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Abstract
We analyze a model where the government has to decide whether to impose a lockdown

in a country to prevent the spread of a possibly virulent disease. If the government decides to
impose a lockdown, it has to determine its intensity, timing and duration. We find that there
are two competing effects that push the decision in opposite directions. An early lockdown
is beneficial not only to slow down the spread of the disease, but creates beneficial habit
formation (such as social distancing, developing hygienic habits) that persists even after the
lockdown is lifted. Against this benefit of an early lockdown, there is a cost from loss of
information about the virulence and spread of the disease in the population in addition to
a direct cost to the economy. Based on the prior probability of the disease being virulent,
we characterize the timing, intensity and duration of a lockdown with the above mentioned
tradeoffs. Specifically, we show that as the precision of learning goes up, a government tends
to delay the imposition of lockdown. Conversely, if the habit formation parameter is very
strong, a government is likely to impose an early lockdown.

Keywords: Covid-19; Lockdown; Learning; Habit formation.

JEL Classification: C61; D81; I10

1 Introduction

The entire world has been severely affected by the emergence of a new respiratory illness, named
coronavirus 2 (SARS-CoV-2), popularly known as Covid-19. Since the first recorded hospitaliza-
tion in China on the 12th of December, 2019 (Wu et.al [2020], Zhou et.al [2020]), the disease
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has rapidly spread to other regions across the globe taking on the nature of a pandemic. Yet,
because of its novelty, many decisions on how to respond to the possible pandemic had to be taken
at a stage when much remained unknown about the disease, including its virulence and how to
mitigate against that.

One of the common responses to preventing the spread of the disease has been through lock-
down, a broad term by which we mean drastically reducing movement of individuals which includes
severe restrictions on human to human contact. This has consisted of restrictions on when to leave
one’s residence, where to go and whom to meet with, as well as shutting down non-essential parts
of the economy. While these measures no doubt lower the spread of the infection, they come with
a huge cost to the economy. Additionally, given that the disease is novel, a lockdown also leads to
a loss of information1 about the dynamics i.e. the spread and severity of the disease within the
population had it been allowed to take its own course.

In this paper, we analyze a model of lockdown where the government (either a benevolent
autocrat or a democratically elected leader) has to decide when (if at all) to impose a lockdown.
Imposing a lockdown lowers the harm from the disease through lowering the rate of reproduction
of the disease (the so-called R number). A lockdown also signals to the population the probable
seriousness of the disease and makes them conscious of the need to take precautions against the
disease via e.g. social distancing, wearing masks and practising good hygiene. We posit that
these precautionary actions often turn into habits even after a lockdown is lifted through inducing
non-transitory changes in the behavior of the citizenry (see Gardner and Rebar [2019]). This
behavioral response is indeed being seen in many countries where a majority of citizens maintain
social distancing and continue to reduce their social contact and take precautions against the
disease even after the government eases some of the restrictions imposed earlier. As Susskind
and Vines [2020] point out, the use of lockdowns thus had an additional effect of signaling how
important it was to change behavior, obviating the need for long drawn out draconian lockdowns
for disease containment. This idea is formalized through our habit formation parameter β which
internalizes some of the messages that a lockdown conveys. Thus, an early lockdown has a benefit
of inducing changes in behavior in the population that lasts beyond the lockdown.2

Against this benefit of an early lockdown, there is a cost from loss of information (in addition
to a direct cost to the economy). An early lockdown prevents the natural course of the disease
and reduces its consequent public health cost but its suppression does not allow us to discover the
dynamics of the disease and its consequent costs with any precision. Given the enormous cost to
the economy of the lockdown, an early lockdown based on imperfect information on the severity
of the disease may lead to a possibly inoptimal response e.g. imposing huge social and economic
costs not warranted by the true severity of the disease.

While this effect has not been emphasised, there are a group of eminent scientists who have
argued against a lockdown at least partly on the grounds that the data available was not precise
enough to warrant a lockdown. For example, Sunetra Gupta, a professor of theoretical epidemi-
ology at the University of Oxford, U.K. does not believe that the disease is likely to be virulent

1See https://www.theweek.in/theweek/cover/2020/04/04/india-needs-more-testing-not-lockdown.html. The
loss of information is about how the disease would affect different groups in the population over time and not
about studying the virus in the laboratory which would not be affected by a lockdown.

2See for example: www.kcl.ac.uk/news/uk-still-staying-home-and-even-coming-to-terms-with-lockdown
or www.piratefm.co.uk/news/latest-news/3124667/most-people-working-from-home-want-to-stay-there-after-
lockdown/orwww.independent.co.uk/life-style/fashion/news/uk-lockdown-habits-behaviour-continue-restrictions-
lift-a9520486.html.
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enough to justify a lockdown given its huge economic and social costs .3 Their model as well as
a modification run by James Hay4 point out that the limited data available at the time of the
U.K. lockdown was consistent with different probabilities of the severity of the disease. Given this
uncertainty, the case for waiting (i.e. not locking down early) would be to get more data which
would allow us to form more precise estimates. This learning effect would push towards a delay
in the timing of a lockdown. The present paper studies the interplay of these two independent
aspects, namely, the informational loss and the behavioral benefit, and its net effect on the optimal
timing and severity of a lockdown. We now describe the model in more detail, explain the main
results and discuss what questions it allows us to answer.

We consider a three-period model, with the third period representing the end of the current
planning horizon. We assume that the decision on whether and for how long to impose a lockdown
is restricted to the first two periods. In period 1, the government gets information (via a signal
with a certain level of precision) and forms its belief about the probability that the disease is
virulent. If it decides to impose a lockdown, it has to determine for how many periods and
with what intensity. The lockdown reduces the spread of the disease but we assume no further
information is forthcoming on the virulence of the disease during the lockdown.5 If there is no
lockdown in period 1, the government gets a further signal about the virulence of the disease
and decides whether or not to impose a lockdown in period 2. Further, as mentioned earlier, an
early lockdown changes the way people behave and induces a behavioral response whereby people
continue to take voluntary steps to prevent the spread of the disease through habit formation.
Lockdowns are however economically and socially costly and thus each lockdown period has a
cost.6

If the government is democratically elected, it may also face a cost from imposing a lockdown
that is decreasing in the prior probability that the disease is virulent. We can think of this as a
backlash from the economic hardship faced by the population. The strength of the backlash effect
depends on various factors which we can think of summarily as representing trust in government.
For a given belief about the probability of the disease being virulent, a lower trust is likely to
cause people to impose higher electoral costs on the government. We denote this cost of public
opposition to lockdown, particularly of consideration in a democracy by a parameter δ.

