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Abstract 

This paper reports a numerical study on the optimization of the lip size of Z-sections under 

gravity loads. Numerical models of cold-formed steel Z purlins restrained by cladding and 

angle struts and subjected to sagging moment were developed and validated against a 

total of 8 experimental results on Z-sections that failed in local or/and distortional buckling 

reported in the companion paper. Models of varying levels of complexity were generated 

and the key parameters affecting the structural response were determined by means of 

a sensitivity analysis. The investigated parameters included the magnitude, shape and 

combination of initial geometric imperfections pertinent to local and distortional buckling 

and the simplified or explicit modelling of test details such as struts and sheeting. Having 

determined the appropriate modelling strategy that leads to the best balance between 

accuracy and computational cost, parametric studies were conducted to investigate the 

effect of decreasing or increasing the lip depth on the sections’ moment resistance and 

corresponding failure mode.  Based on the parametric study results, the optimal lip size 



which maximizes the moment to weight ratio for each section was determined. Finally, all 

generated FE results are utilized to evaluate the accuracy of the moment resistance 

prediction of EN 1993-1-3 and the Direct Strength Method. 
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1.  Introduction 

In addition to their high strength-to-weight ratio and the ease of installation and transport, 

cold-formed steel sections are popular in construction due to the flexibility in fabricating 

complex optimized cross-sectional shapes [1]. Nowadays, many cold-formed producers 

can customize any cross-section as to better suits the requirements of specific 

application. Accordingly, finding optimal profiles or sizes of cold-formed steel members, 

which provide effective and economical solutions, is a topic of great interest [2]. In 

structural engineering, cross-section optimisation means the minimisation of the used 

material by reducing the weight while fulfilling strength and serviceability constraints. 

Generally, cross-section optimization approaches can be categorized into two types, 

namely shape optimisation and size optimisation [3]. The first aims to find an optimal 

cross-sectional form with no initial constraints on its shape while the second aims to 

determine an optimal relative size of the constituent elements within a defined profile. 

Several studies have been conducted on shape optimisation of cold-formed steel 

sections employing various mathematical methods and considering different sets of 

loading conditions and constraints [4-6]. In addition, size optimisation has been also 



studied by many researchers to optimise relative dimensions of commonly used cold-

formed steel sections such as Z, hat and I-sections [7] and channel beams and columns 

[8, 9] utilizing techniques such as neural networks and genetic algorithms. 

This study builds upon the experimental research on the structural behaviour of lipped Z-

section purlins reported in the companion paper [10] and aims to determine the optimal 

lip size for simply supported laterally restrained purlins subjected to sagging moment, 

with all other cross-section dimensions remaining constant. Only the bending resistance 

is considered since the lip size has only a minimal effect on stiffness, whilst it significantly 

affects the distortional buckling resistance and hence the flexural capacity of Z sections. 

The objective function that needs be minimised to obtain the optimal lip size is defined 

herein as the weight-to-flexural strength ratio. To this end a pragmatic approach is 

followed involving the numerical simulation of Z-sections with different lip sizes and the 

determination of the moment resistance for each model. Initially an FE model is 

developed and validated against the experimental results reported in [10]. Thereafter 

parametric studies are conducted investigating the effect of increasing and decreasing 

the lip size on the sections’ flexural resistance. Based on the obtained results an optimal 

lip size is determined for each Z-section modelled. Finally, all numerical results are 

utilized to assess accuracy of the predictions of European [11, 12] and American design 

codes [13].  

 

2. Numerical modelling 

The finite element software ABAQUS [14] was utilized to generate the numerical models 

that simulate the response of Z purlins subjected to sagging moment. In all numerical 

models, geometric imperfections and material non-linearity were employed to obtain a 



realistic estimation of the flexural strength. It is noted that the failure modes considered 

in the FE simulations include local and distortional buckling only in accordance with the 

experimental results [10] against which the FE models were validated. All FE models 

have a clear span length of 3 meters, whilst four point load were applied at fifth points of 

the beams to approximate a uniformly distributed load in accordance with the  tests [10]. 

Details on the modelling assumptions are given in the following sections. 

