
 
 

University of Birmingham

Recent advances in the Zymoseptoria tritici–wheat
interaction
McDonald, M.; McDonald, B.; Solomon, Peter

DOI:
10.3389/fpls.2015.00102

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
McDonald, M, McDonald, B & Solomon, P 2015, 'Recent advances in the Zymoseptoria tritici–wheat interaction:
insights from pathogenomics', Frontiers in Plant Science, vol. 6, 102. https://doi.org/10.3389/fpls.2015.00102

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.3389/fpls.2015.00102
https://doi.org/10.3389/fpls.2015.00102
https://birmingham.elsevierpure.com/en/publications/e71d2be4-1e11-4f0f-a563-c5305677a43e


MINI REVIEW ARTICLE
published: 24 February 2015
doi: 10.3389/fpls.2015.00102

Recent advances in the Zymoseptoria tritici –wheat
interaction: insights from pathogenomics
Megan C. McDonald1, Bruce A. McDonald2 and Peter S. Solomon1*
1 Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
2 Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland

Edited by:
Adi Avni, Tel Aviv University, Israel

Reviewed by:
Guus Bakkeren, Agriculture
and Agri-Food Canada, Canada
David J. Studholme,
University of Exeter, UK

*Correspondence:
Peter S. Solomon, Plant
Sciences Division, Research
School of Biology, The Australian
National University, 134 Linnaeus
Way, Acton, Canberra,
ACT 2601, Australia
e-mail: peter.solomon@anu.edu.au

We examine the contribution of next generation sequencing (NGS) to our understanding
of the interaction between the fungal pathogen Zymoseptoria tritici and its wheat host.
Recent interspecific whole genome comparisons between Z. tritici and its close relatives
provide evidence that Z. tritici has undergone strong adaptive evolution, which is attributed
to specialization by Z. tritici on wheat. We also assess the contribution of recent RNA
sequencing datasets toward identifying pathogen genes and mechanisms critical for
disease. While these studies have yet to report a major effector gene, they illustrate
that assembling reads to the reference genome is a robust method to identify fungal
transcripts from in planta infections. They also highlight the strong influence that the
wheat cultivar has on effector gene expression. Lastly, we suggest future directions for
NGS-guided approaches to address largely unanswered questions related to cultivar and
lifecycle dependent gene expression and propose that future experiments with Z. tritici be
conducted on a single wheat cultivar to enable comparisons across experiments.
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INTRODUCTION
Zymoseptoria tritici (P. Crous; syn. Mycosphaerella graminicola,
Septoria tritici) causes the wheat disease Septoria tritici blotch
(STB). STB is globally distributed and was recently identified
as the most yield-reducing disease in European countries with
intensive wheat production (Jørgensen et al., 2014). STB is man-
aged mainly through fungicide applications and to a lesser extent
by resistance breeding (Goudemand et al., 2013). Up to 18 loci
associated with plant resistance have been identified and incorpo-
rated into wheat breeding programs, providing some quantitative
resistance to the disease (Orton et al., 2011; Tabib Ghaffary et al.,
2012). But the pathogen has proven adept at overcoming plant
resistance (Cowger et al., 2000) and evolving fungicide resistance
(Cools and Fraaije, 2008; Torriani et al., 2009), therefore new
tools and approaches are needed to develop an integrated disease
management strategy.

Zymoseptoria tritici exhibits a long symptomless phase, typ-
ically lasting 8–11 days post infection (dpi), during which the
fungus is hypothesized to derive nutrition from the plant with-
out eliciting defense responses. At 8–11 dpi, the host mesophyll
cells suddenly collapse, releasing their contents and allowing
Z. tritici to proliferate rapidly throughout the necrotic tissue
(Kema et al., 1996; Duncan and Howard, 2000). Several gene-
for-gene interactions between Z. tritici and wheat (Triticum
aestivum) have been hypothesized (Kema et al., 2000; Brading
et al., 2002; Goodwin, 2007; Jørgensen et al., 2014), but none
of the genes conferring virulence in the fungus or resistance in
wheat have been cloned. The detection of gene-for-gene interac-
tions implies that Z. tritici should encode proteins or metabo-

lites that mediate genotype-specific interactions (Brading et al.,
2002).