This model thus allows us to answer a number of important questions of relevance to a policy
maker. Given the information in any period that the disease is virulent, we can analyze whether
the government should impose a lockdown, how intense should the lockdown be and if imposed
early, for how long should it be. We are further interested in understanding the cutoff probability
that the disease is virulent at which a government decides to lockdown and how this shifts over
time as a function of (i) the accuracy of the signal each period, (ii) the strength of the behavioral
response, (iii) the cost to the economy, (iv) the magnitude of the backlash effect and (v) the
expected time of arrival of a vaccine/treatment.

3See Lourenco et.al [2020] for the underlying research and her comments in
https://www.theguardian.com/world/2020/jun/05/the-costs-are-too-high-the-scientist-who-wants-lockdown-
lifted-faster-sunetra-gupta.

4See https://twitter.com/jameshay218/status/1242935853971910656.
5This is made for tractability, and sharpens the tradeoff. However, the two competing effects-habit formation

versus waiting to get better estimates about the harm from the disease remain even with information flows during
the lockdown.

6Coibion et. al [2020] use several waves of customer surveys to analyze the effect of differential timing of
lockdowns due to Covid-19 on household spending and macroeoconomic expectations at the local level.
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We characterize the tradeoff between information and habit formation. When the strength of
the habit formation parameter (β) is high, early lockdown is optimal. In particular, we show that
for any given β, as long as the signal precision (p) is below a certain threshold, the cutoff belief for
imposing a lockdown is lower in the first period than in the second period. Conversely, if the signal
precision is higher than the threshold, the opposite holds as the possible information loss would
make the government delay lockdown. Hence, the cutoff belief for imposing a lockdown is higher
in the first period than in the second period. The democracy parameter δ also plays a role, as this
acts to delay the timing, duration and intensity of the lockdown given the possible public backlash
against lockdowns. This also tilts towards waiting for a more precise signal that may reduce public
opposition to the backlash. This suggests that democratic governments in populations distrustful
of governments may delay lockdowns because of possible electoral consequences emanating from
public backlash against a lockdown.

There are a number of other important comparative static results. The intensity of lockdown is
increasing in β and the beliefs that the disease is virulent but decreasing in the loss to the economy.
The parameter γ represents the extent of the economic impact of the lockdown, with a higher value
indicating a more negative impact. Consistent with the intuition in Susskind and Vines [2020], we
characterize how under some parameter values, optimal lockdowns are not draconian or long drawn
out i.e. of low intensity and only for one period. Somewhat counterintuitively, while intensity of
lockdowns go down as economic costs increase, we also see if β is high, the cutoff belief for early
lockdowns is lower than that for later lockdowns. This is because if economic costs of a lockdown
are high, conditional on imposing a lockdown, it is better to do so early than late to get the full
benefit of disease reduction because of habit formation.

Our model’s assumptions on disease propagation and benefits of a lockdown are consistent
with standard models in epidemiology and economics. Lockdowns in epidemiological models of
disease propagation are a vital tool for slowing the incidence of the disease. The basic models (see
Anderson and May [1992]) assume that the hazard rate is an increasing function of prevalence in
the population. Economic models however assume people are rational and hence even without a
lockdown, they update information about disease prevalence and take precautions to reduce their
chances of infection through (individually) optimal social distancing (see Geoffard and Philipson
[1996]). Nonetheless even in these fully rational models, the individual decision (i.e choice of how
much to socially distance) is not in general socially optimal as rational agents do not consider the
external benefits of social distancing (see Toxvaerd [2019]). Hence, imposing lockdowns to reduce
human contact can be justified even in such models to reach the social optimum. Our model is
agnostic about whether agents are fully rational and indeed abstracts from the decision of the
population to focus on the government’s optimal timing of lockdown.

The economic costs of lockdown as well as the public health benefits are broadly consistent
with both the epidemiological and economic models.7 Indeed in the Covid-19 context there are a
large number of recent papers modelling the trade-off between the public health benefit (disease
suppression) and the economy (see Alvarez et.al [2020], Favero et.al [2020], Miclo et.al [2020],
Pindyck [2020]). What is novel in our model is the trade-off between acquiring information on the
dynamics of an unknown disease (which acts in favor of delaying a lockdown as it will generate
data points allowing for more precise estimates via Bayesian updating) versus altering habits of
the population (which acts in favor of an early lockdown). This has been generally neglected in the

7We abstract from other longer term changes in behavior that may accompany pandemics e.g. fertility choice
or labour supply decisions (Young [2005], Boucekkine et.al [2009]).
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literature. In fact, even any analysis of uncertainty in the reproduction number has been largely
missing while focusing on the trade-off in a lockdown, with one of the few papers that considers
this uncertainty being Gollier [2020].8 It assumes the disease is virulent and the reproduction
number is uncertain. Its focus is on lockdown intensity allowing for some learning during a
(partial) lockdown, though it assumes the virus is necessarily lethal. The model does not consider
the trade-off between information acquisition versus allowing disease-reducing behavior to kick in
early through behavioral changes.

To the best of our knowledge, our model’s insights on the trade-off between acquiring infor-
mation and changing behavior has not been formalized before. It has some similarities with the
literature on adoption of new technology where there is an optimal period at which one should
adopt the technology where there is uncertainty in the costs and benefits of adoption. Waiting
delays the potential benefits from the technology but allows us to learn more about the actual
costs and benefits from adoption (see e.g. Jensen [1982], Bhattacharya et.al [1986], Hoppe [2002]
and Chavas and Nauges [2020] for a survey with regards to adoption in agriculture). The insight
is also similar to the concept of option value (see Dixit and Pindyck [1994]). This literature
however does not consider the tradeoff with habit formation.

At a more macro level, the impact of diseases on the economy has been looked at both em-
pirically and theoretically including the endogeneity of diseases, labour supply and human capital
accumulation and hence growth , including the possibility of a growth trap (Goenka and Liu
[2012], Goenka and Liu [2019], Goenka et.al [2014], Chakraborty et.al [2010]). While these
papers consider the impact of interventions on growth, they do not consider interventions in the
context of a novel disease that has a trade-off between the informational value of delaying inter-
ventions and kicking in habit formation early.

2 Environment

We consider a three-period discrete time model, i.e t = 1, 2, 3. A new disease hits a population
at t = 1. The transmission potential of this disease is measured by the basic rate of reproduction
R > 0. Let r

′
be the harm caused by the disease which is dependent on the value of R. Formally,

r
′

is defined as a continuous strictly increasing function r
′
: R → R, R 7→ r

′
(R).

Given it is a novel disease, R is unknown and can take two values; RL or RH with 0 < RL <
1 < RH . Thus the disease is either potentially virulent in which case the reproduction rate
R = RH > 1, or less harmful with the reproduction rate R = RL < 1.9 Let ρ0 be the prior in
period 1 that it is virulent. We define

r = r
′

H − r
′

L

such that r
′
H = r

′
(RH) and r

′
L = r

′
(RL). Thus, r reflects the added harm from the disease in the

event it is virulent. Since r
′

is a strictly increasing function, r > 0.

