their masses and radii are measured relative to the
star, so model comparisons with individual planets are not
independent.
In this paper, we revisit a transit-timing and photometric

analysis with the completed Spitzer program using the more
extensive transit data set we now have in hand. The goal of this
program is to provide a more precise understanding of the
masses, radii, and densities of the planets. These measurements
may be used for planetary science with the extrasolar planets in
the TRAPPIST-1 system, whose similarity to the sizes, masses,
and effective insolation range of the terrestrial planets in our
solar system is the closest match known. In addition, we refine
the dynamical state of the system, revisiting some of the
questions explored in Grimm et al. (2018). Our final goal is to
prepare for upcoming observations with the JWST (Gardner
et al. 2006). More precise constraints on the parameters of the
planets will not only improve the precision with which we can
schedule observations, but also provide the best possible

20 This refers to the condition - + + »- - -pP p q P qP 01
1

2
1

3
1( ) , which is a

generalization of the Laplace resonance with p=1 and q=2
(Papaloizou 2014).
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predictions of the potential environmental characteristics that
could be discriminated observationally. This work will there-
fore help to optimize both the acquisition and interpretation of
observations of the TRAPPIST-1 system with JWST.

In Section 2, we summarize the observational data which are
analyzed in this paper. In Section 3, we discuss the nature of
transit-timing outliers and the robust likelihood function we use
for characterizing the system. This is followed by a description
of our N-body transit-timing analysis in Section 4. With the
improved N-body model, we revisit the photometric fit to the
Spitzer data using a photodynamical model in Section 5. The
results of these two analyses are combined to obtain the planet
bulk properties in Section 6. In Section 7, we derive revised
parameters for the host star. In Section 8, we search for an
eighth planet with transit timing. In Section 9, we interpret the
mass–radius measurements for the planets in terms of the
interior and atmospheric structure models. The discussion and
conclusions are given in Sections 10 and 11.

We provide Julia, Python, and Matlab code for
running the Markov chains, creating the figures, and creating
the paper PDF inhttps://github.com/ericagol/TRAPPIST1_
Spitzer. The 3.5 GB data/ directory in the repository may be
found atdoi:10.5281/zenodo.4060252. In each figure, we
embed links to the code (</>) that produced that figure.

2. New TRAPPIST-1 Observations

Since the work described in Grimm et al. (2018) based on
284 transits, we have added an additional 163 transit times
from a combination of Spitzer (Section 2.1) and ground-based
observations (Section 2.2) for a total of 447 transits. With
preliminary transit-timing fits, we found evidence for outliers
among the measured times (Section 3), which we account for
with a robust likelihood model. Each transit time is measured
as a Barycentric Julian Date (BJDTDB), correcting for the
location of Earth/spacecraft relative to the solar system
barycenter (Eastman et al. 2010) at the time of each transit
observation. We next describe our data.

2.1. Spitzer Observations

The data set used in this work includes the entire photometry
database of TRAPPIST-1 observations with Spitzer Space
Telescopeʼs Infrared Array Camera (IRAC; Carey et al. 2004)
since the discovery of its planetary system. This represents all
time-series observations gathered within the DDT programs
12126 (PI: M. Gillon), 13175 (PI: L. Delrez) and 14223 (PI: E.
Agol). These cover a total of 188 transits observed from 2016
February to 2019 October and include 64, 47, 23, 18, 16, 13,
and 7 transits of planets b, c, d, e, f, g, and h, respectively
(Ducrot et al. 2020). All of these data can be accessed through
the online Spitzer Heritage Archive database.21 Spitzer IRAC
Channels 1 (3.6 μm, 0.75 μm wide) and 2 (4.5 μm, 1.015 μm
wide) were used during the Spitzer Warm Mission (Fazio et al.
2004; Storrie-Lombardi & Dodd 2010) with 61 and 127 transits
observed in each band, respectively. Observations were
obtained with IRAC in subarray mode (32× 32 pixel window-
ing of the detector) with an exposure time of 1.92 s and a
cadence of 2.02 s. In order to minimize the pixel-phase effect
(Knutson et al. 2008), the peak-up mode was used (Ingalls et al.
2016) to fine-tune the positioning of the target on the detector

following the IRAC Instrument Handbook.22 Finally, calibra-
tion was performed using Spitzer pipeline S19.2.0 to output
data as cubes of 64 subarray images of 32× 32 pixels (the pixel
scale being 1 2). Each set of exposures was summed over a
2.15 minute cadence to allow for a tractable data volume for
carrying out the photometric analysis, which is described in
detail in Delrez et al. (2018b) and Ducrot et al. (2020).

2.2. Ground-based Observations

In addition to the new Spitzer times, 125 transits were
observed by the SPECULOOS-South Observatory at Cerro
Paranal, Chile (SSO; Burdanov et al. 2018; Delrez et al. 2018a;
Gillon 2018; Jehin et al. 2018), TRAPPIST-South at La Silla
Chile, (TS; Jehin et al. 2011; Gillon et al. 2011), and
TRAPPIST-North at Oukaïmeden, Morocco, (TN; Barkaoui
et al. 2019). These observations were carried out in an I+z
filter with exposure times 23 s, 50 s, and 50 s, respectively; the
characteristics of this filter are described in Murray et al.
(2020). Observations were also performed with the Liverpool
Telescope (LT; Steele et al. 2004) and the William-Herschel
Telescope (WHT), both installed at the Roque de los
Muchachos Observatory, La Palma. Only one transit of planet
b and one of d were targeted with the WHT, whereas 15 transits
of several planets were targeted with LT. For LT observations,
the IO:O optical wide-field camera was used in the Sloan z′
band with a 20 s exposure time. One transit of b was observed
with the Himalayan Chandra Telescope (HCT). Finally, a total
of 26 transits were observed in the near-IR (1.2–2.1 μm) with
the WFCAM near-IR imager of the the United Kingdom Infra-
Red Telescope (UKIRT; Casali et al. 2007), the IRIS2IR-
imager installed on the Anglo-Australian Telescope (AAT;
Tinney et al. 2004), and the HAWK-I cryogenic wide-field
imager installed on Unit Telescope 4 (Yepun) of the ESO Very
Large Telescope (VLT; Siebenmorgen et al. 2011). These
observations are summarized in Table 1: 504 transit observa-
tions were collected with 57 duplicate (or triplicate) transits,
which were observed by a second (or third) observatory
simultaneously, for a total of 447 unique planetary transit times
which are used in our analysis. Additional information may be
found in Gillon et al. (2016) for WHT and TRAPPIST, in
Ducrot et al. (2018) for SSO and LT, and in Gillon et al. (2017)
and Burdanov et al. (2019) for AAT, UKIRT, and VLT.
For all ground-based observations, a standard calibration

(bias, dark, and flat-field correction) was applied to each image,
and fluxes were measured for the stars in the field with the
DAOPHOT aperture photometry software (Stetson 1987).
Differential photometry was then performed using an algorithm
developed by Murray et al. (2020) to automatically choose and
combine multiple comparison stars, optimized to use as many
stars as possible, weighted appropriately (accounting for
variability, color and distance to target star), to reduce the
noise levels in the final differential light curves. This reduction
and photometry was followed by an Markov Chain Monte
Carlo (MCMC) analysis to retrieve transit parameters.

2.3. K2 and HST Observations

The K2 mission (Howell et al. 2014) observed the
TRAPPIST-1 system over campaigns 12 and 19 (Luger et al.
2017b), in both long- and short-cadence imaging modes. We

21 http://sha.ipac.caltech.edu

22 https://irsa.ipac.caltech.edu/data/SPITZER/docs/irac/
iracinstrumenthandbook/
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only use the short-cadence data from campaign 12 for this
analysis, with ∼1 minute sampling. We use our own
photometric pipeline to track the star and produce a light
curve from the Target Pixel Files (TPF). To model and correct
TRAPPIST-1ʼs stellar variability and K2ʼs pointing-drift-
correlated systematic noise, we use a Gaussian process with a
quasi-periodic kernel, following the procedure described in
Grimm et al. (2018). The campaign 12 data contain 48, 30, 17,
11, 7, 5, and 4 transits of planets b, c, d, e, f ,g, and h,
respectively.

Transit times for Hubble Space Telescope observations were
utilized, as described in Grimm et al. (2018), de Wit et al.
(2016, 2018), and Wakeford et al. (2019).

2.4. Transit-time Measurements and Analysis

Gathering together the heterogeneous sample of transits
obtained from a variety of ground- and space-based telescopes,
we transformed the time stamps to theBJDTDB time standard
prior to photometric analysis. We analyzed the data sets
together with a global photometric analysis of all single-planet
transits, as described in Ducrot et al. (2020), with a separate
analysis of the overlapping transits once the single-transit
analysis was completed.

For each planet, a fixed time of transit for epoch zero (T0)
and fixed period (P) were used, but with timing offset (“TTV”)
as a fitted parameter for each transit as described by Ducrot
et al. (2020). To derive T0 and P, a linear regression of the
timings as a function of their epochs was performed for each
planet to derive an updated mean transit ephemeris; their exact
values can be found in Table 4 of Ducrot et al. (2020). The
timing offsets are then added back to the ephemeris to obtain
the measured transit times and uncertainties.

The final observed data set for the transit-timing analysis is
given byy=({tobs,ij, σij; j=1, K, Ni}; i=1, K,7), where i
labels each of the seven planets, Ni is the number of transits for
the ith planet (Table 1), and j labels each transit for the ith
planet, so that tobs,ij is the jth observation of the ith planet, and
σij is the corresponding measurement error. The total number of
transits is = å =N Ni

N
itrans 1

p =447, where Np is the number of
transiting planets.

Table 14 lists the complete set of transit times and
uncertainties, which were utilized in the present analysis.

With this sample of transit times collected, we proceed to
describe our dynamical analysis, starting with the likelihood
function and evidence for outliers.

3. Excess of Outliers and Robust Likelihood Model

We first carried out a preliminary seven-planet, plane-
parallel N-body model fit to the transit times using a χ2 log
likelihood function, i.e., assuming a Gaussian uncertainty for
each transit time given by the derived timing uncertainty,
which we optimized using the Levenberg–Marquardt algo-
rithm. We found that the residuals of the fit contain many more
outliers than is probable assuming a Gaussian distribution for
the timing uncertainties.
Figure 1 shows the cumulative distribution function (CDF)

and a histogram of the normalized residuals versus a single
Gaussian probability distribution function (PDF) with unit
variance (orange line). This CDF disagrees with the Gaussian
CDF in the wings for P(>z)  0.1 and P(>z)  0.9, where
z=(tobs,ij−tij(xdyn))/σij are the normalized residuals, with the
model time, tij(xdyn), as a function of the dynamical model
parameters,xdyn, described below. This indicates that there is a
significant excess of outliers with large values of |z| relative to
a Gaussian distribution. The histogram in Figure 1 also
demonstrates this clearly: there are eight data points with
z<−3 and 7 with z>3. With 447 transit-time measurements,
we would only expect ≈1.2 data points with |z|>3 if the
distribution were Gaussian with accurately estimated uncer-
tainties. This excess is even more apparent at |z|>4.
We have examined the individual transits that show these

discrepancies, and there is nothing unusual about their light
curves, such as flares, overlapping transits, or other anomalies.
The outliers appear for each of the planets (save h), in both
ground- and space-based data, and for measurements with
different sizes of uncertainties. We do not think that our N-
body model is in error (and we have tried to fit with an extra
planet, without a significant improvement in the number of
outliers; see Section 8). Consequently, we believe that these
outliers are due to variations in the measured times of transits
which are not associated with the dynamics of the system.
We suspect instead that these outliers are a result of some

systematic error(s) present in the data. There are a variety of
possibilities: uncorrected instrumental/observational systema-
tics, time-correlated noise due to stellar variability, stellar flares
(which may be too weak to be visible by eye, but might still
affect the times of transit), or stellar spots (Oshagh et al. 2013;
Ioannidis et al. 2015). Again, our examination of the light curves
did not point to a single culprit, so we are unable to model and/
or correct for any of these effects. Our data are not unique in this
respect: similar outliers have been seen in other transit-timing
analyses, as described in Jontof-Hutter et al. (2016).

Table 1
Number of Transits from Ground-based and Space-based Observations

Planet HCT SSO/TS/TN LT WHT VLT/AAT/UKIRT HST Spitzer K2 Duplicates Total (Ni)

b 1 45 7 1 10 1 64 48 17 160
c 0 28 8 0 7 1 47 30 14 107
d 0 11 1 1 5 2 23 17 7 53
e 0 18 4 0 3 2 18 11 7 49
f 0 9 2 0 4 2 16 7 6 34
g 0 11 0 0 3 2 13 5 4 30
h 0 3 2 0 0 0 7 4 2 14

Total 1 125 24 2 32 10 188 122 57 447

Note. Duplicates indicate the excess planet transits observed simultaneously with two or three distinct observatories (as indicated in Table 14). Details on the
corresponding observations can be found in Gillon et al. (2016, 2017), Grimm et al. (2018), de Wit et al. (2016, 2018), Delrez et al. (2018b), Ducrot et al.
(2018, 2020), and Burdanov et al. (2019).
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Our transit-timing model will be affected by these timing
outliers, which make an excessive contribution to the χ2 of the
model, and thus can affect the inference of the model
parameters. This can cause both the parameters and the
uncertainties to be misestimated. To make progress, we have
modified the likelihood model to account for outliers.

We use a heavy-tailed likelihood function, which better
describes the residual distribution: a Student’s t-distribution
(Jontof-Hutter et al. 2016). We fit the normalized residuals to a
model in which the width of the distribution was allowed to
vary, which we parameterize with an additional factor multi-
plying the variance, which we refer to below as V1. For the
Student’s t-distribution, there is only one additional free
parameter: the number of degrees of freedom, ν, which we
treat as a continuous parameter.

Figure 1 shows a histogram of the outliers of the best-fit
transit-timing model (described below) and shows that the
Student’s t-distribution gives a much higher probability for
outliers.

With the description of the data set complete, we next
describe our efforts to model the data.

4. Transit-timing Analysis

In this section, we describe our transit-timing analysis in
detail, starting first with a description of our dynamical model.

4.1. N-body Integration

We integrate the N-body dynamics in Cartesian coordinates
with a novel symplectic integrator, NbodyGradient, which is
based on the algorithm originally described in Hernandez &
Bertschinger (2015), derived from the nonsymplectic operator

of Gonçalves Ferrari et al. (2014).23 The time-evolution
operator of the integrator is a succession of Kepler two-body
problems and simple “kick” and “drift” operators. The
advantage over traditional symplectic methods (Wisdom &
Holman 1991) is that the dominant error is due to three-body
interactions, while in the standard methods, the dominant error
is due to two-body interactions, meaning close encounters
between nonstellar bodies are treated poorly (Hernandez &
Dehnen 2017). The Kepler problem for each pair is solved with
an efficient universal Kepler solver (Wisdom & Hernan-
dez 2015). The symplectic integrator is made to be time-
symmetric to yield second-order accuracy (Hernandez &
Bertschinger 2015). Then, a simple operator is introduced to
double the order of the method (Dehnen & Hernandez 2017).
We have found that numerical cancellations occur between
Kepler steps and negative drift operators, and so we have
introduced an analytic cancellation of these terms to yield an
algorithm that is numerically stable, which converges for small
time steps (E. Agol & D. M. Hernandez 2021, in preparation).
The initial conditions are specified with Jacobi coordinates

(Hamers & Zwart 2016), and we use a set of orbital elements
for each planet given byxdyn=({mi, Pi, t0,i, ei cos ωi,
ei sin ωi}; i=1, K, Np), where Np is the number of planets
for a total of 5Np dynamical parameters. In addition, we take
the star to have a mass, m0=M*/Me, which we fix to 1. The
units of time for the code are days, while the length scale of the
code is taken to be m0

1 3 au.24 The initial orbital ephemeris, (Pi,
t0,i), consists of the period and initial time of transit which each

Figure 1. Probability distribution of normalized residuals. Left: cumulative distribution function of the normalized residuals, z. The blue and brown lines are a
sequence of normalized residuals. The orange line is the CDF of a Gaussian distribution. The dotted green line is the CDF of a Student’s t-distribution. Right:
histogram of the normalized residuals. The blue and brown data points are a histogram of the normalized residuals with Poisson uncertainties. The other lines have the
same meaning as the left panel for the probability distribution function (PDF), scaled to match the histogram. In both panels, the >3σ outliers are indicated in brown.

23 The code may be found athttps://github.com/ericagol/NbodyGradient.
24 Note that as we take m0=1 in our simulations, we need to multiply the
output of positions and velocities from the code by (M*/Me)

1/3 to scale to a
stellar mass M*.
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planet would have if it orbited a single body with a mass of the
sum of the star and the interior planets, unperturbed by the
exterior planets. We use these variables (in lieu of the initial
semimajor axis and mean longitude) as they are well
constrained by the observed times of transits. We convert
these analytically to the time of periastron passage, once the
Kepler equation is solved, to yield the initial eccentric anomaly
for each initial Keplerian. Finally, the eccentricity, ei, and
longitude of periastron, ωi, for each Keplerian, we parameterize
in terms of we cosi i and we sini i to avoid the wrapping of the
angle ωi. We transform from Jacobi coordinates to Cartesian
coordinates to complete the initial conditions.

For our transit-timing analysis, we assume that the planets
are plane parallel and edge on in their orbits, allowing us to
ignore the inclination and longitude of nodes for each planet.

A symplectic integration time step, h, is selected to be small,
<5%, compared with the orbital period of the innermost planet
(Wisdom & Holman 1991). For most of our integrations, we
use a time step of h=0.06 days, or about 4% of the orbital
period of planet b.

The model transit times are found by tracking the positions
of each planet relative to the star across a time step. Then, when
the dot product of the relative velocity of the planet and star
with their relative position goes from negative to positive, and
the planet is between the star and observer, we flag a routine
that iterates with Newton’s method to find the model transit
time, which is taken to be when this dot product equals zero
(Fabrycky 2010), corresponding to the midpoint of the transit if
acceleration is negligible over the duration of the transit. The
resulting model we obtain is for the jth transit of the ith planet,
giving each model transit time as a function of the initial
conditions, tij(xdyn), which can then be compared to the
observed times, tobs,ij.

Once the model transit times have been found for every
planet over the duration of the time integration, these are then
matched with the observed transit times to compute the
likelihood using Student’s t-probability distribution. The log
likelihood function for each data point is given by
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where Γ(x) is the Gamma function (Fisher 1925).
The total log likelihood function which we optimize is given
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where Np is the number of planets; we use Np=7 for most of
our analysis.

Note that we assume that the timing errors are uncorrelated.
Most transits are well separated in time, and thus this is an
accurate assumption as the noise should be uncorrelated on
these timescales. There are a small number of transits (about
6%) that overlap in time and thus may have correlated
uncertainties; we do not account for this in the likelihood
function.