2.1 Element type and discretization 

The linear 4-nodded shell element S4R with reduced integration was used to discretise 

the modelled purlins as it was shown to perform well in similar studies [15-18]. To obtain 

a good balance between accuracy and computational cost, a mesh convergence study 

was conducted on a typical purlin by running successive analyses with increasingly finer 

meshes and plotting the obtained strength against the number of elements.   In all models 

the assumptions reported in the following sections were employed and only the mesh 

size was varied, whilst keeping the aspect ratio of the elements close to unity. A mesh 

convergence study involving six different mesh sizes namely 30, 25, 20, 15, 12 and 10 

mm was carried out.  Fig. 1 summarises the results of the mesh convergence study for a 

typical purlin where it can be clearly observed that decreasing the mesh has a marked 

influence of the obtained results until a mesh size of 12x12, whereafter the results do not 

change significantly. Therefore, a uniform mesh size of 12x12 is employed for the flat 

plated parts of all models, whilst 3 elements were used to discretise the curved corner 

regions and 3 elements were used over the flat lip depth. A typical meshed model with a 

mesh size of 12x12 is shown in Fig. 2.  The same discretization was employed in the 

parametric studies. 

 



 

2.2 Initial geometric imperfections 

Geometric imperfections are defined as deviations of a member actual geometry from its 

nominal one. The magnitude and combination of initial geometric imperfections have a 

significant impact on section capacity and structural response; therefore, they need to be 

included carefully in the models. Since this paper studies the behaviour of laterally 

restrained purlins and given that all specimens failed by local or distortional buckling, only 

initial geometric imperfections pertinent to local and distortional buckling mode shapes 

were considered. 

In the companion paper [15], based on the results of which the FE models are validated 

herein, no geometric imperfection measurements were reported. This was due to the 

tests having been performed on twin purlin specimens assembled from individual purlins 

connected to each other via angle struts and restrained at the top by profiled sheeting. 

The assembly process introduced additional geometric imperfections or eliminated 

preexisting ones in individual purlins as discussed in the companion paper. Therefore, in 

this study, the initial geometric imperfections were treated as a modelling convenience to 

trigger buckling and failure in the desired mode, rather than as a physical reality [17]. To 

this end a linear eigenvalue buckling analysis was initially conducted and the buckling 

mode shapes corresponding to the lowest critical stress pertinent to local buckling (i.e. 

short halfwave length) and distortional buckling (long halfwave length) were utilized to 

perturb the initial geometry and trigger buckling. Fig. 3 shows typical mode shapes for 

local and distortional buckling extracted from eigenvalue analysis. 

Three different values for the magnitudes of the imperfections corresponding to local and 

distortional buckling were considered as summarised in Table 1. The imperfection 



magnitude values stated as fractions of the section thickness for cases a and b were 

obtained from statistical data for lipped channel sections reported by Zeinoddini and 

Schafer [19] and correspond to the 50% and 75% percentile  of the cumulative distribution 

function of measured geometric imperfections for local and distortional buckling. Case c 

utilises a Dawson and Walker [20] type of equation to estimate the magnitude of the 

geometric imperfection for distortional buckling, assuming that the magnitude depends 

on the cross-section slenderness, whilst for the local buckling imperfection amplitude, the 

value h/200 recommended in Annex C of EN 1993-1-5 [12] has been adopted herein, 

where h is the overall depth of the section.  The critical buckling stress for distortional 

buckling, which is required to determine the imperfection amplitude for the distortional 

buckling mode shape, was determined using the software CUFSM [21].  

The initial geometric imperfection f0 applied to each model was simulated as a linear 

combination of the imperfections for local and distortional buckling in accordance with 

Equation (1), where 𝛼௜  is the magnitude for each mode predicted by the 3 amplitudes 

considered from Table 1, 𝐶௜ is a coefficient that controls the sign and portion of the 

amplitude and ∅௜ is the mode shape [19]. 

𝑓଴ =  ∑ 𝛼௜𝐶௜∅௜௜        𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 mode shape                                                            (1) 

A thorough explanation of numerical imperfections modelling strategies can be found in 

[19]. As summarised in [19], there are two classical approaches to determine 𝐶௜, namely 

the circle-SRSS (square root of the sum of squares) and the square-max. A graphical 

representation of these methods is shown in Fig. 4, where 𝐶௅ and Cୢ are the coefficients 

for imperfections corresponding to local and distortional buckling, respectively. In the 

square-max approach, the maximum magnitude for every mode with different signs is 



considered, while in the SRSS, the relationship between the amplitudes of the two mode 

shapes is defined  by Equation (2).  

ට𝐶௅
ଶ + 𝐶஽

ଶ = 1    (2) 

The numbered points in Fig. 4 define various possible combinations of the two buckling 

mode shapes.  These include combinations 1-4 according to the square-max method and 

combinations 5-8 following the SRSS method. It has to be noted that only cases 1, 2, 5, 

6 are considered in this analysis because, as observed in the tests [10], distortional 

buckling occurred only  in the opening mode (i.e. outwards) hence considering cases with 

a negative sign (closing mode) would not accurately capture the observed failure modes. 

