UNIVERSITYOF BIRMINGHAM University of Birmingham Research at Birmingham

Heterogeneity and classification of recent onset psychosis and depression

Lalousis. Paris Alexandros; Wood, Stephen; Schmaal, Lianne; Chisholm, Katie; Griffiths, Lowri; Reniers, Renate; Bertolino, Alessandro; Borgwardt, Stefan; Brambilla, Paolo; Kambeitz, Joseph; Lencer, Rebekka; Pantelis, Christos; Ruhrmann, Stephan; Salokangas, Raimo K.R.; Schultze-Lutter, Frauke; Bonivento, C.; Dwyer, Dominic; Ferro, Adele; Haidl, Theresa; Rosen, Marlene

DOI: 10.1093/schbul/sbaa185

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Lalousis, PA, Wood, S, Schmaal, L, Chisholm, K, Griffiths, L, Reniers, R, Bertolino, A, Borgwardt, S, Brambilla, P, Kambeitz, J, Lencer, R, Pantelis, C, Ruhrmann, S, Salokangas, RKR, Schultze-Lutter, F, Bonivento, C, Dwyer, D, Ferro, A, Haidl, T, Rosen, M, Schmidt, A, Meisenzahl, E, Koutsouleris, N, Upthegrove, R & PRONIA Consortium 2021, 'Heterogeneity and classification of recent onset psychosis and depression: a multimodal machine learning approach', *Schizophrenia bulletin*, vol. 47, no. 4, sbaa185, pp. 1130-1140. https://doi.org/10.1093/schbul/sbaa185

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This is a pre-copyedited, author-produced version of an article accepted for publication in Schizophrenia Bulletin following peer review. The version of record Paris Alexandros Lalousis, Stephen J Wood, Lianne Schmaal, Katharine Chisholm, Sian Lowri Griffiths, Renate L E P Reniers, Alessandro Bertolino, Stefan Borgwardt, Paolo Brambilla, Joseph Kambeitz, Rebekka Lencer, Christos Pantelis, Stephan Ruhrmann, Raimo K R Salokangas, Frauke Schultze-Lutter, Carolina Bonivento, Dominic Dwyer, Adele Ferro, Theresa Haidl, Marlene Rosen, Andre Schmidt, Eva Meisenzahl, Nikolaos Koutsouleris, Rachel Upthegrove, PRONIA Consortium, Heterogeneity and Classification of Recent Onset Psychosis and Depression: A Multimodal Machine Learning Approach, Schizophrenia Bulletin, 2021, sbaa185, is available online at: https://doi.org/10.1093/schbul/sbaa185

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Schizophrenia Bulletin

Draft Manuscript for Review. Please review online at http://mc.manuscriptcentral.com/oup/szbltn

OXFORD

UNIVERSITY PRESS

Heterogeneity and Classification of Recent Onset Psychosis and Depression: a Multimodal Machine Learning Approach

Journal:	Schizophrenia Bulletin
Manuscript ID	SZBLTN-ART-20-0528.R1
Manuscript Type:	Regular Article
Date Submitted by the Author:	20-Nov-2020
Complete List of Authors:	Lalousis, Paris; University of Birmingham, Institute for Mental Health & Centre for Human Brain Health Wood, Stephen; Orygen, The National Centre of Excellence for Youth Mental Health, ; University of Melbourne, ; University of Birmingham, School of Psychology Schmaal, Lianne Chisholm, Katherine; Aston University Griffiths, Sian; University of Birmingham, Institute for Mental Health Reniers, Renate; University of Birmingham, Psychology Bertolino, Alessandro; University of Bari Aldo Moro, Borgwardt, Stefan; University of Basel, Department of Psychiatry (UPK) Brambilla, Paolo; IRCCS Fondazione Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Department of Neurosciences and Mental Health Kambeitz, Joseph; University Hospital Cologne, Department of Psychiatry; Department of Psychiatry Lencer, Rebekka; University of Muenster, Department of Mental Healthy Pantelis, Christos; The University of Melbourne, Department of Psychiatry; University of melbourne Ruhrmann, Stephan Salokangas, Raimo; University of Turku, Department of Psychiatry; Schultze-Lutter, Frauke; Heinrich Heine University Düsseldorf, Department of Psychiatry and Psychotherapy, Medical Faculty; Heinrich- Heine University, Medical Faculty Bonivento, Carolina; Scientific Institute, IRCCS Eugenio Medea Dwyer, Dominic; Ludwig-Maximilan-University Munich, Department of Psychiatry and Psychotherapie, Rosen, Marlene Schmidt, André; University of Basel, Department of Psychiatry and Psychiatrie und Psychotherapie, Rosen, Marlene Schmidt, Eva; Heinrich-Heine-Universitat Dusseldorf, Psychiatry and Psychotherapy Koutsouleris, Nikolaos; Ludwig-Maximilian-University, Department of Psychiatry and Psychotherapy Upthegrove, Rachel; University of Birmingham, Institute for Mental Health

Keywords:	transdiagnostic, MRI, gray matter volume, comorbidity, support vector machine
	SCHOLAR ONE [™]
	Manuscripts
htt	tp://www.schizophreniabulletin.oupjournals.org

	Lalousis et al. Transdiagnostic features, comorbidity and classification
1	Heterogeneity and Classification of Recent Onset Psychosis and Depression: a
2	Multimodal Machine Learning Approach
3	
4	Paris Alexandros Lalousis, MSc ^{1,2} ; Stephen J. Wood, PhD ^{1,3,4} ; Lianne Schmaal, PhD ^{3,4} ;
5	Katharine Chisholm, PhD ^{1,5} ; Sian Lowri Griffiths, PhD ^{1,2} ; Renate L.E.P Reniers, PhD ^{1,2,6} ;
6	Alessandro Bertolino, MD ⁷ ; Stefan Borgwardt, MD ⁸ ; Paolo Brambilla, MD ^{9,10} ; Joseph
7	Kambeitz, MD ¹¹ ; Rebekka Lencer, MD, PhD ¹² ; Christos Pantelis, MB BS, MD, MRCPsych,
8	FRANZCP ¹³ ; Stephan Ruhrmann, MD ¹⁴ ; Raimo K. R. Salokangas, MD, PhD, MSc ¹⁵ ; Frauke
9	Schultze-Lutter, PhD ¹⁶ ; Carolina Bonivento, PhD ¹⁷ ; Dominic Dwyer, PhD ¹¹ ; Adele Ferro,
10	PsyD, PhD ¹⁰ ; Theresa Haidl, MD ¹⁴ ; Marlene Rosen, MSc ¹⁴ ; Andre Schmidt, PhD ⁸ ; Eva
11	Meisenzahl, MD ¹⁶ ; Nikolaos Koutsouleris, MD ^{11*} ; Rachel Upthegrove, MBBS FRCPsych,
12	PhD ^{1,2,18*} and the PRONIA Consortium#
13	* Joint Senior Authors
14	#See PRONIA consortium author list in the supplement
15	
16	Author Affiliations:
17	1 -Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom

18 2 -Centre for Human Brain Health, University of Birmingham, Birmingham, United

35 19 Kingdom

20 3 -Orygen, the National Centre of Excellence in Youth Mental Health; Melbourne, Australia

- 21 4 -Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia
- 22 5 -Department of Psychology, Aston University, United Kingdom
- 6 -Institute of Clinical Sciences, University of Birmingham, United Kingdom

48
 49
 24
 7 -Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of
 50
 51
 25
 Bari Aldo Moro, Bari, Italy

⁵³ 26 8 -Department of Psychiatry, University of Basel, Basel, Switzerland
 ⁵⁴

⁵⁵⁵⁶ 27 9 -Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy

- ⁵⁸ 28 10 Department of Neurosciences and Mental Health, IRCCS Ca' Granda Ospedale
 ⁵⁹ 30 Department of Neurosciences and Mental Health, IRCCS Ca' Granda Ospedale
- 60 29 Maggiore Policlinico, Milan, Italy.

1		Lalousis et al.	Transdiagnostic features, comorbidity and classification
2 3 4	30	11 -Department of Psychiatr	y and Psychotherapy, Ludwig Maxmilians University, Munich,
5 6	31	Germany	
7 8	32	12 -Department of Psychiatr	y, University of Münster, Münster, Germany
9 10 11	33	13 -Melbourne Neuropsychia	atry Centre, University of Melbourne, Melbourne, Australia
12 13	34	14 -Department of Psychiatr	y and Psychotherapy, Faculty of Medicine and University
14 15	35	Hospital, University of Colo	gne, Cologne, Germany
16 17 18	36	15 -Department of Psychiatr	y, University of Turku, Turku, Finland
19 20	37	16 -Department of Psychiatr	y and Psychotherapy, Heinrich-Heine University Düsseldorf,
21 22	38	Düsseldorf, Germany	
23 24 25	39	17 -IRCCS "E. Medea" Scie	ntific Institute, San Vito al Tagliamento (Pn), Italy
26 27	40	18 -Early Intervention Servio	ce, Birmingham Women's and Children's NHS Foundation trust,
28 29	41	United Kingdom	
30 31 32	42		
33 34	43		
35 36 37	44		
38 39	45		
40 41 42	46		
43 44	47		
45 46 47	48		
48 49	49		
50 51 52	50		
53 54 55	51		
56 57	52	Keywords: psychosis, depre	ssion, transdiagnostic, machine learning, MRI, gray matter
57 58 59 60	53	volume, comorbidity	

Transdiagnostic features, comorbidity and classification

Lalousis et al.

Corresponding Author:

- 55 Mr. Paris Alexandros Lalousis, BSc, MSc
- 56 School of Psychology
- 57 University of Birmingham, 52 Pritchatts Road
- 58 B15 2SA, Birmingham, United Kingdom
- 59 <u>pal532@student.bham.ac.uk</u>
- 61 Word Count Manuscript
- 62 Abstract: 250
- 63 Introduction: 635
- 64
 Methods:
 877

 65
 Results:
 750
- 66 Discussion: 1264
- 67 Figure Legends: 223
- 68Total:3999 (including abstract, text body, and figure and table legends)
 - 70 Supplementary Methods and Results: 1 file

Transdiagnostic features, comorbidity and classification

Lalousis et al.

2 3 4	85	Abstract
5 6	86	Diagnostic heterogeneity within and across psychotic and affective disorders challenges
7	87	accurate treatment selection, particularly in early stages. Delineation of shared and distinct
8 9	88	illness features at the phenotypic and brain levels may inform the development of more
10 11	89	precise differential diagnostic tools. We aimed to identify prototypes of depression and
12 13	90	psychosis to investigate their heterogeneity, with common, comorbid transdiagnostic
14 15	91	symptoms. Analysing clinical/neurocognitive and grey matter volume (GMV) data from the
16	92	PRONIA database, we generated prototypic models of recent-onset depression (ROD) vs.
17 18	93	recent-onset psychosis (ROP) by training support-vector machines to separate patients with
19 20	94	ROD from patients with ROP, who were selected for absent comorbid features (pure groups).
21	95	Then, models were applied to patients with comorbidity, i.e., ROP with depressive symptoms
22 23	96	(ROP+D) and ROD participants with sub-threshold psychosis-like features (ROD+P), to
24 25	97	measure their positions within the affective-psychotic continuum. All models were
26 27	98	independently validated in a replication sample. Comorbid patients were positioned between
28	99	pure groups, with ROP+D patients being more frequently classified as ROD compared to
29 30	100	pure ROP patients (clinical/neurocognitive model: χ^2 =14.874; <i>p</i> <0.001; GMV model:
31 32	101	χ^2 =4.933; <i>p</i> =0.026). ROD+P patient classification did not differ from ROD
33 34	102	(clinical/neurocognitive model: $\chi^2 = 1.956$; <i>p</i> =0.162; GMV model: $\chi^2 = 0.005$; <i>p</i> =0.943).
35	103	Clinical/neurocognitive and neuroanatomical models demonstrated separability of prototypic
36 37	104	depression from psychosis. The shift of comorbid patients towards the depression prototype,
38 39	105	observed at the clinical and biological levels, suggests that psychosis with affective
40 41	106	comorbidity aligns more strongly to depressive rather than psychotic disease processes.
42	107	Future studies should assess how these quantitative measures of comorbidity predict
43 44	108	outcomes and individual responses to stratified therapeutic interventions.
45 46 47	109	
48 49 50	110	
51 52 53	111	
54 55	112	
56 57 58	113	
59 60	114	

Transdiagnostic features, comorbidity and classification

Introduction:

Treatments for mental illness are currently based on categorical structures built on patterns of syndromes and their course, rather than aetiology¹. The biological and clinical overlaps between these syndromes, and significant heterogeneity in outcomes, has become more apparent in recent years^{2–4}. Advancement in both pharmacological and psychotherapeutic interventions has stalled, potentially as a result of continued focus on invalid disease categories^{5,6}. The need for better treatments is particularly acute in psychosis and depression, which constitute major mental health challenges to the world's population^{7–13}. The legacy of a Jaspers based hierarchical approach to symptom structures suggests that positive psychotic symptoms are of primary importance within psychotic spectrum disorders¹⁴. Yet the categorical and hierarchical division of psychotic disorders into affective and non-affective has been contested for decades¹⁵, with clear demonstration of the presence of affective symptoms in psychosis and psychotic symptoms in affective disorders^{8,11,16}. Heterogeneity is particularly noticeable in early and developing stages of illness, with high prevalence of affective symptoms across disorders¹⁷. The comorbidity of depression in early psychosis has been largely regarded as secondary to the primary disorder (psychosis), reinforcing a categorical, hierarchical approach^{18,19}. There are increasing calls to use empirical evidence to develop alternative aetiologically informed structures²⁰. The use of multidimensional item response modelling to predict psychosis biotypes has been shown to transcend traditional diagnostic boundaries; with suggestion of an underlying transdiagnostic dimension across psychotic diagnoses^{21–23}. However, there are valid reasons why a categorical approach to mental illness has persisted; a significant number of individuals' presentation will 'fit' within distinct categories of mental illness and the course and outcome of their treatment can be predicted from such diagnostic structures²⁴. When disorders are fully formed, course as well as symptom structure enable clearer distinction between categories. Imaging studies also show shared areas of interest, including the hippocampus and cerebellum³², the prefrontal cortex and insula³³ and both depression and psychosis have been associated with heightened brain activation in regions central to emotional processing^{33–35} with similarities particularly prominent in the early stages of illness^{25,33–35}.

The distinction between depression and schizophrenia is possible by structural brain data, but also, more challenging in early stages of illness when symptoms and course are more heterogeneous²⁵. Transdiagnostic processes of mental health disorders are descriptively

Lalousis et al.

Transdiagnostic features, comorbidity and classification

transdiagnostic (i.e. being present in multiple disorders, without regard to how or why) or mechanistically transdiagnostic (i.e. reflecting neurobiological, physiological, or functional mechanisms)^{26,27}. Both depression and psychosis are associated with transdiagnostic features of working memory, executive functioning, and verbal fluency deficits²⁸, ³⁰. The importance of certain mechanistically transdiagnostic symptoms is potentially hidden in categorical structures, and they remain under-investigated³¹.

Complex psychopathology and heterogeneity in developing mental health disorders presents the opportunity of fuller exploration of the significance of potential transdiagnostic symptoms, to provide further insight into aetiopathogenetic pathways of symptoms and through this to advance diagnostic structures^{36,37}. However, novel approaches and powerful statistical tools such as machine learning techniques could help provide this deeper understanding by detecting complex patterns of data across diagnostic structures, and the delineation of shared and distinct features of these illnesses at the phenotypic and brain levels. This may inform the development of more precise differential diagnostic tools and improve the development of new treatments³⁶.

This study aimed to identify prototypes of pure depression and pure psychosis in order to investigate the heterogeneity of depression and psychosis with common, comorbid transdiagnostic symptoms. We hypothesized that developed models would correctly classify diagnostic groups without comorbid symptoms, in keeping with evidence of the utility in categorical diagnostic structure, and that grey matter volume (GMV) would add classification accuracy. We further hypothesised that a reduction of classification accuracy would be seen in groups with comorbid symptoms. Exploration and the delineation of shared and distinct features at both the phenotypic and biological levels may potentially inform future development of more precise treatments.

47 171 Materials and Methods 48

50 172 **Study design**

Data were taken from the discovery and replication samples of the PRONIA study, an EU-FP7 funded seven centre study aiming to optimize candidate biomarkers for the prediction and staging of mental health disorders. Details of the PRONIA study sites, recruitment protocol and quality control procedures are described in a previous publication⁴⁰ and in the supplementary methods (1.1, 1.2, 1.3, tables S2, S3).

Lalousis et al.

178 Inclusion and Exclusion Criteria

The general inclusion criteria for the study were: (1) age between 15 and 40 years, (2) sufficient language skills for participation, (3) capacity to provide informed consent/assent. General exclusion criteria were: (1) an IQ below 70, (2) current or past head trauma with loss of consciousness (> 5 minutes), (3) current or past known neurological or somatic disorders potentially affecting structure or functioning of the brain, (4) current or past alcohol dependence, (5) polysubstance dependence within the past six months, and (6) any medical indication against MRI. ROP and ROD inclusion criteria can be found in the supplement (1.1).

187 Group identification

Pure ROP: any ROP patient who had a Beck Depression Inventory-II (BDI-II) score of 13 or lower, which is indicative of absent or minimal depressive symptoms^{41,42}. Pure ROD: any ROD patient who had a Positive and Negative Symptom Scale (PANSS)⁴³ positive subscale score of no more than 7 and no Structured Interview of Psychosis-risk Syndromes positive (SIPS-P) severity score of 3 or more on any item.

ROP with depressive symptoms (ROP+D): any ROP participant with a BDI-II score of 14 or
more. ROD with psychotic symptoms (ROD+P): any ROD participant with a SIPS positive
item score of 2 or more and a Schizophrenia Proneness Instrument-Adult version (SPI-A)
Cognitive Disturbances (COGDIS) item score of 3 or more.

197 Twenty-four ROP and 31 ROD patients from the discovery sample and 21 ROP and 53 ROD
 198 patients were not included in the analysis due to not meeting group identification criteria or
 199 not having neuroimaging data.

⁶ 200 MRI imaging data acquisition, quality control, and preprocessing

Participants underwent a multi-modal MRI protocol. A minimal harmonization protocol,
which the MR sequences across the different scanners had to comply with is described in the
supplementary methods (1.3). In the current study, T1-weighted structural MRI (sMRI)
images of the participants were analyzed. The sMRI images of six healthy travelling
volunteers who were scanned at all sites with same parameters were also analysed as part of a
calibration study. The images were processed using the open source CAT12 toolbox (version
r1155; <u>http://dbm.neuro.uni.jena.de/cat12/</u>) (see supplementary methods 1.4). Employing

Page 9 of 74

Lalousis et al.

Transdiagnostic features, comorbidity and classification

208 generalization theory^{44,45}, a between-site voxel reliability map (G coefficient map) was

209 computed from the analysis of the GMV maps that were derived from the calibration study.

210 During our neuroimaging based machine learning analyses the G coefficient maps were used

211 for reliability-based voxel masking.

1 212 Classification Models

Using the pure ROP and ROD groups, a Support Vector Machine (SVM) classification model was built using individual item scores from broad clinical and neurocognitive tests that assess features commonly occurring in psychosis and depression including anhedonia, social functioning and cognition deficits (see supplementary methods 1.8). In total, 151 features were included in the model. The trained pure classification model was then applied to the comorbid ROP+D and ROD+P groups to determine the classification accuracy to their primary diagnosis.