4.2. Uncertainty Analysis

We carried out the uncertainty analysis on the model
parameters with three different approaches:

1. Laplace approximation
2. Likelihood profile
3. MCMC

First, in our Laplace approximation analysis, we assume a
uniform prior on the model parameters and expand the
likelihood as a multidimensional normal distribution. We
maximize the likelihood model using the Levenberg–Mar-
quardt algorithm, which requires the gradient and Hessian of
the negative log likelihood. Once the maximum likelihood is
found, we compute an approximate Hessian at the maximum
likelihood (see Appendix A). The inverse of the Hessian matrix
yields an estimate of the covariance among the parameters at
the maximum likelihood, whose diagonal components provide
an initial estimate for the parameter uncertainties; we will also
use the Hessian for more efficient sampling of the Markov
chain.
The second approach we use is to compute the likelihood

profile for each model parameter. In this case, each parameter is
varied over a grid of values over a range given by s3 xi, where
sxi equals the square root of the diagonal component for the ith
model parameter from the covariance matrix. At each value
along the grid for each parameter, we optimize the likelihood
with a constraint that keeps the parameter pinned at the grid
point. This results in a profile of the maximum likelihood of
each parameter, optimized with respect to all other parameters,
which yields a second estimate for the uncertainties on the
parameters. The likelihood-profile approach does not assume a
normal distribution and is useful for checking for a multimodal
probability distribution which can trip up Markov chain
analysis.
However, both of these error estimates are incomplete as

they do not account for nonlinear correlations between
parameters, for the non-Gaussian shape of the posterior
probability, nor for the prior probability distribution.25 Never-
theless, the agreement between the two estimates gives a
starting point for evaluating our Markov chain analysis and for
gauging the convergence of the chains, which we describe
below.
In our initial Markov chain sampling, we found that the

parameters of Student’s t-distribution, ν and V1, were strongly
nonlinearly correlated and displayed a likelihood profile which
was non-Gaussian. After experimenting with reparameteriza-
tion, we found that nlog and V1e

1/(2 ν) gave a parameterization
that showed a nearly Gaussian likelihood profile in each
parameter and also showed more linear correlations between
these two parameters. Accordingly, we chose to sample in these
transformed parameters so that our set of model parameters
is n= nx x V e, log ,dyn 1

1 2( ).
In Appendix B, we define the prior function Π(x), which

multiplies the likelihood to give the posterior probability
distribution,

µ P ´ x x xP , 4( ) ( ) ( ) ( )

25 In principle, we could include a prior in the Laplace and likelihood-profile
analyses.
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so that we can proceed to discussing the Markov chain
sampling of the posterior probability of the model parameters
given the data.

4.3. Markov Chain Sampler

We sample our posterior probability, P(x), with a Markov
chain sampler. There are 37 free parameters—4 orbital
elements and 1 mass ratio for each planet, and 2 parameters
for the Student’s t-distribution. Given the high dimensionality
of our model, we chose to use a Markov chain sampler that
efficiently samples in high dimensions: Hamiltonian Monte
Carlo (HMC; Duane et al. 1987; Neal 2011; Monnahan et al.
2016; Betancourt 2017).26 This sampler requires the gradient of
the likelihood function with respect to the model parameters.
The gradient of the likelihood requires the gradient of each
model transit time with respect to the initial conditions of the
N-body integrator.

We have written a module for our N-body integrator that
computes the gradient of each model transit time by
propagating a Jacobian for the positions and velocities of all
bodies across every time step throughout the N-body integra-
tion (E. Agol & D. M. Hernandez 2021, in preparation). This is
multiplied by the Jacobian of the coordinates at the initial time
step computed with respect to the initial Keplerian elements
and masses, which specify the initial conditions and comprise
the N-body model parameters.

When a transit time is found during the N-body integration
with NbodyGradient, we compute the derivative of each transit
time with respect to the coordinates at the preceding time step,
which we multiply with the Jacobian at that step to obtain the
gradient of each transit time with respect to the initial
conditions. The gradient of the prior with respect to the model
parameters and the gradient of the likelihood with respect to the
model times and the Student’s t-distribution parameters are
each computed with automatic differentiation, using forward-
mode derivatives (Revels et al. 2016). The gradient of the
likelihood with respect to the dynamical model parameters is
found by applying the chain rule to the automatic derivatives
of the likelihood with respect to the model times with
the derivatives computed in the N-body model (from
NbodyGradient).

For our HMC analysis, we augment the simulation
parameters with a set of conjugate momenta,p, with the same
dimension. We sample from the probability distribution,
e−H( x, p), where H is a Hamiltonian given by the negative log
posterior,

= - - P- p x p M p x xH , log log , 5T1

2
1( ) ( ) ( ) ( )

wherep is defined from Hamilton’s equations,

= -
¶
¶

p
x
H

. 6( )

We take the mass matrix,M, to be the approximate Hessian
matrix evaluated at the maximum likelihood, = M x0( )

(Equation (A5)). Similarly, the Hamiltonian can be used to
compute the evolution of the parameter “coordinates,”

= +
¶
¶

x
p
H

. 7( )

The dot represents the derivative with respect to an artificial
“time” coordinate, which can be used to find a trajectory
through the (x,p) phase space that conserves the “energy”
defined by this Hamiltonian.
We carry out a Markov chain using the standard approach

for HMC. First, we draw the initial momentum from the
multivariate Gaussian distribution defined by the kinetic energy
term in the Hamiltonian,

=p M Z, 81 2 ( )

where Zn∼N(0,1) is an element of a vector of random normal
deviates for n=1, K, Nparam. We then carry out a leapfrog
integration of Hamilton’s equations for Nleap steps from the
starting point with a “time” step ò to obtain a proposal set of
parameters (xprop,pprop). Because energy is not conserved
precisely due to the finite differencing of the leapfrog
integration, we then apply a Metropolis rejection step to accept
the proposal step with probability

= - -x p x pp H Hmin exp , , , 1 9accept prop prop( ( ( ( ) ( ))) ) ( )

to determine whether to accept the proposed step and add it to
the Markov chain, or to reject it and copy the prior step to the
chain.
We carried out some trial integrations to tune two free

parameters: ò0 and Nleap,0. We draw the “time” step, ò, for each
integration from the absolute value of a normal distribution
with width ò0, i.e., ò∼|N(0,ò0)|. We draw the number of
leapfrog steps for each integration from a uniform probability,

~ N Nround 0.8, 1.0leap leap,0( ( )). We found that a choice of
ò0=0.1 and Nleap,0=20 results in a proposal for which the
Metropolis rejection gives a high average acceptance rate
of 70%.
We ran 112 HMC chains for 2000 steps each (i.e., 2000

leapfrog integrations). Each leapfrog integration averaged
about 7 minutes and so the chains took 9 days and 4 hours
to complete.27 We found a minimum mean effective sample
size of 57 over all chains for a total number of independent
samples of 6409.

4.4. Results

The TTVs are shown in Figure 2, along with our best-fit
model. The model is a very good description of the data,
although a few outliers are clearly visible by eye. As
advertised, the outer five planets show large-amplitude
oscillations with the timescale PTTV. We have created a second
figure in which a polynomial with an order between 5 and 30 is
fit and removed from the data, and the resulting differences are
shown in Figure 3. The result shows high-frequency variations
that are associated with the synodic periods of pairs of adjacent
planets, typically referred to as “chopping.” The chopping
TTVs encode the mass ratios of the companion planets to the
star without the influence of the eccentricities and thus provide

26 a.k.a. “Hybrid Monte Carlo.” Note that the “Hamiltonian” referred to in
HMC is not a physical Hamiltonian but an artificial one used for treating the
negative log probability as a potential energy function and adding a kinetic
energy term, with an artificial momentum conjugate to each model parameter
(“coordinate”). For a description of HMC and a discussion of applications to
cosmology, including N body, see Leclercq et al. (2014) and Jasche & Kitaura
(2010) and references therein.

27 These were run on 4 Broadwell Xeon Processors with 28 cores and 128 GB
of memory, where each processor is a node in the Hyak Mox cluster at the
University of Washington.
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a constraint on the planet–star mass ratios which are less
influenced by degeneracies with the orbital elements (Deck &
Agol 2015). The chopping variations are clearly detected for

each planet (except planet d), which contributes to the higher
precision of the measurements of the planet masses in this
paper.

Figure 2. Transit-time variation measurements (orange/red error bars) and best-fit transit-time model (blue/green lines) for a subset of our Spitzer/K2/ground-based
data set. The TTVs are the transit times for each planet with a best-fit linear ephemeris removed. Brown error bars indicate >3σ outliers.
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The results of the posterior distribution of our transit-timing
analysis are summarized in Table 2with the mean and ±34.1%
confidence intervals (1σ) computed from the standard deviation
of the Markov chains. The correlations between parameters are
depicted in Figure 29. There are 35 parameters that describe the
planets, in addition to two parameters for the Student’s
t-distribution, n = log 1.3609 0.233 7 and V1e

1/(2 ν)=
0.9688±0.1166 (Figure 4). The posterior mass ratios and
ephemerides are consistent with nearly Gaussian distributions.
The eccentricity vectors show deviations from a Gaussian
distribution for the inner two planets b and c, as shown in
Figure 5. The Laplace approximation covariance uncertainty

estimates that are overplotted as Gaussian distributions very
closely match the likelihood profile for each parameter. This
agreement is reassuring: it indicates that the likelihood
distribution is closely approximated by a multidimensional
normal distribution near the maximum likelihood. In the
eccentricity vector coordinates, the prior probability distribu-
tion is peaked at zero to ensure that the volume of phase space
at larger eccentricities does not dominate the probability
distribution, as shown in the lower-right panel of Figure 5.
For the planets that have a likelihood distribution that overlaps
strongly with zero, the prior distribution causes the Markov
chain posterior to have a significantly different distribution

Figure 3. Observed transit times with a polynomial subtracted (orange error bars) compared with the short-timescale chopping variations of the best-fit model (blue
model; same polynomial removed). Green dots show the analytic chopping relation from Deck & Agol (2015) due to adjacent planets, also with a low-order
polynomial removed. For the inner four planets, we have only plotted data with uncertainties smaller than the chopping semiamplitude (many observations have large
uncertainties that would obscure the plot).

9

The Planetary Science Journal, 2:1 (38pp), 2021 February Agol et al.



from the likelihood profile. This is not due to the prior favoring
small eccentricities; rather, it is simply a correction for the bias
that results from using we cosi i and we sini i as Markov chain
parameters that favor higher eccentricities (Ford 2006).

The marginalized posterior distributions of the ratio of the
planet masses to the star masses, scaled to a stellar mass of 0.09
Me, are given in Table 2 and shown in Figure 6. The likelihood
profile of the planet-to-star mass ratios is also plotted in
Figure 6 and appears to be well behaved. These likelihood
profiles are also approximately Gaussian in shape and track the
inverse Hessian evaluated at the maximum likelihood to
estimate the covariance (also plotted). Compared with the
mass estimates from Grimm et al. (2018), the masses of each
planet have increased with the exception of planet e, which has
decreased, and planet h, which remains the same (Table 3). The
mass ratios of the posterior distribution from the Markov chain
are slightly shifted to smaller values than the likelihood profile
and Laplace approximation probabilities for all planets save b
and g.

The Student’s t-distribution parameters show a posterior
distribution that is shifted from the likelihood profile/Laplace
probability distribution (Figure 4). This bias is due to the fact
that the likelihood distribution of these parameters shifts
upwards whenever the transit-timing model parameters deviate

from their maximum-likelihood values. The peak of the
posterior distribution of these parameters corresponds to
ν=3.9 and =V 0.871

1 2 , which indicates that the core of the
distribution is narrower than the transit-timing uncertainties
indicate, while the wings of the distribution are close to ν=4,
which was the value used by Jontof-Hutter et al. (2016).

4.5. Independent N-body TTV Analysis

In addition to the N-body code described above, we use the
GPU hybrid symplectic N-body code GENGA (Grimm &
Stadel 2014) with a Differential Evolution MCMC Method
(DEMCMC; ter Braak 2006) as described in Grimm et al.
(2018) to perform an independent TTV analysis. The
parameters for the MCMC analysis arex=({mi, Pi, t0,i, ei,
ωi}; i=1, K, Np). The mass of the star is taken to be
Må=0.09Me, and the time step of the N-body integration is
set to h=0.05 days. The likelihood is assumed to be a normal
distribution with the timing errors derived from the timing
analyses. For comparison, we have rerun the likelihood-profile
computation described above using a normal distribution in
place of a Student’s t-distribution. The derived masses from the
two different analyses agree well with a maximal deviation of
the median masses of better than 0.4%, while the mass-ratio
uncertainties agree to better than 13%. The eccentricities and
longitudes of periastron at the initial time agree as well. We
interpret this as a validation of the numerical techniques being
employed in this paper.
With the transit-timing analysis completed, we now use the

N-body model to improve the estimate of the stellar density and
the planet-to-star radius ratios. To do so we create a
photodynamic model, described next.

5. Photodynamical Analysis

With the mass ratios and orbital parameters derived from the
transit-timing analysis, we wish to improve our derivation of
the planet and stellar parameters from Spitzer photometry. The
transit depth, transit duration, and ingress/egress duration
combined with the orbital period constrain the impact
parameters and density of the star (Seager & Mallen-
Ornelas 2003). Combining these constraints for each of the
planets enables a more precise constraint on the density of the
star (Kipping et al. 2012). The transit durations are affected by
the (small) eccentricities but to a lesser extent. We account for
the dynamical constraints on the transit-timing model to

Table 2
Parameters of the TRAPPIST-1 System from Transit-timing Analysis and Their 1σUncertainties

m ÅM

M0.09

⎡⎣ ⎤⎦ Mp

s

m
m

P t0 we cos we sin
=

Å

M

M

M

M

0.09p

*
( ) [10−5M*] % (day) (BJDTDB-2,450,000)

b 1.377 1±0.0593 4.596±0.198 4.3 1.510 826±0.000006 7 257.550 44±0.00015 −0.00215±0.00332 0.002 17±0.00244
c 1.310 5±0.0453 4.374±0.151 3.5 2.421 937±0.000018 7 258.587 28±0.00027 0.000 55±0.00232 0.000 01±0.00171
d 0.388 5±0.0074 1.297±0.025 1.9 4.049 219±0.000026 7 257.067 68±0.00067 −0.00496±0.00186 0.002 67±0.00112
e 0.693 2±0.0128 2.313±0.043 1.8 6.101 013±0.000035 7 257.827 71±0.00041 0.004 33±0.00149 −0.00461±0.00087
f 1.041 1±0.0155 3.475±0.052 1.5 9.207 540±0.000032 7 257.074 26±0.00085 −0.00840±0.00130 −0.00051±0.00087
g 1.323 8±0.0171 4.418±0.057 1.3 12.352 446±0.000054 7 257.714 62±0.00103 0.003 80±0.00112 0.001 28±0.00070
h 0.326 1±0.0186 1.088±0.062 5.7 18.772 866±0.000214 7 249.606 76±0.00272 −0.00365±0.00077 −0.00002±0.00044

Note. Note that the mass ratios, m = M Mp *, of the planets are computed relative to the star, which is assumed to have a mass of 0.09 Me (this is later combined with
the estimate of stellar mass to give our estimates of the planet masses). We also report μ in units of 10−5, and the fractional precision on the measurement of μ, σμ/μ.
The parameters P, t0, we cos , and we sin describe the osculating Jacobi elements at the start of the simulation, on date BJDTDB-2,450,000=7257.93115525 days.

Figure 4. Likelihood profile (dark line) and Gaussian distribution with Laplace
approximation uncertainty (light line) for nlog (left) and V1e

1/(2 ν) (right). The
posterior probability distributions are shown with blue histograms.
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improve the photometric constraints on these parameters, albeit
with the dynamical parameters fixed at the maximum
likelihood.

We fit a “photodynamical” model (Carter et al. 2012) to the
data with the following procedure. From the best-fit, plane-
parallel, edge-on transit-time model, we compute the sky
velocity at each of the midtransit times, t0, from the model (in
N-body code units). We then convert the code units to physical
units using the density of the star, obtaining the sky velocity,
vsky, in units of R*/day. We account for quadratic limb
darkening of the star with parameters (q1,Ch1, q2,Ch1, q1,Ch2,
q2,Ch2) in the two Spitzer channels, and for each planet, we
specify a planet-to-star radius ratio (Rp/R*) and we assume a
midtransit impact parameter (b0), which is constant for all
transits of a given planet. We assume that the limb-darkening
parameters are a function of wavelength for the two Spitzer
channels, while we treat the planet radius ratios as identical in
both wave bands based on their consistency across all planets
in Ducrot et al. (2020), giving a total of 19 free parameters for
the photodynamical model.

We ignore acceleration during the transits, treating the
impact parameters as a function of time as

= - +b t v t t b 10sky 0
2

0
2( ) ( ( )) ( )

in units of the stellar radius, R*. Although this expression ignores
the curvature and inclination of the orbits, as well as the
acceleration of the planet, the star is so small compared with the
orbital radius that this approximation is extremely accurate. The
transit model is integrated with an adaptive Simpson rule over each
Spitzer exposure time (which has a uniform duration binned to 2.15
minutes), as described in Agol et al. (2020), yielding a light curve
computed with a precision of better than 10−7 for all cadences.
We compute a photometric model for all seven planets for all

of the Spitzer data in selected windows around each of the
observed transits. Starting with Spitzer photometric data, which
were already corrected for systematic variations based on the
analysis by Ducrot et al. (2020), we fit each transit window
with the transit model multiplied by a cubic polynomial, whose
coefficients are solved for via regression at each step in the

Figure 5. Eccentricity vector probability distribution for each planet (y-axes are the relative probability). Thick histograms are the marginalized posterior distributions
from the Markov chain analysis. Thin light lines are the Laplace approximation. Thin dark lines are the likelihood profiles. The lower-right panel shows the
distribution of we cos or we sin for a uniform prior on Î e 0, 0.1( ) and w pÎ  0, 2( ).
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Markov chain. We transform the q1, q2 limb-darkening
parameters to u1, u2in each band using the formalism of
Kipping (2013) to compute the transit model from Agol et al.
(2020). After carrying out an initial optimization of the model,
we take the photometric error to be the scatter in each
observation window to yield a reduced χ2 of unity in that
window. With this photometric scatter, we compute a χ2 of the
model with respect to the Spitzer photometric data, and we
optimize the model using a Nelder–Mead algorithm.

5.1. Photodynamic Results

To compute the uncertainties on the photodynamical model
parameters, we use an affine-invariant MCMC algorithm

(Goodman & Weare 2010).28 We used a uniform prior with
bounds on each parameter given in Table 4. The posterior
distributions of the results of the fit are given in Table 5, while
the correlations between parameters are shown in Figure 30.
We utilized 100 walkers run for 50,000 generations, discarding
the first 1500 generations for burn in. We computed the
effective sample size using the integrated autocorrelation
length, finding a minimum effective sample size of 6000 over
all 19 parameters.29

Figure 6. Probability distribution of the planet-to-star mass ratios, scaled to a stellar mass of M*=0.09Me; panels range from small masses to large. Thick
histograms show the posterior probability distribution of the Markov chain analysis. Horizontal error bars show the mean and 1σintervals for the mass ratios from
Grimm et al. (2018). Dark solid bell curves are the likelihood profiles; light, dotted bell curves are the Laplace approximation.

28 As implemented in the packagehttps://github.com/madsjulia/
AffineInvariantMCMC.jl.
29 Usinghttps://github.com/tpapp/MCMCDiagnostics.jl.
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Table 3
Planet-to-star Mass Ratios in Units of M⊕/(0.09Me) from Grimm et al. (2018)and Planet-to-star Radius Ratios Rp/R* from Delrez et al. (2018b) Compared with the Results from This Paper

Source Quantity b c d e f g h
Grimm

Å

M

M

M

M

0.09p

*


-
+1.017 0.143

0.154
-
+1.156 0.131

0.142
-
+0.297 0.035

0.039
-
+0.772 0.075

0.079
-
+0.934 0.078

0.080
-
+1.148 0.095

0.098
-
+0.331 0.049

0.056

This paper
Å

M

M

M

M

0.09p

*

 1.3771±0.0593 1.3105±0.0453 0.3885±0.0074 0.693 2±0.0128 1.0411±0.0155 1.3238±0.0171 0.3261±0.0186

Delrez Rp/R* 0.0853±0.0004 0.0833±0.0004 0.0597±0.0006 0.0693±0.0007 0.0796±0.0006 0.0874±0.0006 0.0588±0.0012
This paper Rp/R* 0.0859±0.0004 0.0844±0.0004 0.0606±0.0005 0.0708±0.0006 0.0804±0.0005 0.0869±0.0005 0.0581±0.0009

13

T
h
e
P
la

n
eta

ry
S
cien

ce
Jo
u
rn

a
l,

2:1
(38pp),

2021
F
ebruary

A
gol

et
al.



