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SUMMARY

Speed-accuracy trade-off is an intensively studied
lawgoverning almost all behavioral tasks across spe-
cies. Here we show that motivation by reward breaks
this law, by simultaneously invigorating movement
and improving response precision. We devised a
model to explain this paradoxical effect of reward
by considering a new factor: the cost of control. Ex-
erting control to improve response precisionmight it-
self come at a cost—a cost to attenuate a proportion
of intrinsic neural noise. Applying a noise-reduction
cost to optimal motor control predicted that reward
can increase both velocity and accuracy. Similarly,
application to decision-making predicted that reward
reduces reaction times and errors in cognitive con-
trol. We used a novel saccadic distraction task to
quantify the speed and accuracy of both movements
and decisions under varying reward. Both faster
speeds and smaller errors were observed with higher
incentives, with the results best fitted by a model
including a precision cost. Recent theories consider
dopamine to be a key neuromodulator in mediating
motivational effects of reward. We therefore exam-
ined how Parkinson’s disease (PD), a condition asso-
ciated with dopamine depletion, alters the effects of
reward. Individuals with PD showed reduced reward
sensitivity in their speed and accuracy, consistent in
our model with higher noise-control costs. Including
a cost of control over noise explains how reward
may allow apparent performance limits to be sur-
passed. On this view, the pattern of reduced reward
sensitivity in PD patients can specifically be ac-
counted for by a higher cost for controlling noise.

INTRODUCTION

A fundamental and long-established finding in human and animal

behavior is the phenomenon of speed-accuracy trade-off: when
Curre
actions are performed faster, they are less accurate [1]. This prin-

ciple applies widely across both motor and cognitive perfor-

mance [2, 3]. Current theoretical approaches suggest that

rewardmay increase the speed of actions, but at the cost of their

accuracy. Recently however, some studies have reported that

reward simultaneously increases both velocity and precision of

motor control [4] and can reduce reaction times and error rates

in decisions involving cognitive control [5, 6]. Here we provide

a unified quantitative framework for how and why motivation

by reward in fact contravenes the speed-accuracy trade-off,

simultaneously improving both speed and accuracy in these

diverse domains. According to our model, the speed-accuracy

trade-off is not a hard barrier but rather a gray zone where the

apparent limit of performance can be determined by reward (Fig-

ure 1). We apply the theory to both movements and decisions.

We test our framework in healthy participants and also compare

patients with Parkinson’s disease to a control group to demon-

strate the role of reward and dopamine in accounting for the

cost of control.

According to motor control theory, the speed-accuracy trade-

off arises because larger or faster movements are subject to

greater motor noise [7, 8]. Similarly, in the domain of cognitive

control, models of decision-making predict a speed-accuracy

trade-off, on the assumption that faster responding implies less

time to weigh up evidence and thus more error-prone choices

[9]. Since organisms prefer to obtain reward sooner [10–13],

high reward results in greater speed, or vigor, as measured by

either movement time or reaction time [14–16]. Crucially, how-

ever, if noise ultimately limits performance, then the effect of

reward on invigorating actions should lead to fast but inaccurate

responding—in conflict with observed behavior [4, 5].

Current accounts, therefore, do not explain why we can

perform well (i.e., be both fast and accurate) when motivated

by reward but at other times are seemingly suboptimal [5, 17].

We propose a quantitative account of the effects of reward in

terms of paying the cost of control. Such a factor has been

invoked recently to explain qualitatively how incentive might in-

crease ‘‘cognitive control’’ by overcoming a cost [18–20]. Here,

we consider a hidden precision cost, analogous to the cost of

motor commands in optimal control theory.

Numerically, we propose that the brain might put a fixed price

on attenuating noise by a certain proportion. Noise-reduction
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Figure 1. Breaking the Speed-Accuracy

Trade-Off

A conventional account of the speed-accuracy

trade-off is shown on top (A and B). Lower

panels illustrate the inclusion of a precision cost

(C and D).

(A) As movement time decreases (and speed in-

creases), accuracy declines. This is because faster

movements require larger forces, which are sus-

ceptible to proportionally higher noise. Because

noise is taken to be rigidly proportional to motor

command size, behavior is constrained such that

accuracy depends on speed. This is captured by a

speed-accuracy trade-off contour (illustrated in

blue in the schematic).

(B) Standard motor control models determine

the optimal movement as the one that gives

the highest average payoff. The expected value

(EV) of a movement depends on the motor

command u. EV can be expressed in terms of

the reward, discounted by the movement time

(pink). Larger motor commands give faster

movements, leading to earlier reward, which

is more valuable (here we use hyperbolic

temporal discounting). The reward is further

reduced by movement error, which reduces the

probability of success (green). Under the ortho-

dox view, this error is determined by noise

proportional to the motor command. This means

that faster movements will have less accurate

endpoints and thus have a lower chance of

winning a reward. The final term is the energetic

cost of the motor command itself (blue). The

balance between time and accuracy is governed only by the movement speed, which guarantees that speed and accuracy trade off with one another.

