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Abstract

Detection of unexpected, yet relevant events is essential in daily life. fMRI studies

have revealed the involvement of the ventral attention network (VAN), including the

temporo-parietal junction (TPJ), in such process. In this MEG study with 34 partici-

pants (17 women), we used a bimodal (visual/auditory) attention task to determine

the neuronal dynamics associated with suppression of the activity of the VAN during

top-down attention and its recruitment when information from the unattended sen-

sory modality is involuntarily integrated. We observed an anticipatory power increase

of alpha/beta oscillations (12–20 Hz, previously associated with functional inhibition)

in the VAN following a cue indicating the modality to attend. Stronger VAN power

increases were associated with better task performance, suggesting that the VAN

suppression prevents shifting attention to distractors. Moreover, the TPJ was syn-

chronized with the frontal eye field in that frequency band, indicating that the dorsal

attention network (DAN) might participate in such suppression. Furthermore, we

found a 12–20 Hz power decrease and enhanced synchronization, in both the VAN

and DAN, when information between sensory modalities was congruent, suggesting

an involvement of these networks when attention is involuntarily enhanced due to

multisensory integration. Our results show that effective multimodal attentional allo-

cation includes the modulation of the VAN and DAN through upper-alpha/beta oscil-

lations. Altogether these results indicate that the suppressing role of alpha/beta

oscillations might operate beyond sensory regions.

K E YWORD S

alpha oscillations, attention, dorsal attention network, multisensory integration, ventral
attention network

1 | INTRODUCTION

The capacity of allocating attention toward specific stimuli, even

involuntarily, is crucial for selecting relevant information and ensuring

optimal behavior in daily life. The dorsal and ventral attention net-

works (DAN and VAN) have been shown to be involved in such pro-

cesses as revealed by functional magnetic resonance imaging (fMRI).

The DAN comprising the frontal eye fields (FEF), the superior parietal

lobules (SPL), and the inferior parietal sulci (IPS), is involved in top-

down attentional allocation while the VAN, encompassing the right

temporoparietal junction (TPJ) and ventral frontal cortex (VFC), allows

orienting attention toward unattended relevant or salient stimuli (see

Corbetta, Patel, & Shulman, 2008 for reviews; Corbetta &

Shulman, 2002; Vossel, Geng, & Fink, 2014).
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The oscillatory dynamic of the DAN and sensory areas during

top-down attention tasks have also been studied using electroenceph-

alography (EEG), magnetoencephalography (MEG), and transcranial

stimulation (e.g., Banerjee, Snyder, Molholm, & Foxe, 2011; Doesburg,

Bedo, & Ward, 2016; Horschig, Jensen, van Schouwenburg, Cools, &

Bonnefond, 2014; Marshall, O'Shea, Jensen, & Bergmann, 2015;

Popov, Kastner, & Jensen, 2017; Rohenkohl & Nobre, 2011;

Sadaghiani et al., 2012; Sauseng, Feldheim, Freunberger, &

Hummel, 2011; Siegel, Donner, Oostenveld, Fries, & Engel, 2008;

Worden, Foxe, Wang, & Simpson, 2000) while, to the best of our

knowledge, very few electrophysiological studies focused on the oscil-

latory dynamic of the VAN during involuntary allocation of attention

(ElShafei, Fornoni, Masson, Bertrand, & Bidet-Caulet, 2018;

Proskovec, Heinrichs-Graham, Wiesman, McDermott, &

Wilson, 2018; Sauseng et al., 2005). These studies have reported

theta (4–8 Hz) and alpha/beta (8–20 Hz) decreases in the DAN and

VAN during orienting of attention to relevant stimuli, or a gamma

(> 40 Hz) increase in the VAN during the presentation of distracting

(irrelevant) sounds to be ignored. However, the dynamic of the inhibi-

tion of the VAN as reported in some fMRI studies during top-down

attention has not been studied. In addition, whether the VAN is acti-

vated when involuntary attentional enhancement results from multi-

sensory integration remains unknown. The goal of the present study

is (a) to characterize the oscillatory dynamics associated with the sup-

pression of the activity of the VAN during top-down attention and

(b) to reveal for the first time the potential additional role of this net-

work in involuntary enhancement of attention across sensory

modalities.

fMRI studies have revealed that during top-down attentional pro-

cesses or during short-term memory involving high memory load, the

activity in the TPJ is suppressed (Shulman et al., 2003; Shulman,

Astafiev, McAvoy, d'Avossa, & Corbetta, 2007; Todd, Fougnie, &

Marois, 2005), suggesting that inactivation of TPJ activity protects

goal-driven behavior from distractors. Based on the literature indicat-

ing a role of alpha oscillations in functional inhibition (Bonnefond &

Jensen, 2012, 2013, 2015; Bonnefond, Kastner, & Jensen, 2017;

Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Klimesch, Sauseng, &

Hanslmayr, 2007), we predict that alpha oscillations will be high in the

TPJ following the presentation of a cue directing attention to a spe-

cific sensory modality.

In addition, some studies have focused on the involvement of the

VAN in supramodal attention tasks (Macaluso, 2010; Macaluso,

Frith, & Driver, 2002), as it can be involuntarily activated by irrelevant

stimuli coming from sensory modalities not to be attended

(e.g., auditory) but spatially congruent to relevant information

(e.g., visual) (Santangelo, Olivetti Belardinelli, Spence, &

Macaluso, 2009). In the present study, we wanted to determine

whether the VAN is also recruited when information coming from an

unattended sensory modality (e.g., visual) is congruent with the

attended one (e.g., auditory). This process is different from the tradi-

tional reorientation of attention as studied in Posner tasks, as it does

not involve a full switch of attention from one location (or modality)

to another. It is expected rather to involve an involuntary attentional

enhancement for the target due to its increased saliency, triggered by

congruency between sensory domains (Gau, Bazin, Trampel, Turner, &

Noppeney, 2020). Such enhancement should be expressed behavior-

ally as an improved performance given by congruency across modali-

ties, instead of a cost given by attentional switch from one to the

other. With a bimodal attention task, we hypothesized that the VAN

would be recruited in the congruent trials of both attention conditions

(visual or auditory), as reflected by a decrease of alpha oscillations in

the TPJ (indicating a release from suppression, see e.g., Solis-Vivanco,

Rodriguez-Violante, Cervantes-Arriaga, Justo-Guillen, and Ricardo-

Garcell (2018)) and/or an increase of gamma or theta oscillations

(ElShafei et al., 2018; Proskovec et al., 2018; Sauseng et al., 2005).

Such recruitment in congruent trials was further expected to be

related to task performance.

2 | MATERIALS AND METHODS

2.1 | Subjects

We included 36 healthy subjects attending college who were rec-

ruited from Radboud University's research participation scheme.