In periods t = 1, 2, new data on the disease produces a partially informative signal St ∈ {L,H}
about the true value of R. Signal H (L) can be thought of as the data on the number of patients

8Saak and Hennessy [2018] also consider the imperfection of information about the likelihood of the disease
outbreak in the context of limited diagnostic capabilities and analyze when to tax or subsidize requests for additional
information or confirmatory testing.

9This formulation is consistent with SIR/SIS models and R is computed on the basis of a completely susceptible
population. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302597/
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infected with the disease, which leads to Bayesian updating on the probability that the disease is
virulent. The signals are iid across periods with precision p ∈ (1

2
, 1); This means Pr[St = L|R =

RL] = Pr[St = H|R = RH ] = p. Given a prior ρt−1 in period t (t = 1, 2), after the realization
of the signal St, ρt−1 is updated using Bayes’ rule giving us the posterior ρt which can take two
values. If St = H,

ρt = ρHt =
ρt−1p

ρt−1p+ (1− ρt−1)(1− p)
. (1)

If St = L,

ρt = ρLt =
ρt−1(1− p)

(1− ρt−1)p+ ρt−1(1− p)
(2)

Since the signals are informative (i.e. p > 1
2
) following a H(L) signal, the updated value

ρt > (<)ρt−1 . In our model p < 1, i.e. signals are not fully informative.
Our model consists of a population of fixed size and a government. We assume that the

government is the only decision maker, and interpret period 2 as the end of the current planning
horizon. Period 3 represents the expected length of time after the current planning horizon but
before the arrival of a vaccine or treatment. We denote the expected length of this period by
A > 0.

2.1 Actions and Payoffs

In each period t = 1, 2, the government can take two actions. It can either implement a lockdown,
or it can wait. In the event the government decides to implement a lockdown, it also determines
its length and intensity. Further, if a lockdown is implemented, then during the lockdown, the
precision of the signal goes down. This is because during a lockdown, we lose some information of
the dynamics of the spread of the disease in the population i.e. which groups are most affected,
what is the complication rate absent intervention etc. For analytical tractability, we assume the
precision of the signal during a lockdown to be p = 1

2
. From (1) and (2) we can conclude that this

implies during a lockdown there is no learning, and hence the value of ρ is not updated.10

If the government imposes a lockdown, it has to choose its intensity a. The choice set of a
is (0, 1], with a = 1 representing the highest intensity.11 The intensity of the lockdown reduces
the expected harm caused by the disease slowing its transmission because of enforced changes in
social behavior. This continues to an extent beyond the lockdown due to habit formation which
we denote by β. If in period t(t = 1, 2) a lockdown for T periods with intensity a is implemented,
then the payoff to the government is given by

Wt = ρt
[
−rT{1−(a−a2)}−r[3−(T+t)]{1−β(a−a2)}

]
+ρt[−rA{1−β(a−a2)}]−γ[1+(1−ρt)δ](a2+T 2)

(3)

10This is a simplifying assumption to model a scenario where the precision of learning goes down because of a
lockdown. As we will see from the mechanism of our model, relaxing this assumption does not change our results
qualitatively. As mentioned earlier, this refers to learning about the dynamics of the disease across different sub-
groups. Moreover, even with learning during lockdown, the tradeoff between delaying to know more about the
disease virulence versus locking down early to start beneficial habit formation earlier remains.

11Data on lockdown measures adopted around the world indeed suggest heterogeneity in the stringency of lock-
down measures across countries. For example, Spain adopted very stringent measures with no one allowed to go
out of their home while in the UK it was more relaxed. If we interpret lockdown more generally as a measure of
social restriction, then Sweden represents a case of the lowest intensity lockdown.
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We now explain each of the terms in (3). Note that Wt is strictly negative implying that the
payoff reflects the net expected harm from a particular lockdown policy. During the lockdown,
in the event the disease is virulent, the effective net harm per period is reduced from −r to
−r{1− (a− a2)}.12 This implies the total net harm during the lockdown in the event the disease
is virulent is −rT{1− (a− a2)}. Once the lockdown is lifted, part of the disease reducing impact
stays due to habit formation which is captured by the parameter β ∈ (0, 1).13 As discussed in
the introduction, the idea behind this is that the rules mandated during a lockdown i.e restricting
interactions through social distancing; adopting hygiene measures continue to an extent beyond
the lockdown through beneficial habit formation. This means the effective net harm per period
after the lockdown is lifted is −r{1− β(a− a2)}. Thus for the remaining periods in the planning
horizon, in the event the disease is virulent, the net harm is given by −r[3−(T +t)]{1−β(a−a2)}.
Finally, because of this habit formation, in the event the disease is virulent, the net harm after
the planning horizon until the vaccine or treatment arrives is −rA{1− β(a− a2)}. This explains
the first two terms of (3). Thus in our model, periods 1 and 2 are the current planning horizon,
but the actions taken in those periods have longer term consequences due to habit formation.

Imposing a lockdown entails an economic cost which is directly proportional to the intensity
and the duration of the lockdown captured by (a2 + T 2). γ > 0 is a cost parameter which
reflects the efficacy of a government in managing the economy during a lockdown. The expression
(1 − ρt)δ in the final term of (3) captures an additional cost for a democratically elected leader
due to public backlash against lockdown. The higher the probability the disease is virulent, the
lower is the backlash while δ captures a country specific parameter with a higher δ indicating a
greater backlash against the lockdown. This might represent trust in government such that the
trust is inversely proportional to the value of δ.

Note that the functional forms (1 − (a − a2)), (1 − β(a − a2)) and the convex economic cost
ensure that the payoff Wt is strictly concave in a for a ∈ (0, 1].

Remark 1 The habit formation parameter β may of course affect the economy after the lockdown
is lifted. Incorporating β in the cost component of imposing the lockdown will push up the thresh-
olds for imposing the lockdown in both periods. The qualitative features of all our results remain
unchanged.

3 Optimal action by the government

In this section, we determine the optimal action of the government in each period t(t = 1, 2) as
a function of the likelihood of the disease being virulent. We begin our analysis in the following
subsection by considering period 2.

12This gives us a well behaved function which is concave in the relevant region in which a will be optimally
chosen. Allowing for the harm to increase at high levels of a captures the fact that too stringent measures may
increase harm by limiting access to medical care or providing social support at home. Of course, the optimal a
would never lie in that region.

13More generally, we can think of lockdown inducing a reaction [1− β1(a− a2)] where β1 is a level of compliance
and β2 is compliance post lockdown with β2 < β1 ≤ 1. In our model we w.l.o.g we assume β1 = 1 and β2 = β < 1.
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3.1 Optimal action in period 2

Consider a situation when the government waits until period 2, i.e it does not impose a lockdown
in period 1. In that case, the government’s decision consists of two actions. It can either impose
a lockdown for 1 period, or not impose it at all.