(C) We suggest that reward has a motivating effect that permits both faster and more precise behavior. Incentivization by reward thus produces a change in a

direction perpendicular to the blue line (red arrows), contrary to the speed-accuracy trade-off. By allowing both force and movement precision to be varied, our

model allows two degrees of freedom over speed-accuracy space.

(D) In order to explain violations of the speed-accuracy constraint, we introduced an additional precision command. The precision command reduces noise (uP,

shown in red), complementing the usual force command (uF, blue). We propose that this command is itself costly, in the same way as the force command uF,

leading to a cost term juPj2 + juFj2. Optimizing EV by selecting both the precision and force would allow accuracy to improve independently of speed, but

constrained by this cost. Higher incentives allow a greater investment in precision, rather than a trade-off with speed, so genuine performance improvements are

possible.
mechanisms might include corrective feedback signals [21],

allocating more resources to representing that signal [22], or

attenuating currently irrelevant information [23]. Each of these

mechanisms may incur a cost to the organism in terms of oppor-

tunity cost, neuronal resources, and/or energetic cost. However,

regardless of the ultimate nature of the cost, optimizing the level

of precision provides a unified mathematical way of describing

the deployment of resources such as effort, attention, and exec-

utive control [24].

Our framework makes several key predictions. First, when

applied to optimal motor control, the precision cost leads

to the prediction that when incentives are high, movements

can become both fast and precise. Second, when applied

to decision processes, in the form of a rise-to-threshold

model of reaction time (RT), a noise-reduction cost can also

quantitatively explain motivational effects on RTs and error

rates. From a cognitive neuroscience perspective, this as

approach allows quantification of ‘‘effort costs’’ of deploying

increased attention—effectively amplifying relevant sensory

signals or suppressing irrelevant ones [25]—when the reward

are high.
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To test our theory and quantify how reward can make us

apparently ‘‘more optimal,’’ we devised a novel saccadic task

in which participants have to look toward a target quickly, while

avoiding a salient early-onset distractor (Figure 5). The velocity of

a saccade has often been regarded as rigidly determined by its

amplitude [26–28], until recent studies demonstratedmodulation

by reward [4, 14, 16]. In our experiment, by manipulating incen-

tives on each trial, we measured exactly how reward increases

saccade velocity (speed) and endpoint accuracy. Furthermore,

we were able to separately index cognitive control by measuring

errors to the distractor and their relation to RT. Our model

accounted well for the observed behavior.

Next, we investigated whether patients with Parkinson’s dis-

ease (PD) show altered motivational effects of reward. In both

animals and humans, dopaminergic stimulation increases will-

ingness to exert an effortful force for reward [29, 30] without

trading speed for accuracy [31, 32]. In PD, dopamine depletion

leads to slow, small movements. An attractive explanation for

this is that PD patients experience greater costs for their move-

ments [33, 34]. Indeed, it has been proposed that reward might

potentially exert its effects on vigor of response via dopamine
ors



[11, 32]. Applying our cost-of-control framework provides a

parsimonious explanation for how this might arise. Patients

with PD might be impaired in reducing internal noise in response

to reward, manifested as a reduced ability to increasemovement

speed in response to incentive. This would explain why PD

patients are sometimes less precise in motor tasks [15] yet can

still generate a range of movement speeds [15]. To examine

the proposition that dopamine depletion might increase the

cost of attenuating noise, we tested patients with PD and fitted

the model to healthy participants’ and patients’ data.

RESULTS

Modeling Reward Incentives in an Optimal Control
Framework
Current Conceptual Frameworks Cannot Explain

Behavior

When reward is available, we react faster [13, 32]. To explain how

reward induces urgency, or time pressure in responding, it has

been suggested that a high ongoing rate of reward may

encourage fast frequent responding, minimizing opportunity

cost [11]. Time pressure can be expressed in terms of temporal

discounting [10, 12], in which a delayed reward is worth less. A

commonly observed pattern of devaluation over time is ‘‘hyper-

bolic discounting’’ [10, 13], in which rewards delayed by time T

are worth less by a factor of 1 + kT, where k is known as the dis-

count rate [35].

Conversely, at least two factors favor slower movements.

First, fast movements requiremore energy.Within the framework

of motor control, a fast movement results from a larger ‘‘control

command’’—e.g., the firing rate of a motor neuron. The energy

expenditure corresponds to a cost, which is presumed to be

related to size of the control command [36, 37]. Second, motor

noise has been assumed to increase proportionally to the size

of the control command [26], such that faster actions are less

likely to be successful (e.g., arrive on a target).

These constraints lead to an optimum speed, since faster

movements have higher energetic costs and error rates, which

must be ‘‘paid’’ by gaining more reward sooner. To quantify

this, we consider a motor command u(t), representing a set of in-

structions varying over time, for example, the neural output to

muscles. We may then weigh up the expected value (EV) of an

action, which depends on u [36] (Figure 1B). The optimal move-

ment speed can be determined by finding u that maximizes EV.