Inclusion criteria for all participants included Dutch as their mother

tongue, right-handedness according to the Edinburgh Handedness

Inventory (Oldfield, 1971), normal or corrected-to-normal vision, and

reported normal audition. Participants with a psychiatric or neurologi-

cal diagnosis were excluded. Two participants were excluded due to

excessive noise or movement artifacts during MEG recordings. The

final sample consisted of 17 females and 17 males, with a mean age of

23 ± 2.5 years. The study was conducted at the Donders Institute for

Brain, Cognition and Behaviour and fulfilled the Declaration of Hel-

sinki criteria (WMA, 2013).

2.2 | Experimental design

A cross-modal attention task was designed using MATLAB

(MathWorks) custom scripts and Psychtoolbox (psychtoolbox.org).

Each trial (�5 s duration) began with a black background and a gray

central fixation cross that lasted for 1 s and was projected on an

acrylic screen by an EIKI LC-XL100L projector with a resolution of

1024 × 768 and a refresh rate of 60 Hz that lasted for 1 s (Figure 1).

Subjects were asked to blink or move their eyes only during this

period. Afterwards, the fixation cross turned white and 1,100 ms later

an electro-tactile cue (2 ms) was delivered to the left or right thumb.

This cue instructed the participants to allocate attention to the visual

(Attend-visual condition; 50% of trials) or auditory (Attend-auditory

condition; 50% of trials) stimuli, respectively. The cue was adminis-

tered with two constant current high voltage stimulators (type DS7A,

Digitimer, Hertfordshire, UK; mean current = 3.83 mA). After a post-

cue interval of 1,150 ms, visual and auditory stimuli were presented

simultaneously for 200 ms, and they consisted of three syllables with-

out meaning in Dutch. They were formed by a plosive consonant and
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the same vowel (“pi,” “ti,” and “ki”). The timing of the stimuli onset

and their duration was carefully controlled. The use of the same vowel

(“i”) in all stimuli further allowed us to guarantee that the length of

the syllables was stable.

Each syllable was delivered with the same probability in both sen-

sory domains. From the total number of trials (798), roughly 75%

(599) were incongruent (different syllable between visual and auditory

modality) and 25% (199) were congruent (same syllable in both modal-

ities). The higher number of incongruent trials was originally planned

to promote anticipatory suppression of distracting information from

the irrelevant sensory modality, as this was the main objective of a

previous report in which we showed that alpha oscillations can be

phase adjusted in anticipation of relevant stimuli at sensory regions

(Solis-Vivanco, Jensen, & Bonnefond, 2018). Nevertheless, congruent

trials were included in order to explore VAN recruitment, therefore,

the focus for this study was beyond sensory areas. Moreover, this

proportion resembles oddball tasks used to explore TPJ activation by

infrequent stimuli (Corbetta & Shulman, 2002). Visual stimuli were

presented at the center of the screen in white. Auditory stimuli were

digitally created using a male voice and delivered from the computer

controlling the task to plastic ear-tubes adapted to MEG recordings

and inserted in participants' ear canals. Each syllable was associated

with either one of three buttons in a response pad. Participants were

asked to respond as accurate and fast as possible to the syllable in the

modality they were instructed to attend in each trial, by pressing the

corresponding button using their right index, middle, or ring finger.

The correspondence between the side of the cue and the modality to

attend, and the assigned syllables to the buttons were

counterbalanced across participants. All trials were randomly distrib-

uted across participants. Five breaks were introduced in the experi-

ment, in which participants were informed about their performance.

Reaction times (RT) and response accuracy were recorded along the

experiment. Participants were given up to 1,500 ms to respond. Dur-

ing both the training and experimental sessions, clear perception of

stimuli was verified in each participant. In addition, although the MEG

system we used provides appropriate prescription glasses to be used

during acquisition for vision correction, none of our participants

needed them.

2.3 | Data acquisition

We used a whole-head magnetoencephalography (MEG) system with

275 axial gradiometers (VSM/CTF systems, Port Coquitlam, Canada)

housed in a magnetically shielded room. MEG recordings were sam-

pled at 1200 Hz with an online 300 Hz low-pass filter. The signal was

down-sampled to 600 Hz afterwards for off-line analysis. No addi-

tional bandpass filtering was applied for any analysis, in order to pre-

serve the possibility to perform analyses in the whole spectrum. All

participants were recorded in the supine position. Coils placed at the

nasion and the left and right ear canals were used to measure partici-

pants' head location relative to the MEG sensors during the experi-

ment. During the recordings, an Eyelink 1,000 eye tracker

(SR Research, Ontario, Canada) was used to monitor eye movements

and blinks. Additionally, we used a FASTRAK device (Polhemus, VT) to

record the head shape of participants with 300 head points relative to

the three fiducial points (nasion and the left and right ear canals). In

addition to the MEG recordings, a structural magnetic resonance

image (MRI) of the participants' brain was acquired using a 3 T Sie-

mens Trio system (Erlangen, Germany) and with a voxel size of

1 mm3. During the MRI acquisition, earplugs with a drop of Vitamin E

in place of the coils were used for co-registration of the MRI and

MEG data.

2.4 | Procedure

The experiment was conducted over three sessions for all partici-

pants. During the first session, inclusion criteria were confirmed, gen-

eral information about the study and informed consent letters were

provided, and detailed instructions about the experiment were pres-

ented. Participants then performed a practice session with 150 trials

inside the MEG room. During the second session, the participants'

head shape was digitized, and the actual MEG experiment was con-

ducted. During the third session, the MRI was obtained. All data are

available by request to the authors.

2.5 | Data analysis

All data analyses were done using MATLAB custom scripts and the

Fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011).

Epochs of the MEG recording extending 2 s before and 1 s after the

onset of visual and auditory stimuli were extracted. Only epochs con-

taining correct responses were considered for further signal analyses.

Special care was taken to identify and remove artifact activity. Trials

containing muscle artifacts, superconducting quantum interference

Trial start
1 s

Pre-cue
1.1 s

Cue
2 ms

Delay
1.15 s

Stimuli
200 ms

Anticipatory

 period

Incongruent trial

Congruent trial

ti

pi

pi

pi

Post-stimuli
period

Baseline

 period

F IGURE 1 Experimental paradigm. After a lateralized
somatosensory cue indicating which sensory domain to attend (visual
or auditory), participants were asked to press one of three buttons
according to the relevant stimulus in that domain. Baseline,
anticipatory, and poststimuli (congruency) time periods are indicated
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device (SQUID) jumps or eye blinks and saccades (as shown by the

eye tracker signal), were rejected using an automatic routine based on

mean z-scores across sensors exceeding a threshold given by the data

variance within each participant (cut-off of ± 2 SEM). Since visual

stimuli were always at the center of the screen and no visual search

was needed, long eye movements were highly infrequent. We trained

our participants to blink exclusively after giving their response in each

trial, so artifacts due to blinking were particularly infrequent as well.