Let ρ2 be the posterior in period 2. If the government decides to impose a lockdown, then it
chooses a to maximise:

W2 = ρ2[−r{(A+ 1)− (1 + Aβ)(a− a2)}]− γ[1 + (1− ρ2)δ](a2 + 1)

From the first order condition we obtain14

a∗2 =
ρ2r[1 + Aβ]

2[ρ2r[1 + Aβ] + γ[1 + (1− ρ2)δ]]
(4)

As explained in the previous section, as a consequence of the choice of our functional forms,
W2 is strictly concave in a for a ∈ (0, 1). Further, it is strictly increasing (decreasing) at a = 0
(a = 1

2
). Thus the optimal a∗2 should satisfy a∗2 <

1
2
. This is confirmed by the expression in (4).

Remark 2 Direct computation confirms that a∗2 is strictly increasing in A, β and ρ2. It is strictly
decreasing in γ.

These comparative static results can be explained intuitively. When it is more likely that the
disease is virulent i.e ρ2 is higher, the expected benefit of a lockdown is also higher. This induces
the government to optimally impose a lockdown with a higher intensity, and hence it chooses a
higher value of a. Coming to the habit formation parameter β, the marginal benefit of a increases
with β, which implies that the optimal value of a in increasing in β. Next, an increase in A
implies that the arrival of the vaccine will be delayed. This results in the government choosing
a higher level of a so that the total net harm beyond the planning horizon is reduced through
habit formation. Finally, the lower is the efficacy of a government in managing an economy during
the lockdown (reflected in higher γ), the lower will be the intensity of lockdown chosen by the
government.

Substituting the value of a∗2 from (4), we obtain the optimal welfare from lockdown in period
2. This is given by

W ∗
2 = −ρ2r(A+ 1) +

ρ22r
2(1 + Aβ)2

4[ρ2r(1 + Aβ) + γ[1 + (1− ρ2)δ]]
− γ[1 + (1− ρ2)δ] (5)

If the government on the other hand decides not to impose a lockdown in period 2, then it
obtains a payoff of = −ρ2r − ρ2rA = −ρ2r(A + 1). This implies imposing a lockdown is optimal
as long as

ρ2 ≥ ρ∗2 =
2γ(1 + δ)

(
√

2− 1)r(1 + Aβ) + 2γδ
(6)

Direct computation shows that ρ∗2 < 1 as long as r > 2γ

(
√
2−1)(1+Aβ) . ρ

∗
2 > 1 means that it is not

optimal to impose a lockdown in period 2. One implication of this is that the higher is the value
of A, the lower is the value of ρ∗2 and hence, it is more likely lockdown will be imposed in period
2. Similarly, the higher is the value of β, it is more likely lockdown will be imposed in period 2.

We now move to the analysis of period 1 in the following subsection.

14The second order condition is guaranteed as W2 is strictly concave in a.
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3.2 Optimal action in period 1

In this subsection, we analyze the optimal action of the government in period 1. Suppose ρ1 is
the posterior in period 1. In the current setting, the planning horizon begins from period 1.

As mentioned earlier, given ρ1, the government can either impose a lockdown, or it can wait.
In period 1, if the government decides to impose a lockdown, then it has to decide whether the
lockdown will be imposed for one period or two periods. W.L.O.G we can rule out the possibility
of the government imposing a lockdown for one period in both t = 1 and t = 2 as given the
informational assumptions (i.e no updating of ρ during a lockdown) of the current model, it is
equivalent to imposing a lockdown in period 1 for two periods.

We begin our analysis by determining the expected payoff to the government if it decides
to wait and not impose a lockdown in period 1. In order to do that, we need to compute the
continuation payoff to the government from such an action. This continuation payoff is the sum
of the payoff from inaction in period 1, and the expected optimal payoff in period 2. The latter
as demonstrated in the previous subsection, depends on the optimal action in period 2, which is
determined by the updated belief after the realised signal in that period. This implies that the
general expression for the continuation payoff to the government from waiting and not imposing
a lockdown in period 1 is given by

Γ(ρ1) = −ρ1r + [Pr(S2 = H|ρ1)W ∗
2 (ρH2 )] + [Pr(S2 = L|ρ1)W ∗

2 (ρL2 )] (7)

The first term represents the expected payoff in period 1 if no lockdown is imposed. The second
and the third term represent the expected payoff in period 2 in the event a high and low signal
is received respectively. Since Pr(S2 = S|ρ1) and the resulting ρS2 (S = H,L) are functions of ρ1,
we can express Γ as a function of ρ1 only.

In order to determine Γ, define two thresholds of ρ1, ρ̃1 and ρ̄1 such that

ρ∗2 =
ρ̃1p

ρ̃1p+ (1− p)(1− ρ̃1)
; and ρ∗2 =

ρ̄1(1− p)
ρ̄1(1− p) + p(1− ρ̄1)

(8)

Suppose ρ1 ≤ ρ̃1, and the government decides to wait. In this case, irrespective of the signal
received next period, the updated belief will be less than the threshold ρ∗2. From our analysis
in the previous subsection, we can conclude that in this case no lockdown will be imposed in
period 2. Similarly, if ρ1 ≥ ρ̄1, and the government decides to wait, irrespective of the signal next
period, the updated belief will be higher than the threshold ρ∗2. Thus in this case lockdown will be
imposed in period 2. Finally consider ρ̃1 < ρ1 < ρ̄1. Suppose the government decides to wait. In
this case, if in period 2, a high (low) signal is received, then lockdown is (not) imposed in period
2. The analysis in the previous subsection along with these arguments allow us to express (please
see Appendix (A) for a detailed derivation) Γ(ρ1) as

Γ(ρ1) = −ρ1r(A+ 2)

+ max
{

0, [Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

}

+ max
{

0, [Pr(S2 = L|ρ1)]{
ρL22 r

2(1 + Aβ)2

4[ρL2 r(1 + Aβ) + γ[1 + (1− ρL2 )δ]]
− γ[1 + (1− ρL2 )δ]}

}
(9)
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The first term of (9) gives the welfare if no action is taken in both periods 1 and 2. The second
and the third term reflect the net expected premium obtained from the optimal action in period
2 after receiving a high and low signal respectively. The second (third) term is strictly positive if
following a high (low) signal in period 2, the government finds it optimal to impose a lockdown.
From our arguments made in the previous paragraph we can conclude that Γ(ρ1) ≥ −ρ1r(A + 2)
with strict inequality for ρ1 > ρ̃1.

We now determine the payoff from imposing a lockdown of optimal length and intensity in
period 1.