The reference genome for Z. tritici, based on the Dutch
isolate IPO323, is among the most complete fungal genome
sequences available (Goodwin et al., 2011). The genome con-
tains 13 core chromosomes and eight accessory chromosomes
(ACs), the highest number of ACs reported in filamentous fungi
(Mehrabi et al., 2007; Goodwin et al., 2011). This genome has
now been incorporated into the online database EnsemblFungi,
which includes standardized gene file formats and other data
useful for any next generation sequencing (NGS) project (Flicek
et al., 2014). The completeness of the IPO323 assembly makes
Z. trtici one of the most approachable fungal pathogens for
conducting NGS experiments. In this review, we highlight several
of the most recent comparative genomic and RNA-sequencing
(RNA-seq) experiments and examine their contribution toward
understanding the Z. tritici–wheat interaction. We seek to identify
both the strengths and weaknesses of each approach in order
to guide future NGS experiments toward more multifaceted and
cross-disciplinary designs.

INTERSPECIFIC COMPARATIVE GENOMICS AND THE ROLE
OF ACCESSORY CHROMOSOMES
The evolutionary history of Z. tritici is arguably the most com-
prehensively understood for any fungal pathogen. Earlier studies
using coding and microsatellite loci indicated that the center
of diversity for the pathogen coincides with its host Triticum
aestivum (bread wheat) in the ancient Fertile Crescent (Banke
et al., 2004; Stukenbrock et al., 2007). Population genetic analyses
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of fungi collected from wild grasses growing in close proximity
to cultivated wheat in Iran revealed two sister species of Z. tritici.
These close relatives, now named Zymoseptoria pseudotritici and
Zymoseptoria ardabiliae (syn. S1 and S2 in earlier publications,
respectively), were used for extensive genomic comparisons with
Z. tritici (Stukenbrock et al., 2010, 2011). Importantly, Z. pseu-
dotritici and Z. ardabiliae produce much lower levels of infection
on domesticated wheat compared to Z. tritici. Genome compar-
isons of several strains of all three species sampled from the same
location revealed a large set of shared genes (Stukenbrock et al.,
2011). These genes provided strong evidence of adaptive evolu-
tion, measured through ratios of non-synonymous/synonymous
mutations, occurring in Z. tritici when compared to the other
species (Stukenbrock et al., 2011). Another important observation
was elevated rates of non-synonymous substitutions in genes
containing signal peptides in Z. tritici (Stukenbrock et al., 2011).
This indicated that the genes most likely to encode secreted
proteins that interact with the host or environment have under-
gone adaptive evolution, providing important support for the
hypothesis that the effector proteins in Z. tritici are likely to be
secreted.

Much speculation has been directed toward the role of
Z. tritici’s ACs (Croll and McDonald, 2011; Croll et al., 2013).
Unlike those of Fusarium oxysporum or Nectria haematococca,
Z. tritici ACs have not been shown to confer host-specific vir-
ulence (Miao et al., 1991; Ma et al., 2010). Z. tritici’s ACs also
appear to be inherited from a common ancestor as both Z. pseu-
dotritici and Z. ardabiliae were found to carry ACs syntenic with
Z. tritici (Stukenbrock et al., 2011). While there are clear paralogs
between the core and accessory genomes, transfer of syntenic
chromosomal regions from the core to the accessory genome
has not been detected (Croll and McDonald, 2011; Goodwin
et al., 2011). In a recent RNA-seq study, Kellner et al. (2014)
investigated the origin of ACs genes after observing that many
were differentially expressed between in planta and axenic culture
conditions. After grouping all genes in the genome into families
they found a significantly higher proportion of unique genes on
ACs. For the small proportion (∼4–6%) of AC genes that did
belong to gene families, phylogenetic analysis revealed that they
form their own monophyletic group with orthologous dothid-
iomycete genes, suggesting ancient duplication events. Compar-
isons of core and ACs uncovered an enrichment of predicted
miRNA loci on the ACs that are presumed to regulate expression
of genes on ACs (Goodwin et al., 2011; Kellner et al., 2014).
Whilst preliminary, these data are consistent with sophisticated
regulation of genes located on ACs. This hypothesis was sup-
ported by RNA-seq data from Kellner et al. (2014) and Rudd et al.
(2015) who showed that genes on ACs are expressed on average
13-fold and 4- to 5-fold less, respectively, than genes on core
chromosomes.