Additional visual inspection was applied to the remaining trials before

demeaning and including them in further analyses. The mean number

of trials included in the analysis was 558 ± 112, with no significant

differences between Attend-visual and Attend-auditory conditions

(282 ± 61 vs. 277 ± 62, F[1,32] = 0.07, p = .80), nor an interaction of

condition by congruency (Incongruent: 183 ± 46 vs. 183 ± 49, Con-

gruent: 65 ± 16 vs. 67 ± 15, F[1,32] = 0.17, p = .69). Although the dif-

ference in number of trials between congruent and incongruent

stimuli might produce unbalanced signal-to-noise ratios, it should be

noted that reducing the number of trials from one condition to resem-

ble the number of the other one reduces statistical power and

increases the Type II error rate (likelihood of accepting the null

hypothesis when it is false). Moreover, unbalanced number of trials

does not increase the Type I error rate (likelihood of rejecting the null

hypothesis when it is true), especially when using mean values

(e.g., across time and frequencies), which was our case (Luck, 2014).

Epochs were analyzed at sensor and source level. The analyses per-

formed at sensor level are essential to identify target time and frequency

ranges. Source analyses were then used to determine the source origin of

the effects observed at sensor level and to explore the oscillatory activity

in specific regions of interest. For the sensor-level analyses, planar gradi-

ents of the MEG field distribution were calculated (Bastiaansen &

Knosche, 2000). We used a nearest neighbor method where the horizon-

tal and vertical components of the estimated planar gradients were

derived, thus approximating the signal measured by MEG systems with

planar gradiometers. The planar gradients representation facilitates the

interpretation of the sensor-level data, since the largest signal of the planar

gradient typically is located above the source (Nolte, 2003).

Time-frequency representations (TFR) for absolute power from

3 to 100 Hz were obtained using a fast Fourier transformation (FFT)

approach with an adaptive sliding time window three cycles long

(ΔT = 3/f; e.g., ΔT = 300 ms for 10 Hz), similarly to previous studies

(Bonnefond & Jensen, 2012; Solis-Vivanco, Jensen, &

Bonnefond, 2018). A Hanning taper (also ΔT long) was multiplied by

the data prior to the FFT. For the planar gradient, the TFR of power

were estimated for the horizontal and vertical components and then

summed. The power for the individual trials was averaged over condi-

tions and log-transformed.

2.6 | Source analysis

A frequency-domain beamforming approach based on adaptive spatial

filtering techniques (Dynamic imaging of coherent sources; DICS) was

used to estimate the absolute power at source level in the entire brain

(Gross et al., 2001). We obtained cross-spectral density matrices by

applying a multitaper FFT approach (ΔT = 300 ms; 1 Slepian taper

resulting in 4 Hz smoothing) on data measured from the axial sensors.

For each participant, a realistically shaped single-shell description of

the brain was constructed, based on the individual anatomical MRIs

and head shapes (Nolte, 2003). The brain volume of each participant

was divided into a grid with a 1 cm resolution and normalized with

respect to a template MNI brain (International Consortium for Brain

Mapping, Montreal Neurological Institute, Canada) using SPM8

(http://www.fil.ion.ucl.ac.uk/spm). The lead field and the cross-

spectral density were used to calculate a spatial filter for each grid

point (Gross et al., 2001) and the spatial distribution of power was

estimated for each sensory condition (Attend-visual/Attend-auditory)

and congruency (congruent/incongruent) in each participant. A com-

mon filter was used whenever two conditions were compared (based

on the cross-spectral density matrices of the combined conditions). As

for the sensor level analyses, the estimated power was averaged over

trials and log-transformed. The power difference between sensory

conditions (visual/auditory) and congruency or time periods was cal-

culated and averaged across participants. For the source reconstruc-

tion 33 subjects were included as the MRI of 1 subject was missing.

All source data were estimated around 15 Hz according to the peak

frequency effect observed in sensor level analyses (see Results sec-

tion). The source estimates were plotted on a standard MNI brain

found in SPM8.

In order to explore the oscillatory dynamics within regions of

interest (ROI) of the VAN (see Results section), we used a linearly con-

strained minimum variance (LCMV) scalar beamformer spatial filter

algorithm to generate maps of source activity on a 1 cm grid (Van

Veen, van Drongelen, Yuchtman, & Suzuki, 1997). The beamformer

source reconstruction calculates a set of weights that maps the sensor

data to time-series of single trials at the source locations, allowing to

reconstruct the signal at source level. In addition to TFR of power, we

explored the functional connectivity across these reconstructed time

series by means of TFR of coherence. In accordance to Nolte

et al. (2004), we used the imaginary part of the coherence value, since

it is less biased by power. All of our analyses were focused on the time

period before the onset of stimuli (i.e., the anticipatory period, during

which we expected a suppression of the VAN activity due to top-

down attentional orientation compared with baseline) and the time

period after (during which we explored VAN modulations due to a

congruency effect between sensory modalities). A 500 ms time win-

dow from −700 to −200 ms with respect to the onset of the somato-

sensory cue was used as baseline (Figure 1). This time window was an

appropriate baseline measure as the activity in the frequency range of

interest was not modulated during this time, that is, it did not exhibit

any anticipatory modulation.

2.7 | Statistical analysis

Since RT showed normal distributions (Kolmogorov–Smirnov Z for

both sensory conditions and congruency modalities ≥0.55, p ≥ .41),
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they were analyzed using repeated measures analysis of variance

(ANOVA) (RM-ANOVA) with condition (Attend-visual and Attend-

auditory) and congruency (congruent and incongruent) as within-

subject factors. For all described RM-ANOVA, a Greenhouse–Geisser

correction was used in case of violation of sphericity assumption and

the Bonferroni test was used for post hoc comparisons.

Significant differences of power due to top-down modulation

(i.e., anticipatory vs. baseline time periods in both sensory conditions)

or congruency (congruent vs. incongruent) at both sensor and source

levels were assessed using a cluster-based nonparametric randomiza-

tion test (Maris & Oostenveld, 2007). This test controls for the Type I

error rate in situations involving multiple comparisons over sensors,

frequencies and times by clustering neighboring sensors, time points

and frequency points that show the same effect. For this analysis we

included frequencies from 3 to 40 Hz (using 1 Hz increments) with an

adaptive time window long enough to include at least 3 cycles in each

frequency. We explored from −600 ms to the onset of stimuli for the

anticipatory period, and from 200 to 500 ms after for the (post-stim-

uli) congruency effect period, based on observed effects at sensor

level (see Figures 2a and S2a and S2b. Sensors for which the t value

of the difference between conditions exceeded an a priori threshold

(p < .05) were selected and subsequently clustered based on spatial

adjacency, and the sum of the t values within a cluster was used as

cluster level statistic. The cluster with the maximum sum was used as

test statistic. By randomly permuting the data across the two condi-

tions and recalculating the test statistic 2000 times, we obtained a
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reference distribution to evaluate the statistics significance of a given

effect (Monte Carlo estimation). Additionally, for all source level ana-

lyses we also conducted a false discovery rate (FDR) correction. This

correction allowed us to overcome some limitations of the cluster cor-

rection approach such as considering a set of connected smaller clus-

ter (by chance) as one big cluster. Only clusters surviving both the

cluster correction and the FDR were reported.