Payoff from lockdown in period 1:

In period 1, if a government imposes a lockdown, then it also has to decide whether it will be
for one period or two periods. First, we evaluate the optimal payoff if the government decides to
impose a lockdown in period 1 for two periods (T = 2). From (3), we can say that the government
in this case chooses a to maximise

W1 = ρ1
[
− r{(2 + A)− (2 + Aβ)(a− a2)}

]
− γ[1 + (1− ρ1)δ](a2 + 4)

Evaluating the first order condition we obtain

a∗1 =
ρ1r(2 + Aβ)

2[ρ1r(2 + Aβ) + γ[1 + (1− ρ1)δ]
(10)

Remark 3 As in (4), direct computation confirms that a∗1 is strictly increasing in A, β and ρ1.
It is strictly decreasing in γ.

Substituting the value of a∗1 from (10), we get the optimal welfare of the government from a
lockdown for 2 periods in period 1 as

W ∗
1 = −ρ1r(A+ 2) +

ρ21r
2(2 + Aβ)2

4[ρ1r(2 + Aβ) + γ[1 + (1− ρ1)δ]]
− 4γ[1 + (1− ρ1)δ] (11)

The following lemma illustrates that the optimal payoff to the government from imposing a
lockdown in period 1 for two periods intersects the continuation payoff Γ(ρ1) from not imposing
any lockdown in period 1 at a belief ρ

′
1 > ρ∗2. Thus, Lemma 1 looks at what the threshold for

lockdown in period 1 would be had it been restricted to a choice between a 2 period lockdown or
no lockdown in period 1.

Lemma 1 W ∗
1 (ρ1) intersects Γ(ρ1) at a belief ρ

′
1 such that ρ

′
1 > ρ∗2.

The formal proof of this lemma is relegated to Appendix (B). Here we provide the intuition for
the result. First, we show that the welfare W ∗

1 = −ρ1r(A + 2) at a belief that is strictly higher
than the threshold ρ∗2. From the expression of the continuation payoff in (9),we know that Γ is
strictly higher than −ρ1r(A+ 2) for all ρ1 > ρ̃1. Since ρ∗2 > ρ̃1, we can conclude that ρ

′
1 > ρ∗2.

An implication of the above lemma is that if in period 1, the government is constrained to
impose a lockdown for two periods or no lockdown, then the likelihood of lockdown in period 2 is
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higher than that in period 1. This can be intuitively explained as follows. Consider the alternate
policies of imposing a lockdown in period 1 for two periods and imposing a lockdown in period 2.
The benefit due to habit formation from both these policies are for the same number of periods, i.e
A. However, the latter policy has the additional advantage of acting after receiving a more precise
signal about the virulence of the disease. Additionally, a later lockdown reduces the negative
impact on the economy by one period. This makes imposition of lockdown more likely in period
2.

We will now determine the optimal payoff from imposing a lockdown in period 1 for 1 period
only. From (3) we can say that the government in this case chooses a to maximise

W1 = ρ1
[
− r{(2 + A)− (1 + (A+ 1)β)(a− a2)}

]
− γ[1 + (1− ρ1)δ](a2 + 1)

From the first order condition, we obtain

a∗n1 =
(1 + (A+ 1)β)ρ1r

2[(1 + (A+ 1)β)ρ1r + γ[1 + (1− ρ1)δ]]
(12)

Substituting the value of a∗n1 , we obtain the optimal welfare from lockdown of one period
duration in period 1.15 This is given by

W
′∗
1 (ρ1) = −ρ1r(A+ 2) +

[1 + (A+ 1)β]2ρ21r
2

4[[1 + (A+ 1)β]ρ1r + γ[1 + (1− ρ1)δ]]
− γ[1 + (1− ρ1)δ] (13)

Thus, if in period 1 the government decides to impose a lockdown of optimal length and
intensity, then welfare from lockdown is given by

W f
1 = max{W ∗

1 ,W
′∗
1 }

The government finds it beneficial to impose a lockdown in period 1 if W f
1 (ρ1) ≥ Γ(ρ1). Both

W f
1 and Γ are continuous functions of ρ1. Let ρ∗1 be the threshold of ρ1 such that when ρ1 > ρ∗1, the

government finds it optimal to impose a lockdown in period 1. Since at ρ1 = 0, W f
1 (ρ1) < Γ(ρ1),

ρ∗1 > 0. It is possible to have ρ∗1 > 1 which implies that under no circumstances, does the
government find it beneficial to impose a lockdown in period 1.

In the following proposition we establish that as long as there is a positive degree of habit
formation (i.e β > 0), then up to some precision level of the signal, the threshold for imposing the
lockdown increases over time with the converse holding if the precision level is higher than the
threshold. Further, for low precision level of learning, at the vicinity of the threshold in period 1,
lockdown is always imposed for one period.

Proposition 1 For any β > 0, there exists a p∗ ∈ (1
2
, 1] such that if ρ∗t < 1 (t = 1, 2), then for

all p ∈ (1
2
, p∗),

ρ∗1 ≤ ρ∗2

and W f
1 (ρ∗1) = W

′∗
1 (ρ∗1). This shows that for p < p∗, at the right neighbourhood of the threshold

ρ∗1, lockdown is always imposed for one period.

Further, if p∗ < 1, then for all p ∈ (p∗, 1),

ρ∗1 > ρ∗2
15Again, direct computation confirms that a∗1 is strictly increasing in , A, β and ρ1. It is strictly decreasing in γ.
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The formal proof of this proposition is relegated to Appendix (C). The idea behind the proof
is discussed here. In the present paragraph, by lockdown, unless otherwise stated, we will refer
to lockdown imposed in period 1. We first show that the payoff from lockdown for one period is
higher than −ρ1r(A+2) if ρ1 exceeds a threshold ρ

′′
1 , which is strictly lower than ρ∗2, the threshold

for imposing a lockdown in the second period. From lemma (1), we know that the payoff from
lockdown for two periods exceeds −ρ1r(A + 2) if ρ1 is above a threshold, which is strictly higher
than ρ∗2. Hence, we can conclude that at the neighborhood of the ρ1 = ρ

′′
1 , the payoff from

lockdown for one period exceeds the payoff from a lockdown for two periods. This implies in
this neighborhood, the optimal payoff from lockdown is equal to the payoff from lockdown for
one period. When there is no learning, i.e p = 1

2
, the continuation payoff from not imposing a

lockdown in period 1 is equal to −ρ1r(A + 2). Thus, with no learning the optimal threshold ρ∗1
for imposing a lockdown in period 1 is equal to ρ

′′
1 , which is strictly less than that in period 2.

