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Measurement of branching fraction ratios for
Bt —- D**D-K*, Bt - D**DTK™, and
B° - D* DK™ decays
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E-mail: daniel.johnson@cern.ch

ABSTRACT: A measurement of four branching-fraction ratios for three-body decays of B
mesons involving two open-charm hadrons in the final state is presented. Run 1 and Run 2
pp collision data are used, recorded by the LHCb experiment at centre-of-mass energies
7, 8, and 13 TeV and corresponding to an integrated luminosity of 9fb~!. The measured
branching-fraction ratios are
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=0.5617£0.0154+0.013 £ 0.011,

=0.577£0.016 £ 0.013 £ 0.013,

=1.754£0.028 £ 0.016 £ 0.035,

=0.907 £0.033 £ 0.014,

where the first of the uncertainties is statistical, the second systematic, and the third is
due to the uncertainties on the D-meson branching fractions. These are the most accurate
measurements of these ratios to date.
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1 Introduction

There is a long history of studies of B — D®D® K decays, where B represents a Bt or a
B® meson, D™ is a D°, D*, D, or D*t meson, D™ is a charge conjugate of one of the
D™ mesons, and K is either a Kt or K° meson.! The first observations of B — D®) D® K
decays were made public in 1997 and 1998 by the CLEO [1] and ALEPH [2] collaborations.
They fully reconstructed a number of these decay modes in order to probe the discrepancy
between the measured values of branching fractions for hadronic and semileptonic decays of
the B meson [3], the at that time unresolved ‘charm-counting problem’. In 2003, the BaBar
collaboration published the first comprehensive investigation of B — D®D® K decays,
reporting observations or limits for 22 channels [4]. Later, in 2011, the measurements were
updated using a five times larger data sample [5]. The LHCb data collected during Run 1
and Run 2 of the Large Hadron Collider (LHC) provide an opportunity to obtain an order
of magnitude larger yields with smaller backgrounds than those measured previously.
This paper reports measurements of relative branching fractions of BT — D*~DTK™T,
Bt — D**D~K*, and B — D* DK™ decays with respect to the BT — DYDYK™* decay
for the first two, and the B® — D~ DK™ decay for the third mode. The decays used
for normalisation are chosen due to their similarity to the signal decays in multiplicity

IThe inclusion of charge conjugated processes is implied throughout, unless otherwise stated.
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Figure 1. Top left: internal W-emission diagram for the decays Bt — D*~DTK* and Bt —
D*TD~K*. Top right: external W-emission diagram for the decays B® — D*~D°K* and B? —
D~D°K™*. Bottom row: (left) external and (right) internal W-emission diagrams contributing to
the BT — D°DYK™ decay.

and topology, providing the best cancellation of systematic uncertainties on the ratio.
Additionally, a relative branching fraction of the B* — D*"DTK* and BT — D**D~ KT
decays is reported. The analysis is based on a sample of pp collisions corresponding to
a total integrated luminosity of 9fb~! collected at centre-of-mass energies of 7, 8 TeV
(Run 1), and 13 TeV (Run 2) by the LHCb experiment. The modes containing the excited
D* meson are hereafter collectively denoted as B— D*DK and the modes containing only
pseudoscalar D mesons as B— DDK. Decays of these types can proceed at the tree level
via three different processes: pure external W emission, pure internal W emission, also
called colour-suppressed, and the interference of both. Figure 1 shows tree-level diagrams
for the processes relevant for this analysis.

The decays of type B — D™ D®) K also allow for spectroscopy studies through their in-
termediate resonant structures, especially for investigations of ¢s resonances via the D*) K
system and charmonium resonances via the D*) D) system. The specific topology of these
decays allows for strong suppression of combinatorial background in fully reconstructed de-
cays, and the small energy release leads to an excellent B-mass resolution. These features
make them good candidates for future amplitude analyses. To date, only two amplitude
analyses [6, 7] have been performed in this family of decays, none of which involved an
excited D* meson. Furthermore, both of them are sensitive only to resonant states with
natural spin-parity assignments, i.e. JE = 07,17,2%,37, etc. Relatively little is known
about states with unnatural spin-parity, and B — D*DK decays provide an interesting
probe for their study.