For each specimen, twelve analyses were carried out (i.e. 3 imperfection magnitudes and 

4 combinations of imperfections) in order to obtain the magnitude and combination of 

imperfections that leads to the best agreement with the test experimental results. This is 

discussed later in the validation section of this paper. 

 

2.3 Materials properties, residual stresses and corner strength 

enhancements 

The experimental results from tensile coupon tests extracted from the flange of sections 

cut from the same member length as that used for the tested sections are reported in the 

companion paper [10]. All sections had a nominal yield strength of 450 MPa, with the 

experimentally determined one being 466 MPa on average. Young’s modulus was 

200000 MPa on average with very small variations. Some of the material coupons 

exhibited gradual yielding, whilst most stress-strain curves displayed a well-defined yield 

plateau followed by strain-hardening. In the numerical analyses reported herein the 



experimentally derived material response was adopted for the validation of the models. 

The two stage Ramberg Osgood material model originally proposed in [22] and modified 

in [23] as given in Equations (3) and (4) for the 1st and 2nd stage, respectively, was used 

to simulate the nonlinear material behaviour.  

 𝜀 =
 ఙ  

ா
+  0.002 (𝜎/𝜎଴.ଶ)௡                       For σ ≤ σ ଴.ଶ                                                                         (3) 

𝜀 =  
(ఙିఙబ.మ)

ாబ.మ
  +  ቀ𝜀𝑡ଵ.଴ − 𝜀𝑡଴.ଶ −

ఙభ.బିఙబ.మ

ாబ.మ
ቁ ×  ቀ

ఙିఙబ.మ

ఙభ.బିఙబ.మ
ቁ

௡బ.మ,భ.బ

+ 𝜀𝑡଴.ଶ   For σ > σ ଴.ଶ             (4)       

                                                                                                                                                             

In these equations, 𝑛 is the non-linear parameter exponent of the classical Ramberg-

Osgood model and ranged between 17 and 20 for the material reported in [10], E is the 

Young’s modulus, 𝜎଴.ଶ is the proof stress corresponding to 0.2 % plastic strain, 𝜎ଵ.଴ is the 

proof stress corresponding to 1 % plastic strain, 𝐸଴.ଶ is the tangent modulus at 0.2% proof 

stress, 𝐸଴.ଶ =
ா

ଵା଴.଴଴ଶ୬
ಶ

഑బ.మ

 , 𝜀𝑡଴.ଶ is the total strain at the 0.2% proof stress 𝜀𝑡଴.ଶ = 0.002 +

𝜎଴.ଶ 𝐸⁄ , 𝜀𝑡ଵ.଴ is the total strain at the 1% proof stress 𝜀𝑡ଵ.଴ = 0.01 + 𝜎ଵ.଴ 𝐸⁄ , and 𝑛଴.ଶ,ଵ.଴ is a 

strain hardening coefficient for a curve that passes through 𝜎଴.ଶ and 𝜎ଵ.଴. The value of 

𝑛଴.ଶ,ଵ.଴ ranges from 0.9 to 2 for the material reported in [10]. As later observed, the effect 

of material modelling on the numerical results was not significant due to the high 

slenderness of the simulated sections.  

 

The engineering stress-strain curves defined by Equations (3) and (4) namely 𝜎𝑛𝑜𝑚 and 

Ɛ𝑛𝑜𝑚 were converted into true stress 𝜎𝑡𝑟𝑢𝑒 and logarithmic plastic strain Ɛ𝑝𝑙,𝑡𝑟𝑢𝑒 as required 

by ABAQUS according to Equations (5) and (6). 

𝜎௧௥௨௘  =  𝜎௡௢௠ (1 +  Ɛ௡௢௠)                                                                                          (5) 



Ɛ௣௟,௧௥௨௘  =  𝑙𝑛 (1 +  Ɛ௡௢௠)  − 𝜎௡௢௠/ 𝐸                                                                        (6) 

 

It is well known that the cold-forming process introduces both bending residual stresses 

[24] and strength enhancements in the corner regions of the cold-formed sections. The 

bending residual stresses lead to an earlier loss of stiffness under applied load hence 

promoting buckling, whilst the corner strength enhancements increase the cross-

sectional strength as the press-braked corners possess higher strength than the flat 

material of the section. Since the material coupons curved upon their extraction from the 

section due to the release of bending residual stresses,  the effect of the residual stresses 

is reflected in the obtained material properties, as the residual stresses are reintroduced 

as the coupons were straightened during the initial stages of tensile testing. Therefore, 

the effect of residual stresses is not explicitly considered in the models. Given that 

strength enhancements and residual stresses are caused by the same process, in line 

with [16], neither the strength enhancements of the corner regions nor the bending 

residual stresses have been explicitly modelled. 