Since payoff functions are continuous, we know that the conclusion will continue to hold for some
p at the right neighborhood of 1

2
, and let p∗ ∈ (1

2
, 1] be the supremum of such p’s. This means

whenever p < p∗, we have ρ∗1 < ρ∗2. From lemma (1) we can further conclude that when p < p∗, at
the right neighborhood of ρ∗1, lockdown will always be imposed for one period. Finally, suppose
p∗ < 1. From the definition of p∗, we can conclude that at the right neighborhood of p∗, the
optimal welfare from lockdown at the belief ρ∗2 will be less than or equal to the continuation payoff
at that belief. While the optimal payoff from lockdown in period 1 is unaffected by the learning
parameter p, the continuation payoff is strictly increasing in it. Hence, we can conclude that for
all p > p∗ , we have ρ∗1 > ρ∗2.

The above result can be intuitively explained as follows. The tradeoff between imposing a
lockdown early and waiting is as follows. If a lockdown is imposed earlier, the benefit through
behavioral change in the event that the disease is virulent lasts longer. On the other hand, imposing
a lockdown earlier means the government is unable to learn about the nature of the disease. Thus
it may impose a lockdown when the disease happens to be relatively mild and needlessly suffer
the economic costs. Given a behaviorial pattern, which is captured by the parameter β, the
government has a higher incentive to impose the lockdown earlier if the precision of the learning
is below a certain level in which case there would not be much gain in learning by waiting for one
period. This explains why the threshold for imposing a lockdown in period 1 is lower than that
in period 2. In Proposition (1) we have shown that at the right neighborhood of the threshold in
period 1, the government always imposes a lockdown for one period. However, if the value of ρ1
is very high, it is possible that the government optimally chooses to impose a lockdown for two
periods.

On the other hand, a higher precision of signal increases the gains from learning via the
signal and hence reduces the incentive of the government to impose the lockdown earlier. As a
consequence, the threshold for imposing the lockdown in period 1 is higher than that in period 2.

This intuition is now illustrated with a numerical example.

Example 1 We calibrate our model for r = 2.5; β = 0.6; A = 2; γ = 0.45 and δ = 0.8.
Figure (1) exhibits how the threshold for imposing the lockdown in period 1 changes as the

precision of learning p varies from 0.5 to 1. We can observe that for low values of p, ρ∗1 is
unaffected by p, but as p increases, ρ∗1 also increases in p. To understand this, recall from our
model that ρ∗1 is determined by the point of intersection of the payoff from lockdown in period 1, and
the continuation payoff Γ(ρ1). For values of ρ1 < ρ̃1, Γ(ρ1) = −ρ1r(A + 2), which is independent
of p. The lower is the precision of the signal, the more likely Γ(ρ1) and the optimal payoff from
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Figure 1: Ranking of thresholds with respect to precision of learning p

lockdown in period 1 intersect at a point where Γ = −ρ1r(A + 2). Thus ρ∗1 is independent of p.
This explains the horizontal part of the ρ∗1 curve. The period 2 threshold ρ∗2 on the other hand is
independent of p. It can be observed in figure 1 that there exists a threshold p∗ such that for all p
lower (higher) than this threshold ρ∗1 < (>)ρ∗2, illustrating Proposition (1).

4 Numerical Examples

In this section we present some numerical examples of how the lockdown thresholds for periods 1
and 2 change with the strength of the habit formation parameter, the cost to the economy, the
backlash from a lockdown and the expected time of the arrival of a treatment or vaccine. We also
demonstrate how the variables interact e.g. we show that the impact of the economy on lockdown
thresholds is different when the habit formation parameter takes high or low values.

4.1 Variation of lockdown thresholds with respect to the habit forma-
tion parameter (β)

In this subsection, we examine how the thresholds for imposing the lockdown in periods 1 and 2,
ρ∗1 and ρ∗2 respectively, vary with the value of the habit formation parameter β. We calibrate our
model for r = 2.5; γ = 0.45; δ = 0.8, and p = 0.6. As we will see below, the thresholds ρ∗1 and ρ∗2
are decreasing in β across a range of values of A (i.e. length of period 3). However, A affects the
difference between ρ∗1 and ρ∗2 for each β. Figures 2 and 3 depict the variation of ρ∗1 and ρ∗2 with
respect to β for A = 1 and A = 3 respectively.

These findings can be explained as follows. Once lockdown is imposed, the government gets
a future benefit from habit formation. While an imposition of lockdown in period 2 generates
the benefit from habit formation during period 3, a lockdown imposed in period 1 for one period,
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Figure 2: Variation of the thresholds ρ∗1 and ρ∗2 with respect to β

generates the benefit from habit formation in both periods 2 and 3.16 In the absence of any habit
formation, i.e. β = 0, it is more beneficial to impose the lockdown in period 2, as this comes with
the benefit of getting a more precise signal about the likelihood of the virulence of the disease,
allowing for a more informed choice of a in period 2. This explains why at β = 0, ρ∗2 lies below
ρ∗1. However, as β increases, the option of imposing an early lockdown in period 1 becomes more
attractive as it now comes with the benefit of habit formation for an additional period. Thus, as β
crosses a threshold, ρ∗1 lies below ρ∗2. In both figures (2) and (3), this pattern is displayed. Next, we
explain the effects of an increase in the value of A. First, the threshold of β above which ρ∗1 is below
ρ∗2 increases. Second, the relative difference between ρ∗1 and ρ∗2 goes down. These observations can
be intuitively explained as follows. Irrespective of the timing of the lockdown, the benefit of habit
formation is always present during the third period. The imposition of an early lockdown brings
in the additional benefit of habit formation in period 2. As A, the length of period 3 goes up,
the relative significance of this additional benefit in period 2 from early lockdown declines. This
explains why as A increases, the difference between ρ∗1 and ρ∗2 (for a given β) becomes smaller.

4.2 Lockdown thresholds and the cost parameter (γ)

In this subsection we will analyze how the thresholds ρ∗1 and ρ∗2 interact with the cost parameter
γ. For this exercise, we calibrate the model for r = 2.5; δ = 0.8; p = 0.6 and A = 2. We look at
the variation of the thresholds ρ∗1 and ρ∗2 as the value of γ continuously varies from 0.1 to 0.45.
Figures (4) and (5) depict this variation for fixing β = 0.1 and β = 0.6 respectively. Again, it is
verified that at the right neighbourhood of the threshold ρ∗1, optimal length of lockdown is always
equal to 1.