The utility of the reward R is scaled by the probability of the

movement arriving on-target Pwin and must balance the ener-

getic cost juj2:
EVðuÞ=R3DðuÞ3PwinðuÞ � juj2
Expected value of action=Reward3 temporal discount3probability of reward given a motor command

�ðsize of motor commandÞ2
Equation (1)
In the orthodox model, higher reward increases the relative

importance of time costs D, relative to energetic costs juj2.
High reward thus favors fast movements (larger u) [12, 13], which
Curre
are, however, subject to greater neural noise [7, 23]. Thus, ac-

cording to previous accounts, increasing the reward shifts

behavior from cautious, accurate responding to impulsive, inac-

curate responding [37] (Figure 1A, blue line). Crucially, this form

of cost function does not permit both accuracy and movement

speed to increase simultaneously without compromising move-

ment amplitude. To account for such effects, it is necessary to

invoke a second dimension of control: a cost for attenuating

motor noise, or equivalently, increasing signal-to-noise ratios.

Put simply, we might choose to invest in noise reduction, if it

were advantageous (Figure 1C). To make the cost explicit, we

can include in u an additional control signal that reduces noise.

Applying a Noise-Reduction Cost to Motor Execution

We now consider a simple one-dimensional movement and split

the command u into two components: a standard motor com-

mand uF signaling force, and also a novel precision control

signal uP. For the optimal movement, a force/precision pair

u = [uF, uP] must be chosen that maximizes value (Figure 1D).

The larger the precision command uP, the lower the resultant

noise in the force generated by uF. The actual mechanism that

cancels noise might be complex, e.g., involving numerous inter-

nal signals, but our notion of a precision signal abstracts away

the actual signals that correct for noise and retains only their

cost and efficacy. (See Supplemental Experimental Procedures

for a general form and discussion on how noise might be atten-

uated in the brain.) The probability of obtaining the reward Pwin(u)

will increase with precision uP and decrease with force uF. But

because we treat uP in the same way as a control signal, it incurs

a cost juPj2.
When motor noise and accuracy are made irrelevant (e.g., for

very large targets), then increasing reward simply increases the

cost of time relative to energetic costs. Subjects are conse-

quently more willing to exert more effort tomove faster, so higher

reward increases optimal speed (Figure 2A), as in the orthodox

view [16, 36]. Conversely, if speed is ignored and only accuracy

and precision are considered, then a new trade-off occurs be-

tween the cost of precision and the cost of errors. Since preci-

sion improves the probability of success but is expensive, there

is an optimal level of accuracy which increases when more

reward is on offer (Figure 2B). Crucially, when both precision

and force are allowed to vary simultaneously, reward has the

effect of increasing the optimal velocity while also reducing

motor variability (Figure 2C). For each reward level R, there is a

particular combination of force uF and precision uP that maxi-

mizes EV (Figures 3A and 3B), corresponding to an optimal

saccade velocity and endpoint variability (Figures 3C and S5).

The optimum will depend on an individual’s temporal discount
rate k and the noise parameter s. To account for the possibility

that not all noise may be controllable by a system (e.g., noise

in the effector itself), an additive baseline noise term s0 can be
nt Biology 25, 1707–1716, June 29, 2015 ª2015 The Authors 1709
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Figure 2. The Costs of Inaccuracy, Slow-

ness, and Control

Our model incorporates three costs: inaccuracy is

expensive because errors are not rewarded,

slowness is expensive because a reward is less

valuable when delayed (temporal discounting),

and we further suggest that control over errors is

itself expensive. Therefore, a three-way balance

obtains.

(A) The vertical axis represents the subjective value

of a given movement. For a given reward R, tem-

poral discounting causes the reward’s subjective

value to fall as movement times get longer (dotted

lines). However, moving faster entails greater en-

ergy expenditure (dashed line; negative value im-

plies a cost). The net value (solid lines) is the sum of

these two components, showing that the optimal

movement is faster with higher reward [36].

(B) The probability of winning a reward, Pwin, could

depend on the endpoint of the movement being

accurate. The cost of precision allows the endpoint

variability to be reduced at a cost. The probability

of landing on a fixed-size target can be increased if

a ‘‘precision cost’’ is paid (dashed line). Precision

increases the average gain fromwinning (dotted line), as shown for three different reward levels. The net value (solid lines) illustrates that the optimal movement is

more precise with increasing reward.

(C) If both speed and accuracy are both free to vary, the optimum pair can be determined as a function of reward. Reward increases the optimal movement speed

and, when temporal discounting is not too large, reduces the optimal endpoint variability.
included. In this case, s0 represents a participant’s fixed motor

noise, whereas s represents the relative cost of precision,

compared to energetic (force) cost.