2 Detector and simulation

The LHCb detector [8, 9] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < n < 5, designed for the study of particles containing b or ¢ quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector sur-
rounding the pp interaction region, a large-area silicon-strip detector located upstream of
a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system pro-
vides a measurement of the momentum, p, of charged particles with a relative uncertainty
that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of
a track to a primary pp collision vertex (PV), the impact parameter (IP), is measured with
a resolution of (15 + 29/pr) um, where pr is the component of the momentum transverse
to the beam, in GeV/c. Different types of charged hadrons are distinguished using infor-
mation from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers.

The datasets employed correspond to integrated luminosities of 3 fb~! and 6 fb™!,
collected during LHC Run 1 (2011 and 2012) and Run 2 (2015-2018). The online event
selection is performed by a trigger, which consists of a hardware stage, based on informa-
tion from the calorimeter and muon systems, followed by a software stage at which the
full event is reconstructed. Events passing the hardware trigger are considered in two cat-
egories: one in which the trigger criteria are satisfied by energy deposits in the calorimeter
associated with the signal candidate decay, and a second in which any of the various muon
or calorimeter trigger criteria are met by activity independent of that decay. The soft-
ware trigger stage requires a two-, three- or four-track secondary vertex with a significant
displacement from any primary pp interaction vertex. At least one charged particle must
have a transverse momentum pp > 1.6 GeV/c and be inconsistent with originating from a
PV. A multivariate algorithm [10, 11] is used for the identification of secondary vertices
consistent with the decay of a b hadron.

Simulated samples are produced to model the effect of the detector acceptance and
selection requirements, and to guide subsequent fits to the data. To produce these samples,
pp collisions are generated using PyYTHIA [12, 13] with a specific LHCb configuration [14].
Decays of unstable particles are described by EVTGEN [15], in which final-state radiation is
generated using PHOTOS [16]. The interaction of the generated particles with the detector,
and its response, are implemented using the GEANT4 toolkit [17, 18] as described in ref. [19].

3 Selection

For this analysis, D™ mesons are reconstructed via their decay to the K ~n 7™ final state,
and D" mesons are reconstructed through their decays to both the K ~nt, denoted as
D(}(W, and K~ ntnt7r~, denoted as D%?m, final states. However, for decays involving two
DY mesons at least one must be reconstructed via the two-body decay. The D** meson is



Decay channel Studied mode

BT — Dyt DK™
Bt— Dyt D K+
Bt — D} DK™
Bt — D3, DYK*
B~ D DY K+
B’— D*"D'K* | B~ Dy, DY K+
B~ D DY, K+
Bt — D% DY KT
Bt — D% D%, K+
B~ D-DY% K+t
BY— D D% K*

Bt — D**D K+

Bt — D*DVK+

Bt — D'DK+

BY— D-DYK*

Table 1. Decays under study. In the first column no assumption about the D final state is made.
In the second column, however, the particular D decays are specified.

reconstructed through its decay to D7+, and is labelled as D3} (D374 ) if decaying into
DY mF (D%, 7T). The decays analysed are summarised in table 1.

Well-reconstructed final-state tracks are required. A standard threshold for the x%p of
each track is applied (> 4), where x% is defined as the difference in the vertex-fit x? for the
PV associated with the B-meson candidate when it is reconstructed with or without the
track under consideration. The PV that fits best to the flight direction of the B candidate is
taken as the associated PV. All charged final-state particles must have momentum greater
than 1 GeV/c and transverse momentum above 0.1 GeV/c. At least one of them must have
p > 10GeV/c and pp > 1.7 GeV/¢, whilst also having an impact parameter with respect to
the B candidate associated PV of at least 0.1 mm. The invariant masses of D candidates
are required to lie within 20 MeV/c? of their known values [20] and their decay vertices must
be well reconstructed, having a fit x? less than 10. The B (D) candidates have to satisfy the
requirement that the minimum of the cosine of the angle between their reconstructed mo-
mentum and the line connecting their production and decay vertices should be greater than
0.999 (0). The flight time (distance x?) from the associated PV for the B- (D)-meson can-
didates is required to exceed 0.2 ps (36). Finally, particle identification (PID) information
is employed to aid distinction of final-state K and m mesons. The simulated PID response is
corrected in order to match the data. This is achieved using calibration D** — D% sam-
ples as a function of track kinematics and multiplicity. An unbinned method is employed,
where the probability density functions are modelled using kernel density estimation [21].