 

2.4 Modelling of structural details 

Boundary conditions significantly affect the structural response of the FE models, hence 

they need to accurately reflect the actual support conditions employed in practice. The 

tests that are simulated herein, employed twin purlins connected to one another via angle 

struts as discussed in the companion paper [10] and shown in Figure 4.5. Given the 

importance of the restrain provided by the sheeting and the angle struts to the purlins, 

their effect needs to be incorporated in the FE models. The most accurate but also 

computationally expensive approach is to explicitly model the sheeting and angle struts 



with shell elements and account for the contact between sheeting and purlins, whereas 

a computationally less expensive simplification would be to replace the sheeting and 

angle struts with relevant support conditions, i.e. restraining the purlin against out of plane 

deflections at the locations where it is connected to angle struts and sheeting. In between 

these two extremes are the options involving explicit modelling of only the sheeting or the 

angle struts with the effect of the other simulated as boundary conditions, as outlined in 

Table 2, where four modelling approaches of varying complexity are summarised and 

assessed with respect to their computational cost and complexity. The corresponding 

geometry of the FE models is shown in Fig. 6. For all cases, to increase computational 

efficiency, the symmetry with respect to boundary conditions, loading and observed 

failure mode was exploited and only one of the twin purlins was modelled with suitable 

boundary conditions simulating the effect of the presence of the twin purlin. In all models 

the loads were applied as equal point loads on the flange whilst the support reactions, 

were applied on the end sections which were constrained to remain rigid via kinematic 

coupling, thus reflecting the presence of the angle cleat shown in Fig. 5.  

The boundary conditions employed for the simplified model (model i) are shown in Fig. 

7, where the z-axis (DOF 3) corresponds to the longitudinal member axis, the y-axis (DOF 

2) is parallel to the web and the x-axis (DOF 1) is parallel to the flange. For models (ii) 

and (iv), where the struts are explicitly modelled, tie constrains were used to model the 

connection of the struts to the purlin. To model the contact between the cladding ( for 

model ii , iii) and the compression flange of the beam, general contact with hard behaviour 

in the normal direction and frictionless behaviour in the tangential direction was assumed. 

The differences between the four models outlined in Table 2 are discussed hereafter. 

 



3. Validation 

The accuracy of the four modelling strategies employed to simulate the effect of struts 

and cladding on the structural response of the modelled purlins is assessed by comparing 

the resulting behaviour against obtained tests results [10]. The difference between the 

four models is quantified in Table 3 in terms of moment resistance, where all 8 specimens 

have been modelled following the four modelling strategies discussed previously, whilst 

the effect of the adopted modelling strategy on the overall structural response is 

demonstrated in Fig. 8 for purlin Z24620. In Table 3, where MFE and MT are the obtained 

maximum moment from numerical models and tests respectively, an excellent agreement 

with the experimental results is observed for all modelling strategies considered, with 

model (iii) displaying the best strength predictions on average and model (iv) the lowest 

scatter. However, the marginal improvement in accuracy when the struts and/or cladding 

are explicitly modelled is outweighed by the significant increase in computational cost. 

Furthermore, the focus of this study is the behaviour of the purlin sections rather than the 

effect of structural details, hence the simplified modelling approach (i) will be employed 

in the remainder of the paper.  

To investigate the effect of the initial imperfections on the numerical flexural strength and 

select the most appropriate imperfection amplitudes and combinations of local and 

distortional buckling mode shapes, the numerically obtained results are compared 

against the experimental results for all combinations of initial geometric imperfections 

considered, as reported in Table 4. The numbers 1, 2, 5 and 6 in Table 4 correspond to 

the type of combination employed for the local and distortional buckling imperfections as 

shown in Fig. 4, whereas the letter a , b and c correspond to the imperfection amplitudes 

reported in Table 1. All obtained results are based on the simplified modelling strategy 

(i). Overall, the FE results can accurately capture the experimentally observed failure 



modes, as shown in Fig. 9, where the experimental and numerical failure modes of purlins 

Z14620, Z20620 and Z17625 are depicted. In all cases the observed failure modes, 

including distortional and local buckling are accurately predicted by the FE models.  

