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Improvement of FPPR method to solve ECDLP
Yun-Ju Huang1*, Christophe Petit2, Naoyuki Shinohara3 and Tsuyoshi Takagi4,5,6

Abstract

Solving the elliptic curve discrete logarithm problem (ECDLP) by using Gröbner basis has recently appeared as a new
threat to the security of elliptic curve cryptography and pairing-based cryptosystems. At Eurocrypt 2012, Faugère,
Perret, Petit and Renault proposed a new method (FPPR method) using a multivariable polynomial system to solve
ECDLP over finite fields of characteristic 2. At Asiacrypt 2012, Petit and Quisquater showed that this method may beat
generic algorithms for extension degrees larger than about 2000. In this paper, we propose a variant of FPPR method
that practically reduces the computation time and memory required. Our variant is based on the idea of
symmetrization. This idea already provided practical improvements in several previous works for composite-degree
extension fields, but its application to prime-degree extension fields has been more challenging. To exploit
symmetries in an efficient way in that case, we specialize the definition of factor basis used in FPPR method to replace
the original polynomial system by a new and simpler one. We provide theoretical and experimental evidence that our
method is faster and requires less memory than FPPR method when the extension degree is large enough.

Keywords: Elliptic curve; Discrete logarithm problem; Index calculus; Multivariable polynomial system; Gröbner basis

1 Introduction
In the last two decades, elliptic curves have become
increasingly important. In 2009, the American National
Security Agency (NSA) to advocate the use of ellip-
tic curves for public key cryptography [14] which are
based on the hardness of elliptic curve discrete logarithm
problem (ECDLP) or other hardness problem on ellip-
tic curves. Elliptic curves used in practice are defined
either over a prime field Fp or over a binary field F2n .
Like any other discrete logarithm problem, ECDLP can
be solved with generic algorithms such as Baby-step
Giant-step algorithm, Pollard’s ρ method and their vari-
ants [1,16,17,19]. These algorithms can be parallelized
very efficiently, but the parallel versions still have an
exponential complexity in the size of the parameters. Bet-
ter algorithms based on the index calculus framework
have long been known for discrete logarithm problems
over multiplicative groups of finite fields or hyperellip-
tic curves, but generic algorithms have remained the best
algorithms for solving ECDLP until recently.
A key step of an index calculus algorithm for solv-

ing ECDLP is to solve the point decomposition problem.
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In 2004, Semaev introduced the summation polynomi-
als (also known as Semaev’s polynomials) to solve this
problem. Solving Semaev’s polynomials is not a trivial
task in general, in particular if K is a prime field. For
extension fields K = Fqn , Gaudry and Diem [2,9] inde-
pendently proposed to define V as the subfield Fq and
to apply a Weil descent to further reduce the resolution
of Semaev’s polynomials to the resolution of a polyno-
mial system of equations over Fq. Diem generalized these
ideas by defining V as a vector subspace of Fqn [3]. Using
generic complexity bounds on the resolution of polyno-
mial systems, these authors provided attacks that can
beat generic algorithms and can even have subexponential
complexity for specific families of curves [2]. At Euro-
crypt 2012, Faugère, Perret, Petit and Renault re-analized
Diem’s attack [3] in the case F2n (denoted as FPPRmethod
in this work), and showed that the systems arising from
theWeil descent on Semaev’s polynomials aremuch easier
to solve than generic systems [7]. Later at Asiacrypt 2012,
Petit and Quisquater provided heuristic evidence that
ECDLP is subexponential for that very important family
of curves, and would beat generic algorithms when n is
larger than about 2000 [15]. In 2013, Shantz and Teske
provided further experimental results using the so-called
“delta method” with smaller factor basis to solve the FPPR
system [7,20].

© 2015 Huang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.
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Even though these recent results suggest that ECDLP
is weaker than previously expected for binary curves, the
attacks are still far from being practical. This is mainly due
to the large memory and time required to solve the poly-
nomial systems arising from the Weil descent in practice.
In particular, the experimental results presented in [15]
for primes n were limited to n = 17. In order to validate
the heuristic assumptions taken in Petit and Quisquater’s
analysis and to estimate the exact security level of binary
elliptic curves in practice, experiments on larger parame-
ters are definitely required.
In this paper, we focus on Diem’s version of index cal-

culus for ECDLP over a binary field of prime extension
degree n [3,7,15]. In that case, the Weil descent is per-
formed on a vector space that is not a subfield of F2n ,
and the resulting polynomial system cannot be re-written
in terms of symmetric variables only. We therefore intro-
duce a different method to take advantage of symmetries
even in the prime degree extension case. While Shantz
and Teske use the same multivariate system as FPPR
method [7,20], in this work we re-write the system with
both symmetric and non-symmetric variables. The total
number of variables is increased compared to [7,15], but
we limit this increase as much as possible thanks to an
appropriate choice of the vector space V . On the other
hand, the use of symmetric variables in our system allows
reducing the degrees of the equations significantly. Our
experimental results show that our systems can be solved
faster than the original systems of [7,15] as long as n is
large enough.