A second model using GMV whole-brain voxel-wise data as features was developed in the pure ROD and ROP groups and then applied to the ROP+D and ROD+ P groups. The developed clinical/cognitive and GMV models were combined by using decision values from the pure clinical and pure GMV models (in order to build a model that learns from the metadata) in a stacking-based data fusion framework^{46,47}. Finally, all the models were applied to an independent replication sample.

⁵⁷ 226 Support Vector Machine Learning Analysis:

The machine learning analysis of pre-processed data (see supplementary methods 1.5) was performed using NeuroMiner (version 1.0; <u>https://github.com/neurominer-git</u>). A repeated nested pooled cross-validation (CV) was used with 10 outer CV2 permutations, 10 outer CV2 folds, 10 inner CV1 permutations, and 10 inner CV1 folds.

Imbalanced learning was corrected for, by increasing the C value in the minority class by
multi-plying it by the inverse ratio of the training class sizes. A linear kernel was used with
eleven C values (0.0156, 0.0312, 0.0625, 0.1250, 0.2500, 0.5000, 1, 2, 4, 8, and 16) in order
to optimize the choice of C value and create an ensemble of predictive models to be applied
to the CV₂ data to produce a single average robust prediction.

Balanced accuracy (BAC) regularized by SVM model complexity was used as a criterion for
 the hyperparameter optimization (see supplementary methods 1.6).

Schizophrenia Bulletin. For Peer Review Only

Lalousis et al. Transdiagnostic features, comorbidity and classification Finally, a stacking-based data fusion framework $\frac{46-49}{4}$ was used to examine whether the combination of the clinical/neurocognitive and the neuroimaging-based models would provide a superior classification accuracy (see supplementary methods 1.7). **Independent Validation** All our models were validated in our independent replication sample (N=262) (see supplementary methods table S4) which was collected at a different timescale. The same group identification criteria were applied. **Supplementary analyses** A number of supplementary exploratory analyses, including correlation analyses between decision scores from our models, association and comparison analyses between correctly and mis-classified patients, GMV comparison between groups, decision score group comparisons, and regression analyses with 9 month functional outcomes were conducted and can be found in the supplement (Section 2). **Results: Demographic Information** Data from 154 participants with ROP and 146 patients with ROD were included in the analysis as our Discovery sample. Thirty-eight ROP patients were included in the pure ROP group and 90 ROD patients in the pure ROD group. The mean age of the pure ROP group was 26.5 [SD 6.8]) and the mean age of the pure ROD group was 26.5 [SD 6.6]). There were 25 male and 13 female patients in the pure ROP group and 45 male and 45 female patients in the pure ROD group. Ninety-two ROP subjects were included in the ROP+D group and 25 ROD subjects in the ROD+P group. The mean age of the ROP+D group was 26.5 [SD 6.8] and the mean age of the ROD+P group was 23.8 [SD 3.9]. There were 57 males and 35 females in the ROP+D group and 12 males and 13 females in the ROD+P group. A summary of demographic information is provided in table 1. The independent validation sample consisted of 161 patients with ROP and 131 patients with ROD. Fifty ROP patients were included in the pure ROP group and 53 ROD patients in the

		Lalousis et al.	Transdiagnostic features, comorbidity and classification
	266	pure ROD group. The ROP+D and RO	DD+P groups consisted of 90 and 25 patients
	267	respectively. A full description is prov	vided in the supplement (Table S4).
	268	Machine Learning Analyses	
) I	269	Internal Validation of the Pure Gro	up Differential Classifiers
<u>2</u> 3 1	270	Clinical and Neurocognitive Data	
5	271	A repeated nested pooled cross valida	tion model with classifiers of clinical and cognitive
7	272	variables predicted pure diagnostic gro	oups with a balanced accuracy (BAC) of 79.3%; 95%
3)	273	CI [77.2, 82.3] and an area under the o	curve (AUC) of 0.86 (Table 2 and Figure 1a).
) 	274	Assignment to the ROP category by the	ne clinical classifier was driven by reduced scores in the
2	275	RSA and elevated scores in the WSS,	RSA, and SPIA. ROD group classification was
, 1	276	informed by increased scores in the SI	PIA, WSS, together with reduced scores in the DSST.
5	277	The contribution of the features was c	alculated by feature weights and by cross-validation
7 3	278	ratio (Figure 2).	
))	279	GMV Data	
<u>2</u> 3	280	The repeated nested pooled cross-vali	dation model using sMRI to predict diagnostic group in
1	281	pure ROP and ROD produced a BAC	of 62.5%; 95% CI [58.8, 64.0] and an AUC of 0.70
5	282	(Table 2 and Figure 1b). ROP patients	s showed pronounced reductions in the thalamus and the
7 3	283	cerebellum, whereas depressed patien	ts showed orbitofrontal, limbic and paralimbic volume
)	284	reductions (Figure 3).	
 2 3	285	Stacking	

Combining the outputs of the clinical predictors and sMRI using stacked generalization
predicted diagnostic group with a BAC of 79.5%; 95% CI [77., 81.9] and an area under the
curve (AUC) of 0.87 (Table 2 and Figure 1c).

289 Separability of Comorbid Groups

Clinical/Neurocognitive Data: The trained pure classification system comprising the
 collection of 11 clinical/neurocognitive models generated by the repeated nested cross validation scheme on pure groups was then applied to the comorbid groups (ROP+D and
 ROD+P) to produce decision scores measuring ROP vs. ROD likeness. This model had a
 BAC of 62.5% and an AUC of 0.66. Misclassifications showed a directionality toward the

1 2		Lalousis et al. Transdiagnostic features, comorbidity and classification
2 3 4 5	295	ROD group, with 63% of ROP+D patients being classified as ROD; Z=1.276, p=.0385) (see
	296	Table 2 and Figure 1a). ROP+D patients were more frequently classified as ROD compared
6 7	297	to pure ROP patients (χ^2 =14.874; p <0.001). In contrast, the assignment precision of ROD+P
8 9	298	and ROD patients did not differ ($\chi^2 = 1.956$; $p = 0.162$).
10 11 12	299	GMV Data
13 14	300	The trained pure classification system (comprising of 11 GMV models generated by the
15 16	301	repeated nested cross-validation scheme on pure groups) was then applied to the comorbid
17	302	groups (ROP+D and ROD+P) to produce decision scores measuring ROP vs. ROD likeness.
18 19	303	This produced a BAC of 47.8% and AUC of 0.43. Misclassifications showed a directionality
20 21	304	toward the ROD group, with 80.4% of ROP+D patients being classified as ROD; $Z=.713$,
22 23	305	<i>p</i> =.344) (see Table 2 and Figure 1b). Similarly to the clinical/neurocognitive model ROP+D
24	306	patients were more frequently classified as ROD compared to pure ROP patients (χ^2 =4.933;
25 26	307	p=0.026). In contrast, the assignment precision of ROD+P and ROD patients did not differ
27 28	308	$(\chi^2=0.005; p=0.943).$
29 30 31	309	Stacking
32 33	310	When applied to the comorbid groups, the combined model predicted diagnostic group with a
34 35	311	BAC of 58.5% and an area under the curve (AUC) of 0.66 (see Table 1 and Figure 1c).
36 37 38	312	Independent Validation
39 40	313	Application of our models to the independent validation sample replicated findings very well
41	314	(pure clinical and neurocognitive model BAC 76.2; pure imaging model BAC 49.9; pure
42 43	315	stacking model BAC 78.2). Full results from the independent validation analysis can be
44 45	316	found in the supplement (Table S5).
46 47 48	317	Supplementary Analyses
49 50	318	See supplement S2 for additional exploratory analyses results.
51 52 53	319	Discussion:
54 55	320	Using repeated nested cross-validation techniques we built classification models based on
56 57	321	transdiagnostic clinical and neurocognitive features and GMV data, together with a combined
58	322	model integrating all data modalities, to classify prototype diagnostic groups of ROD and
59 60	323	ROP participants without comorbidity. Eighty-seven per cent of patients with pure ROP and

Transdiagnostic features, comorbidity and classification Lalousis et al. ROD were accurately ascribed to their diagnostic group. Applying this model to groups with comorbidity, 88% of patients with ROD and psychotic features were ascribed to their primary diagnostic group (depression) whereas only 37% of patients with ROP and depressive features were ascribed to their primary diagnostic group (psychosis). The shift of comorbid psychosis patients towards the depression prototype was observed both at the clinical and biological levels. This suggests that when comorbid with affective symptoms, psychoses align more strongly to the disease processes of depressive than psychotic disorders. Using GMV measures only for classification, comorbid groups ROP patients with depressive symptoms largely resembled pure ROD. Results were generalisable to our independent validation sample. Our findings suggest that clinical and neurocognitive transdiagnostic symptoms may have differential weight within psychosis and depression presentation with and without comorbidity. In pure groups, these symptoms could be seen as under the hierarchical umbrella of psychosis or depression, and may accurately reflect underlying pathology in these groups. However, in the face of comorbidity, transdiagnostic symptoms lean more to the depression domain. Given the prevalence and importance of depressive comorbidity in early psychosis this may support a model where depression could be more intrinsically important than is currently considered in early phases of illness^{4,29}. When participants with ROP exhibited even mild depressive symptoms, their GMV classification was more likely to lie within the depression group than psychosis suggesting a potential depressive biological phenotype that exists in the psychosis spectrum. The implications of these findings suggest that understanding heterogeneity of brain structures may need to include specific focus on symptoms that may often be masked by more acute (e.g. positive) symptoms and simple solutions that some symptoms may be transdiagnostic, potentially belie the complexity of individual aetiology and psychopathology. Furthermore, these findings indicate a need to rethink current diagnostic classification to better reflect the biological reality and eventually develop better treatment options. A classical diagnostic hierarchy in the structure of personal illness, reflected in current nosological classification systems, posits that mental disorders of the primary diagnosis have more weight and primacy over symptoms from lower classes, which are seen as secondary or comorbid^{18,19}. We found that comorbid symptoms affect diagnostic structures in different ways. Sub-clinical psychotic-like symptoms appeared to not alter the signature of ROD

Lalousis et al.

Transdiagnostic features, comorbidity and classification

patients whilst depressive symptoms had a profound effect on ROP patients' classification accuracy.

Our findings add evidence to the debate around the validity of the system on which the DSM is built upon⁵⁰, suggesting that a descriptivist position in the diagnosis of mental disorder is not sufficient and that a novel multivariate approach of mental disorder is more appropriate. Comorbidity in psychiatric disorders presents a clinical as well as nosological challenge. There may be significant interplay between sets or clusters of symptoms over the development of disorder from prodrome via onset to potential chronicity. The frequency of depression within ROP may be a primary driver, rather than being a secondary symptom. If identified correctly, novel symptoms may be new targets that if treated effectively, ameliorate the other, e.g. positive symptoms.

Recent onset disorders may constitute groups of phenotypically highly individual symptoms with underlying aetiopathology, and it may be that personalized treatments could be tailored accordingly. Our SVM classification model found that different types of anhedonia (social and physical) were important in the classification of both psychosis and depression. Anhedonia has been suggested as a possible biomarker for depression⁵¹ and has been found to be associated with decreased activation in ventral basal ganglia areas, the dorsal anterior cingulate, middle frontal gyrus, and medial frontal gyrus both in schizophrenia and depression⁵². Our GMV model revealed that orbitofrontal areas were higher weighted in the classification to the ROD group.

The relationship between psychotic and affective symptoms has been central to the dilemma of psychiatric classification. Substantial clinical and genomic evidence shows that schizophrenia and affective disorders may be distributed across a dimensional spectrum⁵³. However, the dimensional spectra model does not allow for either the clinical reality of a complex and changing symptom profile, nor the investigation of clinical features commonly seen across all disorders; some of which may be of primary importance. Concerning the neurobiology of schizophrenia and depression, the majority of previous studies are based in subjects with depression or psychosis, but only rarely in both^{25,54} and not previously in highly mixed recent onset comorbid disorders. Our results suggest that while GMV showed some distinction in prototype (pure) groups, when presented with complex comorbid groups, which may be the majority in clinical practice, there was a significant lack of any point of rarity between disorders. This builds on previous work suggesting distinction is more challenging,

Transdiagnostic features, comorbidity and classification Lalousis et al. but also that neuroimaging based data do not support categorical classification in recent onset disorders ²⁵. In recent onset disorders, early cognitive processes related to depression can both drive other more severe symptoms and/or be seen in isolation: for example, anhedonia could be an early indication of negative symptom clusters or a core feature of co-morbid depression⁵⁵. **Strengths and Limitations** The strengths of the present analysis include sufficiently large data, robust collection of clinical and imaging data from both depression and psychosis groups, independent validation analysis together with a novel approach to a challenging and essential clinically relevant research question, which speaks to the validity of diagnoses as the cornerstone of psychiatric practice. Our results however should be interpreted with certain caution due to limitations with the study. Regarding our definition of the ROD+P group we used a SIPS-P item score of 2 or more which is not a marker of formal psychotic symptoms, and thus would only measure low levels of psychotic-like symptoms. However to supplement this we used a SPI-A COGDIS item score of 3 or more. We did not include core symptomatology measures such as the PANSS and the BDI in our features due to the fact that primary groups are defined with these measures, and therefore including them would risk a circular analysis. Finally, there were more subjects identified in the pure ROD and comorbid ROP groups; ideally groups of equal size would have been used. Nevertheless, we addressed this imbalance in our analysis, by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes. Conclusions Findings from this large, multi-modal, replicated machine learning classification study in recent onset disorders suggest that whilst there may be a small subset of prototypically pure individuals with clear categorical disorder, the majority of patients share a number of transdiagnostic features, primarily from the depression domain. Brain structure of psychosis patients with co-morbid depressive symptoms largely resembles that of depression. The increasing interest in heterogeneity of early disorders and transdiagnostic symptoms as novel treatment targets needs to be fully informed of potential depression related co-morbidity. Our

- 418 analysis in recent onset groups also highlight that both categorical and transdiagnostic
- 59 419 approaches may ultimately fail at an individual patient level, as neither recognise the

1 2		Lalousis et al. Transdiagnostic features, comorbidity and classification				
- 3 4	420	possibility of pluripotent pathways that are both stage and context dependent. The				
5	421	implications, particularly for early intervention and prevention in mental health disorders is				
6 7	422	that ultimately a personalised medicine approach, encompassing the full potential of				
8 9	⁸ 423 comorbidity, may be necessary to improve outcomes. Future studies shoul					
10	424	utility of targeting such transdiagnostic depression features to elucidate their prognostic				
11 12 13	425	value, and develop new treatments.				
14 15 16	426					
17 18	427					
19 20 21	428					
22 23 24	429					
25 26	430					
27 28 29	431					
30 31	432					
32 33 34	433					
35 36 27	434					
37 38 39	435					
40 41 42	436					
42 43 44	437					
45 46 47	438					
47 48 49	439					
50 51 52	440					
52 53 54	441					
55 56 57	442					
57 58 59 60	443					

1 2		Lalo	ousis et al.	Transdiagnostic features, comorbidity and classification	
3 4	444	Ref	References		
5 6 7 8 9	445 446 447	1.		achine Learning for Precision Psychiatry: Opportunities and <i>Jeurosci Neuroimaging</i> . 2018;3(3):223-230.	
10 11 12 13	448 449 450	2.	Schizophrenia: A Meta-Analysis of	Leucht S, et al. Detecting Neuroimaging Biomarkers for Multivariate Pattern Recognition Studies. ;40(7):1742-1751. doi:10.1038/npp.2015.22	
14 15 16 17 18	451 452 453	3.		et al. Detecting Neuroimaging Biomarkers for Depression: A tern Recognition Studies. <i>Biol Psychiatry</i> . 2017;82(5):330-338. 28	
19 20 21 22	454 455 456	4.		jun P, et al. The Psychopathology and Neuroanatomical ychosis. <i>Schizophr Bull</i> . Published online July 7, 2020:sbaa094.	
23 24 25 26	457 458 459	5.	-	e C-M. Challenges and opportunities for drug discovery in nters' perspective. <i>Int J Neuropsychopharmacol</i> . .7/S1461145710000866	
27 28 29 30 31	460 461 462	6.		Sawyer AT, Fang A. The Efficacy of Cognitive Behavioral ses. <i>Cogn Ther Res</i> . 2012;36(5):427-440. doi:10.1007/s10608-	
32 33 34 35	463 464 465	7.		ro DF, et al. Global Epidemiology and Burden of Global Burden of Disease Study 2016. <i>Schizophr Bull.</i> 93/schbul/sby058	
36 37 38 39 40	466 467 468 469	8.	May 20, 2019.	nmon Mental Disorders. WHO. Published 2017. Accessed th/management/depression/prevalence_global_health_esti	
41 42 43 44 45	470 471 472	9.	-	rum S, Chiou C-F, Chaiyakunapruk N. Global economic natic review. <i>Neuropsychiatr Dis Treat</i> . 2016;12:357-373.	
46 47 48	473 474	10.		M, Wittchen H-U, Jönsson B. The economic cost of brain 2012;19(1):155-162. doi:10.1111/j.1468-1331.2011.03590.x	
49 50 51 52 53	475 476 477	11.	• • •	B, Faries D, Kinon BJ. The Burden of Depressive Symptoms in ents With Schizophrenia. <i>Schizophr Res</i> . 2007;90(1-3):186- 9.027	
55 54 55 56	478 479	12.	Sobocki P, Jönsson B, Angst J, Reh Econ. 2006;9(2):87-98.	nberg C. Cost of Depression in Europe. J Ment Health Policy	
50 57 58 59 60	480 481	13.		al. US Spending on Personal Health Care and Public Health, 2627-2646. doi:10.1001/jama.2016.16885	

1		Lalo	ousis et al.	Transdiagnostic features, comorbidity and classification
2 3 4 5	482 483	14.	Bürgy M. The Concept of Psychos 2008;34(6):1200-1210. doi:10.10	sis: Historical and Phenomenological Aspects. <i>Schizophr Bull</i> . 93/schbul/sbm136
6 7 8 9 10	484 485 486	15.	psychopathology at first episode	nderson C, et al. Transdiagnostic dimensions of psychosis: findings from the multinational EU-GEI study. 1391. doi:10.1017/S0033291718002131
10 11 12 13 14	487 488 489	16.	Ohayon MM, Schatzberg AF. Prev General Population. <i>Am J Psychia</i> doi:10.1176/appi.ajp.159.11.185	, , , ,
15 16 17 18	490 491 492	17.	· · · · · · · · · · · · · · · · · · ·	N. Innovation in youth mental health services in Australia: ne first headspace centres. <i>Early Interv Psychiatry</i> . p.12071
19 20 21 22 23	493 494 495	18.	studies in acute psychosis, post p	e R. Psychological pathways to depression in schizophrenia: sychotic depression and auditory hallucinations. <i>Eur Arch</i> 5(3):202-212. doi:10.1007/s00406-005-0588-4
23 24 25 26	496 497	19.	Foulds GA, Bedford A. Hierarchy doi:10.1017/S003329170005645	of classes of personal illness. <i>Psychol Med</i> . 1975;5(2):181-192. 2
27 28 29 30 31	498 499 500 501	20.	Understanding and Classifying M	ndez R, Narrow WE, Reed GM. Three Approaches to ental Disorder: ICD-11, DSM-5, and the National Institute of n Criteria (RDoC). <i>Psychol Sci Public Interest</i> . 2017;18(2):72- 7266
32 33 34 35	502 503 504	21.		Il framework in psychiatry acknowledging complexity while atry Off J World Psychiatr Assoc WPA. 2016;15(1):1-2.
36 37 38 39 40	505 506 507	22.		n MS, et al. Clinical phenotypes of psychosis in the Bipolar- nediate Phenotypes (B-SNIP). <i>Am J Psychiatry</i> . 1176/appi.ajp.2013.12101339
41 42 43 44	508 509 510	23.	•	et al. An Investigation of Psychosis Subgroups With Prognostic netic Underpinnings: The PsyCourse Study. <i>JAMA Psychiatry</i> . /jamapsychiatry.2019.4910
45 46 47 48 49	511 512 513	24.		andowski KE, Ongür D, Cohen BM. Categorical vs dimensional Iers. <i>Compr Psychiatry</i> . 2012;53(8):1118-1129. 4.010
50 51 52 53	514 515 516	25.		Borgwardt S, et al. Individualized differential diagnosis of rs using neuroanatomical biomarkers. <i>Brain.</i> 093/brain/awv111
54 55 56 57 58 59 60	517 518 519	26.		RA, Soehner A. Sleep disturbance as transdiagnostic: mechanisms. <i>Clin Psychol Rev</i> . 2011;31(2):225-235.