Application of Precision Control Costs to Rise-to-

Threshold Models

Controlling noisemight be relevant not only for onlinemotor con-

trol but also for deciding which action to take, and when. For de-

cisions, standard speed-accuracy trade-offs are accurately

predicted by rise-to-threshold models such as the drift-diffusion

model (Figure 4A). In this model, a decision variable accumulates

information over time about which action to select. When the

evidence reaches a threshold, an action is triggered. Lowering

or raising the decision threshold q gives rise to fast, error-prone

choices or slow, accurate responses, respectively [9, 38]—

trading speed for accuracy. By default, the signal-to-noise ratio

m/s is assumed to remain constant. Attention or alertness might

augment the gain of signal over noise, but this is often postulated

to be ‘‘effortful,’’ currently without a quantitative prediction [25].

We suggest that these factors might be described in terms of a

top-down control signal uP that improves the signal-to-noise ra-

tio in the accumulator [39]. Crucially, this noise-reduction signal

may carry costs, which increase with uP. The threshold/precision

pair u = [q, uP] may then be optimized to maximize value (see

Supplemental Experimental Procedures). The model predicts

that reward could improve the signal-to-noise ratio of decisions

when it is economically feasible. The control cost determines, for

the first time quantitatively, how motivation leads to fast, accu-

rate responses—i.e., ‘‘true improvement’’ in performance. Simu-

lations of drift diffusion were run to obtain the optimum threshold

and precision for various reward levels and signal-to-noise ra-

tios. These simulations showed that reward increased accuracy

(Figures 4B and 4D), but also shortened RTs, under conditions

when signal-to-noise m/s was high (Figure 4E, red lines).
1710 Current Biology 25, 1707–1716, June 29, 2015 ª2015 The Auth
Testing the Effects of Reward Using Saccades
We devised a novel saccadic task to measure how reward im-

pacts upon both speed and error in movements and decisions.

Trials started with participants fixating one of three gray discs

arranged in a triangle (Figure 5A). They were instructed to

move their eyes as fast as possible to the disc that lit up second.

Participants were told that the first disc that was illuminated

would be a distractor and the second would be the target.

The faster they arrived at the target, the more money they won.

Critically, during the 1.2 s foreperiod, a recorded voice was

played back, speaking the maximum reward available on this

trial. Three reward levels were used: 0 pence (p), 10p, or 50p

(1p z 1.5 US cents). This indicated the amount that could be

won if a saccade was made rapidly to the target. Next, the fixa-

tion disc was dimmed while one of the other discs was bright-

ened (the distractor). After 80 ms, the remaining disc (the target)

brightened also. The display remained until gaze arrived at the

target. The task is a variant of the double-step paradigm [40]

and aimed to maximize oculomotor capture by the salient dis-

tractor [41].

Reward was calculated adaptively on each trial dependent on

when gaze arrived at the target and was displayed numerically

(Figure 5B). The target location was then used as the starting

point for the next trial. Participants performed 72 trials of each

of the three reward levels, intermixed. The task yielded four per-

formancemeasures: oculomotor capture errors (classified offline

according to whether the first saccade endpoint was closer to

the distractor than the target; Figure 5C), RT measured as time

from distractor onset until initiation of saccade, peak velocity

of correct saccades, and the variability in amplitudes of this first

saccade. This gave two measures of speed, and two measures

of accuracy, for the motoric and target-selection aspects of

the task (Figure 5D).
ors
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Figure 3. Optimal Control Model to Explain the Effect of Reward Incentives

In order to account for the ability of reward to improve both speed and accuracy, we hypothesized that in addition to a ‘‘vigor’’ or force signal (uF) that determines a

movement’s speed, individuals are also able to select a ‘‘precision’’ signal (uP) that determines the amount of variability in a movement. Crucially, this precision

signal is also costly.

(A) Each givenmotor command, i.e., a pair of force and precision u = (uF, uP), has an EV. The image shows EV as a function of u, with the best combination as blue

and worst as red. The value depends on three effects. First, the reward available is temporally discounted by the time taken by the movement, e.g., by hyperbolic

discounting 1=ð1+ k=
ffiffiffiffiffiffi
uF

p Þ. Second, this reward is only obtained if the movement is on target. We assume a Gaussian variation F of the endpoint proportional to

the size of the motor command. Third, although we can go faster to reduce temporal discounting (increasing uF) and be more precise to reduce error (increasing

uP), both of these incur a cost proportional to the squared control signal, u2. This leads to an optimal combination of force and precision for each movement, u*.

(B) The optimal motor command for a situation depends on the reward level R and on two subject-specific parameters: the discount rate k and the noise-control

cost s. The optimal precision (upper panels) and force (lower panels) both increase with increasing reward (y axis), indicating that reward induces greater

‘‘spending’’ on both speed and accuracy. However, precision and force are differentially influenced by reward, and the balance depends on the urgency (temporal

discount, k, left panels) and error constraints (encapsulated by s, right panels).