To help visualize the model, a photodynamical model with
the best-fit parameters is shown in Figure 7 computed over
1600 days. Planets b and c have short periods and are far from a
j:j+1 period ratio. Hence, both of these planets show weak
TTVs and straighter, but still slightly meandering, river plots.
The outer five planets are pairwise close to a series of j:j+1
resonances, showing strong TTVs on the timescale of the TTV
period of ≈490 days. The other prominent feature for the outer
four planets is the slight zigzag of the transits due to chopping
(shown in Figure 3).

Table 3 shows the radius ratios from Delrez et al. (2018b)
alongside those from the present analysis. The precision of the
measurements did not improve significantly, while the radius
ratios shifted by 1σ–2σ. Figure 8 shows the posterior
probability distribution of impact parameters in units of the
stellar radius, b0, derived from the photodynamical model.
Figure 9 shows the probability distribution of stellar density.
The density correlates with the impact parameters of each
planet, reaching a tail of lower values for the higher impact
parameters of each planet. The tail of the density probability
distribution has an approximately exponential scaling with the
density below the peak and cuts off as a normal distribution
above. In Table 5, we report the median and 68.3% confidence
interval of the stellar density. The inferred density is both
slightly larger and more precise than prior analyses (Delrez
et al. 2018b), which we discuss below.

Combining the measured density with the measured orbital
periods of the planets, we derive the semimajor axis of each
planet in units of the stellar radius,

p
r
r

=
a

R

P GM

R4
. 11

2

2 3

1 3

*
*

⎛
⎝⎜

⎞
⎠⎟ ( )

 

With the measured impact parameters, we compute the
inclinations of the planets from Winn (2010),

= -
-

I b
a

R
cos , 121

0

1

*

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

where we have ignored the eccentricity in this formula due to
the extremely small values of the eccentricities of the planets
from the transit-timing analysis (see Table 2). The resulting
inclination posterior distribution is displayed in Figure 10.
Although the inclination is derived from the impact parameters,
which we constrain to be positive, in practice the photo-
dynamical model cannot distinguish between inclinations of I
and 180−I (Figure 10), and so we created a histogram of
these two options with equal probability.

5.2. Mutual Inclinations and Stellar Density

The outer four planets, e through h, have inclinations that are
more precisely determined, and, remarkably, their peak
probabilities are aligned very closely, to less than 0°.1, save
for the degeneracy of I versus 180−I. The inner three planets
have poorer constraints on their inclinations due to the larger
uncertainty of their impact parameters (as seen in Figure 8).
Yet, their inclination posteriors have significant overlap with
the outer four planets.
As just mentioned, because each inclination may only be

inferred relative to the center of the star, the derived
distribution is reflected through 180−I. However, if some
of the planets orbited above and some below the plane of the
disk of the star, it would be very improbable for the outer four
planets to show such a precise alignment. We conclude that it
may be likely that all of the planets transit the same hemisphere
of the star as shown in Luger et al. (2017a): the planets’ 3D
orbital inclinations are likely precisely aligned. This also
implies that their longitudes of ascending node are likely
aligned as well, and so in principle we can place a prior on the
scatter of the mutual inclinations of the planets. We have rerun
a photodynamic Markov chain with an inclination prior such
that the planets’ inclinations are drawn from a Gaussian about
their mean value, with a standard deviation of σθ, which is
allowed to freely vary in the chain. We find a very tightly
aligned distribution of inclinations under this assumption,
shown in Figure 11. We also find that very small values of σθ
are preferred, with s = q - 

+ 0 .041 0 .016
0 .031. If the outer and inner

planets are in fact derived from a common inclination
distribution, this implies that the TRAPPIST-1 planetary orbits
are extremely flat, even flatter than the Galilean moons that
have a dispersion in inclination of 0°.25.
The inclination prior also enables a more precise and

symmetric estimate of the density of the star, ρ*/ρe=
53.22±0.53. Why is this? Well, the inclination prior tightens
the distribution of the impact parameters of planets b and c
(as can be seen by comparing Figures 10 and 11). These inner
two planets have deep and frequent transits and the sharpest
ingress and egress, and hence they provide the tightest
constraint upon the density of the star of all seven planets
(Ducrot et al. 2020). Thus, given that the inclination prior
tightens the distributions of inclinations of these two planets,
the stellar density posterior is correspondingly tighter, and
the low stellar density tail of the posterior is eliminated (see
Figure 9). Despite this tighter constraint upon the stellar
density, we decide to forego its use in computing the
densities of the planets given the assumptions inherent in the
inclination prior.
The coplanarity of the planets may be used to constrain the

presence of a more distant, inclined planet given the scatter in
their mutual inclinations induced by gravitational perturbations
(Jontof-Hutter et al. 2018). Such an analysis should be carried
out, but we leave this to future work.

6. Planet Densities and Mass–Radius Relation

With the completion of the transit-timing analysis and
photodynamic analysis, we are now ready to revisit the mass–
radius relation of the TRAPPIST-1 planets.
The only component missing is a constraint upon the mass of

the host star. We use the recent analysis by Mann et al. (2019),
who have constructed a sample of nearby M-dwarf binaries to

Table 4
Prior Bounds on Photodynamic Parameters

Parameter Units Prior

b0 R*  0, 1( )
Rp/R* L  0, 0.2( )
ρ* ρe  0, 100( )
(q1,Ch 1, q2,Ch 1) L  0, 1( )
(q1,Ch 2, q2,Ch 2) L  0, 1( )

Note. Note that the same bounds on the impact parameter, b0, and radius ratio,
Rp/R*, are placed on all seven planets.
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Table 5
Parameters Derived from the Photodynamic Model

Parameter: ρ*/ρe q1,Ch1 q2,Ch1 q1,Ch2 q2,Ch2
Value: -

+53.17 1.18
0.72 0.133±0.052 0.26±0.19 0.059±0.024 0.49±0.20

Parameter: ρ* (g cm−3) u1,Ch1 u2,Ch1 u1,Ch2 u2,Ch2
Value: -

+75.05 1.66
1.02 0.161±0.093 0.20±0.15 0.218±0.056 0.021±0.098

Planet: b c d e f g h
Rp/R* 0.08590±0.00037 0.08440±0.00038 0.06063±0.00052 0.07079±0.00055 0.08040±0.00047 0.08692±0.00053 0.05809±0.00087
Depth (%) 0.7378±0.0064 0.7123±0.0064 0.3676±0.0063 0.5012±0.0078 0.6465±0.0076 0.7555±0.0092 0.3375±0.0101
T (minutes) 36.06±0.11 42.03±0.13 48.87±0.24 55.76±0.26 62.85±0.25 68.24±0.28 76.16±0.56
τ (minutes) 2.889±0.046 3.320±0.054 2.816±0.044 3.825±0.071 5.158±0.089 6.310±0.109 4.846±0.113
b/R* -

+0.095 0.061
0.065

-
+0.109 0.061

0.059
-
+0.063 0.043

0.063
-
+0.191 0.041

0.041
-
+0.312 0.018

0.023
-
+0.379 0.014

0.018
-
+0.378 0.023

0.024

a/R* -
+20.843 0.155

0.094
-
+28.549 0.212

0.129
-
+40.216 0.299

0.182
-
+52.855 0.392

0.239
-
+69.543 0.516

0.314
-
+84.591 0.628

0.382
-
+111.817 0.830

0.505

I(°) 89.728±0.165 89.778±0.118 89.896±0.077 89.793±0.048 89.740±0.019 89.742±0.012 89.805±0.013

Note. Top: stellar density (in units of solar density), limb-darkening parameters (q1, q2) in Spitzer channels 1 and 2, and stellar density in cgs units and limb-darkening parameters u1 and u2. Bottom: planet-to-star radius
ratio, Rp/R*; transit depth, (Rp/R*)

2; transit duration, T (from first to fourth contact); ingress/egress duration, τ (from first to second contact or third to fourth contact); impact parameter in units of stellar radius, b0
(assumed to be positive); ratio of semimajor axis to stellar radius, a/R*; and inclination I in degrees (for b0>0).

15

T
h
e
P
la

n
eta

ry
S
cien

ce
Jo
u
rn

a
l,

2:1
(38pp),

2021
F
ebruary

A
gol

et
al.



calibrate the mass–luminosity (M*−MKS) relation of M
dwarfs down to a mass of 0.075 Me.

30 Given the precise
parallax measurement available for TRAPPIST-1 thanks to
Gaia (Lindegren et al. 2018), the relation yields an estimated
mass of M*=0.0898±0.0023Me.

To derive the masses of the planets, we draw planet-to-star
mass ratios from the posterior distribution of the transit-timing
analysis (Section 4), which we multiply by the mass of the star
drawn from a normal distribution with M*=0.0898±
0.0023Me. We then draw the planet-to-star radius ratios and
stellar density from the posterior distribution from the
photodynamic analysis (Section 5). With the same mass draw,

we compute the stellar radius as

r
r

=
-

R
M

M
R , 13

1 3

*
*

*

⎛
⎝⎜

⎞
⎠⎟ ( )






which we multiply by each of the radius ratios drawn from the
same sample to obtain the planet radii. We carry this out for a
large number of samples to derive the probability distribution
of the masses and radii of the entire posterior probability
sample of the planets.
The probability distribution for the masses and radii of the

seven planets are shown in Figure 12. The maximum-
likelihood values and the posterior distributions (for 1σ and
2σ confidence) are both plotted in this figure. We postpone to
Section 9 a detailed analysis of the densities and resulting
constraints on the bulk compositions of the planets.

Figure 7. River plots showing every transit over 1600 days for one planet per panel (left to right are b–h, as labeled; the transits of companion planets are omitted from
each panel). The x-axis ranges over 200/400×30 s exposures centered on the mean ephemeris for the nth transit for b–d/e–h, respectively (note the 30 s exposures
have a higher resolution than the binned Spitzer time resolution). Each row contains a transit model, with green being out of transit, and blue in transit. There are
(1059, 661, 395, 262, 173, 129, 85) transits of planets b–h, respectively. Planets d and h have the smallest sizes, and hence the shallowest depths, causing a lighter
color during transit.

Figure 8. Probability of planet impact parameters using the photodynamic model described in the text.

30 Note that “M” is being used in three ways here: spectral category (M dwarf),
stellar mass (M*), and absolute magnitude in the KS band, MKS.
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In addition to masses and radii, we also derive other
planetary properties, given in Table 6. Each of the planets has a
density intermediate between Mars (ρ♂=3.9335 g cm−3=
0.713 ρ⊕) and Earth (ρ⊕=5.514 g cm−3). The surface
gravities span a range from 57% of Earth (planet h) to 110%
of Earth (planet b).

7. Stellar Parameters

A by-product of our analysis is a revision of the properties of
the host star. The empirically based mass estimate for the star
based on Mann et al. (2019) is consistent with the mass derived
by Van Grootel et al. (2018), who first proposed that the mass
of the TRAPPIST-1 star is ≈0.09Me based upon stellar
evolution models and a ground-based parallax measurement.
Ducrot et al. (2020) find a luminosity for the star of
L=(5.53±0.19)×10−4Le, which, when compared with
stellar evolution models, yields a mass of M=0.09016±
0.0010Me, which is also consistent with the Mann et al. (2019)
value. Burgasser & Mamajek (2017) found an older age for the
host star, 7.6±2.2 Gyr, which implies an inflated radius for
the star compared with evolutionary models.
Our analysis differs slightly from our prior Spitzer analyses

(Delrez et al. 2018b; Ducrot et al. 2020) in that we do not place
a prior upon the quadratic limb-darkening coefficients of the
TRAPPIST-1 host star. This is motivated by the fact that late-
M-dwarf atmospheres are very complex to model and have yet
to match observed spectra precisely (Allard et al. 2011, 2012;
Juncher et al. 2017), and thus, it is possible that limb-darkening
predictions may not be reliable. We investigated using a
higher-order quartic limb-darkening law and found that this
was disfavored by the Bayesian information criterion (BIC) and
that the best-fit model differed negligibly in the model
parameters. We also simulated more realistic limb-darkening
models based on 3D stellar atmospheres (Claret 2018) and
found that a quadratic law was sufficient to recover the correct
model parameters with negligible systematic errors.
The TRAPPIST-1 system has the advantage that the planets

sample different chords of the stellar disk (Figure 8; also see
Delrez et al. 2018b), and given the large number of transiting
planets, we are afforded multiple constraints on the stellar limb-
darkening parameters. Figure 13 shows our posterior con-
straints upon the limb-darkening parameters of the star based
on our photodynamical model, which are reported in Table 5.
Based on the updated stellar density, we have updated the

physical parameters of the star. We adopt the luminosity from
Ducrot et al. (2020) and the mass from Mann et al. (2019)
given the complete and careful analysis from both of those
papers. With our updated constraint on the density of the star,
we rederive the other parameters of the star, which are
summarized in Table 7. In this table,the stellar effective
temperature was computed from the stellar luminosity and
radius, with errors computed via Monte Carlo.

8. Search for an Eighth Planet

With the detection of multiple transits of the six inner planets
in TRAPPIST-1 and a single transit of planet h, a clue to the
orbital period of planet h was the series of GLRs found
between adjacent triplets of planets (Papaloizou 2014). This
relation was then used to predict candidate periods of planet h,
based on different integer pairs for its commensurability with
planets f and g, and a search through the prior data eliminated

Figure 10. Posterior distribution of inclination angles of the planets given the
photodynamical model.

Figure 11. Posterior distribution of inclination angles of the planets from the
photodynamical model assuming a prior on the mutual inclinations
of psP q

s- -á ñ q
-

e2i
I I2 1 2 2i

2 2 1( ) ( ) ( ) .

Figure 9. Stellar density derived from the photodynamic model relative to the
solar density, with no prior (blue solid line) and with the relative inclination
prior (orange dashed line).
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all but one possibility at 18.766 days. A subsequent
observation of the TRAPPIST-1 system with the K2 spacecraft
revealed four more transits of planet h occurring at precisely
the period that was predicted (Luger et al. 2017b). The
existence of the GLRs among the seven known planets has

been used to forecast the possible existence of an eighth planet
interior (Pletser & Basano 2017) and exterior (Kipping 2018) to
the seven known transiting planets. There is yet to be a
definitive detection of an eighth transiting planet based upon
the currently available data (Ducrot et al. 2020).

Figure 12. Mass–radius relation for the seven TRAPPIST-1 planets based on our transit-timing and photodynamic analysis. Each planet’s posterior probability is
colored by the equilibrium temperature (see color bar), with the intensity proportional to probability, while the 1σ and 2σ confidence levels from the Markov chain
posterior are plotted with solid lines. Theoretical mass–radius relations are overplotted using the model in Dorn et al. (2016) for an Earth-like molar Fe/Mg=0.83
ratio with a core (black dashed) and core free (red), and a range of cored models with molar Fe/Mg=0.75±0.2 (gray). U18 refers to Unterborn et al. (2018; see
text). The solid black line was calculated for a 5% water composition, for irradiation low enough (i.e., for planets e, f, g, and h) that water is condensed on the surface
(assuming a surface pressure of 1 bar and a surface temperature of 300 K). The umber dashed and solid lines were calculated for a 0.01% and a 5% water composition,
respectively, for irradiation high enough (i.e., for planets b, c, and d) that water has fully evaporated in the atmosphere, with the U18 interior model with
Fe/Mg=0.83 and Mg/Si=1.02 (Turbet et al. 2020). Earth, Venus, and Mars are plotted as single points, also colored by their equilibrium temperatures.

Table 6
Planetary Parameters from Combining the Transit-timing and Photodynamic Analysis

Planet: b c d e f g h

R(R⊕) -
+1.116 0.012

0.014
-
+1.097 0.012

0.014
-
+0.788 0.010

0.011
-
+0.920 0.012

0.013
-
+1.045 0.012

0.013
-
+1.129 0.013

0.015
-
+0.755 0.014

0.014

M(M⊕) 1.374±0.069 1.308±0.056 0.388±0.012 0.692±0.022 1.039±0.031 1.321±0.038 0.326±0.020
ρ(ρ⊕) -

+0.987 0.050
0.048

-
+0.991 0.043

0.040
-
+0.792 0.030

0.028
-
+0.889 0.033

0.030
-
+0.911 0.029

0.025
-
+0.917 0.029

0.025
-
+0.755 0.055

0.059

g(g⊕) 1.102±0.052 1.086±0.043 0.624±0.019 0.817±0.024 0.951±0.024 1.035±0.026 0.570±0.038
vesc(vesc,⊕) 1.109±0.026 1.092±0.022 0.701±0.010 0.867±0.012 0.997±0.012 1.081±0.013 0.656±0.020
S (S⊕) -

+4.153 0.159
0.161

-
+2.214 0.085

0.086
-
+1.115 0.043

0.043
-
+0.646 0.025

0.025
-
+0.373 0.014

0.015
-
+0.252 0.010

0.010
-
+0.144 0.006

0.006

a(10−2 au) 1.154±0.010 1.580±0.013 2.227±0.019 2.925±0.025 3.849±0.033 4.683±0.040 6.189±0.053

R (108 cm) -
+7.119 0.077

0.087
-
+6.995 0.077

0.086
-
+5.026 0.066

0.071
-
+5.868 0.075

0.082
-
+6.664 0.077

0.085
-
+7.204 0.085

0.094
-
+4.817 0.088

0.091

M (1027 g) 8.211±0.412 7.814±0.335 2.316±0.074 4.132±0.130 6.205±0.184 7.890±0.226 1.945±0.122
ρ (g cm−3) -

+5.425 0.272
0.265

-
+5.447 0.235

0.222
-
+4.354 0.163

0.156
-
+4.885 0.182

0.168
-
+5.009 0.158

0.138
-
+5.042 0.158

0.136
-
+4.147 0.302

0.322

g (10 m s−2) 1.080±0.051 1.065±0.042 0.611±0.019 0.801±0.024 0.932±0.024 1.015±0.025 0.558±0.037
vesc (km s−1) 12.400±0.292 12.205±0.241 7.839±0.110 9.694±0.133 11.145±0.137 12.087±0.142 7.335±0.227
S (106erg cm−2 s−1) -

+5.652 0.216
0.220

-
+3.013 0.115

0.117
-
+1.518 0.058

0.059
-
+0.879 0.034

0.034
-
+0.508 0.019

0.020
-
+0.343 0.013

0.013
-
+0.196 0.008

0.008

a (1011 cm) 1.726±0.015 2.364±0.020 3.331±0.028 4.376±0.037 5.758±0.049 7.006±0.060 9.259±0.079

Note. The units are given with respect to Earth first and cgs second.
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It may be possible to detect an exterior eighth planet via
TTVs induced on the inner seven planets. Planet h should
experience the strongest perturbations by an exterior eighth
planet due to the fact that TTVs are a very strong function of
the proximity of planets to one another and also to resonance.
Table 8 shows the predictions for the period of planet “i,” Pi,
assuming a GLR configuration with planets g and h given by

= - + +- -P q pP p q P 14i g
1

h
1( ( ) ) ( )

for a range of 1�p, q�3, which is the same range of
integers for the GLRs among the inner seven planets.
Interestingly, these cases are all close to a j:j+1 period ratio
with planet h and thus should strongly perturb planet h due to
forcing at this frequency.