For completeness, and to highlight the importance of incorporating initial geometric 

imperfections pertinent to both local and distortional buckling, the numerical over 

experimental flexural strength for the purlins considered is reported in Table 5, where the 

obtained results are based on employing only one buckling mode shape, pertinent to 

either local or distortional buckling. The utilized amplitudes are the ones reported in Table 

1 as amplitudes (c). It can be clearly seen that employing only one buckling mode shape 

that considering a pure imperfection mode, whether local or distortional, will lead to higher 

predictions and increased scatter for the moment resistances and overall a worse 

agreement with the experimental results is obtained compared to using mode shapes 

representative of both local and distortional buckling. 

The imperfections (b) and (c) (see Table 1) following the combinations 1 and 2 provide a 

better agreement with the experimental results compared to combinations 5 and 6, which 

display a higher predicted moment resistance and increased scatter.  Based on the 

obtained results, combination 2 of the initial geometric imperfections with amplitudes (c) 

as shown in Table 1, is deemed suitable and is adopted hereafter in the parametric 

studies. The average ratio of numerical over experimental moment resistance for all 8 

tests is 1.01 with a coefficient of variation (COV) of 0.05.  

 

4. Parametric studies 

Having determined the optimal modelling strategy to account for the effect of geometric 

imperfections and the effect of sheeting and struts at modest computational cost, 



parametric studies were carried out to study the effect of decreasing or increasing the lip 

depth on the sections’ moment resistance, assess existing design standards and 

ultimately optimize the cross-section’s lip depth.  

The cross-section geometries considered in the parametric studies are reported in Table 

6 and include seven nominal section depths ranging from 146 mm to 307 mm. Each of 

the seven section depths is hereafter referred to with the nominal depth in mm following 

the letter Z and includes a family of sections with similar midline dimensions but different 

thicknesses. A range of thicknesses was considered to cover a wide range of cross-

section slendernesses, whilst the flange width was 62.5 mm except for the deeper section 

size of 307 mm for which a flange width of 75 mm was employed in line with [25]. Six lip 

depths namely 15 mm, 17.5 mm, 20mm, 25 mm, 30 mm and 35 mm were taken into 

consideration. It should be noted that all section depths considered currently have a 

nominal lip size of 20 mm [25]. For some of the deeper sections further analysis with 

deeper lip sizes was conducted to assure that the most efficient cross-section is obtained. 

It should be noted that all the lip sizes employed in the numerical analysis are within the 

limits specified in EC3 [11] for the allowable lip size over flange width ratio (𝑖. 𝑒. 0.2 ≤

𝑑/𝑏 ≤  0.6). Rounded corners with an internal radius of 4 mm were adopted for all 

sections in agreement with the average values measured in [10]. The beam length for all 

sections was fixed at 3 m, thereby resulting in a span to depth ratio ranging from 10 to 

21. In agreement with the experimental study [10], four-point loads were applied at a 

distance of 600 mm from one another and from the supports. Neither corner strength 

enhancements nor residuals tresses were explicitly considered in the parametric studies, 

whilst the initial imperfection amplitudes (c) of Table 1 combined according to 

combination 2 shown in Fig. 4 was adopted as previously discussed.  



To account for the two distinct types of material behaviour obtained from material coupon 

testing [10], two material models were considered, since some coupon test results 

displayed a yield plateau and others did not. The first material model employs an elastic 

perfectly plastic stress-strain relationship (EPP) with a yield strength equal to 450 MPa. 

The second material model considered was a two stage Ramberg-Osgood (R-O) material 

equation parameters of which are given in Table 6. For both material models, the Young’s 

modulus was assumed equal to 200 GPa in line with the material coupon test results and 

the Poisson’s ratio was taken equal to 0.3. The effect of the adopted material model on 

the obtained failure mode is shown in Fig. 10, for two typical purlins, where the EPP 

material can be seen to lead to well defined plastic zones, whilst the effect of strain 

hardening of the R-O material leads to a more gradual yielding in regions with high stress 

concentrations. 

For each material model assumed, 295 geometric configurations were modelled, hence 

the parametric study consists of 590 FE simulations.  The obtained results are utilised 

hereafter to determine the optimal lip size for each modelled Z-section and to assess the 

accuracy of EN 1993-1-3 [11], EN 1993-1-5 [12] as well as the Direct strength method 

(DSM) [13]. 

 

5. Results and discussion   

For all sections considered in the parametric study, the moment resistance MFE was 

extracted and normalised by the weight of the modelled section per meter length W to 

quantify the effect of increasing the lip size on both strength and weight and obtain the 

optimal lip size that maximises the strength-to-weight ratio for each section depth 



considered. It is noted that the current lip size for all section depths considered herein is 

20 mm [25]. 

For each group of cross-sections with the same depth, the MFE/W ratio is plotted against 

the lip depth and presented in Fig. 11. Hence Fig. 11 includes 14 graphs, 1 for each 

nominal section depth considered and each of the 2 material properties assumed (i.e. 