3 | RESULTS

We used a bimodal (visual/auditory) attentional task that included

cueing for relevant stimuli (Figure 1) to quantify the neurophysiologi-

cal activity associated with active suppression of the VAN activity

during top-down guided attentional allocation. By controlling congru-

ency between the sensory modalities, we also explored the recruit-

ment of the VAN when unexpected relevant (congruent) information

arising from the unattended modality was presented, and whether this

improved task performance.

3.1 | Congruent stimuli enhance task performance

Behavioral results were reported before in Solis-Vivanco, Rodriguez-

Violante, et al. (2018). Briefly, RT analysis showed that subjects were

faster for the Attend-visual compared with the Attend-auditory trials

(834 ± 180 vs. 919 ± 178 ms, respectively, F[1,33] = 83.2, p < .001).

The RTs also showed a congruency effect, as they were faster for the

congruent compared with incongruent trials for both the Attend-

visual and Attend-auditory conditions (837 ± 171 vs. 947 ± 181 ms,

respectively, F[1,33] = 90.3, p < .001). Accuracy was better for Attend-

visual compared with Attend-auditory trials (91 vs. 88%, F[1,33] = 5.63,

p = .02). Again, a congruency effect was observed, as congruent trials

showed better accuracy compared with incongruent (95 vs. 83%,

F[1,33] = 76.67, p < .001).

In summary, performance was more effective for visual compared

with auditory stimuli, as revealed by reduced RT and larger number of

correct responses. In addition, congruency between sensory modali-

ties improved performance in both conditions, showing that an invol-

untary attention enhancement occurred.

3.2 | VAN activity is suppressed during
expectation of relevant stimuli

During the anticipatory period, we observed a power increase in a

12–20 Hz range over right scalp regions before stimuli onset, com-

pared with baseline, in both sensory conditions (Figure 2a). The

cluster-based randomization test controlling for multiple compari-

sons over time (baseline vs. anticipatory period), frequency

(3–40 Hz), and sensors revealed that this difference was significant

from 600 ms before stimuli onset in the 12–20 Hz range, regardless

of condition (cluster-level statistic [CS] for Attend-visual = 3,346,

p = .014; CS for Attend-auditory = 4,500, p = .011, Figure 2b), and

remained significant when combining both conditions

(CS = 4,065, p = .018).

It is important to note that the cluster test also revealed a signifi-

cant decrease in the 12–24 Hz range over the left hemisphere (CS for

Attend-visual = −108, p = .004; CS for Attend-auditory = −108,

p = .001). We interpreted this decrease as reflecting motor anticipa-

tion as the mean value of power during the anticipatory period at sig-

nificant sensors of this cluster was not different between conditions

(t[33] = 0.96, p = .34), and showed a positive association with RT,

regardless of condition and congruency (all r ≥ .36, p ≤ .04). The

increase observed over right sensors could possibly result from a com-

pensatory mechanism of this anticipatory left decrease. However, we

performed several analyses that rule out this potential interpretation.

First, the two clusters were independent as the power of the left one

was not associated with the power of the right one (r = .28, p = .1,

with the trend being in the opposite direction of the prediction) and

each cluster showed different time patterns of peak activity

(Figure S1a), with the right power cluster reaching its positive peak

around −500 ms before the onset of the stimuli, while the left one

remained decreasing and reached its lowest value around −260 ms

(F[1,32] = 9.72, p = .004; Figure S1b). Source localization of the left

cluster revealed the participation of premotor, supplementary motor,

and parietal areas (Figure S1c), which is in line with the reported beta

activity desynchronization observed in these regions during planning

of contralateral hand movements (Park, Kim, & Chung, 2013). Finally,

since Little, Bonaiuto, Barnes, and Bestmann (2019) reported that pre-

motor beta desynchronization is characterized by the presence of

bursts rather than sustained oscillations, we compared the burst rate

between both clusters during the anticipatory period (−600 to stimuli

onset) according to those authors' method. The right cluster revealed

significantly less burst activity compared with the left cluster (t[33] =

−4.99, p < .001; Figure S1d), implicating that power increases in these

regions correspond to stable oscillations, compared with the left clus-

ter. Altogether, this contralateral independent effect might be inter-

preted in terms of motor preparation, since participants always

responded with the right hand (see Tzagarakis, West, and

Pellizzer (2015)), rather than an effect of the tactile cue (delivered to

one thumb or the other in a counterbalanced way). Therefore, it was

not further analyzed. Another potential confounder we investigated

was the activity evoked by the somatosensory cue. The time and fre-

quency representation of this activity (measured through the degree

of phase alignment across trials, that is, the phase locking factor [PLF])

showed a response in the theta range (3–8 Hz) lasting around 200 ms

after its onset and a bilateral distribution exclusively over central sen-

sors corresponding to the somatosensory cortex, with no significant

differences between hemispheres (t[33] = 1.33, p = .2; see Figure S1E–

G). The evoked activity on these sites was not associated with the

reported right anticipatory alpha/beta power (r = .23, p = .20) nor with

task accuracy (r = −.23, p = .19), and no differences were found

between participants with strong vs. weak visual suppression (t[33] =

−0.47, p = .64), unlike what was observed for the right alpha/beta

cluster (see below).
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The right-lateralized power increase of 12–20 Hz was further

explored at source level (15 Hz) under FDR correction (CS for Attend-

visual = 915, p = .005; CS for Attend-auditory = 1,010, p = .004), and

revealed significance at right middle and superior frontal, temporal, and

parietal regions in both conditions (Figure 2c). We identified the signifi-

cant areas (surviving FDR correction) from a conjunction analysis with

both conditions together (Figure 2d) and sorted them in terms of their

statistical value (t) from the highest to lowest. By labeling the top signifi-

cant areas using the AAL atlas by Tzourio-Mazoyer et al. (2002), the

VAN (inferior frontal gyrus (IFG; MNI [45 30 30]) and temporo-parietal

junction (TPJ, MNI [60–52 34])), the DAN (frontal eye fields (FEF; MNI

[40–2 50]) and superior parietal lobule (SPL; MNI [40–50 58])), the right

middle frontal gyrus (MFG, MNI [10 38 58]), and supramarginal gyrus

(MNI [50–28 36]) remained included. In addition, the signal reconstruc-

tion after LCMV filter at these significant areas revealed the 12–20 Hz

increase in each condition from 600 ms before stimuli onset (Figure 2e).