Notations. In this work, we are interested in solving the
elliptic curve discrete logarithm problem on a curve E
defined over a finite field F2n , where n is a prime number.
We denote by Eα,β the elliptic curve over F2n defined by
the equation y2 + xy = x3 + αx2 + β . For a given point
P ∈ E, we use x(P) and y(P) to indicate the x-coordinate
and y-coordinate of P respectively. From now on, we use
the specific symbols P, Q and k for the parameters and
solution of the ECDLP: P ∈ E, Q ∈ 〈P〉, and k is the small-
est non-negative integer such that Q = [k]P. We assume
that the order of 〈P〉 is prime here. We identify the field
F2n as F2[ω] /h(ω), where h is an irreducible polynomial
of degree n. Any element e ∈ F2n can then be represented
as poly(e) := c0 + c1ω + . . . + cn−1ωn−1 where ci ∈ F2.
For any set S, we use the symbol #S to mean the order of

S. We denote the degree of regularity as Dreg , which is the
maximumdegree appearing when solving themultivariate
polynomial system with Gröbner basis routine.

Outline. The remaining of this paper is organized as
follows. In Section 2, we recall previous index calculus
algorithms for ECDLP, in particular FPPR method attack
on binary elliptic curves and previous work exploiting the
symmetry of Semaev’s polynomials when the extension

degree is composite. In Section 3, we describe our vari-
ant of FPPR method taking advantage of the symmetries
even when the extension degree is prime. In Section 4, we
provide experimental results supporting our method with
respect to FPPR original attack. Finally in Section 5, we
conclude the paper and we introduce further work.
Remark. This is a full version of the paper [10] pub-
lished at the 8th International Workshop on Security
(IWSEC 2013), held at Okinawa, Japan.

2 Index calculus for elliptic Curves
2.1 The index calculus method
For a given point P ∈ Eα,β , let Q be a point in 〈P〉. The
index calculus method can be adapted to elliptic curves to
compute the discrete logarithm of Q with respect to P.
As shown in Algorithm 1, we first select a factor base

F ⊂ Eα,β and we perform a relation search expressed as
the loop between the line 3 and 7 of Algorithm 1. This
part is currently the efficiency bottleneck of the algorithm.
For each step in the loop, we compute R := [a]P+[b]Q
for random integers a and b and we apply the Decom-
pose function on R to find all tuples (solm) of m elements
Pj� ∈ F such that Pj1 + Pj2 + · · · + Pjm + R = O. Note that
we may obtain several decompositions for each point R.
In the line 6, theAddRelationToMatrix function encodes
every decomposition of a point R into a row vector of
the matrix M. More precisely, the first #F columns of M
correspond to the elements of F , the last two columns cor-
respond to P and Q, and the coefficients corresponding to
these points are encoded in the matrix. In the line 8, the
ReducedRowEchelonForm function reduces M into a
row echelon form.When the rank ofM reaches #F+1, the
last row of the reduced M is of the form (0, · · · , 0, a′, b′),
which implies that [a′]P+[b′]Q = O. From this relation,
we obtain k = −a′/b′ mod #〈P〉.
A straightforward method to implement the Decom-

pose function would be to exhaustively compute the sums
of all m-tuples of points in F and to compare these sums
to R. However, this method would not be efficient enough.

Algorithm 1 Index Calculus for ECDLP [18]

Input: elliptic curve Eα,β , point P ∈ Eα,β , point Q ∈ 〈P〉
1 F ←− a subset of Eα,β
2 M ←− matrix with #F + 2 columns
3 while Rank(M) < #F + 1 do
4 R ←−[ a]P+[ b]Q where a and b are random integers

in (0, #〈P〉)
5 solm ←− Decompose(R, F)
6 M ←− AddRelationToMatrix(solm)
7 end
8 M ←− ReducedRowEchelonForm(M)
9 a′, b′ ←− last two column entries of last row

10 k ←− −a′/b′
Output: k, where Q = [k]P
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2.2 Semaev’s polynomials
Semaev’s polynomials [18] allow replacing the compli-
cated addition law involved in the point decomposition
problem by a somewhat simpler polynomial equation over
F2n .

Definition 1. The m-th Semaev’s polynomial sm for Eα,β
is defined as follows:

s2 := x1 + x2,
s3 := (x1x2 + x1x3 + x2x3)2 + x1x2x3 + β , and
sm := ResX(sj+1(x1, . . . , xj,X), sm−j+1(xj+1, . . . , xm,X))

for m ≥ 4, 2 ≤ j ≤ m − 2.