1		Lalo	ousis et al.	Transdiagnostic features, comorbidity and classification
2 3 4 5 6	520 521 522	27.	• • • • • • •	. Cognitive Behavioural Processes Across Psychological oach to Research and Treatment. Oxford University Press;
7 8 9	523 524	28.		Executive functioning in obsessive–compulsive disorder, nervina. Arch Clin Neuropsychol. Published online 2002:7.
10 11 12 13 14 15 16 17 18	525 526	29.	• •	ood M. Depression and Schizophrenia: Cause, Consequence, hr Bull. 2017;43(2):240-244. doi:10.1093/schbul/sbw097
	527 528 529 530	30.	positive and negative symptoms in	II. The mediating role of depression in pathways linking n schizophrenia. A longitudinal analysis using latent variable <i>uchol Med</i> . Published online March 8, 2019:1-9.
19 20 21	531 532	31.	Krueger RF, Eaton NR. Transdiagn 2015;14(1):27-29. doi:10.1002/wp	ostic factors of mental disorders. <i>World Psychiatry</i> . ps.20175
22 23 24 25 26	533 534 535	32.	major depression and schizophrer	der R, et al. Differences in hippocampal volume between nia: a comparative neuroimaging study. <i>Eur Arch Psychiatry</i> 7. doi:10.1007/s00406-009-0023-3
27 28 29 30	536 537 538	33.		nal neuroimaging studies in major depressive disorder with w. <i>Schizophr Bull</i> . 2013;39(4):776-786.
31 32 33 34	539 540 541	34.		Mapping Depression in Schizophrenia: A Functional dy. <i>Schizophr Bull</i> . 2016;42(3):802-813.
35 36 37 38 39	542 543 544	35.	· · · · · ·	en J, Marwaha S. Neurobiological and behavioural studies of ulations: a systematic review. <i>Neurosci Biobehav Rev</i> . eubiorev.2015.01.021
40 41 42 43	545 546 547	36.		I. Machine Learning Approaches for Clinical Psychology and 2018;14(1):91-118. doi:10.1146/annurev-clinpsy-032816-
44 45 46 47 48	548 549 550	37.	Klöppel S, Abdulkadir A, Jack CR, k neuroimaging across diseases. <i>Ne</i> doi:10.1016/j.neuroimage.2011.1	
48 49 50 51 52	551 552 553	38.	symptoms, cognition, and other m	, Rothman K, Ahn H, Malaspina D. Relative importance of nultilevel variables for psychiatric disease classifications by 2019;278:27-34. doi:10.1016/j.psychres.2019.03.048
53 54 55 56	554 555 556	39.	symptomatic distinction between	Cunningham-Owens D, Johnstone EC, Lawrie SM. Is there a the affective psychoses and schizophrenia? A machine 2018;202:241-247. doi:10.1016/j.schres.2018.06.070
 57 58 557 40. Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, et al. Predictio 59 558 Outcomes for Individuals in the Clinical High-Risk State for Psycho 60 				

1		Lalo	ousis et al.	Transdiagnostic features, comorbidity and classification
2 3 4 5	559 560		Depression: A Multimodal, Multis 2018;75(11):1156-1172. doi:10.10	ite Machine Learning Analysis. <i>JAMA Psychiatry</i> . 001/jamapsychiatry.2018.2165
6 7 8	561 562	41.		W. Comparison of Beck Depression Inventories -IA and -II in sees. 1996;67(3):588-597. doi:10.1207/s15327752jpa6703_13
9 10 11 12 13	563 564 565	42.	online January 1, 1996. Accessed	l for the Beck Depression Inventory-II (BDI-II). Published February 24, 2020. ocument?vid=9feb932d-1f91-4ff9-9d27-da3bda716129
14 15 16	566 567	43.	Kay SR, Fiszbein A, Opler LA. The schizophrenia. <i>Schizophr Bull</i> . 198	positive and negative syndrome scale (PANSS) for 37;13(2):261-276.
17 18 19	568 569	44.	Mushquash C, O'Connor BP. SPSS Res Methods. 2006;38(3):542-547	and SAS programs for generalizability theory analyses. <i>Behav</i> 7. doi:10.3758/BF03192810
20 21 22 23	570 571 572	45.	Education: Vol 24, No 1. Publishe	ty Theory and Classical Test Theory: Applied Measurement in d 2011. Accessed May 20, 2019. di/abs/10.1080/08957347.2011.532417
24 25 26 27	573 574	46.	Wolpert DH. Stacked generalization 6080(05)80023-1	on. <i>Neural Netw</i> . 1992;5(2):241-259. doi:10.1016/S0893-
28 29 30	575 576	47.	-	ns in decision making - IEEE Journals & Magazine. Published ps://ieeexplore.ieee.org/document/1688199
31 32 33 34	577 578 579	48.	- · · · ·	Gramfort A, Engemann DA. Predictive regression modeling er to signals and cognitive states. <i>NeuroImage</i> . neuroimage.2020.116893
35 36 37 38	580 581	49.		sed ranking of cognitive domains to predict schizophrenia. 87-4507. doi:10.1002/hbm.24716
39 40 41 42	582 583 584	50.	• • •	ford KWM, Sadler JZ, Kendler KS. What is a m DSM-IV to DSM-V. <i>Psychol Med</i> . 2010;40(11):1759-1765. I
43 44 45	585 586	51.	Der-Avakian A, Markou A. The ne Trends Neurosci. 2012;35(1):68-7	urobiology of anhedonia and other reward-related deficits. 7. doi:10.1016/j.tins.2011.11.005
46 47 48 49 50 51 52 53 54	587 588 589	52.		ng anhedonia-specific dysfunction in a transdiagnostic Brain Imaging Behav. 2016;10(3):920-939.
	590 591 592	53.		t al. Genome-wide analysis reveals extensive genetic overlap isorder, and intelligence. <i>Mol Psychiatry</i> . Published online 380-018-0332-x
55 56 57 58 59 60	593 594 595	54.		et al. Structural correlates of psychopathological symptom oxel-based morphometric study. <i>NeuroImage</i> . 16/j.neuroimage.2007.10.029

1		Lalousi	s et al.	Transdiagnostic features, comorbidity and classification
2 3 4 5	596 597		rkus E, Badcock JC. A Transdiagn 19;10:216. doi:10.3389/fpsyt.20:	ostic Perspective on Social Anhedonia. <i>Front Psychiatry</i> . 19.00216
6 7	598			
8 9 10	599	Legend	ls	
11 12	600	Legend	Figure 1: Classification Perfo	ormance of the Pure and Applied Clinical and
13 14	601	Neuroc	ognitive, GMV, and Combined	l Models.
15 16	602	A. Pure	Clinical and Neurocognitive (Classification Balanced Accuracy 79.3%, Sensitivity
17 18	603	76.3%,	Specificity 82.2%, AUC 0.86.	Applied Clinical Classification Balanced Accuracy
19 20	604	57.6%,	Sensitivity 39.1%, Specificity	76%, AUC 0.71.
21 22	605	B. Clas	sification Performance of the I	Pure GMV Model and the Applied GMV Model. Pure
23 24	606	GMV C	Classification Balanced Accura	cy 62.5%, Sensitivity 39.5%, Specificity 85.6%, AUC
25 26	607	0.70. A	pplied GMV Classification Ba	lanced Accuracy 50.3%, Sensitivity 20.7%, Specificity
27 28	608	80%, A	UC 0.47.	
29 30	609	C. Clas	sification Performance of the G	Combined Model and the Applied Combined Model.
31 32	610	Stacked	l Classification Balanced Accu	racy 79.5%, Sensitivity 78.9%, Specificity 80%, AUC
33	611	0.87. A	pplied Stacked Classification I	Balanced Accuracy 64.6%, Sensitivity 53.3%,
34 35 36	612	Specific	city 76%, AUC 0.71.	
37 38	613	Legend	Figure 2: Feature Weights ar	nd Cross-Validations Ratios of the most Significant
39 40	614	Feature	S.	
41 42	615	A. Feat	ure Weights. Derived from 100	00 random permutations of the outcome labels and
43 44	616	features	5.	
45 46	617	B. Cros	s-Validation Ratio. Sum of the	e median weights across all CV1 folds divided by the
47 48 49	618	standar	d error.	
50	619	Legend	Figure 3: Significant Region	s in the Imaging Classification Model. ROP GMV
51 52	620	Reducti	ons in the Thalamus and the C	erebellum, ROD GMV Reductions in Orbitofrontal,
53 54	621		, and Paralimbic Regions.	
55				
56 57	622	U		graphics. Sample Sizes, Participants per Study Site,
58 59 60	623	Age, Se	ex, Education, Partnership Stat	us, Population Density.

1 2	Lalousis et al.	Transdiagnostic features, comorbidity and classification
³ 624	Legend Table 2: Classification Peri	formance of the Clinical and Neurocognitive, GMV, and
4 5 625	Combined Models and Validation P	
6 7 8 626 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60		

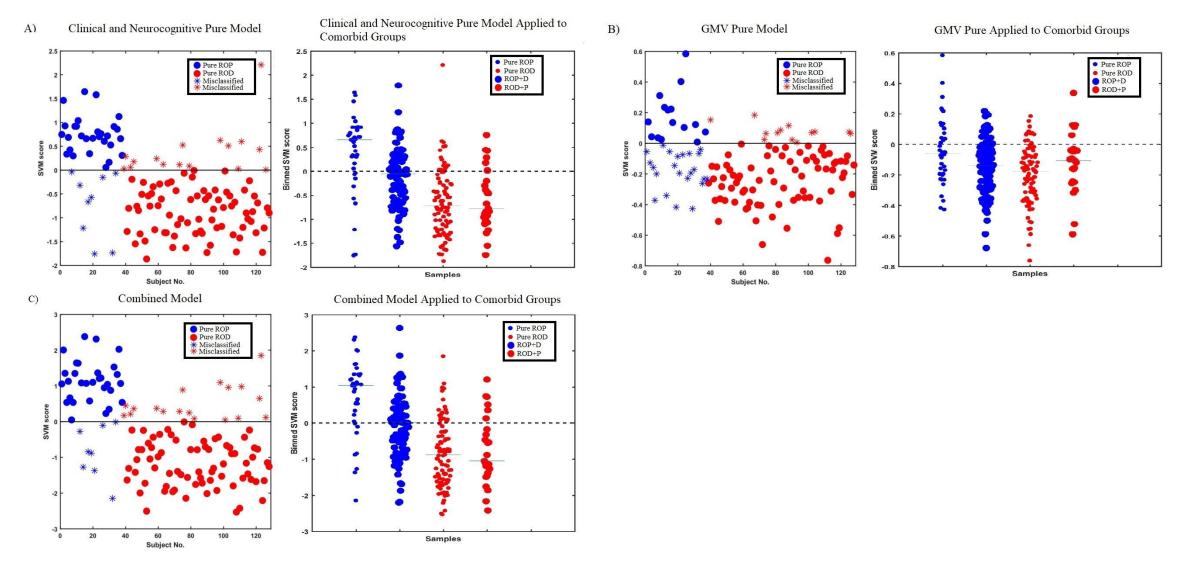
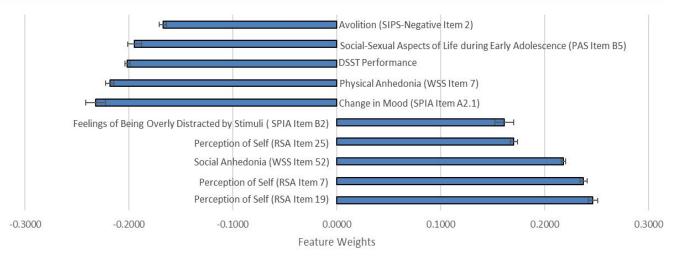



Figure 1. Classification Performance of the Pure and Applied Clinical, GMV, and Combined Models.

A) Pure Clinical and Neurocognitive Classification Balanced Accuracy 79.3%, Sensitivity 76.3%, Specificity 82.2%, AUC 0.86. Applied Clinical Classification Balanced Accuracy 57.6%, Sensitivity 39.1%, Specificity 76%, AUC 0.71. B) Classification Performance of the Pure GMV Model and the Applied GMV Model. Pure GMV Classification Balanced Accuracy 62.5%, Sensitivity 39.5%, Specificity 85.6%, AUC 0.70. Applied GMV Classification Balanced Accuracy 50.3%, Sensitivity 20.7%, Specificity 80%, AUC 0.47. C) Classification Performance of the Combined Model and the Applied Combined Model. Stacked Classification Balanced Accuracy 79.5%, Sensitivity 78.9%, Specificity 80%, AUC 0.47. C) 0.87. Applied Stacked Classification Balanced Accuracy 64.6%, Sensitivity 53.3%, Specificity 76%, AUC 0.71.

Figure 2. Feature Weights and Cross-Validations Ratios of the most Significant Features.

B. Cross-Validation Ratio. Sum of the median weights across all CV1 folds divided by the standard error.

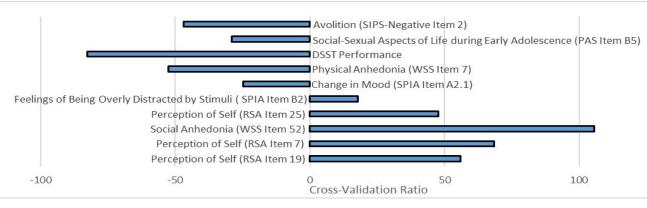
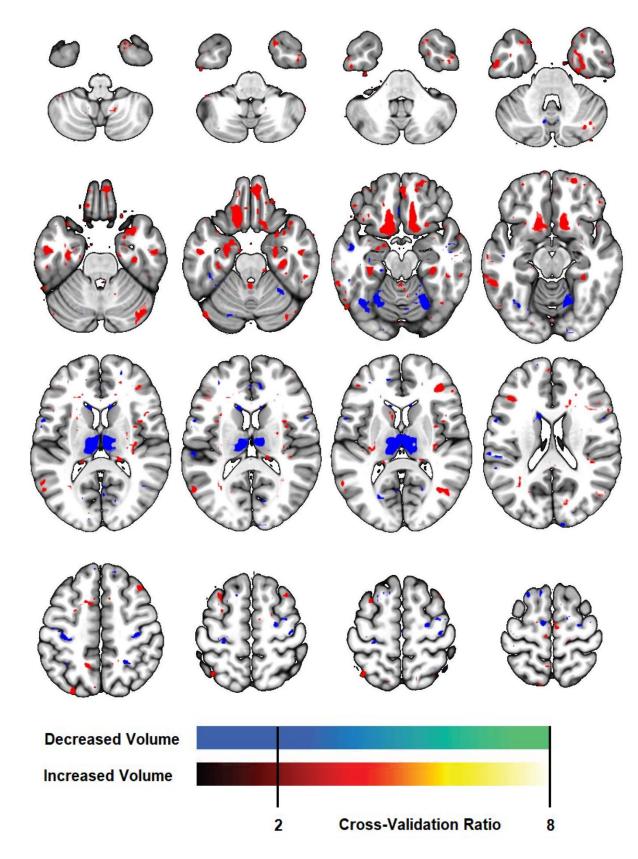



Figure 3. Significant Regions in the Imaging Classification Model. ROP GMV Reductions in the Thalamus and the Cerebellum, ROD GMV Reductions in Orbitofrontal, Limbic, and Paralimbic Regions.

	ROP Group	ROD Group	t/χ2	P Value	Pure ROP Group	Pure ROD Group	$t/z/\chi 2$	P Value	ROP+D Group	ROD+P Group	$t/z/\chi^2$	P Value
Sample Sizes, No.	154	146			38	90			92	25		
Participants per site, No. (%)												
Basel	23 (7.7)	17 (5.7)			3 (2.3)	8 (6.9)			14 (12)	6 (5.1)		
Birmingham	10 (4.7)	10 (3.3)			4 (3.1)	0 (0)			10 (8.5)	2 (1.7)		
Cologne	27 (9)	27 (9)			4 (3.1)	19 (14.8)			22 (18.8)	3 (2.6)		
Milan	13 (4.3)	7 (2.3)	$\chi^2 = 8.9$.257	8 (6.3)	5 (3.9)	$\chi^2 = 21.0$.002	1 (0.9)	0 (0)	$\chi^2 = 6.1$.517
Munich	46 (15.3)	47 (15.7)			10 (7.8)	35 (27.3)			31 (26.5)	7 (6)		
Turku	22 (7.3)	13 (4.3)			11 (8.6)	7 (5.5)			7 (6)	3 (2.6)		
Udine	12 (4)	21 (7)			2 (1.6)	12 (9.4)			3 (2.6)	3 (2.6)		
Age, Mean (SD)	24.7 (5.4)	25.5 (6.1)		.229	26.5 (6.8)	26.5 (6.6)		.959	24.6 (4.8)	23.8 (3.9)		.449
Sex (Male/Female)	94/60	67/79	$\chi^2 = 6.9$.009	25/13	45/45	$\chi^2 = 2.6$.101	57/35	12/13	$\chi^2 = .81$.368
Education, mean (SD)	13.9 (2.4)	15.1 (7.5)	<i>t</i> = 1.85	.064	13.9 (2.2)	15.8 (9.3)	<i>t</i> = 1.22	.224	14.0 (2.6)	13.5 (2.3)	<i>t</i> =838	.404
Educational years repeated, mean (SD)	1.8 (2.5)	2.3 (2.7)	<i>t</i> = 1.47	.141	.83 (.87)	1.1 (1.8)	<i>t</i> = 1.00	.319	3.1 (4.8)	5.0 (5.4)	<i>t</i> = 1.70	.091
				http://wv	vw.schizophreni	abulletin.oupjou	rnals.org					

Page	27	of	74
------	----	----	----

1 2 3 4 5 6 7 8 9 10	Having partnership most of the time in the year before study inclusion, No. (%)	72 (24.7)	85 (29.2)	$\chi^2 = 4.1$.036	17 (13.4)	51 (40.2)	$\chi^2 = 1.6$.194	48 (41.4)	18 (15.5)	$\chi^2 = 2.9$.085
11 12 13 14 15 16	Population density in living area, mean (SD), habitants/km2	3717.8 (2532.3)	3529.8 (2377.1)	<i>t</i> =544	.587	4498.3 (2724.6)	3022.1 (2274.3)	<i>t</i> = -2.640	.010	3447.9 (2338.5)	5152.1 (2361.8)	<i>t</i> = 2.547	.013
17 18 19 20 21 22													
23 24 25 26 27													
28 29 30 31 32 33													
34 35 36 37 38													
39 40 41 42 43 44					http://ww	vw.schizophreni	abulletin.oupjou	ırnals.org					
45 46													

Model

2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 24 25 26 27 28 9 30 31 22 23 24 25 26 27 28 9 30 31 23 34 5 36 37 38 9 40 41 42 33 44 5 6 57 58 9 60 51 52 35 45 56 57 58 9 60		(]]]]]]]]	(]]]	(]]]]
3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 9 20 12 22 32 4 5 26 7 28 9 30 13 23 34 35 36 7 38 9 40 14 24 34 45 66 7 15 25 35 4 55 66 7 58 59												
	4 5 6 7	9 10 11 12	14 15 16 17 18	20 21 22 23 24	26 27 28 29	31 32 33 34	36 37 38	40 41 42	44 45 46	48 49 50 51	53 54 55	57 58 59

1 2

> Table 2. Classification Performance of the Clinical/Neurocognitive, GMV, and Combined Models and Validation Performance.