We carried out a transit-timing search for an eighth planet
by placing planets with mass ratios between 2×10−6 and
5×10−5 at these four trial orbital periods in a coplanar

configuration with the other seven planets drawn from a
random orbital phase at the initial time and with eccentricity
vector elements drawn from a random normal of width 0.005.
We placed a Gaussian prior on the eccentricity vector elements
of the eighth planet with a standard deviation of 0.14 to avoid
unstable configurations. We then optimized the likelihood with
the eight-planet model, carrying out 11,200 optimizations on
112 CPUs with 100 optimizations per CPU, lasting seven days
each for about 20,000 CPU hours.
We then carried out a search for evidence of perturbations by

planet i by determining if the optimized likelihood of the
transiting planets was improved by adding an eighth planet to
the transit-timing model, using the BIC to penalize the
additional degrees of freedom of the eight-planet model (Wit
et al. 2012). We searched for a change to BIC for the eight-
planet model over the seven-planet model with a difference of
better than 5 logNtrans=30.5. Given that the inner seven
planets show orbital eccentricities with values 0.01, we only
considered an eighth planet candidate plausible if it shows an
eccentricity less than this cutoff.
In all 11,200 trial optimization cases, we found that only two

of the eight-planet models did exceed the BIC criterion, but
both significantly exceed an eccentricity of 0.01. Figure 14
shows the change in BIC versus orbital period and mass for
planet “i,” assuming a mass of the star ofM*=0.09Me. These
two cases with ΔBIC>0 do not appear to be plausible planet
candidates: they only just exceed the BIC criterion, they both
have large eccentricities, and they are not in close proximity to
a GLR with planets g and h (even though the initial parameters
of the optimization were started near a GLR).
We also carried out a search for an eighth planet interior to

planet b and found even smaller improvements in the log
likelihood than in the exterior case.
We have not carried out an exhaustive search for eight-planet

models at other orbital periods due to the significant volume of
parameter space to search. However, it is still possible that an
exterior eighth planet is perturbing planet h and may modify its
transit times to a point that affects the posterior masses we infer
from our seven-planet model. In principle, one could include
the effect of an eighth planet on the mass inference by adding it

Figure 13. Limb-darkening constraints, 1σ and 2σ confidence contours. Red is
Spitzer IRAC Channel 1 (3.6 μm), while green is Channel 2 (4.5 μm). Error
bars indicate the limb-darkening parameters and uncertainties used as priors in
Ducrot et al. (2020).

Table 7
Updated Stellar Parameters Based on the Combined Analysis

Parameter Value References

M(Me) 0.0898±0.0023 Mann et al. (2019)
R(Re) 0.1192±0.0013 This paper
L(Le) 0.000553±0.000019 Ducrot et al. (2020)
Teff (K) 2566±26 This paper

-glog cm s10
2( ( )) -

+5.2396 0.0073
0.0056 This paper

Table 8
Predictions for a GLR of Planets g and h with an Eighth Planet, Planet i, with

Period Pi

p q Pi (day) Pi/ Ph j

1 1 39.029 2.08 1
1 2 25.347 1.35 3
1 3 22.695 1.21 4
2 3 28.701 1.53 2

Note. The ratio with the period of planet h is given, as well as the value of j for
which Pi/Ph≈( j+1)/j.

Figure 14. Limits on an eighth planet, “i,” for a search near the periods in
Table 8. The eight-planet models are only plotted if they led to an improvement
in log likelihood. Only two of the optimized likelihoods reach the difference in
BIC >0 indicated on the plots; however, these two cases have an eighth planet
with a relatively large eccentricity and are distant from a GLR with g and h.
Orange points have eccentricities smaller than 0.01; light-blue points have
larger eccentricities.
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to the Markov chain modeling; in practice, this would be a
challenging model to sample due to the multimodal nature of
the parameter space. We defer such analysis to future work.

9. Interior Compositions

In this section, we present a theoretical interpretation of the
planets’ interior properties based upon the mass–radius relation
we inferred in Section 6. As there is significant degeneracy in
the possible interior compositions, we present a menu of
different possibilities in Section 9.2. However, we start with an
approach that is less dependent upon the assumption of interior
composition, which we term the “normalized density.”

9.1. Initial Analysis of Planet Densities across the System

The probability distribution for the masses and radii of the
seven planets are shown in Figure 12 alongside several
theoretical mass–radius relationships added for comparison.
We have added three rocky mass–radius relationships with
different bulk Fe/Mg compositions: (1) molar Fe/Mg=
0.75±0.2 as suggested by Unterborn et al. (2018) to represent
the rocky interior of all TRAPPIST-1 planets with a 1σ range
of Fe/Mg ratios consistent with local stellar abundances, (2)
the Sun-like value of molar Fe/Mg=0.83 (Lodders et al.
2009), and (3) a core-free model with Earth-like refractory
ratios, but in which all of the iron is oxidized in the mantle
(Elkins-Tanton & Seager 2008). Rocky interiors are calculated
similar to the models of Dorn et al. (2016) with two
adaptations: we are using the equation of state of Hakim
et al. (2018) for pure iron and Sotin et al. (2007) for silicates.
We have also added the theoretical mass–radius relationships
for planets endowed with a water layer, both for planets that are
irradiated less (black line; water) and more (umber lines; steam)
than the runaway greenhouse irradiation threshold (Turbet et al.
2020).

The comparison of measured masses and radii with
theoretical mass–radius relationships reveals several striking
results. First, all seven TRAPPIST-1 planets appear to be
consistent with a line of interior isocomposition at the 1σlevel.
There are multiple theoretical mass–radius curves that overlap
with all seven planets’ mass–radius probability distributions
(Figure 12), which may be a good indication that the
composition varies little from planet to planet. Second, all of
the TRAPPIST-1 planets have lower uncompressed densities
than solar system terrestrial planets. This likely means that the
TRAPPIST-1 planets either have a lighter interior (e.g., lower
iron content) or are enriched with volatiles (e.g., water).

We next searched for variations of density across the planets.
For this, we took each planetary density calculated from 104

samples and divided by the density of the closest pair of mass
and radius of a fully differentiated 20 wt% iron, 80 wt% silicate
(MgSiO3) interior planet with no surface layers, which is less
iron rich than Earth. A planet with a normalized density of 1
has exactly the same density as the reference model, while a
normalized density >1 (<1) is denser (lighter), than the
reference model, respectively. Figure 15 shows the resulting
histograms of the posterior probability of the normalized
TRAPPIST-1 planet densities. We then plot in Figure 16 the
normalized densities (along with their 1σ uncertainty) as a
function of the orbital periods of the planets. The normalized
planet density appears very uniform across the seven planets,
with perhaps a slight decrease with the increase of the orbital

period (or the distance to the host star). We fit a line to the
normalized density, y, versus orbital period, P, for 104 posterior
samples and found a relation of y=(1.042±0.034)−
(0.0043±0.0036)P, where the coefficients are the 68.3%
confidence interval. There is only weak evidence for a
declining trend of normalized density with orbital period:
88% of the fits to the 104 posterior samples have slopes with a
negative value, while 12% of the slopes fit have a positive
value. If in the future more precise data strengthen this trend,
then this may indicate that either (i) the outer planets are
depleted in heavy elements (e.g., iron) compared to the inner
ones, or (ii) the outer planets are enriched in volatiles (e.g.,
water) compared to the inner ones. However, based on the
current data, we suggest that the planets’ compositions could be
rather uniform in nature.
The interpretation of these observations in terms of internal

compositions is discussed in more detail next.

Figure 15. Probability density function of the normalized density of all seven
planets in the system.

Figure 16. Normalized planet densities (with 1σ error bars) vs. planet orbital
periods. The light-blue band is the 68% confidence interval of the weighted
mean normalized density of all seven planets. The orange lines show the 68.3%
confidence intervals of linear fits to the normalized densities computed from
104 draws from the posterior. The mean fit to the normalized density vs. period
is y=aP+b, where a=1.042±0.034 and b=−0.0043±0.0036.
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9.2. Range of Possible Interior Compositions and Volatile
Contents

In this subsection, we discuss a range of possible composi-
tions of the planets based on their measured densities, starting
with a volatile-poor model in which the densities are fit by
varying the CMF (Section 9.2.1) and followed by an analysis in
which the solid planets are taken to have an Earth-like
composition, to which is added a water fraction needed to
create the observed densities (Section 9.2.2). Alternatively, the
planets might be explained with an enhanced oxygen content
by which all of the iron is oxidized, making the planets core
free (Section 9.2.3).

9.2.1. Core Mass Fraction

If we assume that the planets’ atmospheres contribute a
negligible amount to their total radius and that the planets are
fully differentiated, composed of rocky mantles (MgSiO3) and
iron cores only, then the densities may be used to constrain the
portion of the planets’ mass that is contained within their cores.

We evaluated the CMFs of the TRAPPIST-1 planets as
follows. For each mass/radius pair in our posterior distribution,
we have estimated the CMF by linearly interpolating between
precalculated mass–radius relationships with our employed
interior model. We arbitrarily set each mass/radius pair lighter
than a pure silicate (MgSiO3) planet to a CMF of 0.
Alternatively, we repeated the same procedure but discarded
all CMF values lower or equal to 0. However, we found that
the estimate of the CMF is only marginally changed (and only
for planets g and h).

Our CMF estimates are provided in Figure 17 and Table 9.
Estimates range from -

+16.1 4.2
3.5 wt% for planet g up to -

+26.6 5.1
4.6

wt% for planet c, which, despite the different central values,
have considerable overlapping probability distributions.
Figure 17 shows that within the uncertainties, the CMF/iron
fractions of the planets are very consistent with one another,
with the mean of all planets of 21±4 wt% (taking into
account the correlations between the planets’ CMFs).

There may be a slight trend of the inferred CMF, which
decreases with increasing orbital period. The trend is
qualitatively similar to that reported on the normalized density
(see Figure 16), with similarly weak support: only 88% of the
linear fits to the 104 posterior CMF values have a slope with
orbital period that is negative, while 12% are positive.

9.2.2. Surface Water Content

The observed (weak) variation in the planet densities among
all seven planets may instead be due to their differing volatile
(e.g., water) inventories.
If we assume a rocky Earth-like interior (CMF=32.5%,

fully differentiated) and only allow an additional condensed31

water layer to contribute to the total radius, we can estimate the
water mass fractions of the seven planets (b: -

+2.8 1.9
2.1 wt%, c:

-
+2.3 1.7

1.8 wt%, d: -
+4.4 1.5

2.0 wt%, e: -
+2.9 1.5

1.7 wt%, f: -
+4.5 1.2

1.8 wt%, g:

-
+6.4 1.6

2.0 wt%, h: -
+5.5 3.1

4.5 wt%). The lower densities of planets d,
f, g, and h can allow for two to three times as much water than
for planets b, c, and e. For this simple estimate, we assumed a
water layer with a surface temperature of 300 K at 1 bar.
Actual surface conditions and assumed iron content can,

however, lead to much larger differences in the estimated water
budgets between the inner three and outer four planets. This
stems from the fact that the inner three planets are more
irradiated than the runaway greenhouse irradiation limit
(Kopparapu et al. 2013; Wolf 2017; Turbet et al. 2018) for
which all water is vaporized, forming a thick H2O-dominated
steam atmosphere. Taking into account the expectation that
water should be vaporized for the three inner TRAPPIST-1
planets (Turbet et al. 2019, 2020), their water mass fractions
drop drastically to less than 0.01 wt%, i.e., more than several
times lower than the water ocean mass fraction of the Earth.
Figure 18 shows the expected water mass fractions for each

of the TRAPPIST-1 planets and for four distinct interior
compositions (18, 25, 32.5, and 50 wt% iron content). It shows
that the same qualitative trend of water versus orbital period is
relatively robust across a large range of assumptions on the
interior composition thanks to the transition from runaway
greenhouse for planets b–d to surface liquid water for planets
e–h.
Higher estimated water budgets for the outer three or four

planets could be a clue that they formed beyond the water
condensation line at ≈0.025 au (Unterborn et al. 2018). This
could also be due to the significant differences in water loss
(through atmospheric escape) arising from variations of
irradiation and gravity among the TRAPPIST-1 planets
(Lissauer 2007; Bolmont et al. 2017; Bourrier et al. 2017).
However, again, we caution that trends in the planetary volatile
content are only weakly supported by the current data.

9.2.3. Core-free Planets

Given that the data may be consistent with an isocomposi-
tion mass–radius relation, we next consider another intriguing
possibility: that the interiors of the planets are fully oxidized. If,
instead of forming a core, all of the iron is oxidized and
remains in the mantle, the size of a planet may increase by a
few percent (Elkins-Tanton & Seager 2008). This turns out to
be about the amount of radius inflation necessary to match the

Figure 17. Iron core mass fraction vs. the planetary orbital periods for a fully
differentiated model with molar Mg/Si=1.02 and no surface layer. The
approximate values for Earth (McDonough 2014), Mars (Khan et al. 2018), the
Moon (Barr 2016), and common chondrites (Palme et al. 2014) are indicated,
as well as the 1σ confidence intervals of the TRAPPIST-1 planets. The light-
blue box is the 68.3% confidence region of the weighted mean of all seven
planets. The orange lines show the median and 68.3% confidence interval for
linear fits to the 104 posterior values for all seven planets.

31 Note that it is likely unwarranted to assume condensed surface water for the
inner three planets given their location within the runaway greenhouse zone
(Turbet et al. 2020).
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TRAPPIST-1 planets when compared with our solar system
planets.

If we assume that the refractory ratios match a solar
composition and that all seven planets lack an atmosphere, then
it turns out that all seven planets are consistent with a core-free,
oxidized composition (Figure 12; red line). For this model, the
bulk mass abundance ratios for Fe/Si/Mg/O are 29.2/17.3/
15.3/38.2 wt% with a magnesium number of 0.55 (Mg/(Mg
+Fe)) mol fraction; this model has a significant increase in
oxygen compared to the bulk Earth with 29.7 wt% (McDo-
nough 2014). Such a scenario would likely require the
formation of the planets at large distances from the star in a
highly oxidizing environment (Elkins-Tanton & Seager 2008)
and a lower devolatization temperature intermediate between
that of Earth and chondrites (Wang et al. 2019). Hence,
although this hypothesis efficiently explains the TRAPPIST-1
data, it remains to be seen whether a geochemical model that
results in the high oxidation of iron throughout the processes of
planet formation and evolution (Kite et al. 2020) can be
constructed.

10. Discussion

Here we discuss some of the implications of the results in the
foregoing sections.

10.1. Timing Uncertainties

As reported in Section 3, the transit-timing measurements we
have made show an excess of outliers with respect to the

measurement uncertainties of each transit. We were unable to
identify a culprit (or culprits) for these discrepancies but wish
to speculate on what may be the origin of these outliers. The
cumulative distribution of these outliers (Figure 1) indicates
that about 10% of transits are affected at some level. It is also
interesting to note that the core of the distribution has a slightly
smaller width of about 87% of the measurement errors,
indicating that for about 90% of the transits, the uncertainties
may be overestimated. This may be a consequence of inflating
the uncertainties to account for correlated noise rather than
modeling the data with, for example, a Gaussian process;
further reanalysis of the data will be needed to check this
hypothesis.
Could the timing outliers be due to stellar flares? In Vida

et al. (2017) and Ducrot et al. (2020), the frequency distribution
of stellar flares is shown to be rising toward smaller flare
energies. This could mean that the more frequent, but lower
energy, flares occur at a level that is swamped by the photon
noise and thus not visible to an observer. We used the spectrum
and energy calibration of Spitzer flares measured by Ducrot
et al. (2020) to extrapolate the frequency of lower energy flares
(which are not detected in Spitzer due to photon noise). As an
example, for planet h, the transit time can be affected by a flare
that occurs at ingress or egress (duration 2τ≈10 minutes). We
estimate that a flare of energy 1031 erg could cause a 1.5σ
timing outlier if it occurs during ingress or egress. This has a
probability of only ≈0.3% of occurring during the 10 minutes
of ingress or egress, and thus cannot be responsible for 10% of
outliers for planet h. We carried out a similar estimate for the
other planets, and we conclude that low-level flaring activity
cannot be the cause of the timing outliers.
Other possible causes of the timing outliers are correlated

stellar variability, starspot crossings, or instrumental systema-
tics. We do not yet have an estimate of the magnitudes of these
effects and so cannot reach a conclusion about where the origin
of the timing outliers lies.

10.2. Possible Systematic Errors

In this section, we consider possible factors that might affect
our inference of the densities of the planets. Simulated
planetary densities predict CMFs that are similar to Earth,
with a very small scatter (Scora et al. 2020). Hence, the fact
that the TRAPPIST-1 planets have inferred planetary densities
that are less than this could be due to systematic uncertainties
that are not captured by our modeling.
The transit depths determine the planet-to-star radius ratios,

but these measurements are affected by the nonuniform surface
brightness of the star. Fortunately, the multiple impact

Table 9
Core Mass Fractions, Molar Fe/Mg Ratio (for a Fully Differentiated Model), and Water Mass Fractions Inferred for Each TRAPPIST-1 Planet, as well as the

Weighted Means

Planet: b c d e f g h Avg b–h

CMF (wt%) -
+25.2 6.0

5.3
-
+26.6 5.1

4.6
-
+19.7 5.1

4.7
-
+24.6 4.9

4.3
-
+20.1 4.2

3.5
-
+16.1 4.2

3.5
-
+16.5 10.0

9.3 20.9±3.6

Fe/Mg molar ratio -
+0.60 0.18

0.18
-
+0.64 0.16

0.16
-
+0.44 0.13

0.14
-
+0.58 0.14

0.14
-
+0.45 0.11

0.10
-
+0.34 0.10

0.09
-
+0.35 0.23

0.27 0.47±0.07

H2O (wt%) for:
CMF=18% <10−3 <10−3 <10−3

-
+0.0 0.0

0.0
-
+0.0 0.0

0.0
-
+0.72 0.72

1.3
-
+0.6 0.6

3.4

CMF=25% <10−3 <10−3 <10−3
-
+0.3 0.3

1.8
-
+1.9 1.3

1.5
-
+3.5 1.3

1.6
-
+3.0 3.0

3.8

CMF=32.5% <10−3 <10−3 <10−3
-
+2.9 1.5

1.7
-
+4.5 1.2

1.8
-
+6.4 1.6

2.0
-
+5.5 3.1

4.5

CMF=50% -
+0.05 0.03

0.08
-
+0.03 0.02

0.05
-
+0.002 0.0009

0.002
-
+9.4 1.8

2.2
-
+12 1.7

2.0
-
+14 1.7

2.0
-
+12 3.9

4.4

Figure 18. Theoretical water content estimates (along with 1σ error bar) vs.
planetary orbital periods. Colors depict different compositions for the rocky
interior (18, 25, 32.5, and 50 wt% CMF). For high CMF, estimated water
contents are larger in order to fit the total mass and radius.
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parameters of the planets yield a constraint on the infrared limb
darkening, which is fairly weak compared with optical bands.
However, starspots can also affect the inferred transit depths
(Czesla et al. 2009; Kipping 2012; Oshagh et al. 2013, 2014;
McCullough et al. 2014; Rackham et al. 2018). If spots are
present on an active latitude that is not on the same hemisphere
as the planetary transit chords, this can cause all of the planet
radii to be misinferred by a similar factor.

TRAPPIST-1 may have complex surface inhomogeneities,
including regions brighter or darker than the mean photosphere
(Morris et al. 2018a; Zhang et al. 2018; Wakeford et al. 2019).
It is possible that bright or dark regions could bias the apparent
transit depths toward larger or smaller measurements, depend-
ing on which type of inhomogeneity dominates. Time-variable
contamination should average out with many observations,
while time-steady inhomogeneity will not, such as active
latitudes, polar spots, or even hemispheric asymmetry (Yadav
et al. 2015; Brown et al. 2020). We modeled the transit
transmission in the K2, SPECULOOS, LT, near-infrared, and
Spitzer bands from Ducrot et al. (2020) for all seven planets
using the contamination formula from Rackham et al. (2018)
with a time-steady, three-temperature model with the tempera-
tures of the three components ranging from 2000 to 2980 K and
the covering fraction varying from 0 to 1. The mean effective
temperature is constrained by our stellar model parameters
(Table 7). We assumed that all seven planets transit the region
with the larger covering fraction and that their transit depths are
achromatic. We ran a Markov chain fit to the transmission
spectra, interpolating the fluxes in the bands between the
effective temperature grid points that were spaced by 20 K; we
find that the posterior parameters with maximum likelihood are
temperatures of (2980, 2331, 2071) K with covering fractions
of (0.8, 82.1, 17.1)%. We then computed the expected impact
on the transit depths in the two IRAC channels. The constraints
are tight: we find that the observed radii should only change by
a factor of 1.0072±0.0097 in Channel 1 and 1.007 1±
0.0108 in Channel 2 (these are the ratios of the observed radii
to the actual radii). These factors are consistent with unity at
better than 1σ and have uncertainties that are comparable to or
smaller than the uncertainties on the absolute planetary radii.
We conclude that this form of self-contamination does not
greatly influence our results but should lead to caution in the
interpretation. This constraint is much stronger than the
analysis of Morris et al. (2018b).