The polynomial sm is symmetric and has degree 2m−2

with respect to each variable. Definition 1 provides a
straightforward method to compute it. In practice, com-
puting large Semaev’s polynomials may not be a trivial
task, even if the symmetry of the polynomials can be
used to accelerate it [12]. Semaev’s polynomials have the
following property:

Proposition 1. We have sm(x1, x2, . . . , xm) = 0 if and
only if there exist yj ∈ F2n such that Pj = (xj, yj) ∈ Eα,β
and P1 + P2 + . . . + Pm = O.

In his seminal paper [18], Semaev proposed to choose
the factor base F in Algorithm 1 as

FV := {(x, y) ∈ Eα,β |x ∈ V }

where V is some subset of the base field of the curve.
According to Proposition 1, finding a decomposition of
a given point R = [a]P+[b]Q is then reduced to first
finding xi ∈ V such that

sm+1(x1, x2, . . . , xm, x(R)) = 0,

and then finding the corresponding points Pj = (xj, yj) ∈
FV .
A straightforwardDecompose function using Semaev’s

polynomials is described in Algorithm 2.
In this algorithm, Semaev’s polynomials are solved by a

naive exhaustive search method. Since every x-coordinate
corresponds to at most two points on the elliptic curve
Eα,β , each solution of sm+1(x1, x2, . . . , xm, x(R)) = 0 may
correspond to up to 2m possible solutions in Eα,β . These
potential solutions are tested in the line 5 of Algorithm 2.
As such, Algorithm 2 still involves some exhaustive search
and can clearly not solve ECDLP faster than generic
algorithms.

Algorithm 2 Decompose function with sm+1

Input: R =[a]P+[b]Q, factor base FV
1 setm ←− {e ∈ Fm

V }
2 solm ←− {}
3 for e = {P1,P2, ..,Pm} ∈ setm do
4 if sm+1(x(P1), x(P2), . . . , x(Pm), x(R)) = 0 then
5 if P1 + P2 + . . . + Pm + R = O then
6 solm ←− solm ∪ {e}
7 end
8 end
9 end
Output: solm contains the decomposition elements of

R w.r.t. FV

2.3 FPPRmethod
At Eurocrypt 2012, following similar approaches by
Gaudry [9] and Diem [2,3], FPPR method provided V
with the structure of a vector space, to reduce the reso-
lution of Semaev’s polynomial to a system of multivariate
polynomial equations. They then solved this system using
Gröbner basis algorithms [7].
More precisely, FPPR method suggested to fix V as a

random vector subspace of F2n/F2 with dimension n′. If
{v1, . . . , vn′ } is a basis of this vector space, the resolution
of Semaev’s polynomial is then reduced to a polynomial
system as follows. For any fixed P′ ∈ FV , we can write
x(P′) as

x(P′) = c̄1v1 + c̄2v2 + . . . + c̄n′vn′

where c̄� ∈ F2 are known elements. Similarly, we can write
all the variables xj ∈ V in sm+1 |xm+1=x(R) as

{
xj = cj,1v1 + cj,2v2 + . . . + cj,n′vn′ , 1 ≤ j ≤ m,
xm+1 = r1v1 + r2v2 + . . . + rn−1vn,

where cj,� are binary variables and r� ∈ F2 are known.
Using these equations to substitute the variables xj in
sm+1, we obtain an equation

sm+1 = f1(cj,�)v1 + f2(cj,�)v2 + . . . + fn(cj,�)vn,

where f1, f1, . . . , fn are polynomials in the binary variables
cj,�, 1 ≤ j ≤ m, 1 ≤ � ≤ n′.
We have sm+1 |xm+1=x(R)= 0 if and only if each binary

coefficient polynomial f� is equal to 0. Solving Semaev’s
polynomial sm+1 is now equivalent to solving the binary
multivariable polynomial system f1 = f2 = . . . = fm = 0
in the variables cj,�, 1 ≤ j ≤ m, 1 ≤ � ≤ n′.
TheDecompose function using this system is described

in Algorithm 3.
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Algorithm 3 Decompose function with binary
multivariable polynomial system (FPPR) [7]

Input: R =[ a]P+[ b]Q, factor base FV
1 f1, f2, . . . , fm ←−
TransFromSemaevToBinary(sm+1 |xm+1=x(R))

2 GBf1,f2,...,fm ←− GroebnerBasis(f1, f2, . . . , fm |≺lex)
3 solf1,f2,...,fm ←−
GetSolutionFromGroebnerBasis(GBf1,f2,...,fm)

4 solm ←− {}
5 for e = {P1,P2, ..,Pm} ∈ solf1,f2,...,fm do
6 if P1 + P2 + . . . + Pm + R = O then
7 solm ←− solm ∪ {e}
8 end
9 end
Output: solm contains the decomposition elements of