A Boosted Decision Tree (BDT) [22, 23] classifier is used to further reduce combi-
natorial background, consisting of random combinations of tracks that mimic the signal.
The BDT is trained using a simulated sample to represent signal and data from the upper
sideband of the reconstructed B-candidate invariant-mass distribution to represent combi-



natorial background. The variables entering the BDT are: the quality of the reconstructed
B- and D-meson decay vertices; the X%P of the B- and D-meson candidates, as well as the
X%P of the D-meson decay products; and the particle identification variables of the final-
state K and 7w mesons. The threshold for the obtained BDT response is set by optimising
the significance of the B meson signal yield in a fit to data. The signals are sufficiently
large that this approach is found to introduce no significant bias to the results. Consistency,
within statistical uncertainties, is seen between simulated samples and signal-weighted data
for the variables used by the BDT, and the BDT response itself.

A significant peaking background arises from B-meson decays where the final state
is the same but which proceed without one or both of the intermediate charm mesons.
The level of this background is estimated by performing a fit to the invariant mass for B
candidates where the reconstructed mass of one or both D-meson candidates lies far from
the known mass and extrapolating the obtained B signal yield into the D-meson signal
regions. To suppress contributions from these decays, the reconstructed D-meson decay
vertex is required to be downstream of the reconstructed B-meson decay vertex and a lower
bound is placed on the flight distance significance along the beam axis for D mesons. This
requirement suppresses the peaking background to the level of a few percent of the signal
yield, and this remaining contamination is later subtracted.

4 Mass fit

After selecting the signal candidates an unbinned extended maximume-likelihood fit is per-
formed to the distribution of reconstructed B-candidate mass, m(D™*) DK), where the re-
construction is performed with D-candidate masses constrained to their known values [20]
and the B-candidate direction of flight to be originating at the PV. The fit to the mass
distribution is performed in the range from 5210 to 5390 MeV/c?, separately for Run 1 and
Run 2 data. The shape used to fit the distribution consists of two components: one to de-
scribe the decays of a signal B meson, and a second to model the combinatorial background.
The signal shape is modelled using a Double-Sided Crystal Ball (DSCB) [24] function. The
asymmetric shape and non-Gaussian tails account for both the mass-resolution effects on
both sides and energy loss due to final-state radiation. The values of tail parameters of
the DSCB shapes are fixed to those found in simulated decays while the Gaussian core
parameters are extracted from the fit together with the signal yield. To model the com-
binatorial background an exponential function is used. The lower bound on the range of
invariant mass considered excludes any significant background from partially reconstructed
decays. The combined Run 1 and Run 2 invariant-mass distributions and fit results are
shown in figure 2. The fit is used to extract a signal weight for each candidate using the
sPlot technique [25].
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Figure 2. Fits to the invariant-mass distributions m(D® DK) of (left) B— D*DK and (right)
B — DDK for the combined Run 1 and Run 2 samples. The stacked components are (red)
combinatorial background and (blue) signal shape.



5 Efficiencies

The efficiencies € of the selection of signal candidates are calculated separately for Run 1
and Run 2 in two stages:
£ =g g% (5.1)

where the geometric LHCb acceptance efficiencies €2°¢ are calculated using simulated sam-
ples, and correspond to the fraction of generated events where all final-state particles lie
within the LHCDb acceptance. The trigger, reconstruction, and selection efficiencies €% are
also determined using simulated samples as the fraction of reconstructed candidates pass-
ing the trigger, reconstruction, and selection criteria, given that they pass the geometrical
acceptance requirement. The efficiencies are evaluated as a function of the position in the
phase space of the decay. Due to the presence of a pseudoscalar particle in the initial state
and one vector (D*) plus two pseudoscalar particles in the final state, decays of the type
B — D*DK have four independent degrees of freedom. These are chosen to be the two-
body squared invariant masses m?(D*K) and m?(DK), and two helicity angles: the angle
x between the decay planes of the D* meson and the DK system in the B-meson rest frame,
and the D*-meson helicity angle 6 defined as the angle between the direction of the m meson
coming from the D* meson in the D*-meson rest frame, and the D* meson in and B-meson
rest frame. In the case of B— DDK decays only two degrees of freedom are required, and
these are chosen to be the two-body squared invariant masses m?(DK) and m?(DK).