In order to test whether this effect was related to task perfor-

mance, we calculated the average of power values across the grid

points with the strongest effect (after FDR correction) in each condi-

tion and compared participants with low versus high number of inter-

ference errors (i.e., responding to the unattended modality instead of

the attended one) in that condition (median split). The t tests revealed

that participants with less visual interference errors (strong visual

suppressors) showed higher 12–20 Hz power (baseline corrected)

during the anticipatory period compared with participants with more

visual interference errors (weak visual suppressors) under the Attend-

auditory condition (t[32] = −2.0, p = .05, Figure 2f). This effect was not

observed under the Attend-visual condition when comparing strong

versus weak auditory suppressors (t[32] = −0.56, p = .58). We did not

find a significant effect of the 12–20 Hz increase on RT for any condi-

tion. Also, we explored the association between averaged power

values of both conditions and the number of total interference errors

along the task. We found that stronger power (baseline corrected)

during the anticipatory period was inversely correlated with perfor-

mance (r = −.49, p = .004; Figure 2g).

When exploring the functional connectivity across relevant ROI

(VAN: IFG and TPJ; DAN: FEF and SPL, selection based on power ana-

lyses at source level, see Figure 2c) during the anticipatory period, we

observed an increase of coherence in the 12–20 Hz range starting

from 800 ms before the onset of stimuli with respect to baseline

(Figure 3a). Based on the power analyses, we selected a time-

frequency window from −600 ms to stimuli onset in this frequency

range and conducted a RM-ANOVA with the averaged values across

time and frequency in each ROI and condition (factor: Attend-visual

vs. Attend auditory), including the baseline period as a comparison ref-

erence (factor: baseline vs. anticipatory period). For this analysis, we
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compared with participants with more errors (weak visual suppressors). The bars represent the averaged values across all significant pairs.
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included the MFG as ROI, given its significant power increase during

this time window and the proposed role of this region for connecting

the DAN and the VAN (Corbetta et al., 2008). The mean 12–20 Hz

difference of power between the anticipatory and baseline periods

across conditions and ROI was included as a covariate in this analysis,

even when it did not show a significant main effect nor an interaction

with any factor. While we did not find differences between conditions

(F[1,31] = 0.56, p = .46), a significant interaction of ROI by time window

(anticipatory vs. baseline, F[9,279] = 6.48, p < .0001) revealed signifi-

cant increases of coherence during the anticipatory period, compared

with baseline, of the TPJ with the SPL and FEF (Mean difference

[MD] = 0.014, p = .004 and MD = 0.008, p = .02, respectively;

Figure 3a) and also a trend between TPJ and IFG (MD = 0.005,

p = .09). The SPL and MFG showed a reduction of coherence during

this period (MD = −0.009, p = .045). Interestingly, participants with

less visual interference errors during the Attend-auditory condition

(strong visual suppressors) showed higher coherence between TPJ,

SPL, and FEF compared with weak visual suppressors (F[1,31] = 4.47,

p = .04; Figure 3b). In order to explore the causal relationship between

DAN and VAN nodes, we calculated TFR of the phase-slope index

between them for both conditions. Nevertheless, these analyses did

not provide reliable results, probably due to small signal-to-noise

ratios. No further causal analyses were carried out.

In summary, a power increase of 12–20 Hz was observed in right

cortical regions before the onset of relevant stimuli, including areas

from the VAN and DAN. In addition, higher increase of power in these

regions predicted better task performance. Moreover, we observed

increased functional connectivity between VAN (especially TPJ) and

DAN nodes (SPL and FEF), during this period. Both increases in power

and connectivity were stronger in those participants with better abil-

ity to filter out distracting visual information.

3.3 | Alpha power decrease in visual cortex in
anticipation of stimuli

Alpha/Beta modulation has been reported more often in sensory net-

works than in other networks. As reported in Solis-Vivanco,

Rodriguez-Violante, et al. (2018), we found a power reduction in

visual regions starting around 400 ms before the onset of the stimuli,

in the 8–15 Hz range (data not shown). This alpha power decrease

over visual cortex in anticipation of a visual stimulus was significant

compared with baseline (t[33] = −2.52, p = .017), and was lower for

the Attend-visual compared with the Attend-auditory condition

(t[33] = −2.53, p = .017). Since this result has been extensively

described in this previous paper, it was not further analyzed here.

3.4 | The VAN is recruited after detection of
congruency across sensory modalities

We explored whether the regions that showed 12–20 Hz power

increase during the anticipatory period (VAN and DAN nodes) were

also modulated by enhanced attention, that is, elicited by congruency

between attended and unattended stimuli. We selected grid points

with maximal power differences between the anticipatory period and

baseline including both conditions together (although this grid points

were also significant for each condition separately) and reconstructed

the signal at those points during the congruency period (from stimuli

onset to 600 ms afterwards) by means of an LCMV filter. These grid

points included the right TPJ, IFG, FEF, SPL, and MFG (Figure 4a).

TFRs of these ROIs revealed a clear decrease for congruent compared

with incongruent trials in the 12–20 Hz band starting around 150 ms

after stimuli onset (Figure 4b). Interestingly, this congruency effect

was earlier for Attend-visual than for Attend-auditory trials. When

conducting t tests (corrected for multiple time and space points com-

parisons) between congruent/incongruent trials along the 0–500 ms

time window for each condition and ROI, we found significant effects

in TPJ, IFG, FEF, and SPL. The TPJ and IFG were the regions that

showed a congruency effect in both conditions (Figure 4c). The

latency difference was further explored by comparing averaged power

values of VAN ROI (TPJ and IFG) with a RM-ANOVA that included

condition (Attend-visual/Attend-auditory), congruency (Congruent/

Incongruent), and time window (100–300 and 300–500 ms). This

analysis revealed that the congruency effect was earlier for the

Attend-visual condition compared with Attend-auditory (condition by

congruency by time window interaction: F[1,32] = 4.64, p = .04;

Figure 4d).

Although the congruency effect was not observed at sensory

regions under FDR correction, we further explored whether the

12–20 Hz activity was modulated by condition and congruency at

visual cortex. After source localizing the signal, we found a congru-

ency effect for the Attend-visual condition, but not for the Attend-

auditory condition (Condition by congruency interaction:

F[1,32] = 3.36, p = .07; Attend-visual: MD = −0.05, p = .03; Attend-

auditory: MD = −0.006, p = .75; see Figure S3).