Taken together, these comparative genomic datasets indicate
that Z. tritici is a recently emerged and rapidly evolving pathogen
that has become highly specialized to infect wheat compared
to its close relatives. But despite access to genome sequences
of these relatives, comparative genomics has yet to reveal any
proven effector genes even though several hundred genes are
unique to each species. A major remaining gap in Z. tritici

genomics is extensive intra-specific genome comparisons. To date,
re-sequencing of Z. tritici was limited to two Iranian isolates used
for interspecific comparative genomics (Stukenbrock et al., 2011)
and nine Swiss isolates used to characterize ACs, intra-specific
intron polymorphisms, and selection operating on plant cell
wall degrading enzymes (CWDEs; Torriani et al., 2011; Brunner
et al., 2013; Croll et al., 2013). While Stukenbrock et al. (2010)
investigated genes shared between Z. tritici and Z. pseudotrit-
ici, genes showing presence/absence polymorphisms among re-
sequenced Z. tritici genomes have not been reported. Similarly,
there has not been a coordinated re-sequencing effort using
isolates that show differential phenotypes on wheat cultivars with
known resistance alleles, despite the availability of appropriate
isolates known to exhibit extensive phenotypic and chromosomal
differences (IPO94269, IPO04241, IPO95952; Kema et al., 2000;
Brading et al., 2002; Mehrabi et al., 2007; Wittenberg et al., 2009).
We propose that more extensive intraspecific re-sequencing
is needed to assess whether there is evidence of pathotype-
specific alleles (SNPs), genes or larger genomic regions linked with
virulence.

IDENTIFYING VIRULENCE GENES
Before the release of the reference genome, several genes orthol-
ogous to verified pathogenicity genes in other fungi were func-
tionally investigated through genetic knockouts. Many of these
targeted genes were conserved signaling proteins and their func-
tions in Z. tritici were recently reviewed (see Orton et al., 2011).
An important advance since the publication of this review shows
Mg3LysM (the only effector identified in Z. tritici that is required
for virulence and when functionally inactivated is indistinguish-
able from in vitro wild type growth; Marshall et al., 2011), sup-
presses PAMP-triggered immunity (PTI) mediated by the chitin
recognizing CERK1 receptor kinase and CEBiP receptor-like pro-
tein (Lee et al., 2014). Virus-induced gene silencing of CERK1
and CEBiP partially restored the pathogenicity of the avirulent
1Mg3LysM isolate (Lee et al., 2014). This is the first evidence that
Z. tritici secretes a protein that actively suppresses plant defenses
during infection.

The important role of Mg3LysM in pathogenicity was dis-
covered through homology to known virulence genes in other
plant pathogens. More recently, the discovery of novel effectors
in Z. tritici has been attempted using RNA-seq. Yang et al. (2013)
analyzed gene expression on a susceptible wheat cultivar at 4, 10,
and 13 dpi. The authors first assembled the transcriptome de novo
including both fungal and plant reads and subsequently separated
the fungal and plant reads by BLAST analysis, resulting in the
identification of 1829 fungal transcripts (Yang et al., 2013). The
number of identified transcripts in this study is extremely low
compared to two other in planta RNA-seq experiments where
fungal gene expression was compared in infected tissue and axenic
culture (Kellner et al., 2014; Rudd et al., 2015). Kellner et al.
(2014) identified over 7000 fungal transcripts at 6 dpi in both
infected wheat and B. distachyon plants, while Rudd et al. (2015)
identified between 9,236 and 10,485 transcripts with sampling
times at 1, 4, 9, 14, and 21 dpi. Kellner et al. (2014) identi-
fied 156 genes that were significantly more highly expressed in
planta when compared with axenic culture. Unfortunately, they
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do not present any functional data that show these genes play
a role in virulence. Rudd et al. (2015) identified 115 putative
secreted proteins with peak expression at 9 dpi, coincident with
the appearance of necrotic lesions. Of these, five were chosen for
functional analysis though gene deletion. None of the mutant
strains showed reduced pathogenicity on wheat. While both
studies identified several hundred potential effector genes, the
negative functional results in Rudd et al. (2015) illustrate the
great challenge that redundancy brings to validating hypothe-
sized effector genes in this pathogen. Coupled with the time-
consuming and low transformation efficiency of Z. tritici with
Agrobacterium tumefaciens, this apparent redundancy poses the
biggest challenge to the ability of RNA-seq to identify effector
candidates.