> > False

False

True

Balanced

True

	True Positive, No.	True Negative, No.	False Positive, No.	False Negative, No.	Balanced Accuracy, %	AUC	Model P Value
Clinical/Neurocognitive							
Pure Model	20	74	16	0	70.2	0.00	-0.001
ROP-ROD	29	74	16	9	79.3	0.86	< 0.001
Applied							
Clinical/Neurocognitive							
Model							
ROP+D-ROD+P	36	19	6	56	57.6	0.71	NA
Applied Clinical and							
Applied Clinical and Neurocognitive Model							
Validation Pure ROP-							
ROD	34	39	14	16	70.8	0.78	NA
	54	57	17	10	/0.0	0.70	1 12 1
Applied Clinical and							
Neurocognitive Mode							
Validation ROP+D-							
ROD+P	27	20	5	63	55	0.56	NA
GMV Pure Model							
ROP-ROD	15	77	13	23	62.5	0.7	< 0.001
	15	//	15	25	02.5	0.7	\$0.001
Applied GMV Model							
ROP+D-ROD+P	19	20	5	73	50.3	0.47	NA
Applied GMV Model							
Validation Pure ROP-	17	20	1.5	22	50 0	0.50	
ROD	17	38	15	33	52.8	0.59	NA
Applied GMV Model							
Validation ROP+D-							
ROD+P	31	17	8	59	51.2	0.6	NA
Combined Model				_			
ROP-ROD	30	72	18	8	79.5	0.87	NA
Applied							
Combined Model							
ROP+D-ROD+P	49	19	6	43	64.6	0.71	NA
	-	-	-	-	-		
Applied Combined							
Model Validation Pure							
ROP-ROD	36	38	15	14	71.8	0.78	NA

Applied Combined Model Validation						
ROP+D-ROD+P	31	18	7	59	53.2 0.56	NA

Transdiagnostic Features, Comorbidity and Classification of Recent Onset Psychosis and

Lalousis et al.

Transdiagnostic features, comorbidity and classification

Depression: a Multimodal Machine Learning Approach Paris Alexandros Lalousis, MSc^{1,2}; Stephen J. Wood, PhD^{1,3,4}; Lianne Schmaal, PhD^{3,4}; Katharine Chisholm, PhD^{1,5}; Sian Lowri Griffiths, PhD^{1,2}; Renate L.E.P Reniers, PhD^{1,2,6}; Alessandro Bertolino, MD⁷; Stefan Borgwardt, MD⁸; Paolo Brambilla, MD^{9,10}; Joseph Kambeitz, MD¹¹; Rebekka Lencer, MD, PhD¹²; Christos Pantelis, MB BS, MD, MRCPsvch. FRANZCP¹³; Stephan Ruhrmann, MD¹⁴; Raimo K. R. Salokangas, MD, PhD, MSc¹⁵; Frauke Schultze-Lutter, PhD¹⁶; Carolina Bonivento, PhD¹⁷; Dominic Dwyer, PhD¹¹; Adele Ferro, PsyD, PhD¹⁰; Theresa Haidl, MD¹⁴; Marlene Rosen, MSc¹⁴; Andre Schmidt, PhD⁸; Eva Meisenzahl, MD¹⁶; Nikolaos Koutsouleris, MD^{11*}; Rachel Upthegrove, MBBS FRCPsych, PhD^{1,2,18*} and the PRONIA Consortium# * Joint Senior Authors #See PRONIA consortium author list **Author Affiliations:** 1 -Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom 2 -Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom 3 -Orygen, the National Centre of Excellence in Youth Mental Health; Melbourne, Australia 4 -Centre for Youth Mental Health. The University of Melbourne. Parkville. Australia 5 -Department of Psychology, Aston University, United Kingdom 6 - Institute of Clinical Sciences, University of Birmingham, United Kingdom 7 -Department of Basic Medical Sciences. Neuroscience and Sense Organs. University of Bari Aldo Moro, Bari, Italy 8 -Department of Psychiatry, University of Basel, Basel, Switzerland 9 -Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy 10 - Department of Neurosciences and Mental Health, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. 11 -Department of Psychiatry and Psychotherapy, Ludwig Maxmilians University, Munich, Germany 12 -Department of Psychiatry, University of Münster, Münster, Germany 13 -Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Australia 14 -Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany

http://www.schizophreniabulletin.oupjournals.org

1 2		Lalousis et al.	Transdiagnostic features, comorbidity and classification
3 4 5	35	15 -Department of Psychiatry, Univers	ity of Turku, Turku, Finland
6 7 8	36 37	16 -Department of Psychiatry and Psyc Düsseldorf, Germany	hotherapy, Heinrich-Heine University Düsseldorf,
9 10	38	17 -IRCCS "E. Medea" Scientific Insti	tute, San Vito al Tagliamento (Pn), Italy
11 12 13	39 40	18 -Early Intervention Service, Birming Kingdom	gham Women's and Children's NHS trust, United
14 15	41		
16 17	42		
18 19	43		
20 21	44		
22 23	45		
24 25	46		
26 27	47		
28 29	48		
30 31	49		
32 33	50		
34 35	51		
36 37	52		
37 38 39	53	Keywords: psychosis, depression, tran	sdiagnostic, machine learning, MRI, comorbidity
40	54		
41 42			
43	55	Corresponding Author:	
44 45	56	Mr. Paris Alexandros Lalousis, BSc, M	ISc
46 47 48	57	School of Psychology	
48 49 50	58	University of Birmingham, 52 Pritchat	ts Road
50 51 52	59	B15 2SA, Birmingham, United Kingdo	m
53 54	60	pal532@student.bham.ac.uk	
55	61		
56 57 58	62	Supplem	entary Methods and Results
59 60		http://www.so	chizophreniabulletin.oupjournals.org 2

Lalousis et al.

Transdiagnostic features, comorbidity and classification

1. Supplementary Methods

64 1.1. PRONIA recruitment infrastructure

The 300 study participants (154 individuals with ROP and 146 individuals with ROD) analyzed in the present study were recruited following a standardized recruitment and ascertainment protocol (see **Figure S1** and **Table S3**). The observational study protocol involved follow-up examinations every three months after the index ascertainment and was implemented by the following 7 PRONIA sites:

70 Table S1: Characteristics of the recruiting institutions in the PRONIA consortium.

PRONIA Site	Institution Name	Country	Type of Service	Catchment Population	Screening population / year
Munich	Department of Psychiatry and Psychotherapy, Ludwig-Maximilian- University Munich	DE	Academic outpatient services including specialized service for early recognition of psychosis; tertiary care academic hospital	1,200,000	700
Basel	Department of Psychiatry and Psychotherapy, University of Basel	СН	Academic inpatient and outpatient services including specialized service for early recognition and intervention of psychosis; tertiary care academic hospital	500,000	200
Milan Niguarda	Department of Pathophysiology and Transplantation, University of Milan. Four recruitment hospitals: Niguarda, Policlinico, San Paolo, Villa San Benedetto Menni in Albese con Cassano	IT	Psychiatric outpatient services including specialized services for early recognition of psychosis and persons at high risk; Academic hospital, providing psychiatric inpatient services, psychiatric outpatient services and local services;	600,000	1,000
Cologne	Department of Psychiatry and Psychotherapy, University of Cologne	DE	Academic outpatient services including specialized service for early recognition of psychosis; tertiary care academic hospital	1,000,000	600
Birmingham	The University of Birmingham	UK	Academic specialised Early Intervention Service for Psychosis covering Birmingham and Solihull. Community and Inpatient	1,200,000	800
Turku	Department of Psychiatry, University of Turku	FI	Psychiatric outpatient and hospital services responsible for treatment of psychiatric patients in their catchment areas in the South-Western Finland.	284,000	2,300

Lalousis et al.

Udine	Department of	IT	Psychiatic outpatient services,	600,000	500
	Psychiatry,		academic hospital and local		
	University of Udine		services. Tertiary care		
			neuropsychiatric service		

Upon study enrolment, the participants were pseudonymized twice, locally at each site and centrally at the level of the PRONIA portal. The PRONIA portal consists of a multi-user database hosting the clinical and neurocognitive information, and defaced MR images obtained from the study participants. The data are organized into digital questionnaires, visits, and cases. The portal provides the case managers with a controlled web-based interface to enter and upload the different data into the respective questionnaires. Furthermore, the PRONIA consortium has implemented a PRONIA@home mobile device interface that allows the study participants to securely log into the portal and fill out the self-rating questionnaires of given visit. Upon completion of the data entry across all questionnaires of given visit, the data are checked by an automatic quality control procedure which executes approximately 1600 data integrity and dependency rules. These rules include (1) basic checking of missing data and data ranges, (2) checking of dependency within one questionnaire, (3) dependencies between two questionnaires within one visit, and (4) dependencies between two consecutive visits (such as consistency of dates). Detected errors are fed back to the respective case managers allowing for a manual correction of the respective issues. This process is re-iterated until the quality of the clinical questionnaires in the given visit is sufficient for the entire visit to be locked.

Lalousis et al.

Page 34 of 74

1.2. PRONIA study design and examination instruments
A comprehensive battery of ascertainment tools was used within a longitudinal observational study design to generate a multi-modal phenotypic profile of each study participant (see Figure S1 and Table S2). The clinical part of the battery compiled questionnaires that capture sociodemographic, somatic, environmental, diagnostic, psychopathological, functional and quality-of-life related variables in the PRONIA study population. This battery was complemented by multi-domain neurocognitive and neuroimaging examinations as well as blood sampling for later genetic characterization, which were carried out at the baseline and 9-month follow-up timepoints.

Table S2: Clinical and neurocognitive examinations performed in the CHR, ROD, ROP, and
HC groups during the 18-month follow-up period of the study. Clinical assessment types: OR
Observer-based rating instrument, SR Self-rating-based instrument. Examination timepoints: T0 Baseline
examination, IV3/IV6/IV12/IV15 3, 6, 12, 15-month examinations conducted only in the clinical study participants, T1

99 9-month examination, T2 18-month follow-up examination. Observer-based instruments: CAARMS
 100 Comprehensive Assessment of the At-Risk Mental States¹, CHR Criteria Clinical High-Risk criteria summary
 101 questionnaire, FROGS Functional Remission in General

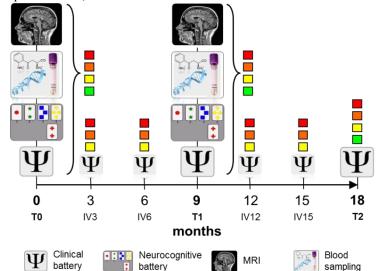


Figure S1: Observational study design of PRONIA. Colored boxed indicate type of assessment / visits conducted in each of the study groups: Healthy controls (green), patients with recent-onset depression (yellow), persons with a clinical high-risk for psychosis (orange), patients with recent-onset psychosis (red).

Schizophrenia², *GAF* Global Assessment of Functioning, *GF:S/R* Global Functioning: Social / Role³, *PANSS* Positive and Negative Symptom Scale⁴, *PAS* Premorbid Adjustment Scale⁵, *SANS* Scale for the Assessment of Negative Symptoms⁶, *SCID-IV Screening/Summary* Structured Clinical Interview for DSM-IV⁷, *SIPS* Standardized Interview for the Assessment of Prodromal Symptoms (modified version 5.0)⁸, *SPI-A [COGDIS/COPER]* Schizophrenia Proneness

Instrument [Cognitive disturbances (COGDIS) / Cognitive-Perceptual (COPER) disturbances]⁹, Transition Criteria Interval questionnaire for the assessment of transition criteria, UHR - Schizotypy, Genetic Risk Interview for the Assessment of Schizotypal personality traits, and familial risk for psychosis. Self-rating instruments: BDI-II Beck Depression Inventory II¹⁰, CISS-24 Coping Inventory for Stressful Situations – 24 items¹¹, CTO Childhood Trauma Questionnaire¹², EHI-SR Edinburgh Handedness Inventory - Short Version¹³, EDS Everyday Discrimination Scale -Modified Version¹⁴, LEE Level of Expressed Emotions¹⁵, MSPSS the Multidimensional Scale for Perceived Social Support¹⁶, NEO-FFI NEO Five Factor Inventory of Personality Traits¹⁷, RSA Resilience Scale for Adults¹⁸, SPIN Social Phobia Inventory¹⁹, WHO-OOL-BREF WHO Quality of Life Questionnaire-Brief Version²⁰. Neurocognitive tests: CPT-IP Continuous-Performance Test-Identical Pairs (adapted tablet version)²¹, DANVA Diagnostic Analysis of Non-Verbal Accuracy 2 (adapted tablet version)²², DS Auditory Digit Span (Forward/Backward) adapted from the PEBL battery, DSST Digit-Symbol-Substitution Test from the BACS battery, ROCF Rey-Osterrieth complex figure²³, SAT

Lalousis et al.

124Salience Attribution Task (adapted version)24, SOPT self-ordered pointing task (adapted version)25, TMT-A/-B Trail-125Making Test A and B26, VF phonemic/semantic verbal fluency test.

Instrument	Form		ening		0	IV3	IV6		1	IV12	IV15	
		PAT	НС	PAT	HC	PAT	PAT	PAT	НС	PAT	PAT	PAT
General Data	OR	Х	Х					X	Х			X
Reasons for Referral	OR	Х										
Treatment Documentation	OR	Х	Х			X	X	X	Х	X	X	X
Somatic state and Health	OR	x	x					x	х			X
History	OK											
SPI-A COGDIS/COPER	OR	Х	Х			X	X	X	Х	X	X	X
SIPS positive symptoms	OR	Х	Х			X		X	Х			X
CAARMS	OR	Х	Х			X		X	Х			X
GAF	OR	Х	Х		1	X		X	Х			X
UHR - Schizotypy, Genetic	OR	Х	X		1	x		X	Х			X
Risk		л				л		л				
CHR Criteria	OR	Х	Х					X	Х			X
Transition Criteria	OR		1			X	X			X	Х	
SCID-IV Screening	OR	Х	Х		1			X	Х			X
SCID-IV Summary	OR	Х	Х		1			Х	Х			X
Demographic and Biographic	OR			X	Х			X	Х			X
Data												
PAS	OR			X	Х			X				X
SPI-A	OR			X	Х			X				X
SIPS negative, disorganized	OR		1	X	Х			X				X
and general symptoms	OK				Λ							
PANSS	OR			X		X	X	X		X	X	X
SANS	OR		1	X				X				X
Chart of Life Events	OR			X	Х	X	X	X	Х	X	X	X
FROGS	OR			X				X				X
GF: Social & Role	OR		1	X	Х	X	X	X	Х	X	Х	X
Prognostic evaluation	OR		1	X				X				X
MSPSS	SR			X	Х			X	Х			X
RSA	SR		1	X	Х			X	Х			X
CISS 24	SR			X	Х			X	Х			X
SPIN	SR			X	Х			X	Х			X
BDI-II	SR			X	Х	X	X	X	Х	X	X	X
WHO-QOL-BREF	SR			X	Х			X	Х			X
EHI-SR	SR			X	Х							
LEE	SR			X	Х			Х	Х			X
Wisconsin Scales	SR			Х	Х							
EDS	SR			X	Х							
Bullying Scale T0	SR			X	Х							
CTQ	SR			X	Х							
NEO-FFI	SR			X	Х							
DS backward (BACS)	NPT			X	Х			X	Х			
DS forward (BACS)	NPT			X	Х			Х	Х			
CPT-IP (BACS)	NPT			X	Х			X	Х			
DANVA	NPT			X	Х			X	Х			
DSST	NPT				Х			X	Х			
RAVLT	NPT			X	Х			X	Х			
ROCF	NPT			X	Х			X	Х			
SAT	NPT			X	Х			X	Х			
SOPT	NPT			X	Х			X	Х			
TMT-A	NPT			X	Х			X	Х			
TMT-B	NPT			X	Х			X	Х			
VF phonetic	NPT			X	Х			X	Х			
VF semantic	NPT			X	Х			X	Х			
WAIS-III	NPT		1	X	Х			X	Х			

Transdiagnostic features, comorbidity and classification

Lalousis et al.

1.3. MRI harmonization and data acquisition

When setting up the PRONIA study, we decided to generate a MRI database that would represent the MR scanner sequence heterogeneity encountered in clinical real-world. The aim of this strategy was to strengthen the generalizability and clinical applicability of the predictive models developed by our machine learning analyses. Thus, we agreed on a minimal harmonization protocol that required the PRONIA sites to only (1) acquire isotropic or nearly isotropic voxel sizes of preferably 1 mm resolution, (2) set the Field Of View (FOV) parameters accordingly to guarantee the full 3D coverage of the brain including all parts of the cerebellum, and (3) define the relaxation time (TR) and echo time (TE) as well as other imaging parameters in a way that would maximize the contrast between cortical ribbon and the white matter and enhance the signal-to-noise ratio in the images. At every site all the images were visually inspected, automatically defaced and anonymized using an in-house Freesurfer-based script before the data was centralized. Table S3 lists the parameters defining the structural MR sequences used to examine in the PRONIA discovery sample participants.

Table S3: MR scanner systems and structural MRI sequence parameters used at the respective PRONIA sites.

PRONIA Site	Model	Field Strength	Coil Channels	Flip Angle	TR [ms]	TE [ms]	Voxel Size [mm]	FOV	Slice Number
Munich	Philips Ingenia	3T	32	8	9.5	5.5	0.97 x 0.97 x 1.0	250 x 250	190
Milan Niguarda	Philips Achieva Intera	1.5T	8	12	Shortest (8.1)	Shortest (3.7)	0.93 x 0.93 x 1.0	240 x 240	170
Basel	SIEMENS Verio	3T	12	8	2000	3.4	1.0 x 1.0 x 1.0	256 x 256	176
Cologne	Philips Achieva	3T	8	8	9.5	5.5	0.97 x 0.97 x 1.0	250 x 250	190
Birmingham	Philips Achieva	3T	32	8	8.4	3.8	1.0 x 1.0 x 1.0	288 x 288	175
Turku	Philips Ingenuity	3T	32	7	8.1	3.7	1.0 x 1.0 x 1.0	256 x 256	176
Udine	Philips Achieva	3T	8	12	Shortest (8.1)	Shortest (3.7)	0.93 x 0.93 x 1.0	240 x 240	170

Lalousis et al.