We further explored whether the 12–20 Hz power decrease was

associated with task performance (Figure 4e). Our hypothesis was

that trials with low alpha/beta power (i.e., higher activation of the

VAN) would allow an enhanced congruency effect and consequently

faster performances, compared with trials with high power (lower

VAN activation). To this end, we classified the trials in each participant

as showing low or high power in each condition and congruency vari-

ant (based on a median split) from the grid points that showed a con-

gruency effect at source level (average of TPJ and IFG). Then we

compared the RT among power, condition, and congruency factors,

although ignoring the congruency main effect, already known as sig-

nificant. A RM-ANOVA revealed that congruent trials with low power

showed shorter RTs compared with those with high power (Power by

congruency effect: F[1,32] = 6.86, p = .013; MD for congruent tri-

als = −24.0, p = .01; MD for incongruent = −0.42, p = .96). Also, an

interaction of condition by power was found (F[1,32] = 7.03, p = .01).

Post hoc comparisons revealed that trials in general with low power

reduced RT within the Attend-auditory condition (MD for Attend-

auditory = −22.1, p = .01; MD for Attend-visual = −2.34, p = .74;

Figure 4e).

8 SOLÍS-VIVANCO ET AL.



When assessing the power congruency effect both at sensor and

source levels for the whole brain, the 12–20 Hz decrease was further

confirmed at similar right sensors as for the anticipatory period

(Figure S2a). The cluster-based randomization test in a 200–500 ms

time window showed that this effect was especially prominent for the

Attend-auditory condition at sensor level (Attend-visual: CS = −16,

p = .05; Attend-auditory: CS = −41, p = .013; Figure S2b). When

exploring this effect at source level (LCMV filter and power averaged

values at 15 Hz), both conditions revealed this effect on right superior

and inferior frontal, temporal and parietal areas (300–400 ms; Attend-

visual: CS = −346, p = .037; Attend-auditory: CS = −316, p = .048)

and with a similar pattern when considering both conditions together

(Figure 2c). After an FDR correction, nodes from the VAN (TPJ and

IFG) remained included. At both sensor and source levels, the topo-

graphic profiles of the right sided 12–20 Hz modulation during the

anticipatory (compared with baseline) and post-stimuli (congruent

(a)

(c)

(d)

(e)

(b)

F IGURE 4 The VAN is recruited after detection of previously unattended congruent stimuli. (a) Specific ROI were selected to explore
congruency effects based on the peak differences during the anticipatory period. (b) TFR of congruency effects (congruent vs. incongruent trials)
in each ROI including right temporo-parietal junction (TPJ), inferior frontal gyrus (IFG), frontal eye field (FEF), superior parietal lobule (SPL), and
middle frontal gyrus (MFG). An earlier 12–20 Hz power decrease was observed for Attend-visual vs. Attend-auditory conditions (dashed
rectangles). (c) TPJ and IFG showed a significant congruency effect in both conditions during a 0–500 ms time interval after stimuli onset. Light
sections of the bars indicate significant effects (decrease (−) or increase (+)) with p < .05. Full-color sections of the bars indicate p < .01 (corrected
for multiple comparisons in space). (d) Congruency effects in TPJ and IFG (averaged) were earlier for Attend-visual compared with Attend-
auditory conditions, in accordance to time-frequency windows identified in TFR (B). (e) In both conditions, congruent trials with lower 12–20 Hz
power at regions showing congruency effects (TPJ and IFG) were associated with reduced reaction time (RT). *p < .05
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vs. incongruent) periods were notably similar (Figure 2d). In order to

discard that the congruency effect rather reflected differences related

to the overrepresentation of incongruent vs. congruent stimuli (75 vs.

25%), we explored whether congruent trials evoked the P300 event-

related field (P300m) at parietal regions due to an oddball effect

(Polich, 2007). Nevertheless, this ERF was not observed for any condi-

tion (data not shown).

When exploring with a RM-ANOVA the functional connectivity

across relevant ROI (TPJ, IFG, FEF, SPL, and MFG) during the congru-

ency period, we found a significant increase of coherence for congru-

ent vs. incongruent stimuli in the alpha-beta range (8–20 Hz,

F[1,31] = 12.99, p = .001; Figure 5), regardless of condition. A signifi-

cant interaction of congruency by pair (F[9,279] = 3.29, p = .013) rev-

ealed that this difference was particularly significant between TPJ and

the rest of the ROIs (IFG: MD = 0.01, p = .002; FEF: MD = 0.01,

p = .001; SPL: MD = 0.01, p = .007; MFG: MD = 0.012, p = .008),

between IFG and SPL (MD = 0.006, p = .03), and between FEF and

SPL (MD = 0.005, p = .028). The mean 8–20 Hz difference of power

between congruent and incongruent trials across conditions and ROI

was included as a covariate in this analysis, even when it did not show

a significant main effect or an interaction with the congruency factor.

No associations were found between coherence in these areas and

task performance.

In accordance to a recent report showing an increase of gamma

oscillations (>40 Hz) within the VAN after the involuntary detection

of auditory distracting stimuli (ElShafei et al., 2018), we explored

whether there was a congruency effect within the 50–80 Hz range

after stimuli onset in the previously selected ROI. Nevertheless, no

congruency effect was observed at this frequency range (Figure S3).

In summary, we found a power decrease, earlier in the visual con-

dition, in the same frequency range as the anticipatory period in the

VAN (TPJ and IFG), but also in the DAN (FEF and SPL), for congruent

compared with incongruent trials. Such decrease predicted perfor-

mance speed. In addition, increased connectivity between VAN and

DAN nodes was observed for congruent trials. These results suggest

an involvement of the two networks reflecting effective attentional

enhancement after unexpected detection of relevant information in

previously unattended sensory modalities.

4 | DISCUSSION

In the present study, we aimed to determine (a) the oscillatory profile

of the suppression of the VAN during top-down oriented attention

processes and (b) whether this network was recruited when the infor-

mation presented in an unattended sensory modality was congruent

with the information presented in the attended modality, a special

case of attention enhancement, in order to improve task performance.

We found a power increase of alpha/beta (12–20 Hz) oscillations in

the VAN during top-down attentional orientation. This increase was

0 0.2 0.4 0.6

10

20

30

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

-0.05

0

0.05

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

0 0.2 0.4 0.6

10

20

30

C
o

h
e

re
n

c
e

 (
c
o

n
g
ru

e
n

t 
v
s
. 
in

c
o

n
g
ru

e
n

t)

**

**

**

**

TPJ-IFG

TPJ-FEF

TPJ-SPL

TPJ-MFG

IFG-FEF

IFG-SPL

IFG-MFG

FEF-SPL

FEF-MFG SPL-MFG

F IGURE 5 The VAN and DAN show increased functional connectivity after detection of previously unattended congruent stimuli. The TPJ
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(displayed averaged and baseline corrected). The SPL also showed increased coherence with IFG and FEF. The dashed rectangles indicate the
time-frequency window of interest. *p < .05, **p ≤ .01
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associated with better task performance, suggesting that the VAN

suppression might prevent shifting attention to distractors. Moreover,

the TPJ was synchronized with the FEF in the same frequency band,

suggesting that the dorsal attention network (DAN) might participate

in the suppression of the VAN. In addition, we found a 12–20 Hz

power decrease and enhanced synchronization, in both the VAN and

DAN, when information from one sensory modality was congruent

with the other, suggesting an involvement of both networks when

attention is involuntarily enhanced due to multisensory integration.