PROFILING EXPRESSION OF GENE FAMILIES AND
METABOLIC PATHWAYS
Important insights from RNA-seq are not limited to the dis-
covery of virulence genes. Brunner et al. (2013) investigated the
expression of plant CWDEs throughout infection. Degraded plant
oligosaccharides are known to induce innate plant immunity
(Esquerré-Tugayé et al., 2000; Vorwerk et al., 2004). The Z. tritici
reference genome isolate IPO323 contained significantly fewer
CWDEs compared to other plant pathogenic fungi, which led to
the hypothesis that the scarcity of these enzymes may be linked to
its prolonged latent period (Goodwin et al., 2011). Using RNA-
seq, Brunner et al. (2013) quantified the in planta expression of
all CWDEs at 7, 13, and 56 dpi. They reported that 28 of the 48
CWDE genes showed life cycle stage specific expression (Brunner
et al., 2013). Among these 28 genes, only three (protein IDs:
18212, 106779, 94846) had their highest expression at 7 dpi, prior
to symptom development. These data show that plant CWDE
expression is tightly regulated by Z. tritici, particularly during
the asymptomatic phase of infection and was largely confirmed
in an independent RNA-seq experiment by Rudd et al. (2015).
This result lends support to the earlier hypothesis by Goodwin
et al. (2011) that tight regulation or scarcity of these genes or their
products during infection is critical to avoiding plant recognition.

RNA-seq also sheds light on Z. tritici’s early source of nutrients
during the prolonged latent period. Rudd et al.’s (2015) extensive
deep RNA-seq experiment provides strong evidence that Z. tritici’s
main energy source during the latent period (1–4 dpi) comes
from stored lipids. While lipid metabolism is dominant during
early plant colonization, the fungus transitions at 9 dpi to express
large numbers of secreted proteases that increase in expression
from 14 to 21 dpi along with CWDE expression, indicating a
shift to more complex carbohydrate metabolism at the late stages
of infection. Previously, Keon et al. (2005, 2007) used a micro-
array to characterize nutrition-dependent gene expression in both
nutrient rich and nutrient poor conditions in vitro and in planta.
They note, however, that they were unable to estimate fungal
gene expression at 6 dpi due to very low biomass and poor
hybridization. RNA-seq has eliminated the biomass constraint
from early in planta time-points.

Below we discuss potential design improvements for future
NGS experiments to address unexplored facets of the Z. tritici–
wheat interaction.

FUTURE NGS EXPERIMENTS
CULTIVAR DEPENDENT GENE EXPRESSION
When comparing gene expression between the published NGS
and quantitative PCR (qPCR) datasets, some inconsistencies
become immediately apparent. For example, Marshall et al.
(2011) found via qPCR that Mg3LysM was up-regulated during
early infection in planta but not in vitro, while Kellner et al.
(2014) did not find differential expression in planta compared
to axenic culture using RNA-seq. Similarly Yang et al. (2013)
found that Mg3LysM was most highly expressed at 13 dpi. This
contradicts Marshall et al. (2011) who found high expression at
days four and nine but little expression at day 14. Though each
of these studies used the IPO323 isolate, they each used different
susceptible wheat lines, and whilst disease developed normally on
each host, it is likely that different host genotypes will lead to
differential pathogen gene expression. This illustrates the need to
choose a uniform host genotype in the Z. tritici community to
enable comparisons of effector searches among labs.