EPP and R-O). The lip size for which a peak of the MFE/W ratio occurs corresponds to 

the optimal lip size for the studied sections. As expected, all models assuming an elastic 

perfectly plastic (EPP) material response reach higher moment resistances compared to 

identical sections with a rounded material response, as they maintain their stiffness until 

the yield strength is reached, whilst employing a Ramberg-Osgood (R-O) type of 

response leads to loss of stiffness at lower stresses and hence cross-sectional 

instabilities occur earlier. In all cases considered herein the difference in terms of moment 

resistance between EPP and R-O is less than between 1% and 3% for the geometrically 

identical sections with the higher end of the range corresponding to less slender sections. 

For the shallowest of the sections considered (i.e. Z146), increased efficiency can be 

achieved by increasing the lip size, since no maximum can be observed in Figs. 11(a) 

and (b). In all other cases, as shown in Fig.11 a clearly defined maximum can be 

observed for the thinner and most of the thickest sections, which corresponds to either 

the current lip size of 20 mm or to larger lip sizes. In general, the optimal lip depth 

increases with increasing section thickness as can be clearly seen in Fig. 11 where the 

maximum of the MFE/W ratio shifts to the right for thicker sections of the same depth. 

Hence increased efficiency can be achieved, if the lip size for the same nominal section 

depth is changed according to the section thickness, however this would be outside 

current practice and potentially highly impractical. 



A summary of the results shown in Fig.11 is reported in Table 7 where all sections 

considered have been grouped in seven groups according to their nominal depth and the 

average moment-to-weight ratio within each group is considered. To facilitate a direct 

comparison of the efficiency of cross-sections employing different lip sizes but which are 

otherwise geometrically identical, the MFE/W of the all models with a lip size other than 

the currently employed one has been normalized by the respective ratio of the sections 

with a lip size of 20 mm. Values of this ratio higher than unity imply that the section is 

more efficient, whilst values smaller than one correspond to less economical section 

performance. The optimal lip size for each section depth considered (with all sections 

with varying thicknesses averaged) is denoted with bold italic font. For all sections, lip 

sizes below 20 mm lead to decreased efficiency by as much as 7% or 8% for R-O and 

EPP material respectively, whilst increasing it leads to improved efficiencies particularly 

for deeper sections, for which gains in the region of 5% can be achieved.  

Finally, the performance of the design provisions for bending and local buckling design 

given in the parts of the European code EN 1993-1-3 and the EN 1993-1-5 (labelled as 

EC3) [11,12] as well as the DSM [13] method from the American standard AISI is 

assessed. The predicted moment capacities Mpred determined by both design approaches 

are compared with the moment capacities obtained from the FE analysis MFE. The 

comparison is shown in Table 8 in terms of the average value of the Mpred/MFE ratio of the 

various cross-sectional thickness taken into consideration within each cross-section 

range whilst highlighting the material type. A graphical representation is also provided in 

Fig. 12 where the Mpred/MFE ratio is plotted against the non-dimensional slenderness for 

distortional buckling 𝜆ௗdetermined as given by Equation (7), where 𝜎௬ is the material yield 

strength (or equivalent 0.2% proof strength for R-O material) and 𝜎௖௥ௗ is the distortional 

buckling critical strength which has been determined with the CUFSM [21] 



 𝜆ௗ = (𝜎௬/𝜎௖௥ௗ)଴.ହ                                                                                                     (7) 

Overall, both design approaches are observed to be safe  though the EC3 predictions 

are overly conservative underestimating the cross-sectional bending capacity by 10% for 

the R-O material and raising the level of conservativeness up to 15% when material strain 

hardening is not considered (i.e. EPP material). The EC3 predictions also show a 

reasonable scatter with COV values of 6 and 7% for the RO and the EPP material, 

respectively. In comparison, the DSM reduces the conservatism by 5% with less 

scattered predictions and therefore is deemed more efficient and reliable than EC3 for all 

the geometric configurations considered and regardless of material model. 

The same observations are depicted in Fig. 12 where it can also be seen that for 𝜆ௗ 

values less than 0.9, both design approaches yield results of very similar accuracy but 

the EC3 approach appears to be less accurate with increasing 𝜆ௗ, whereas the DSM 

appears qually consistent and accurate throughout the slenderness range considered. 