R w.r.t. FV

We first substitute xm+1 with x(R) in sm+1. The Trans-
FromSemaevToBinaryWithSym function transforms the
equation sm+1 |xm+1=x(R)= 0 into system f1, f2, . . . , fm as
described above. To solve this system, we compute its
Gröbner basis with respect to a lexicographic ordering
using an algorithm such as F4 or F5 algorithm [4,5]. A
Gröbner basis of the system we solved here always con-
tains some univariate polynomial (the polynomial 1 when
there is no solution) with lexicographic ordering, and the
solutions of f1, f2, . . . , fm can be obtained from the roots
of this polynomial. However, since it is much more effi-
cient to compute a Gröbner basis for a graded-reversed
lexicographic order than for a lexicographic ordering,
a Gröbner basis of f1, f2, . . . , fm is first computed for a
graded-reverse lexicographic ordering and then trans-
formed into a Gröbner basis for a lexicographic ordering
using FGLM algorithm [6].
After getting the solutions of f1, f2, . . . , fm, we find the

corresponding solutions over Eα,β . As before, this requires
to check whether P1 + P2 + . . . + Pm + R = O for all the
potential solutions in the line 6 of Algorithm 3.
Although FPPR approach provides a systematic way to

solve Semaev’s polynomials, their algorithm is still not
practical. Petit and Quisquater estimated that the method
could beat generic algorithms for extension degrees n
larger than about 2000 [15]. This number is much larger
than the parameter n = 160 that is currently used in appli-
cations. In fact, the degrees of the equations in f1, f2, . . . , fm
grow quadratically with m, and the number of monomial
terms in the equations is exponential in this degree. In
practice, the sole computation of the Semaev’s polynomial
sm+1 seems to be a challenging task for m larger than 7.
Because of the large computation costs (both in time and
memory), no experimental result has been provided in [7]
for n larger than 20.

In this work, we provide a variant of FPPR method that
practically improves its complexity. Our method exploits
the symmetry of Semaev’s polynomials to reduce both
the degree of the equations and the number of monomial
terms appearing during the computation of a Gröbner
basis of the system f1, f2, . . . , fm.

2.4 Use of symmetries in previous works
The symmetry of Semaev’s polynomials has been
exploited in previous works, but always for finite fields
Fpn with composite extension degrees n. The approach
was already described by Gaudry [9] as a mean to accel-
erate the Gröbner basis computations. The symmetry of
Semaev’s polynomials has also been used by Joux and
Vitse’s to establish new ECDLP records for composite
extension degree fields [12,13]. Extra symmetries resulting
from the existence of a rational 2-torsion point have also
been exploited by Faugère et al. for twisted Edward curves
and twisted Jacobi curves [8]. In all these approaches,
exploiting the symmetries of the system allows reducing
the degrees of the equations and the number of monomi-
als involved in the Gröbner basis computation, hence it
reduces both the time and the memory costs.
To exploit the symmetry in ECDLP index calculus algo-

rithms, we first rewrite Semaev’s polynomial sm+1 with
the elementary symmetric polynomials.

Definition 2. Let x1, x2, . . . , xm be m variables, then the
elementary symmetric polynomials are defined as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1 := ∑
1≤j1≤m xj1

σ2 := ∑
1≤j1<j2≤m xj1xj2

σ3 := ∑
1≤j1<j2<j3≤m xj1xj2xj3

...
σm := ∏

1≤j≤m xj

(1)

Any symmetric polynomial can be written as an alge-
braic combination of these elementary symmetric poly-
nomials. We denote the symmetrized version of Semaev’s
polynomial sm by s′m. For example for the curve Eα,β in
characteristic 2, we have

s3 = (x1x2 + x1x3 + x2x3)2 + x1x2x3 + β ,

where x3 is supposed to be fixed to some x(R). The
elementary symmetric polynomials are

{
σ1 = x1 + x2,
σ2 = x1x2.

The symmetrized version of s3 is therefore

s′3 = (σ2 + σ1x3)2 + σ2x3 + β .
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Since x3 is fixed and the squaring is a linear operation over
F2, we see that symmetrization leads to a much simpler
polynomial.
Let us now assume that n is a composite number with

a non-trivial factor n′. In this case, we can fix the vector
space V as the subfield Fpn′ of Fpn . We note that all arith-
metic operations are closed on the elements of V for this
special choice. In particular, we have

if xi ∈ V then σi ∈ V . (2)

Let now {v1, v2, . . . , vn/n′ } be a basis of Fpn/Fpn′ . We can
write

σj = dj,0 for 1 ≤ j ≤ m,
xm+1 = r1v1 + r2v2 + . . . + rn/n′vn/n′ ,

where r� ∈ Fpn′ are known and the variables dj,0 are
defined over Fpn′ . These relations can be substituted in
the equation s′m+1 |xm+1=x(R)= 0 to obtain a system of
n/n′ equations in the m variables dj,0 only. Since the total
degree and the degree of s′m with respect to each symmet-
ric variable σi are lower than those of sm with respect to all
non-symmetric variables xi, the degrees of the equations
in the resulting system are also lower and the system is
easier to solve. As long as n/n′ ≈ m, the system has a
reasonable chance to have a solution.
Given a solution (σ1, . . . , σm) for this system, we can

recover all possible corresponding values for the variables
x1, . . . , xm (if there is any) by solving the system given
in Definition 2, or equivalently by solving the symmetric
polynomial equation

xm +
m∑
i=1

σixm−i = xm + σ1xm−1 + σ2xm−2 + . . . + σm.