(C) The optimal commands determine the velocity and duration of each movement and the amount of variability for a desired movement amplitude. Reward

always increases velocity (lower panels). However, variability may increase or decrease with reward (upper panels), depending on s and k. A subject with minimal

discounting (e.g., k < 0.5) becomes less variable with higher reward, whereas a subject with high discount rates (e.g., k > 1) in fact tends to becomemore variable

with higher reward (upper panels) as they are under greater time pressure, i.e., trading speed for accuracy. These effects are re-plotted on different axes in

Figure S5.
Reward Breaks through the Speed-Accuracy Trade-Off

in Healthy People

In the first experiment, we studied the effects of reward in 39

healthy participants. Reward significantly increased speed, in

terms of both faster saccade velocities and shorter RTs. In addi-

tion, it also improved accuracy, with reduced oculomotor cap-

ture rates and lower endpoint variability. With high incentives

(50p), the average peak saccade velocity was of 474�s�1 ±

13�s�1 (SEM) compared to 452�s�1 ± 11�s�1 with no incentive

(repeated-measures ANOVA, main effect of reward F(2,76) =

20.8, p < 0.001; Figure 6A). RTs were also significantly shorter

with high incentives (271 ± 11 ms) compared to no incentives

(281 ± 11 ms) (main effect of reward F(2,76) = 5.30, p = 0.007;

Figure 6B). In addition, reward reduced saccadic endpoint

variability (F(1,77) = 5.02, p = 0.027; Figure 6C). It also improved

accuracy by reducing oculomotor (distractor) capture rate

(arcsine-transformed F(2,76) = 3.8; p = 0.026; Figure 6D). The re-

sults for accuracy and RT are re-plotted in Figure 6E, showing

clearly that reward pushes performance beyond the speed-

accuracy trade-off, consistent with our model predictions.

Further analysis revealed that the velocity increase could not

be explained by larger amplitudes or reduced curvature (see
Curre
Supplemental Experimental Procedures). A conditional accu-

racy function plot demonstrated that the earliest responses

(around 200 ms) were prone to distraction (50%), whereas later

responses were more accurate, as predicted by standard

speed-accuracy trade-off (Figure 6F). However, reward shifted

the curve upward and leftward, as predicted by applying a con-

trol cost to simulations of the drift-diffusion model (Figure S1B;

Supplemental Experimental Procedures).

Across healthy participants, those who had the greatest in-

crease in velocity also had the greatest decrease in motor vari-

ability, indicating stronger motivational effects (r2 = 0.23, p =

0.001; Figure S4A). Faster individuals were also more precise

(r2 = 0.094, p = 0.045; Figure S4B). This is predicted by themodel

(Figure 4C, left panels), in that a participant with low control cost

s will be both fast and precise. Participants with faster velocities

were also more sensitive to reward (r2 = 0.12, p = 0.021; Fig-

ure S4C), which is also predicted by the model (Figure 4C, lower

panels): an individual with higher temporal discount rate k or

lower noise s would have both a higher overall velocity and a

steeper slope of velocity with reward. Interestingly, there was

no correlation between reward’s effects on velocity and RT, or

between reward effects on motor endpoint variability and
nt Biology 25, 1707–1716, June 29, 2015 ª2015 The Authors 1711
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Figure 4. Cost of Control Applied to Drift

Diffusion

(A) The drift-diffusion model assumes an accu-

mulator integrating incoming information at a fixed

drift rate (m), subject to noise (s), until it reaches a

threshold (q). The red line illustrates the trajectory

in an example trial. Blue histograms indicate the

distribution of response times for correct and

incorrect responses. Increasing the threshold

leads to more accurate decisions, at the cost of

slower responses. In order to account for viola-

tions of the speed-accuracy trade-off, we intro-

duced a costly noise-reduction parameter (uP),

similar to our extended motor control model. This

permits the optimal combination of threshold and

precision to be chosen.

(B–E) Simulations provide reaction times and ac-

curacy (i.e., when the decision terminates, and

whether it is at the positive or negative boundary)

for a variety of signal sizes (m), noise (s), and

reward levels (R). For each condition, the optimal

pairing of threshold (q) and precision (uP) is

selected tomaximize value (EV). The value of a pair

was calculated as accuracy multiplied by reward,

temporally discounted by the reaction time.

(B and C) As reward increases, it is optimal to

increase the precision and lower the decision

threshold.

(D) This leads to improved accuracy with reward.

(E) When the signal-to-noise ratio is high, reward

encourages faster responding; however, when the

decision is noisy, reaction times actually increase

with reward, despite falling thresholds—producing

a speed-accuracy trade-off.
distraction error rates (Figures S4D and S4E), suggesting that

cognitive and motor control costs might be optimized indepen-

dently, in keeping with our two separate model formulations.

Cost of Control in Parkinson’s Disease

To study the effect of dopaminergic dysfunction onmotivation by

reward, we compared 19 PD patients with 22 age-matched con-

trols (Table S2), performing the same task as above (Figure 5).

Patients had mild to moderate PD with no or minimal cognitive

impairment. To compare patients and controls, we used a

mixed-effects linear model, with factors disease and reward.