First, we observed an increase of oscillations in the 12–20 Hz fre-

quency band in VAN and DAN nodes following the presentation of

the cue indicating the modality to attend, that is, during top-down

attention. Such increase was correlated with better behavioral perfor-

mances over participants, as indexed by a decrease in the number of

interference errors in incongruent trials (although this correlation

should be taken cautiously due to the number of participants Schö-

nbrodt & Perugini, 2013). These results suggest that the VAN is

suppressed during top-down attention processes, as showed by fMRI

papers that investigated this question (Shulman et al., 2003; Shulman

et al., 2007; Todd et al., 2005) and is in line with the hypothesis that

this suppression would reflect a mechanism allowing to protect goal-

driven behavior from distractors. We show here that such suppression

is expressed in a broad frequency band related to high alpha/low beta

oscillations, that is, in a higher frequency band compared with the fre-

quencies observed in sensory networks. Importantly, the same fre-

quency range was modulated during sensory processing (see below).

However, modulations in low beta over sensory regions have also

been reported during attentional tasks (e.g., van Ede, Koster, and

Maris (2012) and Siegel et al. (2008)). Moreover, a modulation in a

similar frequency range (10–20 Hz) in and between nodes of the VAN

and DAN has been reported during a visual search task (Spaak,

Fonken, Jensen, & de Lange, 2016) as well as in anticipation of or dur-

ing the processing of matching stimuli in multisensory paradigms

(Goschl, Friese, Daume, Konig, & Engel, 2015; Misselhorn, Friese, &

Engel, 2019; Wang, Goschl, Friese, Konig, & Engel, 2019). Interest-

ingly, a comprehensive study has demonstrated that alpha-beta fre-

quency peaks differ across regions and experimental designs

(Haegens, Cousijn, Wallis, Harrison, & Nobre, 2014) (see also ElShafei

et al. (2018)). Altogether, these results indicate that the frequency

range of alpha (and beta) oscillations might diverge between brain

regions or between tasks although they might still be associated with

a similar mechanism, for example, functional inhibition. Further stud-

ies are required to understand whether these differences result for

example, from the anatomical connectivity of the networks involved

and/or from the requirement for multi-timescale processing according

to the cognitive process involved.

Furthermore, we observed a stronger coherence between the

nodes of the VAN network as well as between FEF (part of the DAN)

and TPJ during the anticipatory period. Interestingly, participants with

stronger ability to suppress visual distractors showed higher connec-

tivity across these nodes. This latest result could provide evidence in

favor of the idea that the suppression of the VAN is driven by the

DAN (Shulman et al., 2003). Nevertheless, since we did not find a

clear direction of such connectivity between VAN and DAN (possibly

due to a reduced signal-to-noise ratio), this hypothesis should be

taken with caution. On the other hand, we found a decrease in con-

nectivity between MFG and DAN (SPL) during top-down attention.

This was unexpected, since the right posterior MFG has been dis-

cussed as another candidate region for linking the dorsal with the ven-

tral system (Corbetta et al., 2008). Further research is needed to

confirm and understand our result.

At first sight, it could be considered surprising that we did not

report an increase of alpha oscillations in sensory regions in anticipa-

tion of distractors (see Solis-Vivanco, Rodriguez-Violante,

et al. (2018)), while we do report such an increase (in a higher fre-

quency range) in VAN and DAN networks. These are, however, not

conflictual results. While we discuss above why alpha oscillations

increase in VAN/DAN would be expected in our task, there are three

main reasons potentially explaining the absence of an alpha increase

in sensory regions in the current task. First, as discussed in Solis-

Vivanco, Rodriguez-Violante, et al. (2018), our task is not designed for

showing an anticipatory alpha increase since in 25% of the trials the

auditory and visual stimuli were congruent, leading to attentional

enhancement, and dampening of the distracting value of the

unattended stimulus. Second, while sensory alpha oscillations have

been related to inhibitory processes in sensory areas in for example,

working memory tasks (Bonnefond & Jensen, 2012; Rosner, Arnau,

Skiba, Wascher, & Schneider, 2020; Schneider, Goddertz, Haase,

Hickey, & Wascher, 2019), there is currently a hot debate regarding

the presence of such a sensory alpha increase during attentional tasks

(e.g., Antonov, Chakravarthi, & Andersen, 2020; Foster & Awh, 2019;

Zhigalov & Jensen, 2020). The alpha power decrease in anticipation of

relevant stimuli appears more robust in the literature although this

effect relies on the likelihood or the timing of the target appearance

(Capilla, Schoffelen, Paterson, Thut, & Gross, 2014; Gould,

Rushworth, & Nobre, 2011; Ikkai, Dandekar, & Curtis, 2016; Kelly,

Gomez-Ramirez, & Foxe, 2009; Sauseng et al., 2005; Yamagishi, Goda,

Callan, Anderson, & Kawato, 2005). In line with the literature, we did

observe an anticipatory alpha decrease in visual regions (not in audi-

tory cortex though, but see Solis-Vivanco, Rodriguez-Violante,

et al. (2018), for a discussion, and Mazaheri et al. (2014)) both com-

pared with baseline and during visual attention compared with audi-

tory trials. Third, the absence of alpha increase in visual regions

compared with baseline might result from a strong visual alpha power

during baseline, given that the cue was in the somatosensory domain

and strong visual alpha might be necessary to optimally process the

cue (see Haegens, Nacher, Luna, Romo, and Jensen (2011)).

We further observed that the VAN was recruited, as indexed as

well by a power decrease in the 12–20 Hz band, when a congruent

stimulus was presented in the unattended sensory domain. Impor-

tantly, during stimuli processing and when comparing congruent ver-

sus incongruent trials there was no evidence of power modulation on

left regions as observed during the anticipatory period, which sup-

ports the attentional role of this network, rather than a motor one.