Note that the existence of a non-trivial factor of n and
the special choice for V are crucial here. Indeed, they
allow building a new system that only involves symmetric
variables and that is significantly simpler to solve than the
previous one.

3 Using symmetries with prime extension
degrees

When n is prime, the only subfield of F2n is F2, but
choosing V = F2 would imply to choose m = n,
hence to work with Semaev’s polynomial sn+1 which
would not be practical when n is large. In Diem’s and
FPPR attacks [3,7], the set V is therefore a generic vec-
tor subspace of F2n/F2 with dimension n′. In that case,
Implication (2) does not hold, but we now show how to
nevertheless take advantage of symmetries in Semaev’s
polynomials.

3.1 A new systemwith both symmetric and
non-symmetric variables

Let n be an arbitrary integer (possibly prime) and let V
be a vector subspace of F2n/F2 with dimension n′. Let
{v1, . . . , vn′ } be a basis of V . We can write

{
xj = cj,1v1 + cj,2v2 + . . . + cj,n′vn′ , for 1 ≤ j ≤ m
xm+1 = r1v1 + r2v2 + . . . + rnvn,

where cj,� with 1 ≤ j ≤ m and 1 ≤ � ≤ n′ are variables but
r�, 1 ≤ � ≤ n are known elements in F2.
Like in the composite extension degree case, we can use

the elementary symmetric polynomials to write Semaev’s
polynomial sm+1 as a polynomial s′m+1 in the variables σj
only. However since V is not a field anymore, constraining
xj inV does not constrain σj inV anymore. Since σj ∈ F2n ,
we can however write

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 = d1,1v1 + d1,2v2 + . . . + d1,nvn,
σ2 = d2,1v1 + d2,2v2 + . . . + d2,nvn,

...
σm = dm,1v1 + dm,2v2 + . . . + dm,nvn.

where dj,� with 1 ≤ j ≤ m and 1 ≤ � ≤ n are binary
variables. Using these equations, we can substitute σj in
s′m+1 to obtain

s′m+1 = f ′
1v1 + f ′

2v2 + . . . + f ′
nvn

where f ′
1, f ′

2, . . . , f ′
n are polynomials in the binary vari-

ables dj,�. Applying a Weil descent on the symmetrized
Semaev’s polynomial equation s′m+1 = 0, we therefore
obtain a polynomial system f ′

1 = f ′
2 = . . . = f ′

n = 0 in the
mn binary variables dj,�.
The variables dj,� must also satisfy certain constraints

provided by System (1). More precisely, substituting both
the xj and the σj variables for binary variables in the
equation

σj =
∑

I⊂{1,...,m}
#I=j

∏
k∈I

xk ,

we obtain

dj,1v1 + dj,2v2 + . . . + dj,nvn = σj

=
∑

I⊂{1,...,m}
#I=j

∏
k∈I

n′∑
�=1

ck,�v�

= gj,1v1 + gj,2v2 + . . . + gj,nvn

where gj,� are polynomials in the mn′ binary vari-
ables cj,� only. In other words, applying a Weil descent
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on each equation of System (1), we obtain mn new
equations

dj,� = gj,�

in themn+mn′ binary variables cj,� and dj,�. The resulting
system

{
f ′
� = 0, 1 ≤ � ≤ n,
dj,� = gj,�, 1 ≤ j ≤ m, 1 ≤ � ≤ n,

has mn + n equations in mn + mn′ binary variables. As
before, the system is expected to have solutions ifmn′ ≈ n,
and it can then be solved using a Gröbner basis algorithm.
In comparison with the FPPR [7], the number of vari-

ables is multiplied by a factor roughly (m + 1). However,
the degrees of our equations are also decreased thanks
to the symmetrization, and this may decrease the degree
of regularity of the system. In order to compare the time
and memory complexities of both approaches, let DFPPR
and DOurs be the degrees of regularity of the correspond-
ing systems. The time and memory costs are respectively
roughly #var2Dreg and #var3Dreg . Assuming that neither
DFPPR nor DOurs depends on n (as suggested by Petit
and Quisquater’s experiments [15]), that DOurs < DFPPR
(thanks to the use of symmetric variables) and that m is
small enough, then the extra (m+1) factors in the number
of variables will be a small price to pay for large enough
parameters. In practice, experiments are limited to very
small n and m values. For these small parameters, we
could not observe any significant advantage of this vari-
ant with respect to FPPR. However, the complexity can be
improved even further in practice with a clever choice of
vector space.