There were no significant main effects of PD: patients had

saccade velocities comparable to those of healthy age-matched

control participants (Figure 7; PD versus control, F(1,80) = 1.18,

p > 0.05) and did not make more oculomotor capture errors than

controls (mean 24.8% errors in PD compared to 27.7% in con-

trols, F(1,80) = 0.29, p > 0.05). There was a trend toward longer

RTs than controls (364 ± 98 ms [SD], compared to 315 ± 66 ms

for controls, F(1,80) = 3.67, p = 0.063). Critically, patients had

shallower reward sensitivity slopes for velocity, RT, and error

rate (interaction of disease 3 reward: F(1,80) = 5.19, p = 0.025

for velocity; F(1,80) = 6.32, p = 0.014 for RT; F(1,80) = 4.98, p =

0.028 for error rate), with a similar trend for endpoint variability

(F(1,80) = 0.32, p = 0.077). These latter findings are consistent

with reduced reward sensitivity in PD, as predicted by the preci-

sion-cost model, if the precision cost s were increased (Fig-

ure 4E, compare red and blue lines). An analysis of just the PD

group showed that patients increased their velocity significantly
1712 Current Biology 25, 1707–1716, June 29, 2015 ª2015 The Auth
in response to reward (significant proportional change in velocity

with reward, F(1,37) = 5.39, p = 0.026) and thus did modulate

their behavior to some extent, although not to the degree of

healthy controls. PD patients were not significantly influenced

by reward, however, in terms of endpoint variability, RT, and

oculomotor capture (all p > 0.05).

Because the model predicts that reward can either increase or

decrease endpoint variability according to the individual, we per-

formed a supplementary analysis of per-subject effects of

reward (Figure S4A). Individual patients showed significant

reward effects in different directions, and that effect of endpoint

variability was correlated with baseline velocity, in line with

the model (Figure S4B). Conditional accuracy functions also

demonstrated absent reward effects in PD patients (p > 0.05)

(Figure S1A). The effect of reward on RT was examined at

different time points during the RT distribution (Figure S1C). In

controls, responses occurring later in the RT distribution were

the ones whose speed was increased the most by reward, as

predicted by the simulation (Figure S1D), effects that were

absent in PD. Fatigue over time could not explain the reduced

reward sensitivity in PD (see Supplemental Experimental

Procedures).

Cost of Control Explains Movement Velocity and

Endpoint Variability

For each participant, velocity and variability as a function of

reward were fitted to the motor control model, giving three free

parameters for each subject: the temporal discount rate k,
ors
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Figure 5. Oculomotor Capture Task with

Trial-wise Incentives

(A) Three equidistant discs were dimly illuminated.

At the start of each trial, participants had to fixate

one disc, which was brightened. A recorded voice

gave an auditory reward cue of ‘‘0p maximum,’’

‘‘10p maximum,’’ or ‘‘50p maximum,’’ which

indicated the maximum amount of money that

could be won if participants were fast to look at the

target on that trial. After a variable foreperiod, the

other two discs were illuminated asynchronously,

with a delay of 40 to 120 ms. Participants were

instructed to look as fast as possible to the second

disc. Thus, the first onset acted as an early onset

distractor, and the second disc indicated the

target.

(B) After gaze arrived at the target, participants

were rewarded according to reaction time.

Reward was calculated as a fraction of the

maximum available, using an exponential falloff.

The falloff was determined adaptively using

quantiles of the last 20 trials, in order to maintain

the difficulty level over the course of the

experiment.

(C) On approximately 30%of trials, gaze was ‘‘captured’’ by the distractor (errors), resulting in a brief saccade to the first disc, followed by a corrective saccade to

the target. The trajectory of gaze was classified according to whether the first saccade terminated on the target or on the distractor. Correct trials exhibited a

variety of curvatures; each trial is colored according to the initial direction of the eye velocity.

(D) The task provided four measures of performance. Both speed and accuracy could be examined for motor execution of the saccade and for selection of the

correct target.
the noise-control cost s, and baseline noise s0. These three

parameters determine the optimum velocity ð ffiffiffiffiffiffi
uF

p Þ and variability

ðs0 + suF=
ffiffiffiffiffiffi
uP

p Þ as a function of reward (Figure 3).

Compared to controls, PD patients had significantly increased

noise-control costs s (two-tailed unpaired t test, t(36) = 2.21, p =

0.034; Table S1). Neither their temporal discount rate nor their

baseline variability was significantly different from healthy people

(p > 0.05). One interpretation of the data is that PD patients go

slower in order to reduce their motor variability in the face of

an increased cost for controlling internal noise. The cost-of-con-

trol model fitted the data better than simpler models in which

only the force or precision were allowed to vary with reward

(DAIC = 6.5; Table S3; ‘‘Model Comparison’’ in Supplemental

Experimental Procedures).

DISCUSSION

Standard optimal control theory constrains human performance

to be bounded by an upper limit. Motivation by reward is remark-

able for improving performance beyond its normal bounds. To

account for this, we devised a variant of optimal control theory

that incorporates a precision signal that allows noise to be atten-

uated. But importantly, precision comes at a cost—the cost of

control (Figure 1). In the motor domain, our model predicts that

reward may improve both velocity and precision (Figure 3). In

the decision domain, it predicts faster and more accurate

choices with higher reward (Figure 4).