16We can verify that in the current calibrated model, at the right neighbourhood of ρ∗1, optimal length of lockdown
is always equal to 1.
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Figure 3: Variation of the thresholds ρ∗1 and ρ∗2 with respect to β

It is evident from both the figures that as the magnitude of the cost parameter goes up, both
the thresholds increase. This follows from the fact that the less able a government is in handling
the economy during a lockdown (i.e. higher values of γ), the more reluctant a government is to
impose a lockdown in a particular period, i.e. ρ∗t higher (t = 1, 2). Thus, from both the figures
we can observe that as γ goes up, both ρ∗1 and ρ∗2 go up. However, the rate of increase in ρ∗1 is
lower than the rate of increase in ρ∗2. This implies that for higher values of γ the relative benefit
of early lockdown is higher. The first observation follows from the fact that as γ goes up, the
cost of lockdown in any period goes up, raising the thresholds for lockdown in both periods. To
understand the second observation, consider a government which is deciding between an early
or a late lockdown. Irrespective of the timing of the lockdown, the cost incurred will be the
same. However, the early lockdown has the additional benefit of habit formation in period 2. A
government with a higher value of γ is less efficient in managing the economy during a lockdown.
This implies, at the new optimum, the marginal benefit from imposing a lockdown should be equal
to this higher marginal cost. The government achieves this by imposing an early lockdown so that
it can reap the additional benefit from habit formation in period 2. This explains why ρ∗1 increases
less in comparison to ρ∗2 as γ increases. This effect is more prominent for higher values of β as
evident from figure (5).

An implication of this finding is that if a country with higher γ has to impose a lockdown,
then it is better to impose an early lockdown to get the benefit of habit formation.

4.3 Effect of the length of period 3 (A) and the democracy parameter
(δ) on the lockdown thresholds

We begin this subsection by examining the effect of the length of period 3, i.e A on the lockdown
thresholds ρ∗1 and ρ∗2. This is depicted in Figure (6). We can observe that as there is an increase
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Figure 4: Variation of the thresholds ρ∗1 and ρ∗2 with respect to γ

Figure 5: Variation of the thresholds ρ∗1 and ρ∗2 with respect to γ
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Figure 6: Variation of thresholds with respect to A

in the expected time of the arrival of vaccine or treatment (i.e A increases), the thresholds for
imposing the lockdown goes down in both periods.17 The intuition follows from the fact that an
increase in A entails more harm in the event the disease is virulent and hence the government
wants to kick in disease reduction measures earlier.

Next, in Figure (7) we represent the variation of the thresholds ρ∗1 and ρ∗2 with respect to the
parameter δ. In our model, the parameter δ captures the public backlash in the event a lockdown
is imposed when the disease is not virulent. We can interpret this parameter as representing the
trust of the public on the incumbent government. The higher is the value of δ, the lower is the
trust of the public in the government.

We can observe that as the level of trust of the public goes down, the government becomes
more reluctant to impose a lockdown. This is demonstrated by the increasing thresholds for
both periods. However, because of the benefit from habit formation, the relative benefit of early
lockdown is higher and hence, the thresholds ρ∗1 is always below the threshold ρ∗2.

5 Discussion and Concluding Remarks

We have presented a stylized model of a disease with unknown virulence to illustrate the trade-off
between learning and habit formation that have opposing impacts on the timing of a lockdown. To
isolate this trade-off, we simplify on a number of dimensions including not explicitly modeling the
decision of other agents in the population as well as ruling out strategic considerations. We believe
strategic considerations to be minimal in a large population. Political considerations do play a
role in a government’s decisions to impose a lockdown in terms of its timing and intensity. While
we do not model this explicitly, political issues are partly captured by the variable δ which proxies
for how much trust there is in government. A lower δ implies a higher trust and thus lower public

17We calibrate our model for r = 2.5; γ = 0.45; δ = 0.6; p = 0.6 and β = 0.6.
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Figure 7: Variation of the thresholds ρ∗1 and ρ∗2 with respect to δ

backlash against the lockdown. We have also simplified the disease propagation mechanism by a
single parameter that can be interpreted as the virulence or harm. Assuming this is proportional
to the reproduction rate, this could have been embedded in a standard SIR model18 where this
reproduction rate would need to be greater than 1 for the disease to spread over time. While the
harm or virulence r being modelled as a binary variable is a simplification, we think it captures
the key qualitative features of a more realistic model where the virulence can take on more values.
There are other simplifying assumptions, e.g. habit formation can also directly affect the economy
if people stay home post lockdown and reduce demand in certain sectors, whereas in our model
this is only captured through the equilibrium choice of a. Allowing a more direct impact would
push towards a later lockdown but once again preserve the qualitative features of the model.

Our model suggests some interesting implications for the timing of lockdown both within and
across countries. Holding everything else constant, one might have expected countries facing
the pandemic later to adopt earlier lockdowns as they already had recourse to information from
other countries. But as the model shows, this effect is moderated by factors such as the cost to the
economy, trust in the government and country specific information (e.g. age composition) that can
affect the virulence of the disease. Importantly, governments may over-estimate or under-estimate
the strength of the habit formation parameter of the population. One can estimate differences
in values of β across countries by the level of compliance of the population with the suggested
guidelines from the government. However, a government may not necessarily estimate the value of
β accurately. In the U.K., the government was criticized for delaying the lockdown, but it seems
(from copies of meetings of the scientific advisory group) that there was a general belief that the
U.K. population would not comply or reach behavioral fatigue (see Mahase [2020]).19 While

18see Kermack and McKendrick [1927].
19The article https://www.theguardian.com/commentisfree/2020/may/05/britons-lockdown-obedient-

exceptional-nhs-rules reports on the polling by Ipsos Mori that found 23 percent of Biritsh people would
re-open the economy and business if the virus is not fully contained. This compares to just over a third of

18
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the government may have underestimated the degree of compliance in the population with the
guidelines on social distancing, it nonetheless rationalizes the ex ante decision of the government.
Reports of the U.K.’s scientific advisory committee minutes also reveal how initial decisions were
being reformulated as new data arrived on the disease and expert advice was being sought how
to induce lasting behavioral changes through messaging during the lockdown 20 in line with our
model. These suggest that the tradeoffs we suggest in our model indeed played a crucial role in
the decision to lockdown. Further, it points out that countries that have been ex post criticized
for acting late may have been gathering data before taking the extreme step of a lockdown.

Coming to the parameters δ and γ, the early lockdown in India is consistent with the high
support it enjoyed at that time (suggesting a low δ) in the population as well as the fact that
it had more precise signals already because of the spread in other countries. The fact that the
economic cost to a lockdown in a country like India might be high is also consistent with our
comparative static result that if a lockdown is imposed where γ is high, it is better to impose it
early. The distrust in government seen in the U.S.A (suggesting a high δ) is also consistent with
the lower intensity of lockdowns in many states.

The model shows the complex tradeoffs involved in a situation where the initial signals about
the nature and spread of the disease were imprecise and the decisions on when and with what
intensity to lockdown were based on the ex ante beliefs of governments on not just the damage to
the economy and political backlash but on the degree to which this would change habits in the
population. Thus, while ex post Italy’s lockdown may seem late21, as the first country in Europe
to see the spread of the virus, it may have felt it needed to know more before taking this step,
which in fact may have resulted in a somewhat more stringent lockdown later. This phenomenon
is consistent with our model i.e. when lockdown is imposed in period 2 following a high signal,
the value of ρ2 is higher implying a high intensity of lockdown a∗2.