3.2 A special vector space
In the prime degree extension case, V cannot be a sub-
field, hence the symmetric variables σj are not restricted
to V . This led us to introduce mn variables dj,� instead of
m variables only in the composite extension degree case.
However, we point out that some vector spaces may be
“closer to a subfield” than other ones. In particular if V is
generated by the basis {1,ω,ω2, . . . ,ωn′−1}, then we have

if xj ∈ V then σ2 ∈ V ′

where V ′ ⊃ V is generated by the basis {1,ω,ω2, . . . ,
ω2n′−2}.
More generally, we can write

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ1 = d1,0 + d1,1ω + . . . + d1,n′−1ω
n′−1,

σ2 = d2,0 + d2,1ω + . . . + d2,2n′−2ω
2n′−2,

...
σm = dm,0 + dm,1ω + . . . + dm,n−mωn−m.

Applying a Weil descent on s′m+1 |xm+1=x(R) and each
equation of System (1) as before, we obtain a new polyno-
mial system

{
f ′
� = 0, 0 ≤ � ≤ n − 1,
dj,� = gj,�, 1 ≤ j ≤ m, 0 ≤ � ≤ j(n′ − 1),

in n + (n′ − 1)m(m+1)
2 + m equations and n′m + (n′ − 1)

m(m+1)
2 + m variables.

Whenm is large andmn′ ≈ n, the number of variables is
decreased by a factor 2 if we use our special choice of vec-
tor space instead of a random one. Form = 4 and n ≈ 4n′,
the number of variables is reduced from about 5n to about
7n/2. For m = 3 and n ≈ 3n′, the number of variables is
reduced from about 4n to about 3n thanks to our special
choice for V . In practice, this improvement turns out to
be significant.
Table 1 is the comparison of different strategies used in

the decomposition algorithm. Note that the degree of reg-
ularity is decreased from 7 to 4 when m = 3 by rewriting
sm+1 to s′m+1 with the symmetric function. It is difficult to
estimate how many degrees of regularity are reduced for
m other than 3 so far since we don’t have enough exper-
imental results due to the large polynomial system and
the little resource. Our experimental results in section 4
implies the heuristic “DOurs < DFPPR” will be true for
any m as long as s′m+1 had simpler structure and smaller
degree than sm+1. The lack of the the data of degree of
regularity for m > 3 makes the difficulty of the predic-
tion of the degree of regularity in terms of m. This makes
the complexity analysis following the step of [15] impos-
sible even for a restricted model. If we make a model for
a fixed m = 3, then the algorithm become more likely an
exhaustive search instead of a sub-exponential algorithm.
We will leave the estimation of the degree of regularity as
a future work.

3.3 New decomposition algorithm
Our new algorithm for the decomposition problem is
therefore using a new multivariate polynomial system by
adopting the symmetric function and the special vector
space V described above, denoted as ThisWork. The only
difference between FPPR and ThisWork comes from a dif-
ferent TransFromSemaevToBinary function in the line 1

Table 1 Comparison of different multivariate polynomial
systems by experimental results

sm+1 s′m+1 s′m+1 with specific V

#var mn′ mn′ + mn mn′ + (n′ − 1)m(m+1)
2 + m

#poly n n + mn n + (n′ − 1)m(m+1)
2 + m

Dreg whenm = 3 ≤ 7 ≤ 4 ≤ 4
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of Algorithm 3. Although the system solved in ThisWork
contains more variables and equations than the system
solved in FPPR, the degrees of the equations are smaller
and they involve less monomial terms. We now describe
our experimental results.

4 Experimental results
To validate our analysis and experimentally compare our
method with FPPR, we implemented both algorithms in
Magma. All our experiments were conducted on a CPU
with four AMD Opteron Processor 6276 with 16 cores,
running at 2.3 GHz with a L3 cache of 16 MB. The Oper-
ating System was LinuxMint 14 with 512GBmemory. The
programming platform was Magma V2.18-9 in its 64-bit
version. Gröbner basis were computed with the Groeb-
nerBasis function of Magma. Our implementations of
FPPR and ThisWork share the same program, except the
different TransFromSemaevToBinary function at line 1
of Algorithm 3. We first focus on the relation search,
then we describe experimental results for a whole ECDLP
computation.