We tested this using a novel incentivized saccadic task (Fig-

ure 5). In accordance with ourmodel, reward increased saccadic

velocity and endpoint accuracy, and reduced RTs and oculomo-

tor distractibility (Figure 6). By allowing each participant to

optimize behavior according to their own noise and temporal

discounting, the model was able to accommodate individual
Curre
differences in responses to reward across the populations,

better than simpler models.

Applying optimality to reward incentivization unites recent

conceptions of motivation [20, 24] with existing mathematical

frameworks of optimal action [8, 11, 42]. If reward is held fixed,

our model reduces to previous accounts [10, 36], but if reward

is altered, parallel shifts can occur that violate the classical

speed-accuracy trade-off (Figure 1C), at least when signal-to-

noise ratios are high and temporal discounting is small (Figures

3C and 4E). Such effects are often reported as attentional im-

provements in cognitive control tasks [5, 6] but have not previ-

ously been quantified in terms of cost-benefit analysis.

Previous presentations of the drift-diffusion model have incor-

porated speeding up of decisions by reward [42], but our addi-

tion of a control cost makes new predictions for the drift rate.

Neuronal ramping activity preceding a decision has been inter-

preted in terms of drift diffusion, but existing models fail to cap-

ture how emphasizing speed over accuracy may increase the

peak firing rates at the moment of decision [43]. Unlike previous

attempts, our model does predict faster RTs accompanied by

higher thresholds, under specific circumstances (Figures 4C

and 4E).

In both animals and humans, dopamine is considered to have

a crucial role in mediating response vigor [11, 32] and in over-

coming internal costs associated with particular behaviors [29].

Individuals with PD, a condition associated with dopamine

depletion, had reduced sensitivity to reward on speed measures

compared to age-matched controls (Figure 7), yet they main-

tained similar overall levels of accuracy. In the model, this corre-

sponded to a greater cost of controlling noise. The results are in

line with previous evidence that, for a matched speed, PD pa-

tients’ movements are less accurate [44] and cognitive control

errors more frequent [45].
nt Biology 25, 1707–1716, June 29, 2015 ª2015 The Authors 1713
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Figure 6. Effects of Reward on Saccades in Healthy Participants

(A) For correct trials, the mean peak velocity of saccades increased with higher incentives, demonstrating invigoration by reward. Error bars indicate within-

subject standard error.

(B) Endpoint variability (standard deviation of the saccade amplitudes) in each condition became less variable with increasing incentives, indicating that reward

can improve motor precision.

(C) For correct trials, RTs were faster for higher incentives.

(D) The rate of oculomotor capture (proportion of trials on which the first saccade after the onset was directed to the distractor, i.e., error trials) was reduced with

increased incentives, indexing improved accuracy. Error timings are shown in Figure S2 and times to correct errors in Figure S3.

(E) Plotting the data from Figure 5 as accuracy versus RT (where accuracy is defined as percentage of responses that were directed to the target and not to the

distractor) demonstrates how, with increasing incentives, reaction time decreased and accuracy simultaneously improved. The inset shows how this relates to

Figure 1C: the speed-accuracy trade-off is broken.

(F) Conditional accuracy plot shows how, for a fixed reward level, accuracy improved with increasing RT, but this relationship was shifted by incentives, with the

greatest differences evident at short RTs. The gradient of each curve is always positive, indicating that for a trials within a single reward level (i.e., constant

incentive), the speed-accuracy trade-off held. The plot shows the proportion of saccades that went to the target, in a sliding window along the RT distribution,

width 20% quantiles. Patient data and model are shown in Figure S1.
Could the lossof rewardsensitivity inPDbeexplainedsimplyby

patients performing at their ceiling? This seems unlikely. First, the

PD patients were not entirely unresponsive to reward. Second, at

fast RTsPDpatients are in factmoreaccurate than controls; how-

ever, at slowerRTs the accuracy plateaus lower (Figure S1A). This

suggests that instead of being uniformly slow, patientsmaintain a

stable accuracy level at the cost of speed [46]. Finally, in PD,

reward speeded up slow responses similarly to fast responses

(Figure S1C), whereas with ceiling effects, slow saccades might

be expected to show greater motivational improvement.

Although dopaminergic reward signals are well characterized,

their role in weighing costs against benefits remains obscure.

Our results are suggestive, but not conclusive, that dopamine

depletion may lead to a higher cost of control. Dopamine might

facilitate motivational performance adjustments due to its neuro-

modulatory effects on synaptic noise or gain [47], potentially

reducing the cost of control. However, from this study alone, it

is not possible to determine for certain which specific mecha-

nisms mediated the effects we observed. Although our patients

had mild to moderate PD without dementia, we cannot rule out

pathology in non-dopaminergic systems.