The apparent redundancy in effector gene function (i.e., the
suppression of effector triggered immunity) makes it difficult to
functionally validate candidate effectors through targeted knock-
outs (Rudd et al., 2015). An important RNA-seq experiment
will be to measure gene expression for the same isolate on both
susceptible and resistant cultivars across several time points,
preferably both before and after the onset of necrosis. It will also
be essential to compare the transcriptomes of isolates that differ
in virulence on the same host over time. These experiments would
facilitate the identification of highly expressed transcripts during
infection and also differences in fungal gene expression during a
compatible vs. incompatible interaction. A comprehensive RNA-
seq experiment that incorporates all of the afore mentioned
variables (several isolates, two cultivars and at least three time
points) would enable researchers to begin to tease apart genes
whose expression is more strongly influenced by host or isolate
genotype or alternatively by life cycle stage.

FINDING MAJOR VIRULENCE GENES
Isolate specific interactions between Z. tritici and wheat are
commonly reported in both field and genetic mapping studies
(Cowger et al., 2000; Brading et al., 2002; Goodwin, 2007; Char-
train et al., 2009; Mehrabi et al., 2014). Yet, the corresponding
virulence genes in Z. tritici have not been identified. The steadily
declining costs of NGS provide the opportunity to conduct large
scale genome wide association studies (GWAS) or use quantitative
trait locus (QTL) mapping approaches specifically aimed at iden-
tifying genetic regions associated with isolate specific virulence.
The QTL mapping approach has already been successfully applied
in Z. tritici to identify 16 novel candidate genes and a quantitative
trait nucleotide in a known gene associated with melanization
(Lendenmann et al., 2014). Previously, marker development was
both time-consuming and expensive and resulted in a very sparse
genetic map. But techniques such as reduced representation
genome sequencing, RAD-seq and other techniques provide a
dense genetic map across the entire genome at minimal cost
per individual (Davey et al., 2011; Lendenmann et al., 2014).
These techniques should be extremely powerful in identifying
loci significantly associated with virulence that could in turn
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provide molecular biologists with candidate genes for functional
validation. An opportunity also lies in comparing the candidate
virulence loci identified through QTL mapping and GWAS with
candidate virulence genes identified through RNA-sequencing.
Significant overlap between these independent approaches could
further prioritize genes for functional characterization, either
through genetic knockouts or heterologous expression.

PERSPECTIVES
Despite extensive sequencing efforts, neither comparative geno-
mics nor transcriptomics have yet functionally identified any
genes that are required for virulence. Is this because these genes
are not true effectors? Or has this pathogen layered its attack
mechanisms so effectively that the loss of one gene function is
easily compensated by the action of another? The resistance loci
mapped in wheat indicate that this should not be the case for
all genes. Hammond-Kosack and Rudd (2008) proposed that
the mechanisms leading to a compatible interaction between
Z. tritici and its host are disparate from simplistic models whereby
necrotrophs simply secrete large quantities of CWDEs and other
lytic enzymes to mechanically break open plant cells. Instead
they propose a model in which Z. tritici, like other necrotrophic
pathogens, utilizes the pre-programmed defense pathways in
wheat to induce necrosis, essentially tricking the plant into killing
itself (Hammond-Kosack and Rudd, 2008; Deller et al., 2011).
NGS datasets, particularly RNA-seq, on an expanded set of iso-
lates displaying differential pathogenicity on a single cultivar
would be particularly useful to identify the genes necessary for
the successful transition from latency to necrosis. We propose
that GWAS and QTL mapping could be useful complementary
methods to RNA-seq, by identifying quantitative trait loci that
co-localize with candidate genes identified in RNA-seq studies.
Identification of the genes required for this transition could
provide the key to identifying the plant defense pathways targeted
and identify new potential control strategies for this important
pathogen.
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