Whilst the efficiency varies considerably across the two-body invariant-mass planes
and the D*-meson helicity angle 6, it does not depend significantly on the angle y. Two-
dimensional efficiency distributions, as functions of m?(D*K) and m?(DK), are obtained
in four equal bins of cos(f). The efficiency distributions are further smoothed using a
kernel density estimation (KDE) technique [21]. The efficiency in the two-body invariant-
mass distribution integrated over the two helicity angles are shown in figures 3 and 4 for
the B —+ D*DK samples from Run 1 and Run 2, respectively. The relative statistical
uncertainties on the total efficiencies are in range 10 — 20%.

6 Corrected yields

The ratios of branching fractions are calculated using signal yields corrected by applying
candidate-by-candidate background subtraction and efficiency correction, and accounting
for the decays of the D mesons into the final states. The branching fraction of a B —
D® DK decay is proportional to the corrected yield, N calculated as
Z ‘/VZ _ poorr

sel(xi) . gacc peaking

— €
corr 1 1

- 507 B D) . (6.1)

Here the index ¢ runs over all candidates in the fitted sample, W; is the signal weight for

sel

candidate 7 (see section 4), € is the selection efficiency for candidate i as a function of its

acc

position x; in the relevant phase space, and €*°¢ is the efficiency of the acceptance cut for

the given mode (see section 5). Since the efficiency-weighted sum over candidates includes
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Figure 3. Selection and reconstruction efficiency, £, as a function of position in the two-body
squared invariant-mass plane for the seven B — D*DK modes, obtained using Run 1 simulated
samples. A KDE smoothing has been applied. The blue lines indicate the kinematic boundaries
and the numbers indicate the value of the efficiency at several points in the phase space.

a small (peaking) background contribution, the efficiency-corrected residual peaking back-

corr corr
peaking peaking

taking the estimated yield of the peaking background and dividing it by an average effi-

ground n is subtracted from the signal region. The value of n is obtained by

ciency of the sample, since the distribution of the peaking background in the phase space
of the decay is not known. Finally, the denominator is used to correct for the D-meson
decay branching fractions, which are:

3.999 +0.045)%  [26
8234+0.14)%  [20
9.38+0.16)%  [20
67.7+0.5)% [20].
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Table 2 summarises the values of signal yields NV obtained from the mass fits as well
as the corrected yields N for all studied modes.

7 Systematic uncertainties

Many systematic effects cancel exactly in the ratios of branching fractions, such as the
uncertainties in the bb-production cross-section and fragmentation fractions as well as the
uncertainties in the luminosity. The kinematics differ most between numerator and denom-
inator for the slow pion in modes involving a D* decay, but the tracking efficiency of the
slow pion produced in the D* decay is found to be well modelled using calibration samples
and the associated systematic uncertainty is found to be negligible. Uncertainties are con-
sidered where they arise from the shapes used to model the invariant-mass distribution,



Run 1 Run 2
N Ncorr (106) N Ncorr (106)
Bt — Dy D K* 212+16 289+21 | 869+ 32 854+ 32
Bt — Dyt D"K*T | 11611 286£28 | 606+ 26 997+ 44
Bt — Dy DYK* 210+£15 313+£23 | 912+ 32 1009+ 36
Bt — D35 DYK*T | 153+£13 371+£32 | 566+ 25 969+ 45
B~ Dy DY KT 605+26 119652 | 2409+ 52 3495+ 76
B~ Dj, D% KT | 321+£20 949+57 | 1706+ 44 3541+ 92
B~ Dy DY%s K+ | 3314+£20 1105464 | 1544+ 41 3812+104
Bt — D%, DY Kt | 477424 517+£26 | 2564+ 56 1823+ 39
Bt — D% D%, K+ | 622428 527+23 | 2853+ 60 1720+ 35
B~ DDV KT 2443+54  651+14 | 9071+£104 2039+ 23
B~ D= D%, K+ 864+32 648+£23 | 3867+ 69 2040+ 36