Our mass precisions are predicated on a complete model of
the dynamics of the system. We ignore tides and general
relativity, which are too small in amplitude to affect our results
at the current survey duration and timing precision (Bolmont
et al. 2020). Should an eighth planet be lurking at longer orbital
periods, which has yet to reveal itself via significant TTVs or
transits, this may modify our timing solution and shift the
masses slightly. In our timing search for an additional planet,
however, we found that such a planet might only cause shifts at
the ≈1σ level. This possibility begs for caution in interpreting
the potential variation of the iron fraction with orbital period:
should an eighth planet be present beyond planet h, its timing
impact would likely affect the masses of the exterior planets
more significantly than the interior planets. Drawing stronger
conclusions about the variation of the planet iron/CMFs will
likely require longer-term monitoring, especially of planet h,
and/or higher precision timing measurements such as are

expected with JWST, to place tighter constraints on an eighth
planet.

10.3. Planet Masses and Radii in Context

In our current analysis of the transit-timing data for
TRAPPIST-1, we have found larger mass ratios for all planets
save planet e compared with our most recent analysis in Grimm
et al. (2018). Even though most of the planets have shifted by 1σ
or more, this does not indicate that the prior analysis was in
error. In fact, the masses of all of the planets are strongly
correlated, and thus when one planet shifts in the transit-timing
solution, they all shift. With the more extensive data set analyzed
here, we provide a better constraint over the transit-timing
timescale and can also better account for outliers thanks to some
redundancy in our measurements. Given the high precision of
the Spitzer timing measurements, we expect that our current
analysis may remain the most reliable constraint on the masses
of the planets until the transit times can be measured with JWST.
In Figure 19, we compare our measurements for the seven

TRAPPIST-1 planets with our solar system planets and with
exoplanets with radii <1.7R⊕ and masses measured to >5σ
retrieved from the NexSci database on 2020 February 26
(Akeson et al. 2013; Christiansen 2018), as well as planet
parameters reported in Dai et al. (2019) and Kepler-93b from
Dressing et al. (2015).32 The uncertainties on the other planets’
masses are the best available to date from radial-velocity (RV)
measurements and yet they are much larger than the
uncertainties for the TRAPPIST-1 planets, whether considered
in a relative or absolute sense. The larger uncertainties of the
RV planets make the CMFs difficult to constrain for these more
massive planets—core-free and cored models are consistent
with most of these planets’ parameters at the 1σ level
(Figure 19). Nevertheless, it is notable that the rocky planets
for which we currently have data seem to be similar in
composition to Earth (Dressing et al. 2015); however, the
actual range of bulk rock compositions of rocky exoplanets
relative to their host stars is currently debated. This also
appears consistent with the observation that the evaporation
valley requires rocky planets and their gaseous brethren to have
a composition that is a mix of silicates and iron (Owen &
Wu 2017).

10.4. Comparison with Radial Velocities

Given the measurements of the masses we have made with
transit timing, this brings up the question: what RV
uncertainties would be required to make mass measurements
of similar precision?
The precision of the mass measurements may be placed in

context by comparing with current RV capabilities. The
predicted semiamplitudes for the seven planets are given in
Table 10. The predicted RV variation of the star induced by the
TRAPPIST-1 planets is plotted in Figure 20, also based upon
our mass measurements from transit timing. The sums of the
semiamplitudes of the planets equal ≈12.7 m s−1, which is
close to the peak amplitude when the planets are all orbiting on
the same side of the star (near 218 days in the plotted figure).
How does this compare with current RV measurements?
Recently Hirano et al. (2020) were able to make high-

precision measurements of the RV of the TRAPPIST-1 host

32 Note: we corrected Kepler-105b with the Gaia DR2 revised radius of the
host star (Berger et al. 2018; Fulton & Petigura 2018).
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star, achieving a constraint on the linear variation of the star to
a precision of 2.5 m s−1, which they ascribe to stellar
variability. To compare this with our transit-timing results,
the semiamplitude precision that would be needed to achieve
the same mass error bars that we have achieved with transit
timing ranges from 2.4 to 19 cm s−1, up to 100 times more
precise than the RV measurements. Future observations may be
able to achieve higher precision RV measurements of
TRAPPIST-1 but will continue to contend with stellar
variability (Klein & Donati 2019).

Were these planets orbiting a Sun-like star, the semiampli-
tude RV error would need to be even smaller to achieve the
same mass precision we have achieved with transit timing.
Table 10 lists what semiamplitude precisions would be required
if each one of these planets was placed around a solar twin at

one astronomical unit. The required precision ranges from 1 to
6 mm s−1. This is nearly two orders of magnitude more precise
than the highest precision RV measurements for short-period
exoplanets reported to date, such as Tau Ceti g, which has a
reported RV semiamplitude precision of 11 cm s−1 (Feng et al.
2017). We conclude that the mass precisions of Earth-sized,
Earth-insolation planets based on RV must be improved by two
orders of magnitude to match our TTV precision for the
TRAPPIST-1 system.

10.5. Planetary Dynamics

In this section, we discuss some of the dynamical aspects of
the planetary system: the eccentricities, the longitudes of
periastron, and the GLR angles.

Figure 19. Radius vs. mass for solar system terrestrial planets (green dots), TRAPPIST-1 (orange error bars), and other potentially rocky exoplanets from the NExSci
database, Dressing et al. (2015), and Dai et al. (2019; red error bars). Planets with a smaller mass uncertainty are shown in a darker red color. Also plotted is a mass–
radius relation with a core-mass fraction compatible with Earth (blue) and a core-free model in which the refractory elements retain the solar abundance ratios (purple).

Table 10
RV Semiamplitudes, Kp, for the TRAPPIST-1 Planets Predicted from Our Measured Masses

Planet b c d e f g h

Kp (cm s−1) 382.0 310.7 77.6 120.7 158.1 182.2 39.1
RV equivalent precision for TRAPPIST-1 host (cm s−1) 19 13 2.5 3.8 4.7 5.2 2.4
RV equivalent precision for 1 Me host at 1 au (cm s−1) 0.62 0.50 0.11 0.20 0.28 0.34 0.18

Note. Equivalent RV precision required to measure the masses to the same precision as measured with TTVs around TRAPPIST-1. Also, equivalent RV precision
required if each planet were placed around a solar twin at one astronomical unit.
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10.5.1. Eccentricities

The posterior distribution of the initial eccentricities of the
planets is shown in Figure 21. In prior analyses of the TTVs of
the TRAPPIST-1 system, we found that the inner two planets, b
and c, had significant eccentricities (Grimm et al. 2018). In
contrast, with the current analysis, we find that the eccentricity
probability distributions of these two planets are significant
near zero eccentricity. This is consistent with N-body models
that include tidal damping of the orbits, which predict that
planets b and c should have low eccentricities, 10−3 (Luger
et al. 2017b; Turbet et al. 2018). The other planets are all
consistent with the predictions of the tidal evolution model
(Luger et al. 2017b).

Figure 22 shows the posterior probability distribution for the
eccentricity vectors of each planet. The only two planets
consistent with zero eccentricity at 1σ confidence are planets b
and c (blue and orange contours). The other five planets have
nonzero eccentricities.

Now, the eccentricity vectors plotted in Figure 22 show the
values at the initial time. However, over time, the eccentricity
vector of each planet can be decomposed into two components:
the mean eccentricity vector (over some timescale) and the
variable component (which is time variable, with multiple
oscillation timescales driven by the mutual planetary perturba-
tions). Figure 23 shows the eccentricity over a single oscillation
for all seven planets. The outer five planets are close to first-order
resonances with adjacent planets, and the super-period for each of
these planets is close to PTTV≈490 days thanks to the near-
GLR commensurability for all triplets of planets. This leads to a

nearly circular oscillation over this timescale due to circulation of
the first-order resonances driving oscillations in the eccentricity
vectors of each of these planets. The inner two planets are close
to second- and third-order resonances with adjacent planets
(b and c are close to 8:5, which is third order, while c and d are
close to 5:3, which is second order). Because the strength of these
interactions scales as a higher power of eccentricity, these planets
show much smaller variation in the time-variable components of
their eccentricity vectors. Because planets b and c are close to a
third-order resonance, their eccentricity vectors show a three-fold
symmetry. On longer timescales, these patterns precess, filling a
circular pattern over time. The time-variable eccentricity vector
patterns are very similar over the range of posterior values,
indicating that it is primarily this component that is constrained
by the TTVs of the planets.
The total eccentricity vectors show a wider range of

behavior, thanks to a wider variation of the mean eccentricity,
as shown in Figure 24. It is clear from this figure that each
planet executes an eccentricity vector oscillation about a mean
value (which was subtracted off for Figure 23). Unfortunately,
the mean eccentricity is less constrained by the TTVs (Linial
et al. 2018), and so there is a much wider range of eccentricity
vectors that is allowed that manifests as strong correlations
among the eccentricity vectors of pairs of planets (Figure 29).

10.5.2. Laplace Angles

A remarkable property of the TRAPPIST-1 system is the near-
commensurability of adjacent triplets of planets (Luger et al.
2017b), akin to Laplace resonances, with GLR angles given by

Figure 20. Predicted radial-velocity variation of the TRAPPIST-1 host star induced by its seven known transiting planets, as well as the current measurement error bar
reported by Hirano et al. (2020), which they interpret as an upper limit, thanks to stellar variability. Also plotted are the equivalent semiamplitudes for the seven
planets that would be required to achieve the same mass precision as measured with TTVs.
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f l l l= - + ++ + + +p p q q , 15i i i i i i, 1, 2 1 2( ) ( )

where λi is the mean longitude of the ith planet, and p and q are
small integers. In the case of an isolated triplet of planets, a
stable configuration takes on f=180°, but when planets are
captured into a series of GLR commensurabilities, their mutual
torques displace the stable configuration (Delisle 2017).

Long-term dynamical simulations show that these GLR
angles can take on stable values for extended durations and
sometimes can quickly jump in value, flipping symmetrically
about 180° (Mah 2018; Brasser et al. 2019), resulting in two
possible angles for each triplet of stars, f and 360°−f. Based
on the prior measured planet-to-star mass ratios, Mah (2018)
predicted the value of the three-body resonance angles resulting
from the values at the end of the simulation.

In Figure 25, we show the GLR angles for the following
triples:

f l l l
f l l l
f l l l
f l l l

f l l l

= - +
= - +
= - +
= - +

= - +

2 5 3 ,

3 2 ,
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Figure 21. Probability distribution of the eccentricities of the planets at the
initial time based upon the transit-timing model.

Figure 22. Posterior probability distribution for the eccentricity vectors at the
initial time for each of the planets. Contours are the 1σ and 2σ confidence
limits. The maximum-likelihood parameters are shown as solid points.

Figure 23. Variable component of the osculating eccentricity vectors plotted
from a simulation over 12 days for planets b and c, and over ≈490 days for
planets d–h, with initial parameters drawn from the posterior distribution.

Figure 24. Osculating eccentricity vectors computed from a simulation for all
seven planets shown for three different draws from the posterior: the first with
eccentricities nearest the median of the posterior distribution, the second with
eccentricities farthest from the median, and a third drawn randomly from the
posterior. As with Figure 23, planets b and c are plotted over 12 days, while
planets d–h are plotted over ≈490 days.
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Differences between the predicted and observed angles agree
within 0°.5–10°, where the predicted values for f are taken
from Mah (2018), but allowing fbcd and fcde to be flipped
about 180°. It is possible with the updated mass ratios from our
analysis that the predictions will be more accurate, which
awaits further simulation.

10.5.3. Long-term Stability

Prior studies of the TRAPPIST-1 system by Tamayo et al.
(2017) found long-lived configurations for systems that had
formed via migration. Quarles et al. (2017) examined the
stability of the TRAPPIST-1 system, refining the large
uncertainties from prior measurement (Gillon et al. 2017) to
further constrain the masses of the system. Given the much
tighter constraints we have placed on the masses of the planets
and the orbital eccentricities, here we reexamine the long-term
stability of our posterior distribution.

We have used the GPU N-body integrator GENGA (Grimm
& Stadel 2014) to carry out long-term simulations of a set of
104 posterior samples from the timing analysis. These
simulations were carried out for 107 yr, which corresponds to
2.4 billion orbital periods of planet b and 195 million orbital
periods of planet h. We used a time step of 0.06 days, which
gives a total number of 6.1×1010 integration steps. We find
that 100% of these posterior samples are stable over this entire
timescale. To check the stability of the samples, we analyzed
the evolution of the semimajor axis, a, and eccentricity, e, of all
samples and planets. We compared the average values over the
first Myr and the last Myr. Table 11 gives the average over all
samples, and the maximum differences between the first and
the last Myr. In all cases, the variations are small, �0.002.
These results suggest that the simulations could be stable even
on a much longer timescale. In addition, we have carried out

long-term (50Myr) integrations with tidal damping for two
posterior samples, one with low and one with high values of the
eccentricity of planet b. Using a range of values of tidal
damping (from 1/10 to 100 times Earth’s), we find in all cases
that the system remained stable (using Posidonius; Bolmont
et al. 2020).
More interesting is the evolution of the five GLR resonant

angles, shown in Figure 26. In order to describe the evolution
of the GLR angles, we define three categories:

1. Category I: remaining in GLR for 10Myr, with a
maximum difference from the initial value of less
than 45°

2. Category II: remaining in GLR for 10Myr, with a
maximum difference from the initial value of more than
45°. In this category, the GLR angles can jump between
different states.

3. Category III: not remaining in GLR for 10Myr.

The threshold of 45° is chosen arbitrarily but is found to be
practical to distinguish simulations where the GLR angles jump
between different states (Category II), or remain in the same
state (Category I). Figure 26 shows the three different
categories in different colors, as well as a histogram of all
10,000 simulations over 10Myr for all five GLR angles. The
exact number of simulations in the three categories is given in
Table 12. The GLR angles from planets b, c, and d as well as
planets d, e, and f show a unique resonant state. Planets c, d,
and e and planets e, f, and g have a dominant state and a
subdominant state, while planets f, g, and h have a dominant
state and two symmetric subdominant states. Our new samples
show a better conservation of the GLR angles than was found
in Grimm et al. (2018), where the longest resonance time was
found to be 2Myr.

10.6. Forecasts for JWST

10.6.1. Forecast Transit Times

With our transit-timing model, we can forecast the
probabilities of future transit times and hence better help to
plan transit observations with JWST. This is important for both
optimizing the efficient use of the telescope and determining
concurrent transits (i.e., two or more planets crossing the face
of the star at the same time). This is especially important for
transit transmission spectroscopy as the signal will be small,
and hence many transits may need to be observed. With the
observation of initial transits with JWST, the ephemerides can

Figure 25. GLR angles plotted over 100 yr for three draws from the posterior
distribution: one with low eccentricities, one with high, and one randomly
chosen. These are compared with the predictions from Mah (2018), shown by
dashed horizontal lines, with the values for fbcd and fcde flipped about 180°
(i.e., changed from f to 360°−f).

Table 11
Evolution of the Semimajor Axes, a, and Eccentricities, e, from 104 Samples

over 10 Myr

Planet Dā Dē Damax( ) Demax( )
b −6.52e−09 1.73e−04 7.12e−07 0.0020
c −1.44e−08 1.62e−04 2.51e−06 0.0018
d −1.06e−08 1.45e−05 4.07e−06 0.0009
e 2.05e−08 4.44e−05 8.53e−06 0.0008
f 2.45e−07 5.13e−05 3.00e−05 0.0012
g 8.24e−08 5.01e−05 2.19e−05 0.0011
h −1.23e−07 2.11e−04 3.00e−05 0.0035

Note. For each sample and planet, the difference of the average of a and e over
the first and last Myr are computed as Dā and De;¯ we report the maximum
over all samples. These numbers show that all samples remain stable over
10 Myr.
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be refined/updated; however, our current forecasts provide the
starting point for planning JWST observations.

Table 15 gives our forecast for the upcoming times of transit
through 2023 October to cover the first 2 yr of the JWST
mission (six months after the end of Cycle 1, given the present
launch date of 2021 October).

10.6.2. Simulated JWST TTV Analysis

Based on the measured properties of TRAPPIST-1, we have
carried out a preliminary analysis forecasting future transit
observations with the JWST. Already there are several JWST
Guaranteed Time Observation (GTO) programs that plan to
observe the TRAPPIST-1 planetary system, primarily for the
purposes of spectroscopic characterization (GTO programs
1177, 1201, 1279 and 1331).33 It is very likely that additional
observations will be scheduled during guest observing time
throughout the duration of the JWST mission as the detection
of spectroscopic features requires observations of multiple
transits for each of the planets (Barstow & Irwin 2016; Morley
et al. 2017; Lustig-Yaeger et al. 2019; Fauchez et al. 2020). An
effort to coordinate these observations among the exoplanet
and planetary science communities is underway via the
TRAPPIST-1 JWST Community Initiative (Gillon et al.
2020). All to say, long-term studies of TRAPPIST-1 for
spectroscopy will also yield transit times for each transit
observed, enabling a transit-timing analysis of the results.

To estimate the maximum possible precision of observations
with JWST, we have simulated a five-year program in which
every transit of every planet in TRAPPIST-1 is observed with
NIRSPEC (Birkmann et al. 2016). The NIRSPEC instrument was
chosen as its prism mode covers 0.5–5 μm, covering the peak of
the SED of the star and thus maximizing the number of photons
detected, which is about two orders of magnitude per transit
greater than that collected by Spitzer. Although such a complete
set of transits will be impossible to collect (thanks to limits due to
scheduling and time-allocation), this analysis yields an estimate
of the most optimistic results we might expect from JWST.
We have carried out simulations of transits of each of the

planets as observed by NIRSPEC. We include realistic
estimates of photon noise and correlated stellar variability
based on the pattern of variations detected with the Spitzer
Space Telescope, using a Gaussian Process model created with
celerite (Foreman-Mackey et al. 2017). We do not include
instrumental systematics under the assumption that over the
timescales of ingress/egress, which are what limit the timing
precision, the noise contribution will be dominated by photon
noise and stellar variations. From these simulations, we found
that the posterior timing precision ranges from 0.6 to 1.7 s per
transit, much more precise than the measurements reported in
the present paper.
Next, we created a simulated set of transit-timing observa-

tions at the two windows each year when the TRAPPIST-1
system is observable with JWST (Figure 27). For each transit
time, we drew the time from the distribution of uncertainties
from the posteriors of the simulated transit data.
Finally, we utilized our code for transit-timing analysis to

optimize a plane-parallel model with seven planets. At the
maximum likelihood of the fit, we computed the Hessian to
estimate the uncertainties on the model parameters. Figure 27
shows the simulated transit-timing observations with JWST. This
includes about 600 transits observed with the telescope (again,
the maximum possible over the nominal 5 yr JWST mission).
Figure 28 shows the results of the mass measurements in the
simulations. We find that the masses can be recovered to better
than 0.02% for planets d–h and to 0.1% for planets b and c.
Of course, it will be impossible to arrange such a large

number of transit observations of this system. But, even if the
number of observations is an order of magnitude smaller, we
expect that the signal-to-noise should scale with the square root
of the number of measurements made, and thus the outer
planets will still have mass measurements precise to the order
of a part per thousand.

10.7. Stellar Parameters

The stellar density we derive using the photodynamic model,
r r= -

+53.17 1.18
0.72

* , is in 1σagreement with prior analyses.
Most recently, Delrez et al. (2018b) found a density of
ρ*=(52.3±2.2)ρe, twice as uncertain as our analysis. Our
approach yields a density of superior precision due to several
factors. The transit times in the Spitzer data are constrained by
all of the measured transits in the photodynamic model so that
fewer degrees of freedom are needed to fit the times (37 free
parameters in the N-body model versus 447 transit times fit to
each transit).
The stellar mass we take from the analysis by Mann et al.