Transdiagnostic features, comorbidity and classification

1.4. MRI processing pipeline

- The manual of the CAT12 toolbox (http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) details the processing steps applied to the structural images. These steps consist of: (1) A 1st denoising step based on Spatially Adaptive Non-Local Means (SANLM) filtering²⁷. (2) An Adaptive Maximum A Posteriori (AMAP) segmentation technique, which models local variations of intensity distributions as slowly varying spatial functions and thus achieves a homogeneous segmentation across cortical and subcortical structures²⁸. (3) A 2nd denoising step using Markov Random Field approach which incorporates spatial prior information of adjacent voxels into the segmentation estimation generated by AMAP²⁸. (4) A Local Adaptive Segmentation (LAS) step, which adjusts the images for white matter (WM) inhomogeneities and varying gray matter (GM) intensities caused by differing iron content in e.g. cortical and subcortical structures. The LAS step is carried out before the final AMAP segmentation.
- 155 (5) A Partial Volume Segmentation algorithm that is capable of modeling tissues with intensities
 156 between GM and WM, as well as GM and cerebrospinal fluid (CSF) and is applied to the
 157 AMAP-generated tissue segments.
- 158 (6) A high-dimensional DARTEL registration of the image to a MNI-template generated from the
 159 MRI data of 555 healthy controls in the IXI database (<u>http://www.braindevelopment.org</u>).
- 160 (7) The GM maps were then multiplied with the Jacobian determinants that were obtained during
 161 registration in order to produce GM volume maps.
- 162 (8) The Quality Assurance framework of CAT12 was used to check the quality of the GMV maps.

1.5. Support Vector Machine Learning Preprocessing

Lalousis et al.

3	
4 5	164
6 7	165
8 9 10	166
10 11 12	167
13 14	168
15 16	169
17 18	170
19 20 21	171
22 23	172
24 25	173
26 27	174
28 29	175
30 31 32	
33 34	176
35 36	177
37 38	178
39 40	179
41 42	180
43 44 45	181
45 46 47	182
48 49	183
50 51	184
52 53	185
54 55 56	186
50 57 58	
59 60	

60

1 2

164	Prior to the machine learning analysis the following preprocessing steps were completed:
165	a) every feature was scaled from 0 to 1 and completely non-finite features were zeroed-out; b)
166	any feature that had infinite values was pruned; c) missing values were imputed using KNN
167	Euclidean distance median replacement using 7 nearest neighbours. For each missing value of a
168	given CV1 or CV2 subject, a subset of cases that had values for the given variable and had values
169	in all other variables which were non-empty were identified. Subjects in the source subset were
170	sorted according to their similarity with the target subject using the Euclidean distance. Then, the
171	median of the given variable was computed using the 7 nearest neighbours. The original, non-
172	imputed training matrix was used at all times d) site effects were corrected for. This step
173	consisted of i) performing a principal components analysis, ii) identifying the components that
174	are most correlated with site variance, and iii) reconstructing the data without these components
175	in order to effectively remove such effects from the data. Any component with a Spearman
176	correlation coefficient greater than 0.5 was excluded from the analysis and 90% of the variance
176 177	correlation coefficient greater than 0.5 was excluded from the analysis and 90% of the variance was retained. e) the data was scaled again. The model performance criterion that was used was
177	was retained. e) the data was scaled again. The model performance criterion that was used was
177 178	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced
177 178 179	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the
177 178 179 180	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes (weighting the hyperplane). The kernel type that was
177 178 179 180 181	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes (weighting the hyperplane). The kernel type that was linear with eleven learning parameters in order to optimize the choice of C value. Wrapper
177 178 179 180 181 182	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes (weighting the hyperplane). The kernel type that was linear with eleven learning parameters in order to optimize the choice of C value. Wrapper methods were activated at all parameter combinations with greedy sequential backward feature
177 178 179 180 181 182 183	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes (weighting the hyperplane). The kernel type that was linear with eleven learning parameters in order to optimize the choice of C value. Wrapper methods were activated at all parameter combinations with greedy sequential backward feature selection (Stop at k=90% of features; Feature stepping at 10% of worst performing features at
177 178 179 180 181 182 183 184	was retained. e) the data was scaled again. The model performance criterion that was used was balanced accuracy and the learning algorithm that was chosen was LIBSVM. Imbalanced learning was corrected for by increasing the C value in the minority class by multiplying it by the inverse ratio of the training class sizes (weighting the hyperplane). The kernel type that was linear with eleven learning parameters in order to optimize the choice of C value. Wrapper methods were activated at all parameter combinations with greedy sequential backward feature selection (Stop at k=90% of features; Feature stepping at 10% of worst performing features at each cycle). Starting with the full feature set the SVM was ran iteratively with the 10% worst

Schizophrenia Bulletin. For Peer Review Only

Lalousis et al.

Transdiagnostic features, comorbidity and classification

2 3		
4 5	187	empirical null distribution of weights for each feature and then compare the observed weight to
6 7 8	188	this distribution. The models were retrained in the cross-validation framework using the
9 10	189	respective feature and label subsets obtained from the observed-label analyses 1000 times. For
11 12	190	each permutation the predictions were accumulated into a permuted ensemble prediction for each
13 14	191	CV2 subject. In that way a null distribution of out-of-training classification performance for the
15 16 17	192	prediction models was produced. The significance of the observed out-of-training classification
17 18 19	193	performance was calculated as the number of events where the permuted out-of-training
20 21	194	classification performance was higher or equal to the observed classification performance divided
22 23	195	by the number of permutations performed. Then the significance of the model was determined
24 25 26	196	according to a p threshold of p<0.05. Furthermore we applied a sign-based consistency algorithm
20 27 28	197	to calculate the number of times that the sign of each feature (positive or negative) was consistent
29 30	198	within an ensemble multiplied by the number of times that the feature was non-zero. The measure
31 32	199	is between 0 to 1, with 1 representing perfect consistency within the ensemble and 0 if the
33 34 35	200	weights are equally positive and negative or when the feature is omitted with a zero weight. A p-
36 37	201	value was then calculated by defining a hypothesis test for the importance score with a null
38 39	202	hypothesis of 0. A z-score was calculated as the importance divided by the square root of the
40 41	203	variance of the importance scores. A standard p-value was then calculated using a normal
42 43	204	cumulative distribution function to choose the right-tailed significance. P-values were then
44 45		corrected using the false-discovery rate.
46 47 48	205	corrected using the faise-discovery fate.
48 49 50	206	For the neuroimaging model the same steps used apart from: 1) when inputting the grey matter
51 52	207	volume (GMV) images into the modality a G-theory mask ²⁹ was used for quantifying the degree
53 54	208	of reliability for the imaging modalities based on a travelling participants study and 2) during
55 56	209	preprocessing of the neuroimaging model the following additional steps were completed a)any
57 58 59		
60		http://www.schizophreniabulletin.oupjournals.org 10

Lalousis et al.

Transdiagnostic features, comorbidity and classification

feature that had infinite values was pruned; b) features were ranked up using external ranking by means of hard selection thresholds (15%, 25%, and 50%). Only the top 15%, 25%, and 50% features as defined by the G-theory mask were kept; c) Principal Component Analysis (PCA) Dimensionality Reduction (dimensions: 0.8); d) every feature was scaled from 0 to 1 and completely non-finite features were zeroed out; 3) when visualizing the classification a 8 FWHM kernel was used to smooth the images. Finally, a stacking-based data fusion framework^{30,31} was used to examine whether the combination of the clinical-based and the neuroimaging-based models would provide a superior classification accuracy. To achieve this, the decision scores of the neuroimaging and the clinical models were combined, standardized, and forwarded to a greedy sequential forward search algorithm³² which found a parsimonious combination of classifiers maximizing PSI_{reg} across the

221 C parameter range by employing L2-regularized logistic regression (L2LR)³³. Each L2LR

ensemble was then applied to the standardized neuroimaging and clinical based decision scores

available for the CV_2 validation data. Class prediction was achieved by using majority voting on

224 Majority voting on P_{ens} .

1.6. Hyperparameter Optimization

226 For hyperparameter optimization, we computed

227
$$\overline{BAC_{reg}} = \sum_{i=1}^{n_{TP_i}} \left(\frac{n_{TP_i}}{n_{TP_i} + n_{FN_i}} + \frac{n_{TN_i}}{n_{TN_i} + n_{FP_i}}\right) / 2 \text{ at given parameter combination across all } k CV_1$$

partitions with $n_{TP_i}/n_{TP_i} + n_{FN_i}$ being Sensitivity and $n_{TN_i}/n_{TN_i} + n_{FP_i}$ being Specificity, and the fraction of the training population serving as support vectors in the ith CV₁ partition. Our optimization technique's aim was to find a combination of T_G , *PCs* and the SVM's regularization

Lalousis et al.

2 3		
4 5 6	231	parameter <i>C</i> [range: $2^{[-3] \to 4]}$ that maximized $\overline{BAC_{reg}}$ within a 3 (<i>T_G</i>) × 5 (<i>PC</i>) × 8 (<i>C</i>)
6 7 8	232	hyperparameter cube. The optimized ensemble was then applied to the CV_2 validation data to
9 10	233	produce a mean decision score $(\overline{D_{ens}})$ and majority voting-based class membership probabilities (
11 12	234	P_{ens}) for each CV ₂ validation subject. This produced a mean decision score ((D_ens)) and
13 14 15	235	majority voting-based class membership probabilities (P_ens) for each CV2 validation subject.
16 17 18 19	236	1.7. Stacking Fusion Framework
20 21	237	The decision scores of the neuroimaging and the clinical models were combined,
22 23 24	238	standardized, and forwarded to a greedy sequential forward search algorithm ³² which found a
24 25 26	239	parsimonious combination of classifiers maximizing $\overline{PSI_{reg}}$ across the C parameter range by
27 28	240	employing L2-regularized logistic regression (L2LR) ³³ . Each L2LR ensemble was then applied to
29 30 31	241	the standardized neuroimaging and clinical based decision scores available for the CV_2 validation
32 33	242	data. Class prediction was achieved by using majority voting on Majority voting on P_{ens} .
34 35 36 37	243	1.8. Clinical/Neurocognitive Model List of Tests
38 39	244	The clinical and neurocognitive tests used to train the clinical support vector machine
40 41	245	learning model were the following: (1) Wisconsin Schizotypy Scale (WSS) physical and social
42 43 44	246	anhedonia subscales ^{34–36} ; (2) Premorbid Adjustment Scale (PAS) ^{37,38} , (3) Functional Recovery
45 46	247	Scale in Schizophrenia (FROGS) ² ; (4) SIPS-negative ³⁹ ; (5) Schizophrenia Proneness Instrument,
47 48	248	Adult version (SPI-A) ⁴⁰ ; (6) Resilience Scale for Adults (RSA) ^{18,41,42} ; and a range of
49 50 51	249	neurocognitive tests: (1) Digit Span Test (DST) ^{43,44} ; (2) Phonemic Verbal Fluency (PVF) ^{43,45} ; (3)
52 53	250	Semantic Verbal Fluency (SVF) ^{43,45} ; (4) Auditory-Verbal Learning Test (AVLT) ⁴³ , and (5) Digit
54 55	251	Symbol Substitution Test (DSST) ^{43,44} .
56 57 58		
59 60		12 http://www.schizophreniabulletin.oupjournals.org

Lalousis et al.

³⁹ 40 263

Diagnosis and Classification in Recent Onset Psychosis and Depression

Table S4: DGPPN S3 Guidelines for the treatment of first-episode psychosis and schizophrenia (translated English version of Table 4.1 stated in the manual short version of the guideline available in https://www.dgppn.de/ Resources/Persistent/a6e04aa47e146de9e159fd2ca1e6987853a055d7/S3 Schizo Kurzversion.pdf). Candidate CHR and ROD 10 255 patients were excluded if they had received antipsychotic medication (1) for more than 30 cumulative days at or above the minimum target dosage threshold for the treatment of first-episode psychosis, or (2) within the past 3 months before psychopathological baseline assessments at or above the minimum target 11 256 ¹² 257 dosage threshold for the treatment of first-episode psychosis. Abbreviations: DI dosage interval, ²maximum recommended dosage according to prescribing 14²⁵⁸ information.

Substance	Recommended starting dosage (mg/d)	DI'	Target dosage first-episode psychosis	Target dosage relapsing schizophrenia	Maximum dosag recommended
			(mg/d)	(mg/d)	$(mg/d)^2$
Atypical Antipsychotics					
Amisulpride	200	(1)-2	100-300	400-800	1200
Aripiprazole	(10)-15	1	15-(30)	15-30	30
Olanzapine	5-10	1	5-15	5-20	20
Quetiapine	50	2	300-600	400-750	750
Risperidone	2	1-2	1-4	3-6-(10)	16
Ziprasidone	40	2	40-80	80-160	160
Typical Antipsychotics					
Fluphenazine	0.4-10	2-3	2.4-10	10-20	20-(40)
Flupentixole	2-10	1-3	2-10	10-60	60
Haloperidole	1-10	(1)-2	1-4	3-15	100
Perazine	50-150	1-2	100-300	200-600	1000
Perphenazine	4-24	1-3	6-36	12-42	56
Pimozide	1-4	2	1-4	2-12	16
Zotepine	25-50	2-(4)	50-150	75-150	450
Zuclopenthixole	2-50	1-3	2-10	25-50	75

Lalousis et al.

Table S3: SCID DSM-IV diagnoses detailed breakdown in ROP groups (Discovery Sample)

	ROP total
	N=154
DSM Diagnosis	N (%)
Schizophrenia	72 (46.7)
Schizophreniform	13 (8.0)
Psychosis NOS	18 (11.7)
Delusional Disorder	11 (7.1)
Brief psychotic disorder	6 (3.8)
Substance Induced	3 (1.9)
Schizoaffective Disorder	10 (6.5)
Bipolar Disorder	12 (7.8)
Severe depression with psychosis	9 (5.7)

Lalousis et al.

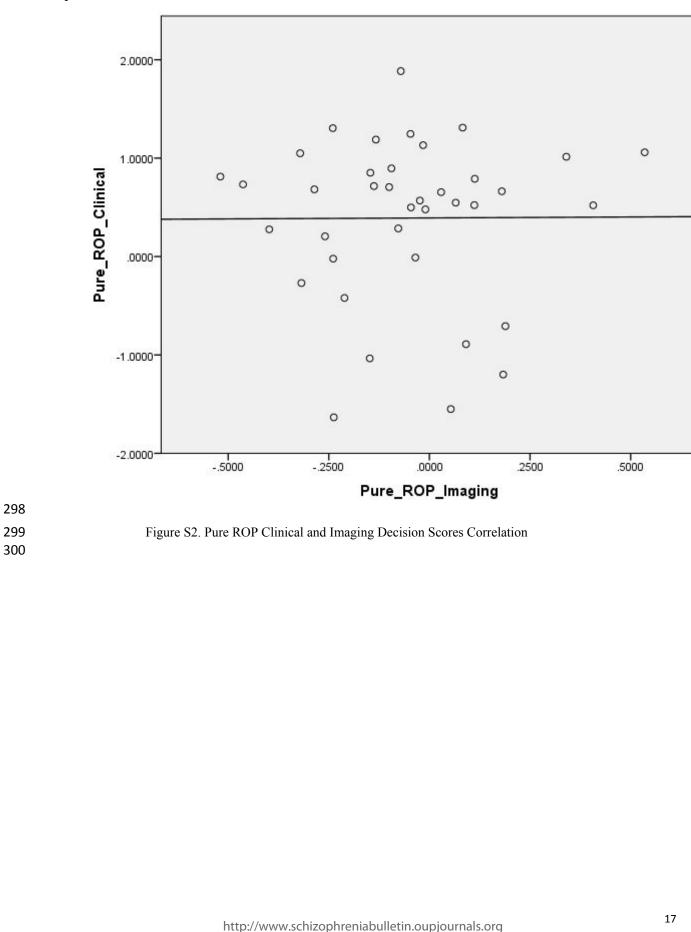
Transdiagnostic features, comorbidity and classification

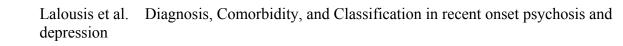
Table S4: Demographics of Replication Sample

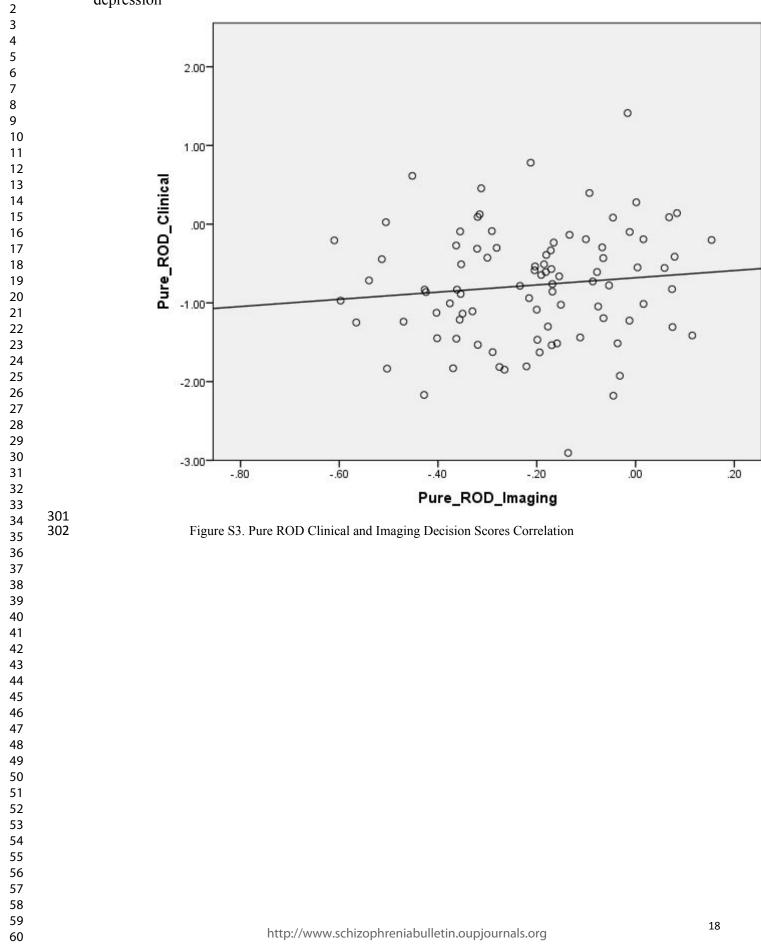
	ROP	ROD	t/χ2	Р	Pure	Pure	t/χ2	Р	ROP+D	ROD+P	t/χ2	Р
	Group	Group		Value	ROP	ROD		Value	Group	Group		Value
					Group	Group						
Sample Sizes,	161	131			50	53			90	25		
No.												
Age, Mean (SD)	25.6	25.0	t	.432	25.8	25.7	<i>t</i> =	.969	25.3	25.5	<i>t</i> = -	.876
	(6.1)	(5.9)	=.787		(6.3)	(6.1)	.039		(6.1)	(6.5)	.156	
Sex	89/71	68/62	χ^2	.844	30/20	24/29	χ ²	.135	48/42	15/10	χ^2	.554
(Male/Female)			=.339				=2.234				=.351	