There are a number of other things we have simplified or not considered. A more extended
model would look at how different governments with different resources (e.g. ability to have track
and trace in place in a short time) would use more targeted measures that allow for both some
containment22 while gaining some information on disease propagation. We leave this for future
work which should also look at empirical measures on trust in government, ability of the economy
to adapt to virtual working etc. to see if they affected the timing and intensity of the lockdown
as predicted by the model.
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Americans, a majority of Italians, 50 percent of Chinese and 60 percent of Russians .
20(https://www.theguardian.com/world/2020/may/29/sage-minutes-reveal-how-uk-advisers-reacted-to-

coronavirus-crisis
21https://www.nytimes.com/interactive/2020/04/05/world/europe/italy-coronavirus-lockdown-reopen.html
22This could include more targeted lockdowns as analyzed by Acemoglu et.al [2020] and testing as analyzed by

Brotherhood et.al [2020].
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APPENDIX

A Expected continuation payoff in period 1 from not im-

posing a lockdown

The general expression for continuation payoff from waiting and not imposing a lockdown in period
1 is given by

Γ(ρ1) = −ρ1r + [Pr(S2 = H|ρ1)W ∗
2 (ρH2 )] + [Pr(S2 = L|ρ1)W ∗

2 (ρL2 )]

First, consider ρ1 < ρ̃1. We have argued above that for any signal S2 ∈ {H,L} received in
period 2, ρi2, the posterior in period 2 is less than or equal to ρ∗2. This means we have

W ∗
2 (ρH2 ) = −ρH2 r(A+ 1);W ∗

2 (ρL2 ) = −ρL2 r(A+ 1)

Substituting this in the general expression of Γ(ρ1) we obtain

⇒ Γ(ρ1) = −ρ1r + {[ρ1p+ (1− p)(1− ρ)1]−
ρ1p

ρ1p+ (1− p)(1− ρ)1
r(A+ 1)}+

{[ρ1(1− p) + p(1− ρ)1]−
ρ1(1− p)

ρ1(1− p) + p(1− ρ)1
r(A+ 1)}

⇒ Γ(ρ1) = −ρ1r(A+ 2)

Next, consider ρ1 ∈ (ρ̃1, ρ̄1). Only if a high signal is received in period 2, a lockdown is imposed.
This gives us

Pr(S2 = H|ρ1)W ∗
2 (ρH2 ) = −ρ1pr(A+ 1)

+[Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

and
Pr(S2 = L|ρ1)W ∗

2 (ρL2 ) = −ρ1(1− p)r(A+ 1)

Thus, we have

Γ(ρ1) = −ρ1r(A+ 2) + [Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

Finally, consider ρ1 > ρ̄1. Irrespective of the signal received in period 2, a lockdown is imposed.
This gives us

Pr(S2 = H|ρ1)W ∗
2 (ρH2 ) = −ρ1pr(A+ 1)

+[Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

and
Pr(S2 = L|ρ1)W ∗

2 (ρL2 ) = −ρ1(1− p)r(A+ 1)
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+Pr(S2 = L|ρ1)]{
ρL22 r

2(1 + Aβ)2

4[ρL2 r(1 + Aβ) + γ[1 + (1− ρL2 )δ]]
− γ[1 + (1− ρL2 )δ

From this we can say

Γ(ρ1) = −ρ1r(A+ 2) + [Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

+[Pr(S2 = L|ρ1)]{
ρL22 r

2(1 + Aβ)2

4[ρL2 r(1 + Aβ) + γ[1 + (1− ρL2 )δ]]
− γ[1 + (1− ρL2 )δ]}

From the above arguments, we can indeed confirm that Γ(ρ1) ≥ −ρ1r(A + 2) with strict
inequality for ρ1 > ρ̃1. We can express Γ(ρ1) as

Γ(ρ1) = −ρ1r(A+ 2)

+ max
{

0, [Pr(S2 = H|ρ1)]{
ρH2
2 r2(1 + Aβ)2

4[ρH2 r(1 + Aβ) + γ[1 + (1− ρH2 )δ]]
− γ[1 + (1− ρH2 )δ]}

}

+ max
{

0, [Pr(S2 = L|ρ1)]{
ρL22 r

2(1 + Aβ)2

4[ρL2 r(1 + Aβ) + γ[1 + (1− ρL2 )δ]]
− γ[1 + (1− ρL2 )δ]}

}
(14)

B Proof of lemma (1)

First we determine the belief at which W ∗
1 intersects the line −ρ1r(A+ 2).

W ∗
1 ≥ −ρ1r(A+ 2)⇒ ρ1 ≥

4γ(1 + δ)

(
√

5− 2)r(2 + Aβ) + 4γδ
> ρ∗2 > ρ̃1

From (9) we know that for ρ1 > ρ̃1, Γ(ρ1) > −ρ1r(A+ 2). This implies

ρ
′

1 >
4γ(1 + δ)

(
√

5− 2)r(2 + Aβ) + 4γδ
> ρ∗2

This concludes the proof of the lemma.

C Proof of Proposition (1)

Suppose ρ∗1 is the belief where W f
1 intersects Γ. ρ∗1 is a function of p. For notational convenience

we do away with writing the argument of ρ∗1.
First we find the value of ρ1 at which W

′∗
1 intersects −ρ1r(A+ 2). This is

ρ
′′

1 =
2γ[1 + δ]

[
√

2− 1]r{1 + (A+ 1)β}+ 2γδ
< ρ∗2
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Consider p = 1
2
. In this case Γ(ρ1) = −ρ1r(A + 2). Since ρ

′′
1 < ρ∗2, and from lemma (1), ρ

′′
1 is

strictly less than the belief at which W ∗
1 intersects Γ. This means we have

W
′∗
1 (ρ

′′

1) = Γ(ρ
′′

1) > W ∗
1 (ρ

′′

1)

Thus W f
1 = W

′∗
1 , and ρ∗1 = ρ

′′
1 < ρ∗2.

This implies at the right neighbourhood of p = 1
2
, we have ρ∗1 < ρ∗2. Let

p∗ = sup
p
{p ∈ (

1

2
, 1]|ρ∗1 < ρ∗2}

Thus, for all p ∈ (1
2
, p∗) we have ρ∗1 < ρ∗2. .

Suppose p∗ < 1. This means for p = p∗ − ε, ρ∗1 = ρ∗2 − ψ such that ε > 0,ψ > 0 and ψ → 0 as
ε→ 0.

Thus, at the right neighbourhood of p∗, W f
1 (ρ∗2) ≤ Γ(ρ∗2). Γ(ρ1) is increasing in p, and W f

1 is
unaffected by p. Therefore, it follows that for all p > p∗, ρ∗1 > ρ∗2.

This concludes the proof .
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