(2019), M*=0.0898±0.0023Me.
34 This mass has a

Table 12
Number of Posterior Samples Falling into the Three Resonant Categories for

the Five GLR Angles

bcd cde def efg fgh
Category I 130 178 755 7943 6462
Category II 1571 874 7653 1855 1578
Category III 8299 8948 1592 202 1960

Note. The total number of posterior samples is 10,000.

Figure 26. Evolution of the GLR angles f for 10,000 samples over 10 Myr.
The simulations can be split into three categories: x=category I remaining in
resonance (black), II remaining in resonance but jump between states (dark
blue), and III not remaining in resonance (light blue).

33 For specifications of these programs, seehttps://www.stsci.edu/jwst/
observing-programs/approved-gto-programs. 34 https://github.com/awmann/M_-M_K-
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precision of 2.6%, which limits the mass precision for several
of the planets. We are at the point that to improve the mass
measurements of the planets we will need to improve the
measurements of the star.

We used the luminosity estimate from Ducrot et al. (2020),
which is slightly lower than that estimated by Gonzales et al. (2019)

due to a difference in the measured bolometric flux. We are
consistent with Gonzales et al. (2019) for the reported value of
R T2

eff
4 at 1σ, while our Teff is more precise (28K versus 42K), R is

2.5 times more precise, and our glog is more precise by an order of
magnitude.

11. Conclusions

The Spitzer discovery of seven transiting planets orbiting the
TRAPPIST-1 star by Gillon et al. (2017) promised the
determination of the interior compositions of these planets
via dynamical analysis. We have now analyzed the complete
set of transit-time measurements of the TRAPPIST-1 planets
from Spitzer, augmented by additional transits from the ground,
K2, and HST. Our primary conclusions are:

1. We have measured the masses, radii and densities to high
fractional precision, 1%–8%, based on an N-body model
and a photodynamical model with seven planets. This
improves upon RV current precision by up to two orders
of magnitude.

2. The pattern of masses and radii may be consistent with a
uniform planetary composition for all seven planets that
have lower uncompressed densities than Earth, Mars, or
Venus, with weaker evidence for a declining normalized
density with orbital period (88% confidence). The planet
properties may either be consistent with a CMF of
21±4wt%, or an Earth-like core and mantle with a
surface water content that varies from <0.001% for the

Figure 27. Simulated observations of all of the transits of TRAPPIST-1 detectable with JWST. Each transit has an uncertainty of ≈0.6–1.7 s, assumed to be observed
with NIRSPEC (which maximizes the number of photons collected by any JWST instrument). From retrieval, we obtain 0.1% mass precision.

Figure 28. Simulated planet masses based on 5 yr of JWST observations of
every TRAPPIST-1 transit with NIRSPEC. The recovered mass (Mout) minus
the input mass vs. the input mass (Min). The masses relative to the star can be
recovered to better than 0.1% precision.
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inner three planets to ≈5% for the outer four, or core-free
planets with highly oxidized iron in the mantle that
elevates the interior light-element content. These are not
unique explanations.

3. The planets appear to be dynamically cold, with
eccentricities less than ≈1%, and inclinations that may
be coplanar to a few hundredths of a degree.

4. The system is stable on long timescales and shows a
pattern of generalized Laplace resonances with angles
that match predictions from migration simulations of
Mah (2018).

5. We provide a forecast of the future times of transit for the
planets (Table 15) to help in planning observations with
JWST, which may yield more precise constraints upon
the planets’ masses.

6. We have yet to find strong evidence for an eighth planet.

Based upon these properties, we next speculate on some
possible scenarios for the formation and evolution of the
system.

11.1. Expectations for the Compositions of the TRAPPIST-1
Planets from Formation Scenarios

As mentioned, our analysis suggests that the TRAPPIST-1
planets have somewhat lower uncompressed bulk densities than
Earth (see Table 6 and Figure 12). It is possible that these lower
densities result from a deficit of high-density material (e.g., less
iron) relative to Earth, or an excess of low-density material
(e.g., having more water), or both; in this section, we speculate
about formation scenarios that may be consistent with these
planets’ bulk densities.

In general, planets that formed within the same protoplane-
tary disk are expected to have similar budgets in relative
refractory elements (Bond et al. 2010; Elser et al. 2012) but can
have very different volatile element budgets (Öberg &
Bergin 2016). Similar relative refractory elements (Fe, Mg,
Si) implies similar CMFs for all seven planets, assuming full
differentiation. As suggested by Dorn et al. (2018), the
refractory composition may best be described by studying the
densest planet of the system, planet c with 22%–31% CMF.
Thus, with this assumption, all of the planets may likely have a
22%–31% CMF but different light-element mass fractions
(which may increase slightly with orbital period, Figure 19).

Is an overall CMF of 22%–31% realistic for terrestrial planet
interiors? This range of CMF implies lower Fe/Mg and Fe/Si
values compared to Earth (and the Sun). Elemental abundances
of rocky interiors are expected to be reflected in the
photospheric abundance of the host star as argued by Unterborn
et al. (2018) and Dorn et al. (2018). Unfortunately, measuring
the photospheric abundances of this cool and active host star
remains very challenging. However, Unterborn et al. (2018)
estimated the stellar molar Fe/Mg number ratio to be
0.75±0.2 by analyzing Sun-like stars of similar metallicity
to TRAPPIST-1, which may be slightly lower than the solar
value. This corresponds to a CMF of 24%–35% for a fully
differentiated model. The corresponding mass–radius curve for
a rocky interior of this range of Fe/Mg values is plotted in
Figure 12 (gray curve and shaded region). It overlaps well with
the densest planets, c and b. This means that the expected range
of stellar abundances supports a possible overall CMF value of
22%–31%, assuming full differentiation.

Could there be a variation of Fe/Mg ratios among the
planets? Rocky planet accretion should preserve the integrated
iron/rock ratio. Consider a population of planetary embryos
and planetesimals that accrete into a system of rocky planets.
Giant collisions between growing planetary embryos can
change the iron/rock ratios of individual objects by preferen-
tially stripping the outer, rock-dominated layers from differ-
entiated embryos(e.g., Benz et al. 1988; Marcus et al. 2010;
Asphaug & Reufer 2014). But from a system-wide perspective,
it is a zero-sum game unless rock or iron is preferentially lost
from all of the planets. Rock is the major component of loosely
bound impact debris and more likely to be lost either by
differential aerodynamic drag(Weidenschilling 1977) or solar
wind drag(Spalding & Adams 2020), and so the integrated
iron/rock ratio should only increase. Hypothetical variations in
Fe/Mg can otherwise be caused if large portions of planetary
building blocks condense at different high temperatures
(>1200 K). During planet formation, such temperatures are
only reached in a tiny region very close to the ultracool dwarf
star. Consequently, both Unterborn et al. (2018) and Dorn et al.
(2018) have assumed that all seven planets have similar
refractory element ratios (i.e., Fe/Si, Fe/Mg). Whether rocky
planets can have a wider compositional distribution than stars
remains to be seen (Plotnykov & Valencia 2020).
Alternatively, the lower measured bulk densities of the

TRAPPIST-1 planets relative to Earth-like composition might
be explained by core-free interiors (Elkins-Tanton & Sea-
ger 2008) in which the oxygen content is high enough such that
all iron is oxidized. If the refractory elements (Mg, Fe, Si)
follow solar abundances, a fully oxidized interior would
contain about 38.2 wt% of oxygen, which lies between the
value for Earth (29.7 wt%) and CI chondrites (45.9 wt%). Such
an interior scenario can easily describe the observed bulk
densities (red line in Figure 12), and this may bolster the long-
range migration scenario in which the planets formed in a
highly oxidizing environment that enabled the iron to remain in
the mantle even after migration. Based on the elemental
composition, these models have an oxygen fugacity of
ΔIW=−0.91,35 which is more oxidized than Earth or even
Mars but is comparable to the oxidation state of small bodies,
both in our solar system and accreted by white dwarfs (Doyle
et al. 2019).
However, the evidence for a core-free planet may rest on

knowing the refractory abundances of the TRAPPIST-1 host
star, which have yet to be constrained. Alas, our interpretation
of the planets’ compositions may be limited by our imprecise
knowledge of the host star: its radius, its mass, its photospheric
inhomogeneity, and its refractory abundances all affect our
measurement and interpretation of the masses, radii, and
compositions of the TRAPPIST-1 planets. In this paper, our
measurements of the relative planetary radii and masses have
reached such a precision that the fault may now lie in the star.

11.2. Future Work

We conclude by pointing out directions for building upon
the work described in this paper:

1. We have yet to identify the origin of timing outliers that
show an excess relative to a normal distribution. This

35 Oxygen fugacity is stated relative to the iron–wüstite equilibrium reaction
Fe+0. 5O2=FeO (wüstite) such that D = -f fIW log logO rock O IW2 2

( ) ( ) .
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may be addressed with higher precision measurements
that may be able to identify a source of noise responsible
for these outliers.

2. Our analysis assumes a plane-parallel system with seven
planets and does not yet couple the dynamical and
photometric analysis (our photodynamics held the
dynamical model fixed). Future analysis with a fully
coupled photodynamical model with 3D orbits and more
than seven planets may be valuable.

3. We need more transits measured for planets d and h in
order to better measure the amplitude and phase on the
TTV timescale, as well as to better constrain the presence
of planets beyond h.

4. The interpretation of the compositions of the planets is
limited by the unknown composition of the host star. A
measurement of the Mg/Fe and Fe/Si ratios would help
to interpret the core and mantle compositions. Both sets
of constraints would help to limit the range and break
degeneracies of possible interior compositions of the
planets (Dorn et al. 2015; Bitsch & Battistini 2019).

5. Without a constraint on the detailed abundance ratios of
the host star, a Bayesian interpretation of the bulk
densities of the planets should be warranted (Dorn et al.
2016) to better quantify the range of possible
compositions.

6. More detailed spectral analysis of the stellar photosphere
to ascertain the impact of an inhomogeneous stellar
atmosphere on the radius ratios would be warranted.

We anticipate that once JWST launches, we will obtain
higher precision constraints upon the dynamics of the system,
yielding much improved constraints upon the planets’ bulk
densities, which will further improve the interpretation of their
interior compositions.
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Appendix A
Approximate Hessian Matrix

Here we approximate the posterior probability distribution as
a multidimensional Gaussian, assuming a uniform prior. The
log likelihood for each data point with indices i and j may be
written as a function of the observed transit times and
uncertainties, the modeled transit times, and the Student’s
t-distribution model parameters, such that

n s= n x xt V e t; log , ; , , A1ij ij ij ij ijdyn 1
1 2

,obs( ) ( ( ) ) ( )

where all of the dependence on the dynamical model
parameters enters through tij(xdyn). The maximum posterior
probability also corresponds to the maximum likelihood in this
limit, in which case we expand the log likelihood for the ith
planet and jth transit as a Taylor series:
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where we have used the fact that the gradient of the log
likelihood vanishes at the maximum-likelihood value of the
model parameters,x0, and the indices k, l=1,K,5Np+2 for
xk and xl, where the first 5Np parameters are the dynamical
parameters,xdyn, and the last two parameters are the Student’s
t-distribution likelihood parameters, nlog and V1e

1/2 ν. Now,
the width of the Gaussian distribution at the maximum
likelihood is governed by the Hessian matrix, with elements
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which involves second derivatives of the negative log
likelihood with respect to the model parameters. The
derivatives of tij with respect toxdyn we compute with the
NbodyGradient code; however, the second derivatives of the
transit times with respect to the dynamical model parameters
are not computed with our N-body code. We drop these transit-
time second derivative terms, which we justify as follows.

For the Hessian matrix elements that involve second
derivatives with respect to both dynamical model parameters,
1�k, l�5Np, we can write
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where tij=tij(xdyn) is implied in this and subsequent equations.
Now, at the maximum likelihood, there is a balance of

residuals that are both positive and negative, such that the
second component of this equation has terms with positive and
negative signs for different values of i and j. This causes the
second term in this equation to average to a small value
compared with the first term when the sum is carried out over i
and j (the planet and transit indices). So, we drop the second
term in this equation.

Adding in the cases of the Hessian matrix elements
that involve the likelihood parameters, =+ +x x,N N5 1 5 2p p

( )
n nV elog , 1

1 2( ), we compute the Hessian as
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where the partial derivatives with respect to tij(xdyn),
n=+x logN5 1p , and = n

+x V eN5 2 1
1 2

p are computed with
automatic differentiation.
The inverse of the Hessian matrix is used in the Levenberg–

Marquardt optimization, and when evaluated at the maximum
likelihood, is used to estimate the covariance matrix from
which the square root of the diagonal components are used to
estimate the widths of the posterior distribution for each model
parameter, n= nx x V e, log ,dyn 1

1 2( ), which are plotted in
Figures 6, 5, and 4. This approximated Hessian is also used
to define the mass matrix for the HMC simulations.

Appendix B
Transit-timing Prior

We use a uniform prior for each mass and orbital element,
with smooth bounds on each, with the exception of the initial
eccentricity vectors. Because we sample in the eccentricity
vector of each planet, w w=e e ecos , sini i i i i( ), the volume of
parameter space scales ∝ ei, and so a 1/ei prior is needed to
yield a posterior that has a uniform probability with
eccentricity, ei, for the ith planet (Eastman et al. 2013).
In addition to the eccentricity prior, we place smooth bounds

on the parameters. For each bound, we choose upper and lower
limits for which the prior starts to transition from 1 to 0 with a
cubic dependence. For the bound on a function of our
parameters of value ξ, we specify
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so that the total prior is given by
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where the values of ξ1−ξ4 and each transformation of
parameters,f={fj(x); j=1,K,Nbound} are given in
Table 13, where Nbound=4Np+2. The prior probability,
then, is given by Π(x), which we multiply by the likelihood
function before sampling.
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Table 13
Prior Probability Boundary Limits for the TRAPPIST-1 Planet Parameters

Parameter Bounds Function fj Lower Bound Lower Transition Upper Transition Upper Bound

ξ1 ξ2 ξ3 ξ4
Mass ratio mlog10 −8 −7 −3 −2

Eccentricity e L L 0.2 0.3
Period of b Pb (days) 1.49 1.50 1.52 1.53
Period of c Pc (days) 2.40 2.41 2.43 2.44
Period of d Pd (days) 4.03 4.04 4.06 4.07
Period of e Pe (days) 6.08 6.09 6.11 6.12
Period of f Pf (days) 9.18 9.19 9.22 9.23
Period of g Pg (days) 12.33 12.34 12.36 12.37
Period of h Ph (days) 18.75 18.76 18.78 18.79
Initial transit time of b t0,b−2,457,257 (days) 0.53 0.54 0.56 0.57
Initial transit time c t0,c−2,457,257 (days) 0.57 0.58 0.60 0.61
Initial transit time d t0,d−2,457,257 (days) 0.05 0.06 0.08 0.09
Initial transit time e t0,e−2,457,257 (days) 0.81 0.82 0.84 0.85
Initial transit time f t0,f−2,457,257 (days) 0.05 0.06 0.08 0.09
Initial transit time g t0,g−2,457,257 (days) 0.70 0.71 0.73 0.74
Initial transit time h t0,h−2,457,249 (days) 0.58 0.59 0.61 0.62
Degrees of freedom ν 0.5 1.0 50 100
Log variance factor Vlog 1 −2 −1 5 10

Note. The bounds are chosen so as to not affect the parameters as much as possible.
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Appendix C
Corner Plots

Figures 29 and 30 show corner plots of the variables from
the transit-timing and photodynamical analyses, respectively.

Figure 29. Corner plot of variables in the transit-timing analysis with 1σand 2σconfidence contours. Lagrangian orbital elements are defined as w=k e cosb b b and
w=h e sinb b b, and similarly for the other planets. Planet masses are defined relative to the star.
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Figure 30. Corner plot of variables in the photodynamical analysis with 1σand 2σconfidence contours. Planet radii are relative to star.
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Appendix D
Tables

Tables of the best-fit transit times (Table 14) and the forecast
times (Table 15) are given in this appendix.

Table 15
Mean, tpost, and Standard Deviation, σpost, of Forecast Times from the Posterior Sample

Planet Epoch tpost σpost

b 1 7259.061 221 0.000 152
b 2 7260.572 662 0.000 163
b 3 7262.083 452 0.000 159
b 4 7263.594 099 0.000 150
b 5 7265.104 973 0.000 151
b 6 7266.615 845 0.000 153
b 7 7268.126 697 0.000 155
b 8 7269.637 314 0.000 148
b 9 7271.148 093 0.000 146
b 10 7272.659 543 0.000 157
b 11 7274.170 344 0.000 152
b 12 7275.680 980 0.000 144
b 13 7277.191 799 0.000 143
b 14 7278.702 670 0.000 145
b 15 7280.213 581 0.000 150
b 16 7281.724 209 0.000 143
b 17 7283.234 973 0.000 139
b 18 7284.746 420 0.000 150
b 19 7286.257 235 0.000 146
b 20 7287.767 862 0.000 137
b 21 7289.278 632 0.000 136
b 22 7290.789 504 0.000 138
b 23 7292.300 472 0.000 144
b 24 7293.811 108 0.000 137
b 25 7295.321 861 0.000 133
b 26 7296.833 297 0.000 143
b 27 7298.344 125 0.000 140
b 28 7299.854 748 0.000 131
b 29 7301.365 471 0.000 129
b 30 7302.876 339 0.000 131

Note. Times are in BJDTDB-2,450,000 while uncertainties are in days. Thirty lines are previewed; full table is available in machine-readable format.

(This table is available in its entirety in machine-readable form.)

Table 14
Observed Transit Times with Uncertainties, along with the Mean, tpost, and Standard Deviation, σpost of the Times from the Posterior Sample

Planet Epoch tobs σobs tpost σpost Source

b 0 7322.515 310 0.000 710 7322.517 902 0.000 127 TS
c 0 7282.805 700 0.001 400 7282.805 840 0.000 248 TS
d 0 7560.797 300 0.002 300 7560.801 847 0.000 384 TS
e 0 7312.713 000 0.002 700 7312.713 920 0.000 360 TS
f 0 7321.525 200 0.002 000 7321.522 338 0.000 781 TS
g 0 7294.786 000 0.003 900 7294.772 215 0.000 905 TS
h 0 7662.554 360 0.002 000 7662.550 913 0.001 498 Spitzer

Note. Times are in BJDTDB-2,450,000 while uncertainties are in days.

(This table is available in its entirety in machine-readable form.)

36

The Planetary Science Journal, 2:1 (38pp), 2021 February Agol et al.