The congruency effect is a special case of attentional enhancement,

as relevant information is still present in the attended dimension
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though its saliency is increased due to multisensory integration, and

includes a consequent behavioral benefit (Gau et al., 2020; Van der

Burg, Olivers, Bronkhorst, & Theeuwes, 2008). Importantly, this effect

remains even when congruent trials are rare (Van der Burg

et al., 2008), resembling oddball paradigms under which the VAN is

usually activated (Kim, 2014). Furthermore, the VAN alpha/beta

decrease predicted response speed in both conditions and was

observed earlier in the Attend-visual condition, that is, when the

unattended stimulus was presented in the auditory domain, compared

with the Attend-auditory condition. The processing of auditory stimuli

has been shown to be faster than processing of visual ones, which

could explain the earlier activation of the VAN in the Attend-visual

condition (Pain & Hibbs, 2007). However, it should be noted that

reaction times were faster in the Attend-visual condition, congruency

effects were stronger for the Attend-auditory condition at sensor

level, and VAN suppression was better in the strong visual suppres-

sors during the anticipatory period. These results may reflect the sen-

sory dominance of the visual domain, and hence the need for more

effective modulation (suppression/recruitment) of the VAN for this

type of information.

Interestingly, the DAN was also more activated during congruent

than incongruent trials after an early decrease in IFG and TPJ,

although only FEF reached the significant level after multiple compari-

son corrections in the Attend-auditory condition. In line with this, pre-

vious fMRI work has also reported higher FEF activity during

reorienting of attention (e.g., Corbetta & Shulman, 2011; Vossel,

Thiel, & Fink, 2006). Although the timing of activation of the different

networks would need to be further investigated, it seems that the

VAN was further activated by congruency earlier than the DAN,

which ultimately might guide attention toward the unattended sen-

sory domain in addition to the attended domain. In line with this,

Proskovec et al. (2018), reported a late synchrony in the alpha band in

the DAN, possibly associated with reorienting of attention, although

they also reported an early activation of FEF. Interestingly, in the

Attend-visual condition, we observed an increase of the oscillations in

the 12–20 Hz band in the TPJ following the decrease, possibly

reflecting a suppression of this node after its recruitment. The time

window we could analyze did not allow to determine whether a simi-

lar increase was later observed in the Attend-auditory condition.

We also found a congruency effect in the visual cortex for the

Attend-visual condition, although it did not survive multiple compari-

sons corrections. The congruency effect only in the Attend-visual con-

dition, not in the Attend-auditory condition, over the visual cortex

(i.e., the relevant area) suggests that congruency further enhances the

processing of the attended stimulus and not necessarily of the

unattended stimulus. Interestingly, such enhancement operates in the

same frequency range as the one in VAN and DAN nodes, possibly

facilitating communication between sensory and attentional networks.

Further investigation will be required to test this hypothesis.

In addition, we observed a coherence increase for congruent trials

within and between VAN and DAN (TPJ, IFG, FEF, and SPL). This

alpha/beta synchrony could reveal the mechanism allowing the inter-

action within and between these networks during involuntary

attentional enhancement (Vossel et al., 2014), though we did not find

a direct association with task performance. It should be noted that

our selection of ROI for congruency comparisons was based on signif-

icant areas detected during the anticipatory period. Thus, other rele-

vant regions involved in task performance and potentially

synchronized with VAN and DAN during congruency detection may

not have been considered. Future studies might explore connectivity

patterns time-locked to neural responses after involuntary attention

increase in order to elucidate this possibility.

We did not find any significant difference between congruent

and incongruent trials in other frequency bands, neither in the theta

band as reported by Proskovec et al. (2018) nor in the gamma band as

reported by ElShafei et al. (2018). These discrepancies could be

related to the paradigms across studies. Proskovec et al. used a

Posner cueing task in which invalid trials (target on the uncued side)

appeared 50% of the trials and could be very quickly detected. Possi-

bly the theta increase they observed was more related to a bottom-up

process, locked to the stimulus onset (see e.g., van Kerkoerle

et al. (2014) showing that theta oscillations might be related to

feedforward activity). In our study, the mechanism of attentional

enhancement might be more complex as it requires the detection of

congruency (i.e., incorporating relevance from the unattended domain

while holding it in the attended one). Although we observed a clear

gamma increase in all the nodes (VAN and DAN) compared with base-

line, we did not observe a gamma power difference between congru-

ent and incongruent trials. Again, a difference in terms of paradigm

might explain the discrepancy with ElShafei et al. study. In their para-

digm, the auditory stimuli inducing a change in the VAN were not rele-

vant to the task, unlike to the present study. It might be therefore

interesting to study the role of relevance versus saliency for VAN acti-

vation in the different frequency bands. For instance, it has been

reported that irrelevant, novel auditory stimuli generate a reduction of

power in the alpha/beta band at parietal regions (Solis-Vivanco,

Rodriguez-Violante, et al., 2018). Nevertheless, whether the source of

this decrease includes the VAN (and DAN) remains to be explored. In

addition, future studies might explore the role of disengagement

(i.e., full switch from attended to unattended domain) over DAN and

VAN activation, which was explored in the Posner task used by

Proskovec et al. (2018), but not necessarily present in our study.

As a final remark, we hypothesized that the decrease of the

BOLD signal observed in the VAN network during similar tasks in

fMRI (Shulman et al., 2003; Shulman et al., 2007; Todd et al., 2005)

would be reflected in an increase of alpha/beta oscillations as

observed over sensory areas (Haegens et al., 2011; Sadaghiani

et al., 2012). We therefore considered the observed increase of

alpha/beta power in the VAN as potential evidence of inhibition of

the activity of this network. While the top-down role of alpha/beta

activity, mainly in the DAN and sensory hierarchy, has been reported

in the literature (Bastos et al., 2015; Michalareas et al., 2016), and

without necessarily alluding a potential inhibitory role (Lobier, Palva, &

Palva, 2018), we suggest that both possibilities (i.e., top-down regula-

tion and functional inhibition) are not mutually exclusive. This is par-

ticularly true when we consider the activity of the VAN in addition to,
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or more specifically in interaction with, the activity of the DAN. We

propose that changes in alpha/beta power and synchronization indi-

cates the involvement of the VAN in both reducing interference from

distractions (alpha/beta power increase during delay) and extracting

relevant information from unattended channels (alpha/beta decrease

in the congruent condition), in both cases in interaction with the

DAN. We therefore consider the changes in alpha/beta power in the

VAN as well as the increased connectivity with the DAN as correlates

of attentional top-down guidance through functional inhibition.

Among the limitations of our study, we did not explore the VAN

and DAN effects at sensory regions. A recent fMRI study by Rossi,

Huang, Furtak, Belliveau, and Ahveninen (2014) showed increased

connectivity between auditory cortex and different nodes of the DAN

and VAN during cued voluntary and novelty-driven auditory orienting,

respectively. In addition, our sample included only young adults.

Future research might explore the VAN and DAN modulation during

attentional orientation and involuntary enhancement along develop-

ment, including children and older adults. In addition, how these net-

works can be compromised in patients with neurologic and psychiatric

disorders with attention impairment remains to be explored.

In conclusion, our results show that effective attentional alloca-

tion, regardless of sensory modality, includes the modulation and

cooperation between ventral and dorsal attention networks through

upper-alpha/beta oscillations.
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