What Is the Real Cost of Reducing Noise?
If control signals can truly attenuate noise, then why are we not

built to exercise maximal control at all times? There are at least

three possible reasons why control should be expensive: oppor-

tunity costs, neural resources, and entropy.
1714 Current Biology 25, 1707–1716, June 29, 2015 ª2015 The Auth
First, the ‘‘noise’’ that needs to be attenuated in the brainmight

in fact be constituted by potentially relevant but currently irrele-

vant signals. Distraction confers ecological advantages, and

ignoring distractors could be costly or dangerous. For the motor

system, analogously, producing precise movements entails

isolating the motor system from competing affordances. Selec-

tive attention and precision thus carry danger or opportunity

costs. Second, controlling noise might require allocation

of more ‘‘neural resources,’’ for example more neurons in

population codes [23], higher firing rates (Figure S6), or the

reduction of motor error by co-contraction of antagonistic mus-

cles, which increases effector stiffness but incurs an energetic

cost. Finally, any feedback-control signal that maintains stability

in the face of thermal noise will inherently increase the entropy of

a system [48], which must be dissipated as heat [49]. Conse-

quently, minimizing control signals may be a central principle

of brain design.

Whatever the real cost of control, its estimation and optimiza-

tion by the brain can be summarized by the equations presented

here. Cost-benefit optimization then directly predicts the

observed effects of reward on speed and accuracy. We suggest

that the mathematical formulations of optimal control theory,

complemented by our costly noise-reduction signal, would be

broadly applicable to any domain in which behavioral perfor-

mance is limited by neuronal noise or resources. If combined

with an appropriate model of how noise degrades performance,

our formulation might also predict motivation’s effects on more
ors
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Figure 7. Reduced Reward Sensitivity in Patients with Parkinson’s

Disease

(A) PD patients had decreased reward sensitivity, as demonstrated by a

shallower slope. This is consistent with impaired invigoration by reward.

Overall velocities were also marginally slower.

(C) Saccadic amplitude variability was not significantly abnormal in PD.

(B) Reaction times were slower in PD and showed reduced reward sensitivity.

(D) Patients showed weaker effects of reward on improving distractibility, as

measured by oculomotor capture (i.e., they did not reduce their error rate in

response to incentive), compared to controls. Between-subject correlations

are shown in Figure S4.
complex aspects of behavior, such as attentional selection,

working memory, and inhibitory control.

EXPERIMENTAL PROCEDURES

Application of Precision Cost to Motor Commands

Equation 1 indicates the considerations in evaluating an action. To express

Pwin and temporal discounting D as a function of the control command u, we

first assume hyperbolic temporal discounting,D(u) = 1/(1 + kT(u)) [12]. Second,

accuracy Pwin(u) depends on the amount of motor noise, which is usually

assumed to be Gaussian, and proportional to juj [26]. Reward will be missed

if noise exceeds some threshold. The probability of landing within a unit radius

is given by the cumulative normal error function (denoted F). This gives an

equation for the ‘‘orthodox view’’ (Figure 1B),

EVðuÞf R

1+ k,TðuÞ 2F
�

1

s,juj
�
� juj2;

where the parameter k indicates a subject’s temporal discount rate and s de-

notes their motor noise.

For a simple one-dimensional movement, we find the optimal force/preci-

sion pair u = [uF, uP]. We assume that noise is scaled down by precision,

and for our specific motor task, we write the noise as suF=
ffiffiffiffiffiffi
uP

p
(see Supple-

mental Experimental Procedures). Furthermore, movement time depends on
Curre
the force component of the command, with TðuÞf1=
ffiffiffiffiffi
uF

p
. Finally, since we

treat uP as a control signal, it contributes to the cost juj2, alongside the force.

This gives the expected value (EV) of a command (Figure 1D):

EVðuF ; uPÞf R

1+ k
� ffiffiffiffiffi

uF

p 2F

� ffiffiffiffiffiffi
uP

p
s,uF

�
� juF j2 � juPj2:

Application of Noise-Reduction Cost to Cognitive Control: Drift-

Diffusion Model

The drift-diffusion model allows us to predict the RT distribution and error rate

of a two-alternative choice. The outcome of the decision depends on the

average rate of accumulating information m, the threshold q at which enough

information is available to make a decision, and s, the amount of noise in

the accumulator (Figure 4A). We suggest that an organism can control not

only the threshold, but also decision noise, to optimize EV. Noise can be

reduced by a precision signal to give an effective noise level s=
ffiffiffiffiffiffi
uP

p
. This pre-

cision entails a cost juj2 = u2P. In an alternative race model framework, the rate

of rise might be increased (Figures S2 and S3).

The time taken (T = RT) and accuracy Pwin are calculated by simulating the

diffusion process.We assume hyperbolic temporal discounting of reward, with

D(q, uP) = 1/(1 + kT). These values are substituted into Equation 1. The optimum

threshold and precision [q, uP] can then be found by simulation, which in turn

determine speed and accuracy (Figures 4B–4E). Performance therefore de-

pends on the reward on offer, the individual’s baseline signal-to-noise ratio

s, and their temporal discount rate. High reward emphasizes time pressure

but also encourages investment in precision—enabling the classical speed-

accuracy trade-off to be broken by motivation.
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