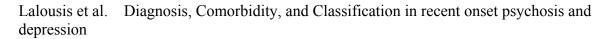
Page 45 of 74

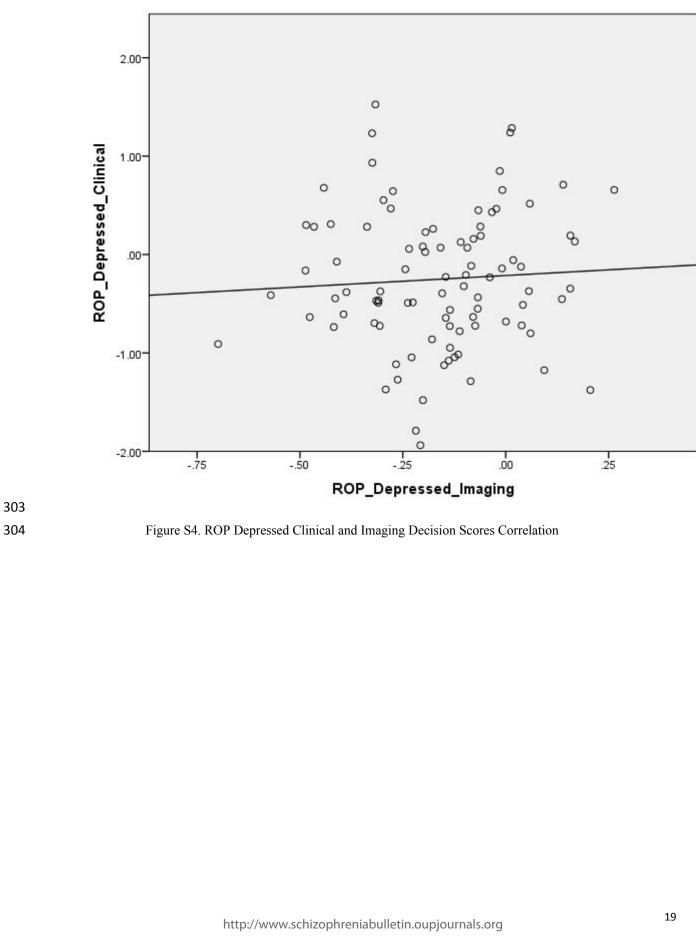
Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

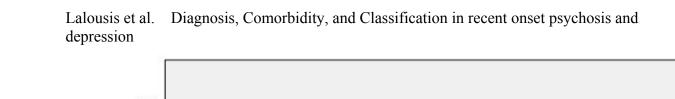

2. Supplementary Results

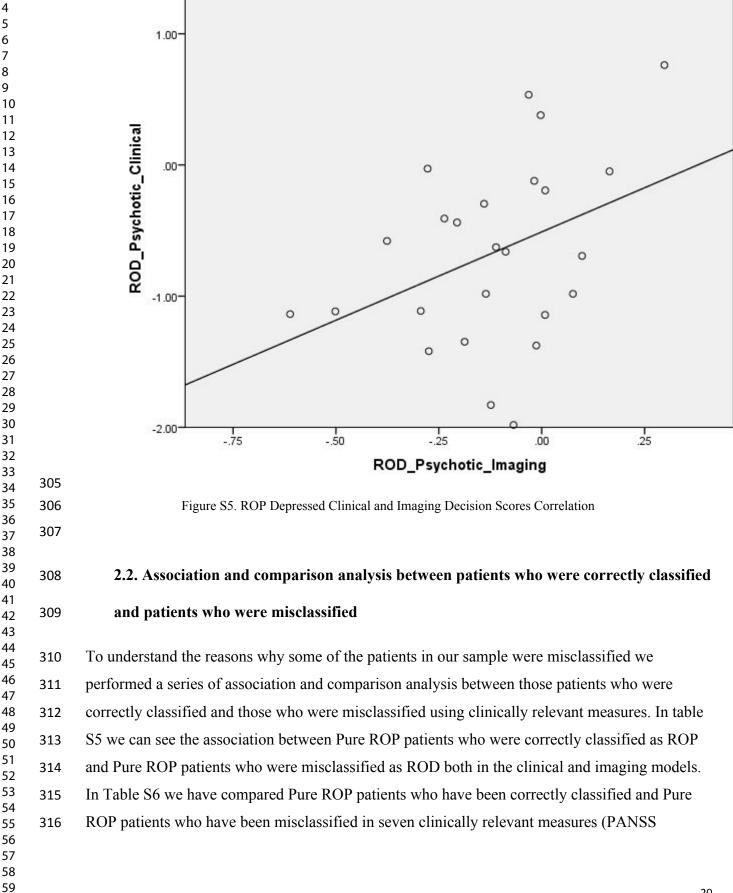

A number of exploratory supplementary analyses are presented in the supplementary results. These include a) correlational analyses between the clinical and imaging decision scores of the four different groups (Pure ROP/Pure ROD/ROP+D/ROD+P), in order to explore whether there was an association between clinical, and neuroanatomical features driving misclassification; b) association and comparison analyses between patients who were correctly classified and patients who were misclassified, to explore any potential 'sub-group' identification of misclassified participants; c) whole brain GMV comparison between the whole ROP and the whole ROD group, between subjects who were classified as ROP and subjects who were classified as ROD; and d) group level comparisons of the decisions scores of the three machine learning models.


2.1. Correlation of Clinical and Imaging Decision scores.


We wanted to examine the relationship between the clinical and imaging decision scores of our different groups (Pure ROP/Pure ROD/ROP+D/ROD+P) employing a Pearson correlation test. In figure S2 the non-significant positive correlation between the clinical and imaging decision scores in the Pure ROP group can be seen (r = 0.005, p < .05) In figure S3 we can see the positive correlation between the clinical and imaging decision scores in the Pure ROD group (r = .112, p=.073). Figure S4 shows the positive correlation between the clinical and imaging decision scores in the ROP+D group (r = .062, p < .05). Finally, figure S5 shows the positive correlation between the clinical and imaging scores in the ROD+P group (r = .387, p =0.14).


Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression





317	Positive	WSS Pe	erceptual Aberra	tion. CAAR	MS Unusual	Though	t Content C	AARMS	S Non-
318			d CAARMS Dis			U	ŕ		
319		,	performed an ass	C	1 //			C	C
320		-	ed and ROD+D		2		1		
321	2		D patients were d	L.				,	2
322			re mentioned pr	1			1		
			1	2 (,				
323									
324									
524									
325									
325									
326									
	Tah	10 85 4	spaciation Ana	lysos hotwo	on Duro DA	P Classi	figation and	Sabizat	
326 327 328		le S5. A eria	ssociation Ana	lyses betwe	en Pure RO	P Classi	fication and	Schizot	typy
327			ssociation Ana	lyses betwe SPD Criteria Not Met Count	SPD Criteria Not Met Expected	SPD Criteri a Met	SPD Criteria Met Expecte		
327	Crit		ssociation Ana	SPD Criteria Not Met	SPD Criteria Not Met	SPD Criteri	SPD Criteria Met	Schizot χ2	t ypy P Val
327 328 Clini	Crit	eria	Association Ana	SPD Criteria Not Met	SPD Criteria Not Met Expected	SPD Criteri a Met	SPD Criteria Met Expecte		
327 328 Clini	Crit	eria Correc		SPD Criteria Not Met Count	SPD Criteria Not Met Expected Count	SPD Criteri a Met Count	SPD Criteria Met Expecte d Count		P Va
327 328 Clini	Crit ical sification	eria Correc	t Classification	SPD Criteria Not Met Count 23	SPD Criteria Not Met Expected Count 23.8	SPD Criteri a Met Count	SPD Criteria Met Expecte d Count 2.2	χ2	P Va
327 328 Clini Class Imag	Crit ical sification	eria Correc Miscla	t Classification	SPD Criteria Not Met Count 23	SPD Criteria Not Met Expected Count 23.8	SPD Criteri a Met Count	SPD Criteria Met Expecte d Count 2.2	χ2	

	Lalousis et al. depression	Diagnosis, Comorbidity, and Classification in recent onset psychosis and
329		

Table S6. Comparison Analyses between Pure ROP Correctly Classified and Pure ROP Misclassified (P-Values with an asterisk survive FDR (Benjamini-Hochberg) correction threshold)

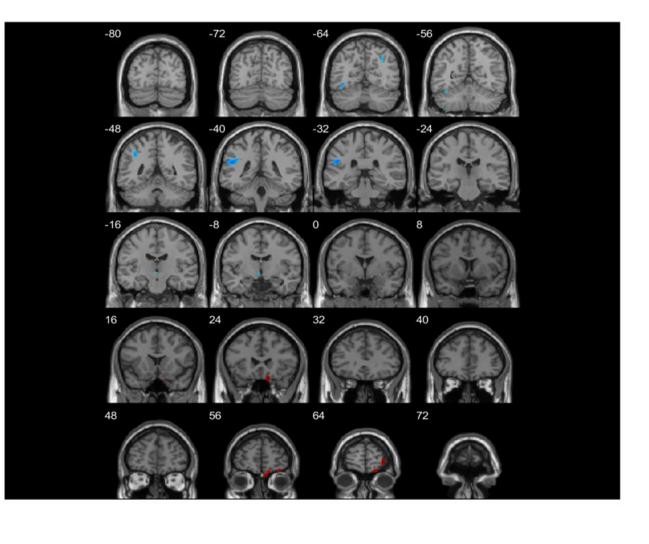
		Correctly	Misclassified		
		Classified Mean	Mean and		
		and Standard	Standard		
		Deviation	Deviation	t	P Valu
Clinical					
Classification	PANSS Positive Total	16 (5.3)	13.7 (8.0)	1.013	.15
	WSS Magical Ideation				
	Total	2.0 (2.0)	3.5 (2.7)	-1.780	.041
	WSS Perceptual				
	Aberration Total	.5 (.9)	1.1 (1.8)	-1.208	.11
	CAARMS Unusual				
	Thinking Content	4.8 (2.1)	5.2 (1.9)	485	.31
	CAARMS Non Bizarre				
	Ideas	4.6 (2.1)	2.7 (2.9)	2.203	.017
	CAARMS Perceptual				
	Abnormalities	3.6 (2.7)	5.2 (1.4)	-1.740	.045
	CAARMS				
	Disorganized Speech	2.4 (2.0)	2.0 (2.4)	.544	.29
Imaging					
Classification	PANSS Positive Total	13.1 (4.5)	16.8 (6.6)	-1.888	.03
	WSS Magical Ideation				
	Total	2.8 (2.4)	2.1 (2.1)	.965	.17
	WSS Perceptual				
	Aberration Total	.4 (1.3)	.8 (1.2)	846	.20
	CAARMS Unusual				
	Thinking Content	4.6 (2.1)	5.0 (2.0)	599	.27

	CAARMS Non B	izarre					
	Ideas		4.4 (2.3))	3.8 (2.5)	.724	4 .23
	CAARMS Percep	tual					
	Abnormalities		4.6 (2.2))	3.6 (2.6)	1.123	.13
	CAARMS						
	Disorganized Spec	ech	2.2 (1.9))	2.3 (2.2)	114	4 .4:
333							
334							
335							
		I			1		1
	ble S7. Association Ana iteria	lyses betwee	en KOP Dep	oressea C	lassification	and Sc	enizotypy
		SPD Criteria Not Met Count	SPD Criteria Not Met Expected	SPD Criteri a Met	SPD Criteria Met Expecte		
Clinical			Count	Count	d Count	χ2	P Value
Classification	Correct Classification	28	30.3	6	3.7		
Clussification	Misclassification	54	50.5	4	6.3	2.55	.055
		-					
Imaging		16	16	2	2		
Imaging Classificatior	Correct Classification	10					.485
	n Correct Classification Misclassification	66	66	8	9	.001	.40.
Classificatior	Misclassification	66					
Classification	Misclassification ble S8. Comparison Ana pressed Misclassified (P	66 alyses betwe	een ROP De	pressed	Correctly Cla	assified	and RO
Classification	Misclassification	66 alyses betwe	een ROP De h an asteris	pressed (k survive	Correctly Cla e FDR (Benja	assified	and RO
Classification	Misclassification ble S8. Comparison Ana pressed Misclassified (P	66 alyses betwe -Values wit	een ROP De h an asteris Correctly	pressed (k survive	Correctly Cla e FDR (Benja Misclassified	assified	and RO
Classification	Misclassification ble S8. Comparison Ana pressed Misclassified (P	66 alyses betwe P-Values wit Cla	een ROP De h an asteris	pressed (k survive / N	Correctly Cla e FDR (Benja	assified	and RO
Classification	Misclassification ble S8. Comparison Ana pressed Misclassified (P	66 alyses betwe P-Values wit Cla	een ROP De h an asteris Correctly assified Mear	pressed (k survive / N n 1	Correctly Cla e FDR (Benja Misclassified Mean and	assified	and RO

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and

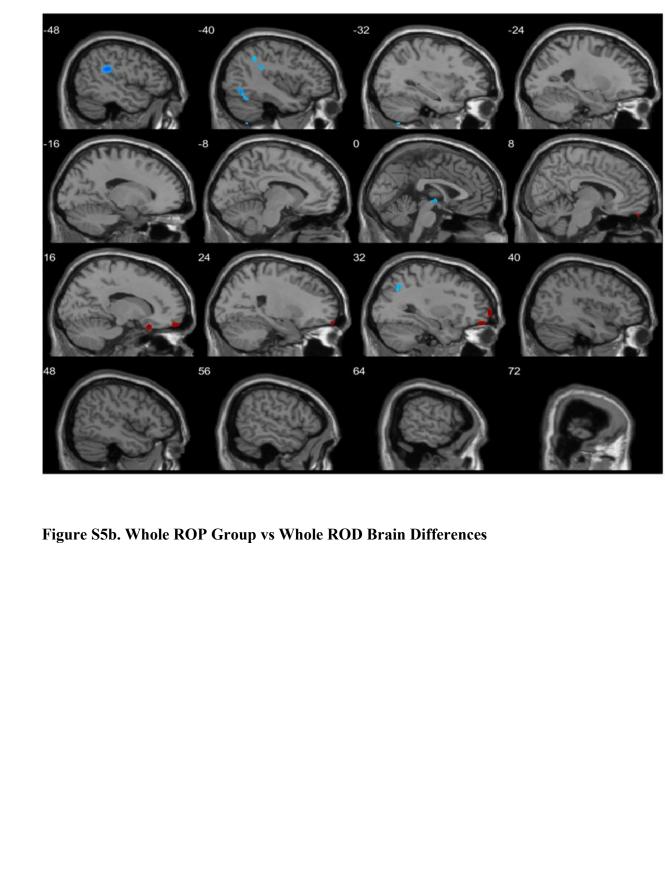
Page 53 of 74

Lalousis et al.	Diagnosis, Comorbidity, and Classification in recent onset psychosis and
depression	

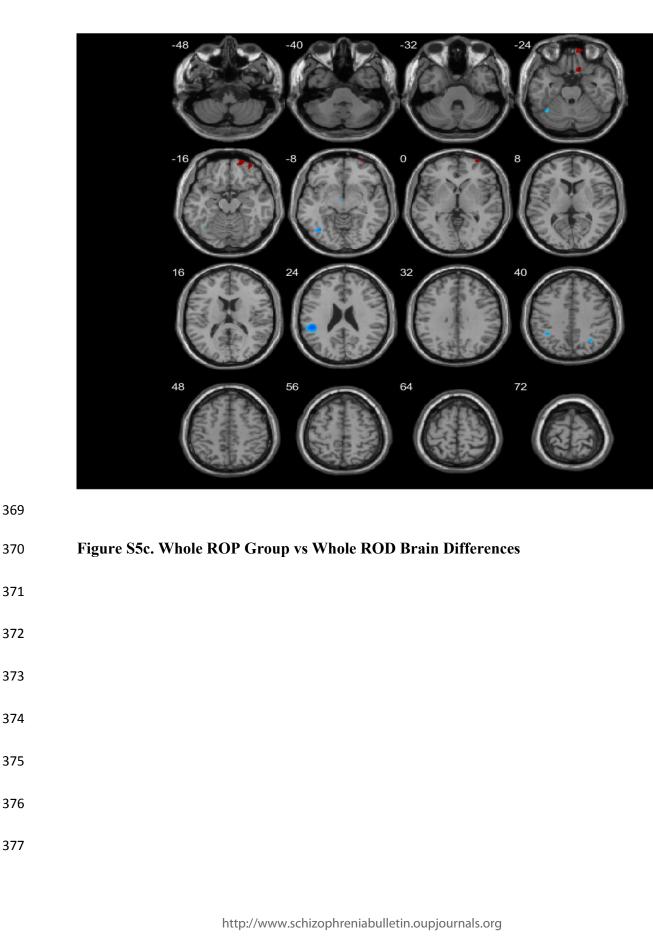

				t	P Valı
Clinical					
Classification	PANSS Positive Total	20.0 (7.2)	17.9 (5.3)	1.609	.055
	WSS Magical Ideation				
	Total	5.1 (3.0)	4.1 (3.1)	1.540	.00
	WSS Perceptual				
	Aberration Total	2.5 (2.7)	3.0 (3.5)	749	.22
	CAARMS Unusual				
	Thinking Content	4.8 (1.9)	5.1 (1.6)	651	.2:
	CAARMS				
	Disorganized Speech	2.4 (2.2)	1.3 (1.6)	2.497	.00
	CAARMS Non Bizarre				
	Ideas	5.06 (1.9)	4.6 (2.1)	1.042	.1:
	CAARMS Perceptual				
	Abnormalities	3.1 (2.5)	3.4 (2.5)	505	.3
Imaging					
Classification	PANSS Positive Total	20.4 (6.3)	18.2 (6.0)	1.495	.00
	WSS Magical Ideation				
	Total	4.2 (2.7)	4.5 (3.2)	385	.3:
	WSS Perceptual				
	Aberration Total	2.5 (2.9)	2.9 (3.3)	605	.2:

CAARMS Disorganized Speech 2.2 (1.7) 1.6 (1.9) 1.392 (1.7) CAARMS Non Bizarre Ideas 4.3 (2.4) 4.9 (1.9) -1.187 CAARMS Perceptual Abnormalities 3.6 (2.4) 3.2 (2.5) .770 CAARMS Perceptual Abnormalities 3.6 (2.4) 3.2 (2.5) .770 We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		CAARMS Unusual				
Disorganized Speech 2.2 (1.7) 1.6 (1.9) 1.392 0 CAARMS Non Bizarre Ideas 4.3 (2.4) 4.9 (1.9) -1.187 1 CAARMS Perceptual Abnormalitics 3.6 (2.4) 3.2 (2.5) .770 .7 341 342 2.3 GMV differences between groups 3.6 (2.4) 3.2 (2.5) .770 .7 343 We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all 346 groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) 348 we can see the GMV differences between the whole of the ROP group and the whole of th 349 ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus 350 whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal 351 gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). 352 Furthermore we compared subjects who were classified as ROP to subject who were 353 classified as ROD according to our imaging model (figure S6 (a,b,c)). S		Thinking Content	5.3 (1.2)	4.9 (1.9)	1.073	.1
CAARMS Non Bizarre Ideas 4.3 (2.4) 4.9 (1.9) -1.187 CAARMS Perceptual Abnormalities 3.6 (2.4) 3.2 (2.5) .770 341 342 2.3 GMV differences between groups 343 We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons 345 between the whole ROP group and the whole ROD group b) between subjects from all 346 groups who were classified as ROP (regardless of whether it was a correct classification of 347 misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) 348 we can see the GMV differences between the whole of the ROP group and the whole of th 349 ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus 350 whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal 351 gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). 352 Furthermore we compared subjects who were classified as ROP to subject who were 353 classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		CAARMS				
Ideas 4.3 (2.4) 4.9 (1.9) -1.187 CAARMS Perceptual Abnormalities 3.6 (2.4) 3.2 (2.5) .770 341 2.3 GMV differences between groups 343 We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). 351 Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		Disorganized Speech	2.2 (1.7)	1.6 (1.9)	1.392	.(
4.3 (2.4) 4.9 (1.9) -1.187 CAARMS Perceptual Abnormalities 3.6 (2.4) 3.2 (2.5) .770 341 342 2.3 GMV differences between groups 343 We also wanted to understand the neurobiology that was driving the classifications and 344 misclassifications in our models. We therefore performed whole brain GMV comparisons 345 between the whole ROP group and the whole ROD group b) between subjects from all 346 groups who were classified as ROP (regardless of whether it was a correct classification o 347 misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) 348 we can see the GMV differences between the whole of the ROP group and the whole of the 349 ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus 350 whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal 351 gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). 352 Furthermore we compared subjects who were classified as ROP to subject who were 353 classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		CAARMS Non Bizarre				
Abnormalities3.6 (2.4)3.2 (2.5).770341342343344344345345346346347348349349349340341342343344344345346347348348349349340349340350351351352Furthermore we compared subjects who were classified as ROP imaging model (figure S6 (a,b,c)). Subjects who were35135335435535635735835935035035135235335435535535635735835935035035135235335435535535635735835935935035035135235335435535535635735735835935935035035135235335		Ideas	4.3 (2.4)	4.9 (1.9)	-1.187	•
3.6 (2.4) 3.2 (2.5) .770 341 342 2.3 GMV differences between groups 343 We also wanted to understand the neurobiology that was driving the classifications and 344 misclassifications in our models. We therefore performed whole brain GMV comparisons 345 between the whole ROP group and the whole ROD group b) between subjects from all 346 groups who were classified as ROP (regardless of whether it was a correct classification o 347 misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c 348 we can see the GMV differences between the whole of the ROP group and the whole of th 349 ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus 350 whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal 351 gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). 352 Furthermore we compared subjects who were classified as ROP to subject who were 353 classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		CAARMS Perceptual				
3422.3 GMV differences between groups343We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) we can see the GMV differences between the whole of the ROP group and the whole of the ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9).352Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were		Abnormalities	3.6 (2.4)	3.2 (2.5)	.770	
We also wanted to understand the neurobiology that was driving the classifications and misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,d we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	341					
misclassifications in our models. We therefore performed whole brain GMV comparisons between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	342	2.3 GMV differences between groups				
between the whole ROP group and the whole ROD group b) between subjects from all groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	343	We also wanted to understand the neu	robiology that was dr	iving the classif	fications an	d
 groups who were classified as ROP (regardless of whether it was a correct classification o misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were 	344	misclassifications in our models. We	therefore performed v	whole brain GM	V comparis	sons
 misclassification) and c) between Pure subjects and co-morbid subjects. In figure S5 (a,b,c) we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were 	345	between the whole ROP group and the	e whole ROD group b) between subje	ects from al	1
 we can see the GMV differences between the whole of the ROP group and the whole of th ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were 	346	groups who were classified as ROP (r	egardless of whether	it was a correct	classificatio	on o
ROD group. The ROP group had increased GMV in the superior and inferior frontal gyrus whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	347	misclassification) and c) between Pure	e subjects and co-mor	bid subjects. In	figure S5 (a,b,c
 whereas decreased GMV areas were detected in the left cerebellum, the Supramarginal gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were 	348	we can see the GMV differences betw	veen the whole of the	ROP group and	the whole	of th
 gyrus, and the inferior temporal gyrus when compared to the ROP group (Table S9). Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were 	349	ROD group. The ROP group had increased	eased GMV in the sup	perior and inferi	or frontal g	gyrus
Furthermore we compared subjects who were classified as ROP to subject who were classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	350	whereas decreased GMV areas were d	letected in the left cer	ebellum, the Su	pramargina	ıl
classified as ROD according to our imaging model (figure S6 (a,b,c)). Subjects who were	351	gyrus, and the inferior temporal gyrus	when compared to the	e ROP group (7	Fable S9).	
	352	Furthermore we compared subjects with	ho were classified as	ROP to subject	who were	
classified as ROP showed increased GMV in the insula, the caudate, and the precuneus	353	classified as ROD according to our im	aging model (figure	S6 (a,b,c)). Subj	ects who w	vere
	354	classified as ROP showed increased C	MV in the insula, the	e caudate, and th	ne precuneu	IS

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and


http://www.schizophreniabulletin.oupjournals.org

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression
- 3 4	355	among others, whereas they showed decreased GMV in the lingual gyrus and the thalamus
5 6	356	(Table S10). Finally we performed a whole brain GMV analysis between patients who were
7 8	357	in Pure groups (both ROP and ROD) and patients who were in co-morbid groups (both
9 10 11	358	ROP+D and ROD+P) (figure s7 (a,b,c)). Pure subjects showed pronounced GMV increases
12 13	359	in the left cerebellum and the middle occipital gyrus and decreased GMV in the superior
14 15 16	360	frontal gyrus and the lingual gyrus (Table S11).



Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

Table S9. Significant clusters from the Whole ROP Group vs Whole ROD Brain

Differences analysis. Red=ROP greater GMV than ROD, Blue=ROP less GMV than ROD

Clusters ROP vs ROD

9 10 11 <u>Brain Area</u>	Cluster Peak Voxel MNI Coordinates	P Value, Peak Intensity, <u>Cluster Size</u>
12 13 Superior Frontal Gyrus	20 61 -19	p(FDR)=0.013, T=3.64, k=300
14 15 Inferior Frontal Gyrus	14 22 -25	p(FDR)=0.057, T=3.84, k=154
16 17 Left Cerebellum	-38 -66 -11	p(FDR)=0.044, T=-4.16, k=208
18 19 Supramarginal Gyrus	-50 -36 24	p(FDR)=0.001, T=-4.17, k=548
20 21 Inferior Temporal Gyrus	-22 3 -55	p(FDR)=0.001, T=-4.55, k=682
22		

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

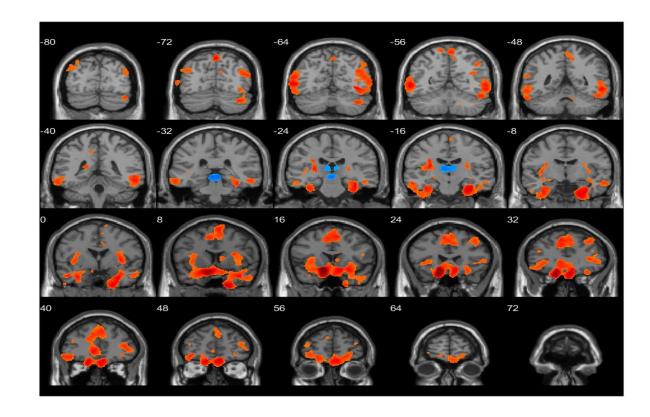


Figure S6a. Subjects Classified as ROP vs Subjects who were classified as ROD

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

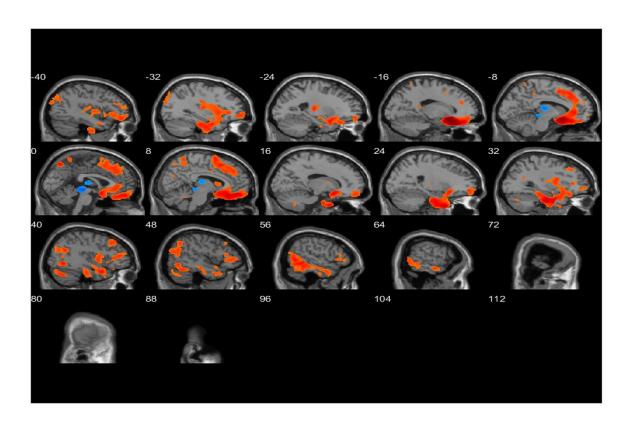
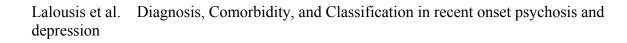
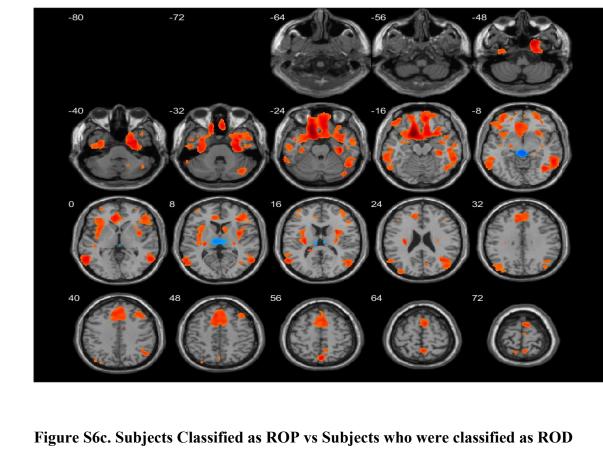
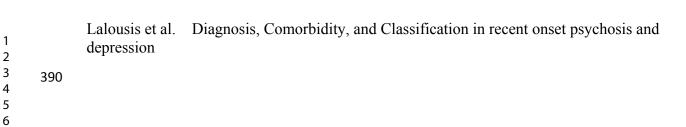




Figure S6b. Subjects Classified as ROP vs Subjects who were classified as ROD


387Table 10. Subjects from all Groups Classified as ROP vs Subjects from all Groups388Classified as ROD According to the Imaging Model. Red=ROP greater GMV than389ROD, Blue=ROP less GMV than ROD

3738 Clusters Classified as ROP vs Classified as ROD

39	-	
40	Cluster	P Value, Peak Intensity,
41 Brain Area	Peak Voxel MNI Coordinates	Cluster Size
42		
43 Middle Temporal		
44 Gyrus/Inferior Frontal		
45 Gyrus/Insula	-16 18 -13	p(FDR)<0.001, T=6.53, k=61340
46		
47 Caudate	1196	p(FDR)=0.057, T=3.58, k=288
48		
⁴⁹ Middle Frontal Gyrus	-40 34 21	p(FDR)=0.057, T=3.63, k=273
50		
⁵¹ Superior Occipital	-35 -86 24	p(FDR)<0.001, T=3.78, k=1117
⁵² Gyrus/Precuneus		
53		
⁵⁴ Middle Frontal Gyrus	40 28 43	p(FDR)<0.001, T=3.98, k=826
55		
56		
57		

```
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
```

1	Lalousis et al. D depression	Diagnosis, Comorbidity, and Classification in recent onset p	sychosis and
2 3 4	Precuneus	1 -72 55 p(FDR)<0.001, T=5.12, k=1133
4 5 6	Lingual Gyrus	-2 -27 -8 p(FDR)<0.001, T=-4.35, k=888
7 8	Thalamus	4 -18 10 p(FDR)<0.001, T=-4.06, k=992
9 10 11 21 31 41 51 61 71 81 9 21 22 32 42 52 27 28 93 31 23 34 35 63 7 83 94 41 42 44 45 64 7 89 50 51 52 55 55 57 59 50 50 50 50 50 50 50 50 50 50 50 50 50		http://www.schizophraniabullatin.gunigurpale.gr	31
60		http://www.schizophreniabulletin.oupjournals.org	33

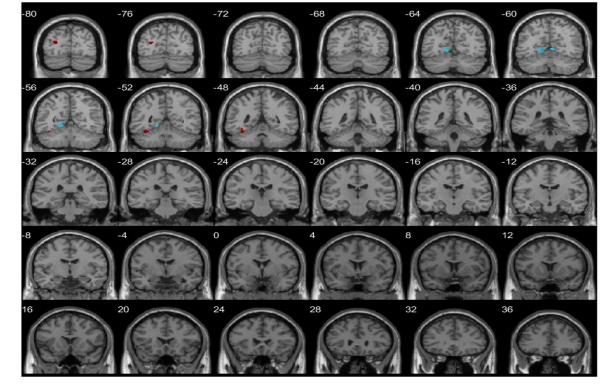


Figure S7a. Subjects in Pure Groups vs Subjects in Co-Morbid Groups

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

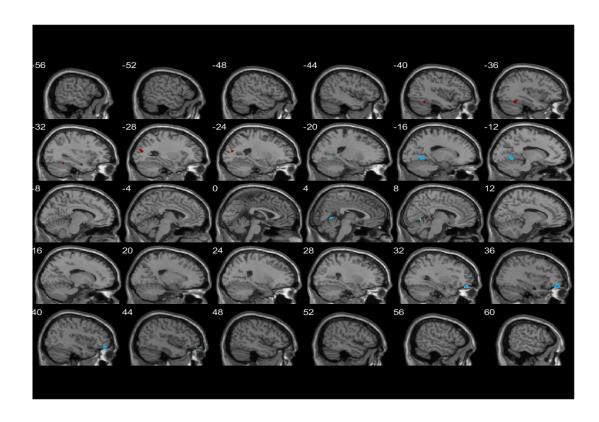
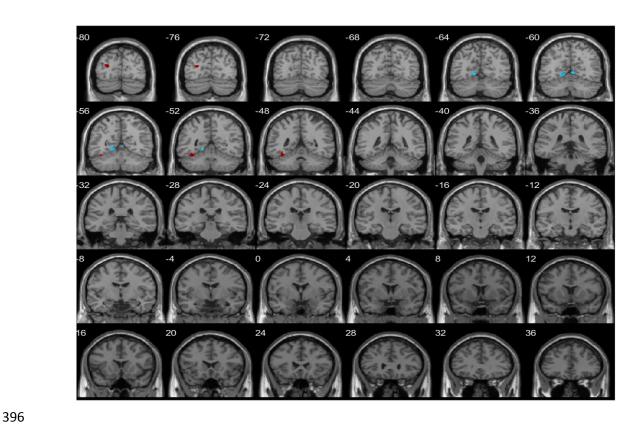



Figure S7b. Subjects in Pure Groups vs Subjects in Co-Morbid Groups

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

397 Figure S7c. Subjects in Pure Groups vs Subjects in Co-Morbid Groups

398Table S11. Subjects in Pure Groups (Both ROP and ROD) vs Subjects in Co-Morbid399Groups (Both ROP Depressed and ROD Psychotic) Brain Differences. Red=ROP400greater GMV than ROD, Blue=ROP less GMV than ROD

38 Clusters Pure vs Co-Morbid

39		
40 41 <u>Brain Area</u>	Cluster Peak Voxel MNI Coordinates	P Value, Peak Intensity, <u>Cluster Size</u>
⁴² ₄₃ Left Cerebellum	-38 -51 -21	p(FDR)=0.080, T=3.80, k=155
⁴⁴ ₄₅ Middle Occipital Gyrus	-27 -80 17	p(FDR)=0.080, T=3.70, k=120
⁴⁶ Superior Frontal Gyrus	37 51 -20	p(FDR)=0.013, T=-4.59, k=304
48 Lingual Gyrus 49	-16 -57 -4	p(FDR)=0.018, T=-3.85, k=230
50		
51 52		
53 54		
55 56		
57		
58		

Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

3 4	401	
5 6	402	2.5. Decision Scores Group Differences
7 8	403	We wanted to test the differences of the decision scores between the groups (ROP and
9 10 11	404	ROD as well as ROP+D and ROD+P). In the pure clinical model the mean decision score for the
12 13	405	ROP group was .4108 (SD=0.805) and for the ROD group7760 (SD=0.726). An independent
14 15	406	samples t-test showed that the difference between the two groups was significant ($t=8.177$,
16 17 18	407	df=126, p<.0001). In the pure neuroanatomical model the mean decision score for the ROP group
19 20	408	was0579 (SD=0.227) and for the ROD group2096 (SD=0.178). An independent samples t-
21 22 23	409	test showed that the difference between the two groups was significant ($t=4.039$, $df=126$,
23 24 25	410	p=.0001). In the pure combined model the mean decision score for the ROP group was .6988
26 27	411	(SD=1.121) and for the ROD group -1.019 (SD=1.012). An independent samples t-test showed
28 29	412	that the difference between the two groups was significant ($t=8.490$, $df=126$, $p<.0001$).
30 31 32	413	In the applied clinical model the mean decision score for the ROP group was2507
33 34	414	(SD=0.698) and for the ROD group6742 (SD=0.701). An independent samples t-test showed
35 36	415	that the difference between the two groups was significant ($t=2.686$, $df=115$, $p=.005$). In the
37 38 39	416	applied neuroanatomical model the mean decision score for the ROP group was1619
40 41	417	(SD=1.859) and for the ROD group1217 (SD=0.201). An independent samples t-test showed
42 43	418	that the difference between the two groups was not significant (t =942, df =115, p =.187). Finally,
44 45 46	419	in the applied combined model the mean decision score for the ROP group was2798
47 48	420	(SD=1.003) and for the ROD group8769 (SD=1.008). An independent samples t-test showed
49 50	421	that the difference between the two groups was significant ($t=2.635$, $df=115$, $p=.006$).
51 52 53	422	
54		
55 56		
57		

 Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression

- 423 2.6. Decision Scores Regression with 9 Month Functional Outcome
 - 424 Finally we wanted to test whether decision scores were related to 9 month global functioning outcome using the Global Functioning:

425 Social (GFS) and Global Functioning Role (GFR) scales. Good functioning was interpreted as a score on either scale of more than 7, and the

426 impaired functioning was interpreted as score on either scale of 7 or less⁴⁶. A logistic regression was performed to determine the likelihood

427 that patients had an impaired functional outcome at 9 months using decision scores from our SVM models as predictors. None of the models

428 was statistically significant. GFS model using pure SVM model decision scores: $\chi^2(3) = 2.259$, p = .520; GFR model using pure SVM model

decision scores: $\chi^2(3) = 3.638$, p = .303; GFS model using comorbid SVM model decision scores: $\chi^2(3) = 7.179$, p = .066; GFR model using

430 comorbid SVM model decision scores: $\chi^2(3) = 3.353$, p = .340. Table S12 contains information from the logistic regression models.