Mode

Table 2. Table of all signal yields N and efficiency and D-meson branching fraction corrected
yields N with the residual peaking background subtracted. The values of corrected yields are
rounded to the order of 10%. The uncertainties are statistical only.

the efficiency determination, the resampling of the PID response, and the contribution of
residual peaking backgrounds.

The systematic uncertainty related to the signal model is evaluated by randomly sam-
pling each tail parameter of the DSCB from a normal distribution centred at the value used
in the fit and with a width corresponding to its uncertainty. The fit is then repeated with
these new values and the yields are recalculated. The correlations of the tail parameters
are accounted for. By doing this many times a distribution of yields is obtained. The
RMS of this distribution is then used as the systematic uncertainty. Changing the shape
of the background model is found to have a negligible impact on the resulting yields. The
associated systematic uncertainty is thus neglected.

To estimate the systematic uncertainty associated with the choice of the kernel width
in the PID response correction, the procedure is repeated with a larger kernel width. The
absolute difference between the new efficiency-corrected yield and the baseline value is
taken as the uncertainty.

Even after applying the flight-distance significance requirements on the D mesons there
is still some underlying residual peaking background Npeaking” This is subtracted from the
signal yield. The uncertainty on the yield of the residual peaking background, determined

using the c-hadron sidebands, is used as the systematic uncertainty.

The limited size of the simulated samples leads to uncertainties in the efficiency esti-
mations. Bootstrapped samples are produced by sampling randomly candidates from the
original simulated sample, allowing repeated selection of the same candidate, until a new
sample having the same number of candidates is derived. These samples are used to eval-

~10 -



Run 1 (%) Run 2 (%)
OPDF OMC OPID Obkg | Otot. | OPDF OMC OPID Obkg | Otot.
B*— Dyt DK+ 06 08 15 08|20| 05 14 02 0516
Bt—=DiL D-K* | 1.2 12 09 14 |24| 1.0 21 07 06 |25
B*— D DYK* 05 10 04 07| 14| 08 18 07 0421
Bt— Dy, DYK* | 14 16 11 1.2 |27] 07 25 12 06 |29
B'— Dy DY K+ | 06 07 09 03|13| 05 11 02 02|12
B+ Dy D% KT | 08 12 03 07|16 | 08 17 06 03|20
B'— Dy D%, Kt | 09 12 03 06| 16| 06 20 03 03] 21
Bt*—-DY%, D% K*| 06 11 1.0 09 |18 | 1.1 1.8 05 04 |22
Bt*—=DY D%, K| 07 11 05 07|16 | 07 16 04 03|18
B D~ DY K+ 04 07 05 04|10 03 07 07 02|11
B~ D D%, KT 02 14 03 05|15 | 08 13 04 03|16

Decay channel

Table 3. Systematic uncertainties on N from the signal PDF parameters (oppr), the finite
simulation samples (oumc), the PID resampling (opip), the residual peaking background (opkg),
and the total systematic uncertainty (oiot.). All values are given as a percentage of the central
value of N,

uate the associated systematic uncertainty, resulting in an ensemble of different efficiency
distributions. The RMS values of the resulting yield distributions are then taken as a mea-
sure of the systematic uncertainties. This is typically the dominant systematic uncertainty.

The tracking efficiencies are assumed to cancel in all ratios where the same number of
tracks is reconstructed in the numerator and denominator. Differences in kinematics, most
obviously for the slow pion in the D* decay, could lead to imperfect cancellation. This was
explored and the effect was found to be negligible. In ratios where the number of tracks
differ in the numerator and denominator, an additional systematic uncertainty of 1% per
additional track is applied.

The magnitudes of the individual contributions are summarised in table 3 together
with the total systematic uncertainty obtained by combining the individual components in
quadrature.