 

 

6. Conclusions 

The development of an FE model for the simulation of Z-section purlins failing by local 

and /or distortional buckling has been reported in this paper. Particular attention was paid 

to the modelling strategy for considering the effect of structural details such as angle 

struts and cladding on the structural response of the purlins, whilst a systematic study 

was carried out to study the effect of initial geometric imperfections and select the most 

suitable amplitudes and combinations thereof. Upon validation of the results, a parametric 

study was conducted to study the effect of the lip size on the flexural resistance of the 



studied sections. It was determined that all sections, would be less efficient if their current 

nominal lip size of 20 mm was decreased, whilst some of them would benefit from an 

increase of their nominal lip size.  

The recommendations offer on average material savings of about 6% for the deeper 

sections and 4% for shallow sections, thus increasing the efficiency of the manufactured 

purlins. It is noted that the obtained increase in efficiency when the optimal lip size is 

used, is based on the assumption that no lateral torsional buckling occurs, which, if 

present, is expected to reduce the effect of the lip size. This matter will be addressed in 

future studies. Finally, all generated numerical results were utilized to assess the 

accuracy of European [11, 12] and American [13] design predictions. In all cases, the 

Direct Strength Method [13] leads to a moderate increase in the predicted strength 

compared to the European design approach [11, 12], whilst the scatter of the predictions 

also decreases.  
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Fig. 1. Mesh convergence study. 

 

Fig. 2. Discretised FE model of a purlin.  

 

 
(a) 

 

(b) 

Fig. 3. Typical buckling mode shapes for (a) local and (b) distortional buckling.  



 

 

Fig. 4. Square-max and SRSS combinations of initial geometric imperfection amplitudes. 

 

  

        

Fig. 5. Detail of the angle struts (left) and sheeting and angle cleat (right). 

 

 

             
                                              ( i )                                                                                     ( ii ) 

            
                                           

                   ( iii )                                                                                         ( iv ) 

Fig. 6. Four different modelling strategies with varying complexity corresponding to Table 2. 

angle strut 

Sheeting 

angle cleat 



 

 

 

Fig. 7. Boundary conditions. 

 

 

 
Fig. 8. Effect of modelling approach on the moment-curvature response of purlin Z24620. 

 

 
(a) Z14620 



 

 

(b) Z20620 

 
(c) Z17625 

Fig. 9. Experimental and numerical failure modes for typical purlins. 
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Z24623 
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Z30720 

Fig. 10. Comparison between the failure modes of (a) R-O material and (b) EPP material. 
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Fig. 11. Effect of lip size on moment-to-weight ratio. 

 

  

(a) (b) 

Fig. 12. Comparison of the EN 1993-1-3 [10] and DSM [8] moment resistance predictions against 
numerical results. 

 

 

 

 

 



 

Table 1:  Amplitudes considered for initial geometric imperfections. 

 
Local 

imperfection 
Distortional 
imperfection 

a 0.31 t 0.75 t 

b 0.54 t 1.14 t 

c 0.8 ∗  (ℎ/200) 0.3 ∗ 𝑡 ∗ (𝜎଴.ଶ/𝜎௖௥ௗ)଴.ହ 

 

Table 2: Various modelling approaches for structural details.  

Modelling approach Computational Cost Complexity 

 
Model i): effect of struts and cladding 

modelled as boundary conditions 
 

Low Low 

Model ii): struts and cladding explicitly 
modelled 

 
High (necessitates modelling of 
contact, convergence issues) 

 

High (necessitates modelling of contact) 

Model iii): struts modelled as boundary 
conditions, cladding modelled explicitly 

 
High High (necessitates modelling of contact) 

Model iv): struts explicitly modelled, 
cladding modelled as boundary condition 

Low (additional degrees of freedom) 
Moderate (strut details affect analysis-

optimization not valid for other strut details) 

  

 

Table 3: Effect of modelling approach on the accuracy of the predictions. 

 
Specimen 

 

    
MFE / MT 

i) 
MFE / MT 

 ii) 
MFE / MT 

iii) 
MFE / MT 

iv) 
Z14613 0.95 0.97 0.96 0.97 
Z14620 1.02 0.99 0.94 1.02 
Z17613 0.97 0.96 0.99 0.97 
Z17625 1.01 1.01 0.98 1.01 

Z20620 1.08 1.10 1.08 1.08 

Z24615 1.14 1.09 1.04 1.07 

Z24620 1.04 1.04 1.04 1.04 

Z30718 0.94 1.02 1.00 1.02 

Average 1.02 1.02 1.00 1.02 

COV 0.06 0.05 0.05 0.04 

 

 

 

 

 

 

 



 

 

Table 4: Effect of initial geometric imperfections on predicted moment resistance. 