ORCID iDs

Eric Agol https://orcid.org/0000-0002-0802-9145
Caroline Dorn https://orcid.org/0000-0001-6110-4610
Simon L. Grimm https://orcid.org/0000-0002-0632-4407
Martin Turbet https://orcid.org/0000-0003-2260-9856
Elsa Ducrot https://orcid.org/0000-0002-7008-6888
Laetitia Delrez https://orcid.org/0000-0001-6108-4808
Michaël Gillon https://orcid.org/0000-0003-1462-7739
Brice-Olivier Demory https://orcid.org/0000-0002-
9355-5165
Artem Burdanov https://orcid.org/0000-0001-9892-2406
Khalid Barkaoui https://orcid.org/0000-0003-1464-9276
Zouhair Benkhaldoun https://orcid.org/0000-0001-
6285-9847
Emeline Bolmont https://orcid.org/0000-0001-5657-4503
Adam Burgasser https://orcid.org/0000-0002-6523-9536
Sean Carey https://orcid.org/0000-0002-0221-6871
Julien de Wit https://orcid.org/0000-0003-2415-2191
Daniel Fabrycky https://orcid.org/0000-0003-3750-0183
Daniel Foreman-Mackey https://orcid.org/0000-0002-
9328-5652
Jonas Haldemann https://orcid.org/0000-0003-1231-2389
David M. Hernandez https://orcid.org/0000-0001-
7648-0926
James Ingalls https://orcid.org/0000-0003-4714-1364
Emmanuel Jehin https://orcid.org/0000-0001-8923-488X
Zachary Langford https://orcid.org/0000-0001-7574-4440
Jérémy Leconte https://orcid.org/0000-0002-3555-480X
Susan M. Lederer https://orcid.org/0000-0003-2805-8653
Rodrigo Luger https://orcid.org/0000-0002-0296-3826
Renu Malhotra https://orcid.org/0000-0002-1226-3305
Victoria S. Meadows https://orcid.org/0000-0002-
1386-1710
Brett M. Morris https://orcid.org/0000-0003-2528-3409
Francisco J. Pozuelos https://orcid.org/0000-0003-
1572-7707
Didier Queloz https://orcid.org/0000-0002-3012-0316
Sean N. Raymond https://orcid.org/0000-0001-8974-0758
Franck Selsis https://orcid.org/0000-0001-9619-5356
Marko Sestovic https://orcid.org/0000-0002-8124-8360
Amaury H. M. J. Triaud https://orcid.org/0000-0002-
5510-8751
Valerie Van Grootel https://orcid.org/0000-0003-
2144-4316

References

Agol, E., & Fabrycky, D. C. 2018, in Handbook of Exoplanets, ed.
H. J. Deeg & J. A. Belmonte (Cham: Springer), 7

Agol, E., Luger, R., & Foreman-Mackey, D. 2020, AJ, 159, 123
Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989
Allard, F., Homeier, D., & Freytag, B. 2011, in ASP Conf. Ser. 448, 16th

Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ed.
C. M. Johns-Krull, M. K. Browning, & A. A. West (San Francisco, CA:
ASP), 91

Allard, F., Homeier, D., & Freytag, B. 2012, RSPTA, 370, 2765
Asphaug, E., & Reufer, A. 2014, NatGe, 7, 564
Barkaoui, K., Burdanov, A., Hellier, C., et al. 2019, AJ, 157, 43
Barr, A. C. 2016, JGRE, 121, 1573
Barstow, J. K., & Irwin, P. G. J. 2016, MNRAS, 461, L92
Batalha, N. E., Lewis, N. K., Line, M. R., Valenti, J., & Stevenson, K. 2018,

ApJL, 856, L34
Benz, W., Slattery, W. L., & Cameron, A. G. W. 1988, Icar, 74, 516
Berger, T. A., Huber, D., Gaidos, E., & van Saders, J. L. 2018, ApJ, 866, 99
Betancourt, M. 2017, arXiv:1701.02434

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. 2017, SIAMR, 59, 65
Birkmann, S. M., Ferruit, P., Rawle, T., et al. 2016, Proc. SPIE, 9904, 99040B
Bitsch, B., & Battistini, C. 2019, A&A, 633, A10
Bolmont, E., Demory, B.-O., Blanco-Cuaresma, S., et al. 2020, A&A,

635, A117
Bolmont, E., Selsis, F., Owen, J. E., et al. 2017, MNRAS, 464, 3728
Bond, J. C., Lauretta, D. S., & Orien, D. P. 2010, Icar, 205, 321
Bourrier, V., de Wit, J., Bolmont, E., et al. 2017, AJ, 154, 121
Brasser, R., Barr, A. C., & Dobos, V. 2019, MNRAS, 487, 34
Brown, B. P., Oishi, J. S., Vasil, G. M., Lecoanet, D., & Burns, K. J. 2020,

ApJL, 902, L3
Burdanov, A., Delrez, L., Gillon, M., & Jehin, E. 2018, in Handbook of

Exoplanets, ed. H. J. Deeg & J. A. Belmonte (Cham: Springer), 130
Burdanov, A. Y., Lederer, S. M., Gillon, M., et al. 2019, MNRAS, 487, 1634
Burgasser, A. J., & Mamajek, E. E. 2017, ApJ, 845, 110
Carey, S. J., Lacy, M. D., Laine, S. J., et al. 2004, Proc. SPIE, 5487, 211
Carter, J. A., Agol, E., Chaplin, W. J., et al. 2012, Sci, 337, 556
Casali, M., Adamson, A., de Oliveira, C. A., et al. 2007, A&A, 467, 777
Caswell, T. A., Droettboom, M., Lee, A., et al. 2020, matplotlib/matplotlib:

REL: v3.3.1, Zenodo, doi:10.5281/ZENODO.592536
Christiansen, J. 2018, in Handbook of Exoplanets, ed. H. J. Deeg &

J. A. Belmonte (Cham: Springer), 150
Claret, A. 2018, A&A, 618, A20
Czesla, S., Huber, K. F., Wolter, U., Schröter, S., & Schmitt, J. H. M. M. 2009,

A&A, 505, 1277
Dai, F., Masuda, K., Winn, J. N., & Zeng, L. 2019, ApJ, 883, 79
de Wit, J., Wakeford, H. R., Gillon, M., et al. 2016, Natur, 537, 69
de Wit, J., Wakeford, H. R., Lewis, N. K., et al. 2018, NatAs, 2, 214
Deck, K. M., & Agol, E. 2015, ApJ, 802, 116
Dehnen, W., & Hernandez, D. M. 2017, MNRAS, 465, 1201
Delisle, J.-B. 2017, A&A, 605, A96
Delrez, L., Gillon, M., Queloz, D., et al. 2018a, Proc. SPIE, 10700, 107001I
Delrez, L., Gillon, M., Triaud, A. H. M. J., et al. 2018b, MNRAS, 475, 3577
Dorn, C., Khan, A., Heng, K., et al. 2015, A&A, 577, A83
Dorn, C., Mosegaard, K., Grimm, S. L., & Alibert, Y. 2018, ApJ, 865, 20
Dorn, C., Venturini, J., Khan, A., et al. 2016, A&A, 597, A37
Doyle, A. E., Young, E. D., Klein, B., Zuckerman, B., & Schlichting, H. E.

2019, Sci, 366, 356
Dressing, C. D., Charbonneau, D., Dumusque, X., et al. 2015, ApJ, 800, 135
Duane, S., Kennedy, A., Pendleton, B. J., & Roweth, D. 1987, PhLB, 195, 216
Ducrot, E., Gillon, M., Delrez, L., et al. 2020, A&A, 640, A112
Ducrot, E., Sestovic, M., Morris, B. M., et al. 2018, AJ, 156, 218
Eastman, J., Gaudi, B. S., & Agol, E. 2013, PASP, 125, 83
Eastman, J., Siverd, R., & Gaudi, B. S. 2010, PASP, 122, 935
Elkins-Tanton, L. T., & Seager, S. 2008, ApJ, 688, 628
Elser, S., Meyer, M. R., & Moore, B. 2012, Icar, 221, 859
Fabrycky, D. C. 2010, in Exoplanets, ed. S. Seager (Tucson, AZ: Univ.

Arizona Press), 217
Fauchez, T. J., Turbet, M., Villanueva, G. L., et al. 2019, ApJ, 887, 194
Fauchez, T. J., Turbet, M., Wolf, E. T., et al. 2020, GMD, 13, 707
Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10
Feng, F., Tuomi, M., Jones, H. R. A., et al. 2017, AJ, 154, 135
Fisher, R. A. 1925, Metron, 5, 90
Ford, E. B. 2006, ApJ, 642, 505
Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R. 2017, AJ,

154, 220
Fulton, B. J., & Petigura, E. A. 2018, AJ, 156, 264
Gardner, J. P., Mather, J. C., Clampin, M., et al. 2006, SSRv, 123, 485
Gillon, M. 2018, NatAs, 2, 344
Gillon, M., Jehin, E., Fumel, A., Magain, P., & Queloz, D. 2013, in EPJ Web

of Conf. 47, Hot Planets and Cool Stars (Garching: EDP Sciences), 03001
Gillon, M., Jehin, E., Lederer, S. M., et al. 2016, Natur, 533, 221
Gillon, M., Jehin, E., Magain, P., et al. 2011, in EPJ Web of Conf. 11,

Detection and Dynamics of Transiting Exoplanets (Garching: EDP
Sciences), 06002

Gillon, M., Meadows, V., Agol, E., et al. 2020, arXiv:2002.04798
Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Natur, 542, 456
Gonçalves Ferrari, G., Boekholt, T., & Portegies Zwart, S. F. 2014, MNRAS,

440, 719
Gonzales, E. C., Faherty, J. K., Gagné, J., et al. 2019, ApJ, 886, 131
Goodman, J., & Weare, J. 2010, Communications in Applied Mathematics and

Computational Science, 5, 65
Grimm, S. L., Demory, B.-O., Gillon, M., et al. 2018, A&A, 613, A68
Grimm, S. L., & Stadel, J. G. 2014, ApJ, 796, 23
Hakim, K., Rivoldini, A., Hoolst, T. V., et al. 2018, Icar, 313, 61
Hamers, A. S., & Zwart, S. F. P. 2016, MNRAS, 459, 2827

37

The Planetary Science Journal, 2:1 (38pp), 2021 February Agol et al.

https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0002-0802-9145
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0001-6110-4610
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0002-0632-4407
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0003-2260-9856
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0002-7008-6888
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0001-6108-4808
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0003-1462-7739
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0002-9355-5165
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0001-9892-2406
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0003-1464-9276
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-6285-9847
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0001-5657-4503
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-6523-9536
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0002-0221-6871
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-2415-2191
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0003-3750-0183
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0002-9328-5652
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0003-1231-2389
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0001-7648-0926
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0003-4714-1364
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-8923-488X
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0001-7574-4440
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0002-3555-480X
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0003-2805-8653
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-0296-3826
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1226-3305
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0002-1386-1710
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-2528-3409
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0003-1572-7707
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0002-3012-0316
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-8974-0758
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0001-9619-5356
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-8124-8360
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0002-5510-8751
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://orcid.org/0000-0003-2144-4316
https://ui.adsabs.harvard.edu/abs/2018haex.bookE...7A/abstract
https://doi.org/10.3847/1538-3881/ab4fee
https://ui.adsabs.harvard.edu/abs/2020AJ....159..123A/abstract
https://doi.org/10.1086/672273
https://ui.adsabs.harvard.edu/abs/2013PASP..125..989A/abstract
https://ui.adsabs.harvard.edu/abs/2011ASPC..448...91A/abstract
https://doi.org/10.1098/rsta.2011.0269
https://ui.adsabs.harvard.edu/abs/2012RSPTA.370.2765A/abstract
https://doi.org/10.1038/ngeo2189
https://ui.adsabs.harvard.edu/abs/2014NatGe...7..564A/abstract
https://doi.org/10.3847/1538-3881/aaf422
https://ui.adsabs.harvard.edu/abs/2019AJ....157...43B/abstract
https://doi.org/10.1002/2016JE005098
https://ui.adsabs.harvard.edu/abs/2016JGRE..121.1573B/abstract
https://doi.org/10.1093/mnrasl/slw109
https://ui.adsabs.harvard.edu/abs/2016MNRAS.461L..92B/abstract
https://doi.org/10.3847/2041-8213/aab896
https://ui.adsabs.harvard.edu/abs/2018ApJ...856L..34B/abstract
https://doi.org/10.1016/0019-1035(88)90118-2
https://ui.adsabs.harvard.edu/abs/1988Icar...74..516B/abstract
https://doi.org/10.3847/1538-4357/aada83
https://ui.adsabs.harvard.edu/abs/2018ApJ...866...99B/abstract
http://arxiv.org/abs/1701.02434
https://doi.org/10.1137/141000671
https://doi.org/10.1117/12.2231837
https://ui.adsabs.harvard.edu/abs/2016SPIE.9904E..0BB/abstract
https://doi.org/10.1051/0004-6361/201936463
https://ui.adsabs.harvard.edu/abs/2020A&A...633A..10B/abstract
https://doi.org/10.1051/0004-6361/202037546
https://ui.adsabs.harvard.edu/abs/2020A&A...635A.117B/abstract
https://ui.adsabs.harvard.edu/abs/2020A&A...635A.117B/abstract
https://doi.org/10.1093/mnras/stw2578
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3728B/abstract
https://doi.org/10.1016/j.icarus.2009.07.037
https://ui.adsabs.harvard.edu/abs/2010Icar..205..321B/abstract
https://doi.org/10.3847/1538-3881/aa859c
https://ui.adsabs.harvard.edu/abs/2017AJ....154..121B/abstract
https://doi.org/10.1093/mnras/stz1231
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487...34B/abstract
https://doi.org/10.3847/2041-8213/abb9a4
https://ui.adsabs.harvard.edu/abs/2020ApJ...902L...3B/abstract
https://ui.adsabs.harvard.edu/abs/2018haex.bookE.130B/abstract
https://doi.org/10.1093/mnras/stz1375
https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.1634B/abstract
https://doi.org/10.3847/1538-4357/aa7fea
https://ui.adsabs.harvard.edu/abs/2017ApJ...845..110B/abstract
https://doi.org/10.1117/12.550968
https://ui.adsabs.harvard.edu/abs/2004SPIE.5487..211C/abstract
https://doi.org/10.1126/science.1223269
https://ui.adsabs.harvard.edu/abs/2012Sci...337..556C/abstract
https://doi.org/10.1051/0004-6361:20066514
https://ui.adsabs.harvard.edu/abs/2007A&A...467..777C/abstract
https://doi.org/10.5281/ZENODO.592536
https://ui.adsabs.harvard.edu/abs/2018haex.bookE.150C/abstract
https://doi.org/10.1051/0004-6361/201833060
https://ui.adsabs.harvard.edu/abs/2018A&A...618A..20C/abstract
https://doi.org/10.1051/0004-6361/200912454
https://ui.adsabs.harvard.edu/abs/2009A&A...505.1277C/abstract
https://doi.org/10.3847/1538-4357/ab3a3b
https://ui.adsabs.harvard.edu/abs/2019ApJ...883...79D/abstract
https://doi.org/10.1038/nature18641
https://ui.adsabs.harvard.edu/abs/2016Natur.537...69D/abstract
https://doi.org/10.1038/s41550-017-0374-z
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..214D/abstract
https://doi.org/10.1088/0004-637X/802/2/116
https://ui.adsabs.harvard.edu/abs/2015ApJ...802..116D/abstract
https://doi.org/10.1093/mnras/stw2758
https://ui.adsabs.harvard.edu/abs/2017MNRAS.465.1201D/abstract
https://doi.org/10.1051/0004-6361/201730857
https://ui.adsabs.harvard.edu/abs/2017A&A...605A..96D/abstract
https://doi.org/10.1117/12.2312475
https://ui.adsabs.harvard.edu/abs/2018SPIE10700E..1ID/abstract
https://doi.org/10.1093/mnras/sty051
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.3577D/abstract
https://doi.org/10.1051/0004-6361/201424915
https://ui.adsabs.harvard.edu/abs/2015A&A...577A..83D/abstract
https://doi.org/10.3847/1538-4357/aad95d
https://ui.adsabs.harvard.edu/abs/2018ApJ...865...20D/abstract
https://doi.org/10.1051/0004-6361/201628708
https://ui.adsabs.harvard.edu/abs/2017A&A...597A..37D/abstract
https://doi.org/10.1126/science.aax3901
https://ui.adsabs.harvard.edu/abs/2019Sci...366..356D/abstract
https://doi.org/10.1088/0004-637X/800/2/135
https://ui.adsabs.harvard.edu/abs/2015ApJ...800..135D/abstract
https://doi.org/10.1016/0370-2693(87)91197-X
https://ui.adsabs.harvard.edu/abs/1987PhLB..195..216D/abstract
https://doi.org/10.1051/0004-6361/201937392
https://ui.adsabs.harvard.edu/abs/2020A&A...640A.112D/abstract
https://doi.org/10.3847/1538-3881/aade94
https://ui.adsabs.harvard.edu/abs/2018AJ....156..218D/abstract
https://doi.org/10.1086/669497
https://ui.adsabs.harvard.edu/abs/2013PASP..125...83E/abstract
https://doi.org/10.1086/655938
https://ui.adsabs.harvard.edu/abs/2010PASP..122..935E/abstract
https://doi.org/10.1086/592316
https://ui.adsabs.harvard.edu/abs/2008ApJ...688..628E/abstract
https://doi.org/10.1016/j.icarus.2012.09.016
https://ui.adsabs.harvard.edu/abs/2012Icar..221..859E/abstract
https://ui.adsabs.harvard.edu/abs/2010exop.book..217F/abstract
https://doi.org/10.3847/1538-4357/ab5862
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..194F/abstract
https://doi.org/10.5194/gmd-13-707-2020
https://ui.adsabs.harvard.edu/abs/2020GMD....13..707F/abstract
https://doi.org/10.1086/422843
https://ui.adsabs.harvard.edu/abs/2004ApJS..154...10F/abstract
https://doi.org/10.3847/1538-3881/aa83b4
https://ui.adsabs.harvard.edu/abs/2017AJ....154..135F/abstract
https://doi.org/10.1086/500802
https://ui.adsabs.harvard.edu/abs/2006ApJ...642..505F/abstract
https://doi.org/10.3847/1538-3881/aa9332
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://ui.adsabs.harvard.edu/abs/2017AJ....154..220F/abstract
https://doi.org/10.3847/1538-3881/aae828
https://ui.adsabs.harvard.edu/abs/2018AJ....156..264F/abstract
https://doi.org/10.1007/s11214-006-8315-7
https://ui.adsabs.harvard.edu/abs/2006SSRv..123..485G/abstract
https://doi.org/10.1038/s41550-018-0443-y
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..344G/abstract
https://ui.adsabs.harvard.edu/abs/2013EPJWC..4703001G/abstract
https://doi.org/10.1038/nature17448
https://ui.adsabs.harvard.edu/abs/2016Natur.533..221G/abstract
https://ui.adsabs.harvard.edu/abs/2011EPJWC..1106002G/abstract
http://arxiv.org/abs/2002.04798
https://doi.org/10.1038/nature21360
https://ui.adsabs.harvard.edu/abs/2017Natur.542..456G/abstract
https://doi.org/10.1093/mnras/stu282
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440..719G/abstract
https://ui.adsabs.harvard.edu/abs/2014MNRAS.440..719G/abstract
https://doi.org/10.3847/1538-4357/ab48fc
https://ui.adsabs.harvard.edu/abs/2019ApJ...886..131G/abstract
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.2140/camcos.2010.5.65
https://ui.adsabs.harvard.edu/abs/2010CAMCS...5...65G/abstract
https://doi.org/10.1051/0004-6361/201732233
https://ui.adsabs.harvard.edu/abs/2018A&A...613A..68G/abstract
https://doi.org/10.1088/0004-637X/796/1/23
https://ui.adsabs.harvard.edu/abs/2014ApJ...796...23G/abstract
https://doi.org/10.1016/j.icarus.2018.05.005
https://ui.adsabs.harvard.edu/abs/2018Icar..313...61H/abstract
https://doi.org/10.1093/mnras/stw784
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.2827H/abstract


He, M. Y., Triaud, A. H. M. J., & Gillon, M. 2016, MNRAS, 464, 2687
Hernandez, D. M., & Bertschinger, E. 2015, MNRAS, 452, 1934
Hernandez, D. M., & Dehnen, W. 2017, MNRAS, 468, 2614
Hirano, T., Gaidos, E., Winn, J. N., et al. 2020, ApJL, 890, L27
Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP, 126, 398
Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90
Ingalls, J. G., Krick, J. E., Carey, S. J., et al. 2016, AJ, 152, 44
Ioannidis, P., Huber, K. F., & Schmitt, J. H. M. M. 2015, A&A, 585, A72
Jasche, J., & Kitaura, F. S. 2010, MNRAS, 407, 29
Jehin, E., Gillon, M., Queloz, D., et al. 2011, Msngr, 145, 2
Jehin, E., Gillon, M., Queloz, D., et al. 2018, Msngr, 174, 2
Jontof-Hutter, D., Ford, E. B., Rowe, J. F., et al. 2016, ApJ, 820, 39
Jontof-Hutter, D., Truong, V. H., Ford, E. B., Robertson, P., & Terrien, R. C.