431	Table S12. Odds Ratios (OR) for Impaired Functional Outcomes for Decision Scores from the SVM models	

	Beta/OR (95% Confidence Intervals)					vals)			
Global Functioning Scale	Outcome	No.	Pure Clinical & Neurocogniti ve Model	Pure GMV Model	Pure Stacking Model	Comorbid Clinical & Neurocognitiv e Model	Comorbid GMV Model	Comorbid Stacking Model	
GFR	Impaired	Pure: 70 Comorbid: 84							
	Good	Pure: 58 Comorbid: 33	-1.372/.254 (.008-7.812)	956/.384 (.063-2.348)	.814/.2.256 (.200-25.406)	23.189/1178.0 (.003-4263.0)	.319/1.375 (.155-12.175)	-15.961/.000 (.000-61.799)	
GFS	Impaired	Pure: 69 Comorbid: 77							
	Good	Pure: 59 Comorbid: 40	1.474/4.365 (.138-137.5)	-1.023/.359 (.060-2.144)	912/.402 (.035-4.582)	34.917/1460.0 (251.3-8478.0)	.564/1.758 (.215-14.389)	-24.104/.000 (.000025)	

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression	
3 4	432	2.7. Chi-Square Analysis of Misclassifications in the Replication Sample	
5 6	433	In the clinical/neurocognitive model, ROP+D patients were more frequently classified as ROD	
7	434	compared to pure ROP patients ($\chi^2=18.878$; $p<0.001$). In contrast, the assignment precision of	
8 9	435	ROD+P and ROD patients did not differ (χ^2 =.379; p=0.538). Similarly to the	
10 11	436	clinical/neurocognitive model ROP+D patients were more frequently classified as ROD	
12	437	compared to pure ROP patients (χ^2 =.003; p=0.958), at a statistically not significant level	
13 14	438	potentially driven by the fact that the majority of pure ROP patients were classified as ROD. The	e
15 16 17	439	assignment precision of ROD+P and ROD patients did not differ ($\chi^2=0.112$; $p=0.738$).	
18 19	440		
20 21 22	441		
23 24 25	442		
26 27	443		
28 29 30	444		
31 32 33	445		
34 35	446		
36 37 38	447		
39 40	448		
41 42 43	449		
44 45 46	450		
47 48	451		
49 50 51	452		
52 53	453		
54 55 56 57	454		
58 59 60		http://www.schizophreniabulletin.oupjournals.org	39
00			

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression
3 4	455	
5 6 7	456	Acknowledgements:
8 9	457	Author Contributions: Mr. Lalousis, Dr. Koutsouleris, and Prof. Upthegrove had full access to
10 11	458	all the data in the study and take responsibility for the integrity of the data and the accuracy of the
12 13	459	data analysis. All authors reviewed, revised, and approved the final version of the manuscript.
14 15	460	Acquisition and analysis of data: Lalousis, Wood, Chisholm, Griffiths, Borgwardt, Brambilla,
16 17	461	Pantelis, Bonivento, Dwyer, Ferro, Haidl, Rosen, Schmidt, Koutsouleris, and Upthegrove
18 19 20	462	Drafting of the manuscript: Lalousis, Wood, Schmaal, Reniers, Koutsouleris, and Upthegrove
21 22	463	Critical revision of the manuscript for important intellectual content: Lalousis, Wood, Schmaal,
22 23 24 25 26 27 28	464	Bertolino, Borgwardt, Brambilla, Kambeitz, Lencer, Pantelis, Ruhrmann, Salokangas, Schultze-
	465	Lutter, Dwyer, Schmidt, Meisenzahl, Koutsouleris, and Upthegrove
	466	Statistical analysis and interpretation of data: Lalousis, Wood, Schmaal, Koutsouleris and
29 30	467	Upthegrove
31 32	468	Obtained funding and designed the study: Wood, Bertolino, Borgwardt, Brambilla, Kambeitz,
33 34 35	469	Lencer, Pantelis, Ruhrmann, Salokangas, Meisenzahl, Koutsouleris, and Upthegrove
36	470	Administrative, technical, or material support: Chisholm, Borgwardt, Brambilla, Haidl, Rosen,
37 38 39	471	Schmidt, Meisenzahl, Koutsouleris, and Upthegrove
40 41	472	Supervision: Wood, Schmaal, Reniers, Borgwardt, Brambilla, Schultze-Lutter, Koutsouleris, and
42 43	473	Upthegrove
44 45 46	474	#The PRONIA consortium:
47	475	The authors listed here performed the screening, recruitment, rating, examination, and follow-up
48 49 50 51	476	of the study participants. They were involved in implementing the examination protocols of the
	477	study, setting up its IT infrastructure, and organizing the flow and quality control of the data
52 53 54 55 56 57 58	478	analyzed in this manuscript between the local study sites and the central study database.
59		40

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression						
3 4	479	Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University, Munich,						
4 5 6 7 8 9 10 11 12 13 14 15 16 17	480	Germany						
	481	Linda Betz, Anne Erkens, Eva Gussmann, Shalaila Haas, Alkomiet Hasan, Claudius Hoff, Ifrah						
	482	Khanyaree, Aylin Melo, Susanna Muckenhuber-Sternbauer, Janis Köhler, Ömer Öztürk, Nora						
	483	Penzel, David Popovic, Adrian Rangnick, Sebastian von Saldern, Rachele Sanfelici, Moritz						
	484	Spangemacher, Ana Tupac, Maria Fernanda Urquijo, Johanna Weiske, Antonia Wosgien						
	485	Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany						
18	486	Karsten Blume, Dominika Gebhardt, Nathalie Kaiser, Ruth Milz, Alexandra Nikolaides, Mauro						
19 20 21	487	Seves, Silke Vent, Martina Wassen						
22 23	488	Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel,						
23 24 25	489	Switzerland						
26 27 28 29	490	Christina Andreou, Laura Egloff, Fabienne Harrisberger, Claudia Lenz, Letizia Leanza, Amatya						
	491	Mackintosh, Renata Smieskova, Erich Studerus, Anna Walter, Sonja Widmayer						
30 31	492	Institute for Mental Health & School of Psychology, University of Birmingham, United						
32 33 34	493	Kingdom						
35 36	494	Chris Day, Mariam Iqbal, Mirabel Pelton, Pavan Mallikarjun, Alexandra Stainton, Ashleigh Lin						
37 38 39	495	Department of Psychiatry, University of Turku, Finland						
40 41	496	Alexander Denissoff, Anu Ellilä, Tiina From, Markus Heinimaa, Tuula Ilonen, Päivi Jalo, Heikki						
42	497	Laurikainen, Antti Luutonen, Akseli Mäkela, Janina Paju, Henri Pesonen, Reetta-Liina Säilä,						
43 44 45	498	Anna Toivonen, Otto Turtonen						
46 47	499	General Electric Global Research Inc., USA						
48 49 50	500	Ana Beatriz Solana, Manuela Abraham, Nicolas Hehn, Timo Schirmer						
51 52 53 54 55 56 57	501	Workgroup of Paolo Brambilla, University of Milan, Italy:						
58 59 60		41 http://www.schizophreniabulletin.oupjournals.org						

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression
3 4 5 6 7 8 9 10	502	Department of Neuroscience and Mental Health, Fondazione IRCCS Ca' Granda Ospedale
	503	Maggiore Policlinico, University of Milan, Milan, Italy: Carlo Altamura, Marika Belleri,
	504	Francesca Bottinelli, Adele Ferro, Marta Re
	505	Programma2000, Niguarda Hospital, Milan: Emiliano Monzani, Maurizio Sberna
11 12 13	506	San Paolo Hospital, Milan: Armando D'Agostino, Lorenzo Del Fabro
14 15	507	Villa San Benedetto Menni, Albese con Cassano (CO): Giampaolo Perna, Maria Nobile,
16 17	508	Alessandra Alciati
18 19 20	509	Workgroup of Paolo Brambilla at the University of Udine, Italy
21	510	Department of Medical Area, University of Udine, Udine, Italy: Matteo Balestrieri, Carolina
22 23 24	511	Bonivento, Giuseppe Cabras, Franco Fabbro
25 26 27	512	IRCCS Scientific Institute "E. Medea", Polo FVG, Udine: Marco Garzitto, Sara Piccin
28 29	513	
30 31	514	
32 33	515	
34 35	516	
36 37	517	
38 39	518	
40 41 42	519	
43 44	520	
45 46	521	
47 48	522	
49 50	523	
51 52	524	
53 54 55	525	
55 56 57 58	526	
59 60		42 http://www.schizophreniabulletin.oupjournals.org

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression			
3	527				
4 5	528				
6 7	529				
8 9	530				
10 11	330				
12 13	531	Ref	erences		
14	532	1.	Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis: the		
15	533		Comprehensive Assessment of At-Risk Mental States. Aust NZJ Psychiatry. 2005;39(11-		
16 17	534		12):964-971. doi:10.1080/j.1440-1614.2005.01714.x		
18	535	2.	Llorca P-M, Lançon C, Lancrenon S, et al. The "Functional Remission of General		
19 20	536		Schizophrenia" (FROGS) scale: Development and validation of a new questionnaire.		
21	537		Schizophrenia Research. 2009;113(2-3):218-225. doi:10.1016/j.schres.2009.04.029		
22 23	538	3.	Cornblatt BA, Auther AM, Niendam T, et al. Preliminary findings for two new measures of		
24	539		social and role functioning in the prodromal phase of schizophrenia. Schizophr Bull.		
25 26	540		2007;33(3):688-702. doi:10.1093/schbul/sbm029		
27	541	4.	Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for		
28 29	542		schizophrenia. Schizophr Bull. 1987;13(2):261-276.		
30	543	5.	Alvarez E, Garcia-Ribera C, Torrens M, Udina C, Guillamat R, Casas M. Premorbid		
31 32	544	5.	adjustment scale as a prognostic predictor for schizophrenia. <i>Br J Psychiatry</i> . 1987;150:411.		
33	545		doi:10.1192/bjp.150.3.411		
34 35	FAC	6	Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS): conceptual		
36	546 547	6.	and theoretical foundations. <i>Br J Psychiatry Suppl.</i> 1989;(7):49-58.		
37 38		-			
39	548	7.	First, Michael B, Spitzer, Robert L, Gibbon, Miriam, Williams, Janet B.W. <i>Structured</i>		
40	549		Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition With		
41	550		<i>Psychotic Screen (SCID-I/P W/ PSY SCREEN)</i> . Biometrics Research, New York State Psychiatric Institute.; 2002.		
42 43	551		Psychiatric Institute., 2002.		
43 44	552	8.	McGlashan TH, Miller TJ, Woods SW, Hoffman RE, Davidson L. Instrument for the		
45	553	0.	Assessment of Prodromal Symptoms and States. In: Miller T, Mednick SA, McGlashan TH,		
46	554		Libiger J, Johannessen JO, eds. Early Intervention in Psychotic Disorders. NATO Science		
47	555		Series. Springer Netherlands; 2001:135-149. doi:10.1007/978-94-010-0892-1_7		
48 49					
50	556	9.	F. Schultze-Lutter, J. Addington, S. Ruhrmann, J. Klosterkötter. Schizophrenia Proneness		
51	557		Instrument, Adult Version (SPI-A). Giovanni Fioriti Editore.; 2007.		
52 53	558	10.	Beck A, Steer R, Brown G. Manual for the Beck Depression Inventory-II (BDI-II).		
55 54	559	10.	Published online January 1, 1996. Accessed February 24, 2020.		
55	560		https://www.scienceopen.com/document?vid=9feb932d-1f91-4ff9-9d27-da3bda716129		
56					
57 58					
58 59					
60			43 http://www.schizophreniabulletin.oupiournals.org		

1 2		Lalousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and depression			
2 3 4	561	11.	Endler NS. CISS: Coping Inventory for Stressful Situations. Harcourt; 2004.		
5 6 7 8	562 563 564	12.	Bernstein DP, Fink L, Handelsman L, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. <i>Am J Psychiatry</i> . 1994;151(8):1132-1136. doi:10.1176/ajp.151.8.1132		
9 10 11 12 13	565 566 567	13.	Veale JF. Edinburgh Handedness Inventory—Short Form: A revised version based on confirmatory factor analysis. <i>Laterality: Asymmetries of Body, Brain and Cognition</i> . 2014;19(2):164-177. doi:10.1080/1357650X.2013.783045		
14 15	568	14.	Williams DR. Measuring Discrimination Resource. :24.		
16 17 18 19	569 570 571	15.	Cole JD, Kazarian SS. The Level of Expressed Emotion Scale: A new measure of expressed emotion. <i>Journal of Clinical Psychology</i> . 1988;44(3):392-397. doi:10.1002/1097-4679(198805)44:3<392::AID-JCLP2270440313>3.0.CO;2-3		
20 21 22 23 24	572 573 574	16.	Zimet GD, Dahlem NW, Zimet SG, Farley GK. The Multidimensional Scale of Perceived Social Support. <i>Journal of Personality Assessment</i> . 1988;52(1):30-41. doi:10.1207/s15327752jpa5201_2		
25 26 27 28	575 576 577	17.	Costa PT, McCrae RR, Psychological Assessment Resources I. <i>Revised NEO Personality</i> <i>Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI)</i> . Psychological Assessment Resources; 1992.		
29 30 31 32 33	578 579 580	18.	Friborg O, Hjemdal O, Rosenvinge JH, Martinussen M. A new rating scale for adult resilience: what are the central protective resources behind healthy adjustment? <i>Int J Methods Psychiatr Res.</i> 2003;12(2):65-76.		
34 35 36 37	581 582 583	19.	Connor KM, Davidson JR, Churchill LE, Sherwood A, Foa E, Weisler RH. Psychometric properties of the Social Phobia Inventory (SPIN). New self-rating scale. <i>Br J Psychiatry</i> . 2000;176:379-386. doi:10.1192/bjp.176.4.379		
38 39 40 41 42	584 585 586	20.	Health WHOD of M. WHOQOL-BREF : introduction, administration, scoring and generic version of the assessment : field trial version, December 1996. Published online 1996. Accessed April 6, 2020. https://apps.who.int/iris/handle/10665/63529		
43 44 45 46 47	587 588 589 590	21.	Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L. The Continuous Performance Test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. <i>Psychiatry Res.</i> 1988;26(2):223-238. doi:10.1016/0165-1781(88)90076-5		
48 49 50 51 52 53 54	591 592 593 594	22.	Nowicki S, Duke MP. Nonverbal receptivity: The Diagnostic Analysis of Nonverbal Accuracy (DANVA). In: <i>Interpersonal Sensitivity: Theory and Measurement</i> . The LEA series in personality and clinical psychology. Lawrence Erlbaum Associates Publishers; 2001:183-198.		
54 55 56 57 58 59					

1 2			ousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and ression	
3 4 5 6	595 596 597	23.	Rey A. L'examen psychologique dans les cas d'encéphalopathie traumatique. (Les problems.). [The psychological examination in cases of traumatic encepholopathy. Problems.]. <i>Archives de Psychologie</i> . 1941;28:215-285.	
7 8 9 10 11	598 599 600	24.	Roiser JP, Stephan KE, den Ouden HEM, Friston KJ, Joyce EM. Adaptive and aberrant reward prediction signals in the human brain. <i>Neuroimage</i> . 2010;50(2):657-664. doi:10.1016/j.neuroimage.2009.11.075	
12 13 14	601 602	25.	Petrides M, Milner B. Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. <i>Neuropsychologia</i> . 1982;20(3):249-262. doi:10.1016/0028-3932(82)9010	0-2
15 16 17	603 604	26.	Reitan RM. Validity of the Trail Making Test as an Indicator of Organic Brain Damage: <i>Perceptual and Motor Skills</i> . 1958;8(3). doi:10.2466/pms.1958.8.3.271	
18 19 20 21	605 606 607	27.	Manjón JV, Tohka J, García-Martí G, et al. Robust MRI brain tissue parameter estimation by multistage outlier rejection. <i>Magnetic Resonance in Medicine</i> . 2008;59(4):866-873. doi:10.1002/mrm.21521	1
22 23 24 25 26	608 609 610	28.	Rajapakse JC, Giedd JN, Rapoport JL. Statistical approach to segmentation of single- channel cerebral MR images. <i>IEEE Trans Med Imaging</i> . 1997;16(2):176-186. doi:10.1109/42.563663	
27 28 29	611 612	29.	Mushquash C, O'Connor BP. SPSS and SAS programs for generalizability theory analyse <i>Behavior Research Methods</i> . 2006;38(3):542-547. doi:10.3758/BF03192810	es.
30 31 32 33	613 614	30.	Wolpert DH. Stacked generalization. <i>Neural Networks</i> . 1992;5(2):241-259. doi:10.1016/S0893-6080(05)80023-1	
34 35 36	615 616	31.	R. Polikar. Ensemble based systems in decision making - IEEE Journals & Magazine. Published 2006. Accessed May 20, 2019. https://ieeexplore.ieee.org/document/1688199	
37 38 39	617 618	32.	Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. <i>Bioinformatics</i> . 2007;23(19):2507-2517. doi:10.1093/bioinformatics/btm344	
40 41 42 43	619 620	33.	Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: A Library for Large Linear Classification. <i>J Mach Learn Res</i> . 2008;9:1871–1874.	
43 44 45 46	621 622	34.	Cannon-Spoor HE, Potkin SG, Wyatt RJ. Measurement of Premorbid Adjustment in Chronic Schizophrenia. <i>Schizophr Bull</i> . 1982;8(3):470-484. doi:10.1093/schbul/8.3.470	
47 48 49	623 624	35.	Barkus E, Badcock JC. A Transdiagnostic Perspective on Social Anhedonia. <i>Front Psychiatry</i> . 2019;10:216. doi:10.3389/fpsyt.2019.00216	
50 51 52 53 54 55 56	625 626 627	36.	Shankman SA, Nelson BD, Harrow M, Faull R. Does physical anhedonia play a role in depression? A 20-year longitudinal study. <i>J Affect Disord</i> . 2010;120(1-3):170-176. doi:10.1016/j.jad.2009.05.002	
57 58 59 60			http://www.schizophreniabulletin.oupjournals.org	45

Page 75 of 74

1 2			ousis et al. Diagnosis, Comorbidity, and Classification in recent onset psychosis and ression
2 3 4 5 6	628 629 630	37.	Romm KL, Rossberg JI, Hansen CF, Haug E, Andreassen OA, Melle I. Self-esteem is associated with premorbid adjustment and positive psychotic symptoms in early psychosis. <i>BMC Psychiatry</i> . 2011;11(1):136. doi:10.1186/1471-244X-11-136
7 8 9 10 11	631 632 633	38.	Silverstone PH, Salsali M. Low self-esteem and psychiatric patients: Part I – The relationship between low self-esteem and psychiatric diagnosis. <i>Annals of General Hospital Psychiatry</i> . 2003;2(1):2. doi:10.1186/1475-2832-2-2
12 13 14 15	634 635 636	39.	Kline ER, Seidman LJ, Cornblatt BA, et al. Depression and clinical high-risk states: Baseline presentation of depressed vs. non-depressed participants in the NAPLS-2 cohort. <i>Schizophr Res</i> . 2018;192:357-363. doi:10.1016/j.schres.2017.05.032
16 17 18 19 20	637 638 639	40.	Schultze-Lutter F, Ruhrmann S, Picker H, von Reventlow HG, Brockhaus-Dumke A, Klosterkötter J. Basic symptoms in early psychotic and depressive disorders. <i>Br J Psychiatry Suppl</i> . 2007;51:s31-37. doi:10.1192/bjp.191.51.s31
20 21 22 23	640 641	41.	Han M-H, Nestler EJ. Neural Substrates of Depression and Resilience. <i>Neurotherapeutics</i> . 2017;14(3):677-686. doi:10.1007/s13311-017-0527-x
24 25 26	642 643	42.	Marulanda S, Addington J. Resilience in Individuals at Clinical High Risk for Psychosis. <i>Early Interv Psychiatry</i> . 2016;10(3):212-219. doi:10.1111/eip.12174
27 28 29 30	644 645 646	43.	McClintock SM, Husain MM, Greer TL, Cullum CM. Association between depression severity and neurocognitive function in major depressive disorder: A review and synthesis. <i>Neuropsychology</i> . 2010;24(1):9-34. doi:10.1037/a0017336
31 32 33 34 35 36	647 648 649 650	44.	Sánchez-Torres AM, Elosúa MR, Lorente-Omeñaca R, Moreno-Izco L, Cuesta MJ. A comparative study of the working memory multicomponent model in psychosis and healthy controls. <i>Comprehensive Psychiatry</i> . 2015;61:97-105. doi:10.1016/j.comppsych.2015.05.008
37 38 39 40 41	651 652 653	45.	Becker HE, Nieman DH, Dingemans PM, van de Fliert JR, De Haan L, Linszen DH. Verbal fluency as a possible predictor for psychosis. <i>Eur Psychiatry</i> . 2010;25(2):105-110. doi:10.1016/j.eurpsy.2009.08.003
42 43 44 45 46 47	654 655 656 657 658	46.	Koutsouleris N, Kambeitz-Ilankovic L, Ruhrmann S, et al. Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or With Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. <i>JAMA Psychiatry</i> . 2018;75(11):1156-1172. doi:10.1001/jamapsychiatry.2018.2165
48 49 50 51 52 53 54 55 56 57 58	058		
59 60			46 http://www.schizophreniabulletin.oupjournals.org