Case   1     2     5     6   

Section 
MFE/MT 

a 
MFE/MT 

b 
MFE/MT 

c 
MFE/MT 

a 
MFE/MT 

b 
MFE/MT 

c 
MFE/MT 

a 
MFE/MT 

b 
MFE/MT 

c 
MFE/MT 

a 
MFE/MT 

b 
MFE/MT 

c 

Z14613 0.98 0.93 0.96 0.97 0.92 0.95 1.01 0.96 0.98 1.00 0.96 0.98 

Z14620 1.01 1.00 1.02 1.01 1.00 1.02 1.01 1.01 1.02 1.01 1.01 1.02 

Z17613 0.99 0.95 0.97 0.98 0.94 0.97 1.01 0.99 0.99 1.00 0.97 0.99 

Z17625 0.98 0.97 1.01 0.98 0.97 1.01 0.99 0.98 1.01 0.99 0.98 1.01 

Z20620 1.07 1.04 1.08 1.07 1.04 1.08 1.09 1.06 1.11 1.09 1.05 1.09 

Z24615 1.12 1.10 1.14 1.13 1.11 1.07 1.14 1.11 1.15 1.15 1.13 1.09 

Z24620 1.03 0.99 1.04 1.04 1.01 1.01 1.05 1.02 1.05 1.05 1.03 1.03 

Z30718 1.01 1.00 0.95 1.03 1.02 0.94 0.95 1.01 0.94 1.04 1.03 0.96 

Average 1.02 1.00 1.02 1.03 1.00 1.01 1.03 1.02 1.03 1.04 1.02 1.02 

COV 0.049 0.053 0.064 0.054 0.060 0.050 0.058 0.049 0.066 0.053 0.054 0.046 

 
 

Table 5 Summary of geometric configurations and material models used in parametric studies 

 
 

Section 
h 

(mm) 
b 

(mm) 
t 

(mm) 
d 

(mm) 
Material 

 Z146 145 62.5 1.3, 1.4, 1.5, 1.6, 1.8, 2 

15
, 

17
.5

, 
2

0,
 2

5,
 3

0,
 3

5 

E = 200 GPa 

f୷ = 450 MPa 

 

E = 200 GPa 
σ଴.ଶ = 450MPa 
σଵ.଴ = 455MPa 

n = 11 
   𝑛଴.ଶ,ଵ.଴ = 1.5  

 Z176 175 62.5 1.3, 1.4, 1.5, 1.6, 1.8, 2, 2.3, 2.5 

 Z206 200 62.5 1.3,1.4, 1.5,1.6, 1.8, 2, 2.3, 2.5 

 Z226 225 62.5 1.4, 1.5, 1.6, 1.8, 2, 2.3, 2.5 

 Z246 245 62.5 1.5, 1.6, 1.8, 2, 2.3, 2.5, 3 

 Z266 265 62.5 1.6, 1.8, 2, 2.3, 2.5, 3 

 Z307 300 75 1.8, 2, 2.3, 2.5, 3 

 
 
 

Table 6 Normalised MFE/W mean values for various lip depths and materials 

Section 
 R-O   EPP 

15/20 17.5/20 25/20 30/20 35/20 15/20 17.5/20 25/20 30/20 35/20 

Z146 0.96 0.99 1.00 1.01 1.04 0.95 0.99 1.00 1.02 1.05 

Z176 0.94 0.97 1.01 0.99 0.98 0.92 0.97 1.00 0.98 0.97 

Z206 0.93 0.97 1.02 1.00 0.99 0.91 0.97 1.01 0.99 0.97 

Z226 0.93 0.96 1.03 1.03 1.02 0.90 0.94 1.03 1.02 1.01 

Z246 0.93 0.97 1.04 1.05 1.04 0.92 0.96 1.03 1.03 1.02 

Z266 0.94 0.97 1.06 1.06 1.05 0.94 0.96 1.04 1.05 1.04 

Z307 0.95 0.97 1.04 1.06 1.07 0.94 0.97 1.03 1.04 1.04 

 
 



 
 
 
 
 

Table 7. Mean values of Mpred/MFE ratio for EN 1993-1-3/5 [16,17] (EC3) and the DSM [18] 

Section 

R-O 

 

EPP 

EC3 DSM EC3  DSM  

Z146 0.90 0.97 0.84 0.92 

Z176 0.88 0.96 0.84 0.90 

Z206 0.88 0.96 0.83 0.90 

Z226 0.88 0.94 0.82 0.88 

Z246 0.90 0.94 0.86 0.89 

Z266 0.92 0.93 0.87 0.88 

Z307 0.93 0.96 0.89 0.92 

Overall mean 0.90 0.95 0.85 0.90 

COV 0.06 0.04 0.07 0.04 

 
 
 

 

 

 