4.1 Relation search
The relation search is the core of both FPPR and our vari-
ant. In our experiments, we considered a fixed randomly
chosen curve Eα,β , a fixed ECDLP with respect to P, and
a fixed m = 3 for all values of the parameters n and n′.
For random integers a and b, we used both FPPR and
ThisWork to find factor basis elements Pj ∈ FV such that
P1 + · · · + Pm = [a]P+[b]Q.
We focused on m = 3 (fourth Semaev’s polynomial) in

our experiments. Indeed, there is no hope to solve ECDLP
faster than with generic algorithms using m = 2 because
of the linear algebra stage at the end of the index calcu-
lus algorithma. On the other hand, the method appears
unpractical for m = 4 even for very small values of n
because of the exponential increase withm of the degrees
in Semaev’s polynomials.
The experimental results are given in Tables 2 and 3. For

most values of the parameters n and n′, the experiment
was repeated 200 times and average values are presented
in the table. For large values n′ = 6, the experiment was
only repeated 3 times due to the long execution time.
We noticed that the time required to solve one system

varied significantly depending on whether it had solutions
or not. Tables 2 and 3 therefore present results for each
case in separate columns. The table contains the following
information:Dreg is degree of regularity; ttrans and tgroe are
respectively the time (in seconds) needed to transform the
polynomial sm+1 into a binary system and to compute a
Gröbner basis of this system;mem is thememory required
by the experiment (in MB).
The experiments show that the degrees of regular-

ity of the systems occurring during the relation search

Table 2 Comparison of the relation search with systems
having solutions

m= 3

n n’
sol:yes

Dreg ttrans tgroe mem

FPPR 23 3 6 5.47 1.06 29.10

ThisWork 23 3 3 0.91 1.04 15.59

FPPR 31 3 6 7.38 1.03 41.12

ThisWork 31 3 3 1.24 0.90 17.59

FPPR 41 3 6 9.81 0.98 54.35

ThisWork 41 3 3 1.64 0.87 20.58

FPPR 53 3 6 12.86 1.03 72.06

ThisWork 53 3 3 2.12 0.79 24.89

FPPR 23 4 6 21.06 6.83 95.66

ThisWork 23 4 3 1.83 3.19 29.63

FPPR 31 4 6 28.94 3.37 136.23

ThisWork 31 4 3 2.49 3.20 35.30

FPPR 41 4 6 37.58 2.79 189.16

ThisWork 41 4 3 3.24 2.23 33.84

FPPR 53 4 6 50.63 1.86 272.55

ThisWork 53 4 3 4.19 1.75 40.46

FPPR 23 5 7 64.67 70.46 475.55

ThisWork 23 5 4 3.01 157.86 323.60

FPPR 31 5 7 84.08 70.64 547.86

ThisWork 31 5 4 3.99 130.07 362.76

FPPR 41 5 6 113.85 230.40 889.70

ThisWork 41 5 3 5.33 13.26 126.19

FPPR 53 5 6 147.66 80.76 810.08

ThisWork 53 5 3 6.83 6.68 59.58

FPPR 23 6 7 163.45 3888.70 6656.13

ThisWork 23 6 4 4.36 5150.12 4791.31

FPPR 31 6 7 209.98 4664.25 7336.11

ThisWork 31 6 4 5.82 2811.99 3257.82

FPPR 41 6 7 279.05 1045.53 4416.99

ThisWork 41 6 4 7.87 953.60 1361.59

FPPR 53 6 7 366.92 2967.03 7311.44

ThisWork 53 6 3 10.48 34.82 151.04

are decreased from values between 6 and 7 in FPPR to
values between 3 and 4 in our method. This is partic-
ularly important since the complexity of Gröebner basis
algorithms is exponential in this degree. As noticed in
Section 3, this huge advantage of our method comes at the
cost of a significant increase in the number of variables,
which itself tends to increase the complexity of Gröbner
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Table 3 Comparison of the relation search with systems
having no solution