2018, AJ, 155, 239
Juncher, D., Jørgensen, U. G., & Helling, C. 2017, A&A, 608, A70
Khan, A., Liebske, C., Rozel, A., et al. 2018, JGRE, 123, 575
Kipping, D. 2018, RNAAS, 2, 136
Kipping, D. M. 2012, MNRAS, 427, 2487
Kipping, D. M. 2013, MNRAS, 435, 2152
Kipping, D. M., Dunn, W. R., Jasinski, J. M., & Manthri, V. P. 2012, MNRAS,

421, 1166
Kite, E. S., Jr., B., F., Schaefer, L., & Ford, E. B. 2020, ApJ, 891, 111
Klein, B., & Donati, J.-F. 2019, MNRAS, 488, 5114
Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A., & Megeath, S. T.

2008, ApJ, 673, 526
Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, ApJ, 765, 131
Krissansen-Totton, J., Garland, R., Irwin, P., & Catling, D. C. 2018, AJ,

156, 114
Leclercq, F., Pisani, A., & Wandelt, B. 2014, in Proc. Int. School of Physics,

Enrico Fermi, Vol. 186, New Horizons for Observational Cosmology
(Amsterdam: IOS Press), 189

Lichtenberg, T., Golabek, G. J., Burn, R., et al. 2019, NatAs, 3, 307
Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, A&A, 616, A2
Linial, I., Gilbaum, S., & Sari, R. 2018, ApJ, 860, 16
Lissauer, J. J. 2007, ApJL, 660, L149
Lithwick, Y., Xie, J., & Wu, Y. 2012, ApJ, 761, 122
Lodders, K., Palme, H., & Gail, H.-P. 2009, in Solar System, Landolt-

Börnstein - Group VI Astronomy and Astrophysics, Vol. 4B, ed. J. Trümper
(Berlin: Springer), 712

Luger, R., Lustig-Yaeger, J., & Agol, E. 2017a, ApJ, 851, 94
Luger, R., Sestovic, M., Kruse, E., et al. 2017b, NatAs, 1, 0129
Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019, AJ, 158, 27
Mah, J. 2018, Master’s thesis, Univ. Hong Kong, https://hub.hku.hk/handle/

10722/265344
Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63
Marcus, R. A., Sasselov, D., Hernquist, L., & Stewart, S. T. 2010, ApJL,

712, L73
McCullough, P. R., Crouzet, N., Deming, D., & Madhusudhan, N. 2014, ApJ,

791, 55
McDonough, W. 2014, in Treatise on Geochemistry, ed. H. D. Holland &

K. K. Turekian (2nd ed.; Oxford: Elsevier), 559
Monnahan, C. C., Thorson, J. T., & Branch, T. A. 2016, Methods in Ecology

and Evolution, 8, 339
Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T., & Fortney, J. J.

2017, ApJ, 850, 121
Morris, B. M., Agol, E., Davenport, J. R. A., & Hawley, S. L. 2018a, ApJ,

857, 39

Morris, B. M., Agol, E., Hebb, L., et al. 2018b, ApJL, 863, L32
Murray, C. A., Delrez, L., Pedersen, P. P., et al. 2020, MNRAS, 495, 2446
Neal, R. M. 2011, in Handbook of Markov Chain Monte Carlo, ed. S. Brooks

et al. (Boca Raton, FL: CRC Press), 113, https://www.mcmchandbook.net/
HandbookChapter5.pdf

Öberg, K. I., & Bergin, E. A. 2016, ApJL, 831, L19
Oshagh, M., Santos, N. C., Boisse, I., et al. 2013, A&A, 556, A19
Oshagh, M., Santos, N. C., Ehrenreich, D., et al. 2014, A&A, 568, A99
Owen, J. E., & Wu, Y. 2017, ApJ, 847, 29
Palme, H., Lodders, K., & Jones, A. 2014, in Treatise on Geochemistry, ed.

H. D. Holland & K. K. Turekian (2nd ed.; Oxford: Elsevier), 15
Papaloizou, J. C. B. 2014, IJAsB, 14, 291
Pletser, V., & Basano, L. 2017, arXiv:1703.04545
Plotnykov, M., & Valencia, D. 2020, MNRAS, 499, 932
Quarles, B., Quintana, E. V., Lopez, E., Schlieder, J. E., & Barclay, T. 2017,

ApJL, 842, L5
Rackham, B. V., Apai, D., & Giampapa, M. S. 2018, ApJ, 853, 122
Revels, J., Lubin, M., & Papamarkou, T. 2016, arXiv:1607.07892
Sagear, S. A., Skinner, J. N., & Muirhead, P. S. 2020, AJ, 160, 19
Scora, J., Valencia, D., Morbidelli, A., & Jacobson, S. 2020, MNRAS,

493, 4910
Seager, S., & Mallen-Ornelas, G. 2003, ApJ, 585, 1038
Sestovic, M., & Demory, B.-O. 2020, A&A, 641, A170
Siebenmorgen, R., Carraro, G., Valenti, E., et al. 2011, Msngr, 144, 9
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icar, 191, 337
Spalding, C., & Adams, F. C. 2020, PSJ, 1, 7
Steele, I. A., Smith, R. J., Rees, P. C., et al. 2004, Proc. SPIE, 5489, 679
Stetson, P. B. 1987, PASP, 99, 191
Storrie-Lombardi, L. J., & Dodd, S. R. 2010, Proc. SPIE, 7737, 77370L
Tamayo, D., Rein, H., Petrovich, C., & Murray, N. 2017, ApJL, 840, L19
ter Braak, C. 2006, Statistics and Computing, 16, 239
Tinney, C. G., Ryder, S. D., Ellis, S. C., et al. 2004, Proc. SPIE, 5492, 998
Turbet, M., Bolmont, E., Ehrenreich, D., et al. 2020, A&A, 638, A41
Turbet, M., Bolmont, E., Leconte, J., et al. 2018, A&A, 612, A86
Turbet, M., Ehrenreich, D., Lovis, C., Bolmont, E., & Fauchez, T. 2019, A&A,

628, A12
Unterborn, C. T., Desch, S. J., Hinkel, N. R., & Lorenzo, A. 2018, NatAs,

2, 297
Valencia, D., Sasselov, D. D., & O’Connell, R. J. 2007, ApJ, 665, 1413
Van Grootel, V., Fernandes, C. S., Gillon, M., et al. 2018, ApJ, 853, 30
Vida, K., Kővári, Z., Pál, A., Oláh, K., & Kriskovics, L. 2017, ApJ, 841,

124
Wakeford, H. R., Lewis, N. K., Fowler, J., et al. 2019, AJ, 157, 11
Wang, H. S., Lineweaver, C. H., & Ireland, T. R. 2019, Icar, 328, 287
Weidenschilling, S. J. 1977, MNRAS, 180, 57
Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1
Winn, J. N. 2010, in Exoplanets, ed. S. Seager (Tucson, AZ: Univ. Arizona

Press), 55
Wisdom, J., & Hernandez, D. M. 2015, MNRAS, 453, 3015
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Wit, E., van den Heuvel, E., & Romeijn, J.-W. 2012, Statistica Neerlandica,

66, 217
Wolf, E. T. 2017, ApJL, 839, L1
Wunderlich, F., Godolt, M., Grenfell, J. L., et al. 2019, A&A, 624, A49
Yadav, R. K., Gastine, T., Christensen, U. R., & Reiners, A. 2015, A&A,

573, A68
Zhang, Z., Zhou, Y., Rackham, B. V., & Apai, D. 2018, AJ, 156, 178

38

The Planetary Science Journal, 2:1 (38pp), 2021 February Agol et al.

https://doi.org/10.1093/mnras/stw2391
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.2687H/abstract
https://doi.org/10.1093/mnras/stv1439
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.1934H/abstract
https://doi.org/10.1093/mnras/stx547
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.2614H/abstract
https://doi.org/10.3847/2041-8213/ab74dc
https://ui.adsabs.harvard.edu/abs/2020ApJ...890L..27H/abstract
https://doi.org/10.1086/676406
https://ui.adsabs.harvard.edu/abs/2014PASP..126..398H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.3847/0004-6256/152/2/44
https://ui.adsabs.harvard.edu/abs/2016AJ....152...44I/abstract
https://doi.org/10.1051/0004-6361/201527184
https://ui.adsabs.harvard.edu/abs/2016A&A...585A..72I/abstract
https://doi.org/10.1111/j.1365-2966.2010.16897.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.407...29J/abstract
https://ui.adsabs.harvard.edu/abs/2011Msngr.145....2J/abstract
https://ui.adsabs.harvard.edu/abs/2018Msngr.174....2J/abstract
https://doi.org/10.3847/0004-637X/820/1/39
https://ui.adsabs.harvard.edu/abs/2016ApJ...820...39J/abstract
https://doi.org/10.3847/1538-3881/aabee8
https://ui.adsabs.harvard.edu/abs/2018AJ....155..239J/abstract
https://doi.org/10.1051/0004-6361/201629977
https://ui.adsabs.harvard.edu/abs/2017A&A...608A..70J/abstract
https://doi.org/10.1002/2017JE005371
https://ui.adsabs.harvard.edu/abs/2018JGRE..123..575K/abstract
https://doi.org/10.3847/2515-5172/aad6e8
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2..136K/abstract
https://doi.org/10.1111/j.1365-2966.2012.22124.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2487K/abstract
https://doi.org/10.1093/mnras/stt1435
https://ui.adsabs.harvard.edu/abs/2013MNRAS.435.2152K/abstract
https://doi.org/10.1111/j.1365-2966.2011.20376.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.1166K/abstract
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.1166K/abstract
https://doi.org/10.3847/1538-4357/ab6ffb
https://ui.adsabs.harvard.edu/abs/2020ApJ...891..111K/abstract
https://doi.org/10.1093/mnras/stz1953
https://ui.adsabs.harvard.edu/abs/2019MNRAS.488.5114K/abstract
https://doi.org/10.1086/523894
https://ui.adsabs.harvard.edu/abs/2008ApJ...673..526K/abstract
https://doi.org/10.1088/0004-637X/765/2/131
https://ui.adsabs.harvard.edu/abs/2013ApJ...765..131K/abstract
https://doi.org/10.3847/1538-3881/aad564
https://ui.adsabs.harvard.edu/abs/2018AJ....156..114K/abstract
https://ui.adsabs.harvard.edu/abs/2018AJ....156..114K/abstract
https://doi.org/10.1038/s41550-018-0688-5
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..307L/abstract
https://doi.org/10.1051/0004-6361/201832727
https://ui.adsabs.harvard.edu/abs/2018A&A...616A...2L/abstract
https://doi.org/10.3847/1538-4357/aac21b
https://ui.adsabs.harvard.edu/abs/2018ApJ...860...16L/abstract
https://doi.org/10.1086/518121
https://ui.adsabs.harvard.edu/abs/2007ApJ...660L.149L/abstract
https://doi.org/10.1088/0004-637X/761/2/122
https://ui.adsabs.harvard.edu/abs/2012ApJ...761..122L/abstract
https://ui.adsabs.harvard.edu/abs/2009LanB...4B..712L/abstract
https://doi.org/10.3847/1538-4357/aa9c43
https://ui.adsabs.harvard.edu/abs/2017ApJ...851...94L/abstract
https://doi.org/10.1038/s41550-017-0129
https://ui.adsabs.harvard.edu/abs/2017NatAs...1..129L/abstract
https://doi.org/10.3847/1538-3881/ab21e0
https://ui.adsabs.harvard.edu/abs/2019AJ....158...27L/abstract
https://hub.hku.hk/handle/10722/265344
https://hub.hku.hk/handle/10722/265344
https://doi.org/10.3847/1538-4357/aaf3bc
https://ui.adsabs.harvard.edu/abs/2019ApJ...871...63M/abstract
https://doi.org/10.1088/2041-8205/712/1/L73
https://ui.adsabs.harvard.edu/abs/2010ApJ...712L..73M/abstract
https://ui.adsabs.harvard.edu/abs/2010ApJ...712L..73M/abstract
https://doi.org/10.1088/0004-637X/791/1/55
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...55M/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...791...55M/abstract
https://doi.org/10.1111/2041-210X.12681
https://doi.org/10.1111/2041-210X.12681
https://doi.org/10.3847/1538-4357/aa927b
https://ui.adsabs.harvard.edu/abs/2017ApJ...850..121M/abstract
https://doi.org/10.3847/1538-4357/aab6a5
https://ui.adsabs.harvard.edu/abs/2018ApJ...857...39M/abstract
https://ui.adsabs.harvard.edu/abs/2018ApJ...857...39M/abstract
https://doi.org/10.3847/2041-8213/aad8aa
https://ui.adsabs.harvard.edu/abs/2018ApJ...863L..32M/abstract
https://doi.org/10.1093/mnras/staa1283
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495.2446M/abstract
https://www.mcmchandbook.net/HandbookChapter5.pdf
https://www.mcmchandbook.net/HandbookChapter5.pdf
https://doi.org/10.3847/2041-8205/831/2/L19
https://ui.adsabs.harvard.edu/abs/2016ApJ...831L..19O/abstract
https://doi.org/10.1051/0004-6361/201321309
https://ui.adsabs.harvard.edu/abs/2013A&A...556A..19O/abstract
https://doi.org/10.1051/0004-6361/201424059
https://ui.adsabs.harvard.edu/abs/2014A&A...568A..99O/abstract
https://doi.org/10.3847/1538-4357/aa890a
https://ui.adsabs.harvard.edu/abs/2017ApJ...847...29O/abstract
https://doi.org/10.1017/S1473550414000147
https://ui.adsabs.harvard.edu/abs/2015IJAsB..14..291P/abstract
http://arxiv.org/abs/1703.04545
https://doi.org/10.1093/mnras/staa2615
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499..932P/abstract
https://doi.org/10.3847/2041-8213/aa74bf
https://ui.adsabs.harvard.edu/abs/2017ApJ...842L...5Q/abstract
https://doi.org/10.3847/1538-4357/aaa08c
https://ui.adsabs.harvard.edu/abs/2018ApJ...853..122R/abstract
http://arxiv.org/abs/1607.07892
https://doi.org/10.3847/1538-3881/ab9224
https://ui.adsabs.harvard.edu/abs/2020AJ....160...19S/abstract
https://doi.org/10.1093/mnras/staa568
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4910S/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493.4910S/abstract
https://doi.org/10.1086/346105
https://ui.adsabs.harvard.edu/abs/2003ApJ...585.1038S/abstract
https://doi.org/10.1051/0004-6361/202037732
https://ui.adsabs.harvard.edu/abs/2020A&A...641A.170S/abstract
https://ui.adsabs.harvard.edu/abs/2011Msngr.144....9S/abstract
https://doi.org/10.1016/j.icarus.2007.04.006
https://ui.adsabs.harvard.edu/abs/2007Icar..191..337S/abstract
https://doi.org/10.3847/PSJ/ab781f
https://ui.adsabs.harvard.edu/abs/2020PSJ.....1....7S/abstract
https://doi.org/10.1117/12.551456
https://ui.adsabs.harvard.edu/abs/2004SPIE.5489..679S/abstract
https://doi.org/10.1086/131977
https://ui.adsabs.harvard.edu/abs/1987PASP...99..191S/abstract
https://doi.org/10.1117/12.857827
https://ui.adsabs.harvard.edu/abs/2010SPIE.7737E..0LS/abstract
https://doi.org/10.3847/2041-8213/aa70ea
https://ui.adsabs.harvard.edu/abs/2017ApJ...840L..19T/abstract
https://doi.org/10.1007/s11222-006-8769-1
https://ui.adsabs.harvard.edu/abs/2006S&C....16..239T/abstract
https://doi.org/10.1117/12.550980
https://ui.adsabs.harvard.edu/abs/2004SPIE.5492..998T/abstract
https://doi.org/10.1051/0004-6361/201937151
https://ui.adsabs.harvard.edu/abs/2020A&A...638A..41T/abstract
https://doi.org/10.1051/0004-6361/201731620
https://ui.adsabs.harvard.edu/abs/2018A&A...612A..86T/abstract
https://doi.org/10.1051/0004-6361/201935585
https://ui.adsabs.harvard.edu/abs/2019A&A...628A..12T/abstract
https://ui.adsabs.harvard.edu/abs/2019A&A...628A..12T/abstract
https://doi.org/10.1038/s41550-018-0411-6
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..297U/abstract
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..297U/abstract
https://doi.org/10.1086/519554
https://ui.adsabs.harvard.edu/abs/2007ApJ...665.1413V/abstract
https://doi.org/10.3847/1538-4357/aaa023
https://ui.adsabs.harvard.edu/abs/2018ApJ...853...30V/abstract
https://doi.org/10.3847/1538-4357/aa6f05
https://ui.adsabs.harvard.edu/abs/2017ApJ...841..124V/abstract
https://ui.adsabs.harvard.edu/abs/2017ApJ...841..124V/abstract
https://doi.org/10.3847/1538-3881/aaf04d
https://ui.adsabs.harvard.edu/abs/2019AJ....157...11W/abstract
https://doi.org/10.1016/j.icarus.2019.03.018
https://ui.adsabs.harvard.edu/abs/2019Icar..328..287W/abstract
https://doi.org/10.1093/mnras/180.2.57
https://ui.adsabs.harvard.edu/abs/1977MNRAS.180...57W/abstract
https://doi.org/10.1086/422992
https://ui.adsabs.harvard.edu/abs/2004ApJS..154....1W/abstract
https://ui.adsabs.harvard.edu/abs/2010arXiv1001.2010W/abstract
https://doi.org/10.1093/mnras/stv1862
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453.3015W/abstract
https://doi.org/10.1086/115978
https://ui.adsabs.harvard.edu/abs/1991AJ....102.1528W/abstract
https://doi.org/10.1111/j.1467-9574.2012.00530.x
https://doi.org/10.3847/2041-8213/aa693a
https://ui.adsabs.harvard.edu/abs/2017ApJ...839L...1W/abstract
https://doi.org/10.1051/0004-6361/201834504
https://ui.adsabs.harvard.edu/abs/2019A&A...624A..49W/abstract
https://doi.org/10.1051/0004-6361/201424589
https://ui.adsabs.harvard.edu/abs/2015A&A...573A..68Y/abstract
https://ui.adsabs.harvard.edu/abs/2015A&A...573A..68Y/abstract
https://doi.org/10.3847/1538-3881/aade4f
https://ui.adsabs.harvard.edu/abs/2018AJ....156..178Z/abstract

	1. Introduction
	2. New TRAPPIST-1 Observations
	2.1. Spitzer Observations
	2.2. Ground-based Observations
	2.3. K2 and HST Observations
	2.4. Transit-time Measurements and Analysis

	3. Excess of Outliers and Robust Likelihood Model
	4. Transit-timing Analysis
	4.1. N-body Integration
	4.2. Uncertainty Analysis
	4.3. Markov Chain Sampler
	4.4. Results
	4.5. Independent N-body TTV Analysis

	5. Photodynamical Analysis
	5.1. Photodynamic Results
	5.2. Mutual Inclinations and Stellar Density

	6. Planet Densities and Mass–Radius Relation
	7. Stellar Parameters
	8. Search for an Eighth Planet
	9. Interior Compositions
	9.1. Initial Analysis of Planet Densities across the System
	9.2. Range of Possible Interior Compositions and Volatile Contents
	9.2.1. Core Mass Fraction
	9.2.2. Surface Water Content
	9.2.3. Core-free Planets


	10. Discussion
	10.1. Timing Uncertainties
	10.2. Possible Systematic Errors
	10.3. Planet Masses and Radii in Context
	10.4. Comparison with Radial Velocities
	10.5. Planetary Dynamics
	10.5.1. Eccentricities
	10.5.2. Laplace Angles
	10.5.3. Long-term Stability

	10.6. Forecasts for JWST
	10.6.1. Forecast Transit Times
	10.6.2. Simulated JWST TTV Analysis

	10.7. Stellar Parameters

	11. Conclusions
	11.1. Expectations for the Compositions of the TRAPPIST-1 Planets from Formation Scenarios
	11.2. Future Work

	Appendix AApproximate Hessian Matrix
	Appendix BTransit-timing Prior
	Appendix CCorner Plots
	Appendix DTables
	References