8 Results

The ratios of branching fractions are obtained by appropriately combining the N yields
of decay modes in table 1 into ratios, such that the systematic uncertainty coming from
the different number of tracks in the numerator and denominator is minimised. In or-
der to calculate the first two branching-fraction ratios of the BT — D* " D*K* (Bt —
D**D~K™*) decay with respect to the Bt — D°DYK™* decay a weighted average of N
of Bt = D DYK* (Bt — D} D"K*) and BT — Dy, DYK' (Bt — D} D™K™)
is done and divided by the weighted average of N for the BT — D%, D% K* and

- 11 -



BT — E%WD(}(%K T modes. The associated weight in the weighted average is the inverse
of the variance of the value. The variance on N™ is obtained by adding the statisti-
cal and the systematic uncertainty, including the uncertainties due to D-meson branching
fractions, in quadrature.

The first measurement of the third ratio of B®— D*~DK* to B® - D~ DK decays
is calculated by performing a weighted average of N for BY — D;{%D%WK * and B’ —
D;{;D(I){%K * decays, and dividing it by the value of N for the B? — D_D(I){%K T decay.
A second measurement is obtained by finding the ratio of N for BY — D} D% KT and
BY— D™DY% KT, which is combined with the first one into the final branching-fraction
ratio.

The fourth branching-fraction ratio of B* — D* " DTK™' and BT — D**D~ K™ de-
cays is calculated as the weighted average of two ratios. The first is the ratio of BT —
D3t D™K' and BT — Dy, DK™ decays, and the second is that for Bt — D}t DK+
and BT — D5 DTK™ decays.

The ratios of branching fractions are computed separately for Run 1 and Run 2 and
then combined in a weighted average. These ratios are measured to be

B(Bt— D**D~K*)
B(B+— DVDOKT)
B(B*— D*~D+K*)
B(B+— DODOK)
B(B"— D*~DYK™)
B(BY— D-DOK)
B(B*— D**D~K+)
B(Bt— D*~DVK+)

= 0.517£0.015 £ 0.013 £ 0.011,

=0.577 £0.016 £ 0.013 £ 0.013,

=1.754 £0.028 £+ 0.016 4 0.035,

= 0.907 £ 0.033 £ 0.014,

where the first uncertainty is statistical, the second systematic, and the third one is due to
the uncertainties on the D-meson branching fractions [20].

The BaBar collaboration studied these decays previously [5], with a different set of D*°
and D° channels, obtaining signal yields of 91 + 13 Bt — D** D~ K™+ candidates, 75 + 13
Bt — D*~ Dt KT candidates, and 1300+ 54 B° — D*~ DK™ candidates. The sizes of the
signal yields obtained using the LHCb data are around twenty times larger for the first two
decays, and over five times larger for the third. Significant increases are seen for the yields
obtained in the normalisation modes, with respect to earlier studies using data from the
Belle and BaBar experiments. Good agreement is seen with respect to the corresponding
branching fraction ratios according to the Particle Data Group (PDG) [20], calculated
to be 0.43 £ 0.12, 0.41 £ 0.13, 2.3 = 0.3, and 1.1 £ 0.3, respectively. The measurements
described in this article are between 5 and 7 times more precise. The ratio between the
BT — D**D~K™* and BT — D*~ DT K™ deviates from unity with a significance just below
30, suggesting activity in a channel other than the DT* D~ channel that the two have in
common. These measurements, and the high purity of the samples obtained for the decays
under study, make these decays prime targets for future analyses of resonant structure.
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9 Summary

A data sample corresponding to an integrated luminosity of 9 fb~! recorded with the LHCb
detector is used to measure four ratios of branching fractions in B — D® DK decays.
The ratios are consistent with previous measurements and are measured with the highest
precision to date. Furthermore, this work represents the first published analysis at the LHC
of b-hadron decays to two open-charm hadrons and a third, light, hadron. Large samples
of B — D®WDK decays are available, and can be isolated in the LHCb dataset with low
background contamination. These are promising characteristics for these channels with
future studies of their intermediate resonant structure in view.
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