m= 3

n n’
sol:no

Dreg ttrans tgroe mem

FPPR 23 3 6 6.18 0.12 32.25

ThisWork 23 3 3 0.97 0.14 16.68

FPPR 31 3 5 8.38 0.06 46.33

ThisWork 31 3 3 1.30 0.04 18.87

FPPR 41 3 6 11.17 0.06 61.70

ThisWork 41 3 3 1.75 0.05 22.60

FPPR 53 3 5 14.57 0.07 81.22

ThisWork 53 3 2 2.28 0.04 27.52

FPPR 23 4 6 22.31 4.67 91.23

ThisWork 23 4 3 1.81 1.72 22.75

FPPR 31 4 6 30.19 1.56 142.69

ThisWork 31 4 3 2.48 1.24 29.22

FPPR 41 4 6 39.80 0.84 201.77

ThisWork 41 4 3 3.33 0.56 35.49

FPPR 53 4 6 52.26 0.37 279.83

ThisWork 53 4 3 4.36 0.46 42.63

FPPR 23 5 7 65.07 55.75 381.39

ThisWork 23 5 4 3.07 17.83 253.16

FPPR 31 5 7 85.50 53.56 410.47

ThisWork 31 5 4 4.13 20.98 279.23

FPPR 41 5 7 114.09 69.12 930.24

ThisWork 41 5 3 5.34 8.53 58.99

FPPR 53 5 6 150.41 23.31 814.76

ThisWork 53 5 3 6.96 1.36 59.91

FPPR 23 6 7 156.11 3309.43 5025.06

ThisWork 23 6 4 4.42 3082.15 4428.07

FPPR 31 6 7 206.29 1205.29 7276.85

ThisWork 31 6 4 6.09 1049.14 2616.21

FPPR 41 6 7 266.44 653.92 3062.68

ThisWork 41 6 4 8.31 87.61 896.38

FPPR 53 6 7 359.03 1857.65 6677.92

ThisWork 53 6 3 10.70 31.21 151.02

basis algorithms. However, while our method may require
more memory and time for small parameters (n, n′), it
becomes more efficient than FPPR when the parameters
increase. We remark that although the time required to
solve the system may be larger with our method than with
FPPR method for small parameters, the time required to
build this system is always smaller. This is due to the

much simpler structure of s′m+1 compared to sm+1 (lower
degrees and less monomial terms). Our method seems to
work particularly well compared to FPPR when there is
no solution for the system, which will happen most of the
times when solving an ECDLP instance.

4.2 Whole ECDLP computation
In a next step, we also implemented the whole ECDLP
algorithmwith the two strategies FPPR and ThisWork. For
the specified n, we ran the whole attack using m = 3 and
several values for n′. The orders of the curves we picked
in our experiments are shown in Table 4 together with the
experimental results for the best value of n′, which turned
out to be 3 in all cases. Timings provided in the table are
in seconds. Table 4 clearly shows that ThisWork is more
efficient than FPPR.
It may look strange that n′ = 3 leads to optimal tim-

ings at first sight. Indeed, the ECDLP attacks described
above use mn′ ≈ n and a constant value for n′ leads
to a method close to exhaustive search. However, this is
consistent with the observation already made in [7,15]
that exhaustive search is more efficient than index calcu-
lus for small parameters. Table 5 also shows that while
increasing n′ increases the probability to have solutions, it
also increases the complexity of the Gröebner basis algo-
rithm. This increase turns out to be significant for small
parameters.

5 Conclusion and future work
In this paper, we proposed a variant of FPPR attack on the
binary elliptic curve discrete logarithm problem (ECDLP).
Our variant takes advantage of the symmetry of Semaev’s
polynomials to compute relations more efficiently. While
symmetries had also been exploited in similar ECDLP
algorithms for curves defined over finite fields with com-
posite extension degrees, our method is the first one in
the case of extension fields with prime extension degrees,
which is the most interesting case for applications.
At Asiacrypt 2012, Petit and Quisquater estimated

that FPPR method would beat generic discrete logarithm

Table 4 Comparison of ECDLP (m= 3, n’= 3)

n #Eα,β FPPR (sec) ThisWork (sec)

7 4*37 1.574 0.864

11 4*523 8.625 6.702

13 4*2089 49.698 31.058

17 4*32941 2454.470 1364.742

19 4*131431 22474.450 9962.861

23 4*2098553 N/A 66703.400

29 4*134229259 N/A 2953043.698

*It is the product symbol which denoted the order of the EC group.
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Table 5 Trade-off for choosingm and n’

Probability to get answers Complexity
2mn′
m!2n #varωDreg

m increases Increases Both Dreg , #var increases

n′ increases Increases #var increases

algorithms for any extension degree larger than roughly
2000. We provided heuristic arguments and experimen-
tal data showing that our method reduces both the time
and the memory required to compute a relation in FPPR,
unless the parameters are very small. Our results therefore
imply that Petit and Quisquater’s bound can be lowered a
little.
Our work raises several interesting questions. On a the-

oretical side, it would be interesting to prove that the
degrees of regularity of the systems appearing in the rela-
tion search will not rise when n increases. It would also
be interesting to provide a more precise analysis of our
method and to precisely estimate for which values of the
parameters it will become better than FPPR.
On a practical side, it would be interesting to improve

the resolution of the systems even further. One idea in that
direction is pre-computation of the invariant of this algo-
rithm such as the transformation and the Gröbner basis of
part of the system. In fact, even the resolution of the sys-
tem could potentially be improved using special Gröebner
basis algorithms such as F4 trace [4,11].
Using Gröbner basis algorithms to solve ECDLP is a

very recent idea. We expect that the index calculus algo-
rithms that have recently appeared in the literature will be
subject to further theoretical improvements and practical
optimizations in a close future.

Endnote
a In fact, evenm = 3 would require a double large prime

variant of the index calculus algorithm described above
in order to beat generic discrete logarithm algorithms [9].
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